JP2016125289A - 構造物点検ロボット - Google Patents

構造物点検ロボット Download PDF

Info

Publication number
JP2016125289A
JP2016125289A JP2015000933A JP2015000933A JP2016125289A JP 2016125289 A JP2016125289 A JP 2016125289A JP 2015000933 A JP2015000933 A JP 2015000933A JP 2015000933 A JP2015000933 A JP 2015000933A JP 2016125289 A JP2016125289 A JP 2016125289A
Authority
JP
Japan
Prior art keywords
inspection robot
wheel
structure inspection
wheels
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015000933A
Other languages
English (en)
Other versions
JP5828973B1 (ja
Inventor
謙一 杉井
Kenichi Sugii
謙一 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Expressway Engineering Co Ltd
Original Assignee
Hanshin Expressway Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Expressway Engineering Co Ltd filed Critical Hanshin Expressway Engineering Co Ltd
Priority to JP2015000933A priority Critical patent/JP5828973B1/ja
Application granted granted Critical
Publication of JP5828973B1 publication Critical patent/JP5828973B1/ja
Publication of JP2016125289A publication Critical patent/JP2016125289A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

【課題】構造物の突出部材が設置された箇所を走行でき、構造物において到達できない部分を従来よりも削減でき、従来よりも広い領域の点検ができる構造物点検ロボットを提供する。
【解決手段】構造物点検ロボット1は、点検装置5を搭載した本体2と、1対の前輪3,3と、1対の後輪4,4を有する。前輪3と後輪4は、外径側に周方向に配置された複数の磁石と、磁石の側部と底部を覆う遮蔽部を有する。前輪3と後輪4は、幅方向の両側に設置された円錐形状の接触部32,42を有する。前輪3と後輪4が橋梁の鋼製部材に吸着して回転駆動することにより、鋼製部材に沿って走行する。構造物点検ロボット1が添接部を走行する際、接触部32,42がボルトナットに接触して反力を受けて、車輪3,4の進行方向がボルトナットを回避する方向に変更されるので、車輪3,4がボルトナットに係止又は乗り上げる不都合を防止できる。
【選択図】図1

Description

本発明は、例えば鋼製の橋梁の点検に好適な構造物点検ロボットに関する。
従来より、橋梁の維持管理の一環として、橋梁を構成する部材の点検が行われている。従来、例えば桁橋の主桁の点検を行う場合、主桁のフランジの側面やウェブの底面に近接して足場を組み、この足場から点検者が目視点検や打音点検を行うのが一般的である。
しかしながら、点検者が足場から部材に接近して行う点検は、足場の設置のために手間とコストがかかり、また、点検者の負担が大きいという問題がある。
このような問題を解決するため、橋梁の点検のために、伸縮可能なブームの先端にカメラを備えた点検車両が使用されている。この種の点検車両を用いた点検では、橋梁の床版の上や、橋梁の下方の地上に点検車両を停止させ、ブームを伸長してカメラを点検対象の部材に接近させ、この部材をカメラで撮影する。カメラの撮影映像を、床版上や地上に設置されたディスプレイに表示し、表示された映像を点検者が視認して点検を行うようになっている。
しかしながら、上記点検車両は、ブームの長さや関節の可動範囲に起因して、橋梁の点検可能な範囲が比較的狭いという問題がある。例えば、複数の主桁を有する橋梁の点検を行うに際して、床版上から点検車両で主桁の点検を行う場合、主桁と主桁の間の部分には、ブームの伸長距離の不足や関節の屈曲角度の不足により、カメラを接近できない場合が多い。また、上記点検車両は、橋梁の側方に構造物が接近して存在する場所では、ブームの稼働領域を確保できず、点検ができない場合がある。また、上記点検車両は、橋梁の下方に構造物が存在する場所には進入できず、点検ができない場合がある。
そこで、従来、カメラ等の点検装置を搭載した本体に、構造物に沿って走行する走行装置を備えた自走式の点検ロボットが提案されている。この種の点検ロボットとしては、走行装置の車輪を、複数の永久磁石からなる磁石群と、車軸に連結されたホイールを取り囲む環状の可撓性部材で形成された磁石保持部とで構成し、磁石保持部の構造物との接触面に摩擦部材を被覆したものが提案されている(特許文献1参照)。この点検ロボットは、車輪の永久磁石で構造物の強磁性部材に吸着すると共に、可撓性部材が構造物の表面の形状に応じて変形し、更に、摩擦部材で構造物に対する滑りを低減するように形成されている。これにより、平坦面にリブ板が設けられてなる鋼製の凹凸面等を、車輪が滑ることなく吸着して走行できるように形成されている。上記車輪は円柱形状を有し、左右両側の車輪の間かつ本体の底面に、矩形の車体節が取り付けられている。
特開2013−177112号公報
橋梁や鉄塔等の鋼構造物には、例えば添接部のように、ボルトやリベットが行列状に複数個配置されて、表面が凹凸をなす箇所がある。添接部は、部材を横断して設けられることが多く、点検ロボットが部材に沿って走行する場合に迂回できないことが多い。しかしながら、上記従来の点検ロボットは、車輪が円柱形状を有するので、この車輪が添接部のボルトやリベットに係止し、走行不能になる恐れがある。また、上記車輪が添接部のボルトやリベットに乗り上げ、強磁性部材への吸着力が減少して点検ロボットが落下する恐れがある。上記車輪がボルトやリベットと係止し、また、ボルトやリベットに乗り上げる可能性は、磁石保持部の接触面に設けられた摩擦部材によって増大する。また、車輪の間に配置された車体節が、添接部のボルトやリベットに係止して、点検ロボットの走行が不可能になる恐れがある。これらにより、上記従来の点検ロボットは、構造物の添接部よりも先の部分に進むことができないので、構造物に到達できない部分が生じ、構造物の点検ができない部分が生じるという不都合がある。
そこで、本発明の課題は、構造物のボルトやリベット等の突出部材が設けられた箇所を走破でき、構造物において到達できない部分を従来よりも削減でき、構造物を従来よりも広い領域について点検ができる構造物点検ロボットを提供することにある。
上記課題を解決するため、本発明の構造物点検ロボットは、構造物の点検装置を搭載する本体と、
車輪を上記構造物の強磁性部材に磁力で吸着させて回転駆動することにより、上記本体を上記強磁性部材に沿って移動させる走行装置と
を備える構造物点検ロボットであって、
上記走行装置は、上記車輪の側部に、走行面から突出する突出部材に接触することにより進行方向が変更される接触部を有することを特徴としている。
上記構成によれば、構造物の点検装置を搭載した本体が、走行装置により、構造物に沿って移動する。走行装置は、車輪の磁力で構造物の強磁性部材に吸着し、この車輪を回転駆動して強磁性部材に沿って走行する。強磁性部材に沿って走行すると、例えばボルトやリベット等のような、走行面である強磁性部材の表面から突出する突出部材に接触する場合がある。ここで、走行装置の車輪の側部に設けられた接触部が上記突出部材に接触すると、接触部が突出部材から反力を受け、この反力によって車輪の進行方向が突出部材を避ける方向に変更されて、走行装置の進行方向が変更される。これにより、車輪は強磁性部材の表面に吸着した状態が保たれるので、走行装置が強磁性部材の表面に沿って走行を継続することができる。したがって、従来の点検ロボットにおけるような、車輪が突出部材に係止する不都合や、車輪が乗り上げる不都合を効果的に防止できる。その結果、この構造物点検ロボットは、走行面に突出部材が配置された箇所を、効果的に走破することができ、構造物の突出部材の配置箇所よりも先へ走行して構造物の点検を行うことができる。よって、本発明の構造物点検ロボットは、構造物において到達できない部分を従来よりも削減でき、従来よりも広い部分の構造物の点検ができる。
ここで、上記車輪の接触部は、接触面である表面を、回転軸と直角をなす面に対して傾斜した傾斜面、曲面、放射方向に延在する溝と峰とで形成された凹凸面等の種々の形状に形成することができる。要は、接触部は、突出部材に接触して構造物点検ロボットの進行方向と異なる方向の反力を受けるように形成されていれば、表面はどのような形状でもよい。また、上記走行装置は、走行面に対する間隔を形成するため、車輪の走行面との接触位置から、本体や走行装置の走行面に最も近い部分までの離隔を、突出部材の走行面からの突出高さよりも大きくなるように設定されるのが好ましい。また、上記車輪は、外径側に、磁力を生じる磁力部が配置された円盤状のものを用いることができる。また、上記車輪は、回転軸に連結されるハブと、このハブから径方向に延びるスポーク状の径方向部材と、径方向部材の先端に連結されて磁力を生じる磁力部とを有するものを用いることができる。本発明において、強磁性部材とは、強磁性体で形成され、磁気を生成する物体との間に磁力が生じる部材をいう。また、突出部材とは、走行面から突出した物体をいい、強磁性部材の一部であるか、又は、強磁性部材と異なる部材であるかは問わない。また、突出部材の材質は、強磁性部材と同一の材質であっても、異なる材質であってもよい。例えば、突出部材とは、構造物の部材の相互を接続するボルトやリベットが該当する。
一実施形態の構造物点検ロボットは、上記走行装置の車輪の接触部は、表面が円錐形状又は円錐台形状に形成されている。
上記実施形態によれば、表面が円錐又は円錐台形状に形成された接触部が、強磁性部材の表面の突出部材に接触することにより、車輪に効果的に反力を与えて走行装置の進行方向を変更できる。
一実施形態の構造物点検ロボットは、上記走行装置の車輪の接触部は、表面が曲面に形成されている。
上記実施形態によれば、表面が曲面に形成された接触部が、強磁性部材の表面の突出部材に接触することにより、車輪に効果的に反力を与えて走行装置の進行方向を変更できる。
一実施形態の構造物点検ロボットは、上記走行装置の車輪の接触部は、低摩擦材で形成されている。
上記実施形態によれば、接触部が低摩擦材で形成されることにより、強磁性部材の表面の突出部材と接触するとき、突出部材との係合が効果的に防止される。したがって、突出部材から受けた反力により、速やかに構造物点検ロボットの進行方向を変更できる。ここで、接触部の表面部分が低摩擦材で形成されてもよく、接触部の全部が低摩擦材で形成されてもよい。また、低摩擦材とは、静摩擦係数が0.5以下の材料をいう。低摩擦材としては、例えば、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PVDF(ポリビニリデンフルオライド)、PCTFE(ポリクロロトリフルオロエチレン)、ECTFE(クロロトリフルオエチレン・エチレン共重合体)等のフッ素系樹脂や、他の樹脂を用いることができる。
一実施形態の構造物点検ロボットは、上記接触部は、上記車輪の厚み方向の一方の側、かつ、同一軸上の複数の車輪の互いに異なる側に設けられている。
上記実施形態によれば、同一軸上に配置された複数の車輪に、接触部を厚み方向の一方の側、かつ、複数の車輪の互いに異なる側に配置することにより、構造物点検ロボットの進行方向を変更する性能を低下することなく、接触部の個数を削減できる。また、接触部を、同一軸上の複数の車輪の互いに対向する側に配置することにより、走行装置の幅方向の寸法を増大することなく、接触部を機能させることができる。ここで、同一軸上の複数の車輪とは、同一の回転軸に取り付けられた複数の車輪のほか、延在方向が同一に配置された複数の回転軸に夫々取り付けられた車輪をもいう。
一実施形態の構造物点検ロボットは、上記構造物は橋梁であり、
上記車輪の回転軸の直角方向視において、上記接触部の円錐面部分の輪郭が、上記回転軸に対して59°以上79°以下の角度をなすように形成されている。
構造物点検ロボットが、構造物としての橋梁を走行するとき、強磁性部材を互いに接続する添接部に設けられた突出部材が、走行の障害となり得る。ここで、上記実施形態によれば、接触部の円錐面部分の輪郭が、回転軸に対して59°以上79°以下の角度をなすように形成されることにより、接触部が突出部材に接触したとき、突出部材から、走行装置の進行方向を変更可能な方向の反力を、効果的に受けることができる。したがって、突出部材に係止又は乗り上げることなく、上記添接部を走破することができる。ここで、接触部の輪郭の回転軸に対する角度が79°を超える場合、突出部材に接触したときに受ける反力が小さく、走行装置の進行方向を変更する効果が得られないおそれがあり、また、突出部材を構成するワッシャに係止又は乗り上げるおそれがある。一方、接触部の輪郭の回転軸に対する角度が59°よりも小さい場合、突出部材に接触したときに突出部材に係止する可能性が高まり、走行装置の進行が停止するおそれがある。ここで、突出部材が、構造物としての橋梁に設けられたボルトナットである場合に、接触部の円錐面部分の輪郭を、上記回転軸に対して59°以上79°以下の角度をなすように形成することにより、上記ボルトナットへの係止や乗り上げを効果的に防止することができる。さらに、上記ボルトナットに高力ボルトが用いられる場合、接触部の円錐面部分の輪郭を、上記回転軸に対して59°以上73°以下の角度をなすように形成するのが好ましい。また、上記ボルトナットにトルシア形ボルトが用いられる場合、接触部の円錐面部分の輪郭を、上記回転軸に対して59°以上79°以下の角度をなすように形成するのが好ましい。
一実施形態の構造物点検ロボットは、上記走行装置の車輪は、外径側に設けられて磁力を発生する磁力部と、この磁力部から車輪の周方向への磁気の影響を遮蔽する遮蔽部とを有する。
上記実施形態によれば、走行装置の車輪の外径側に、磁力を発生する磁力部が設けられる。また、この車輪に、磁力部から車輪の側方への磁気の影響を遮蔽する遮蔽部が設けられる。したがって、車輪が回転するとき、走行面である強磁性部材の表面に車輪を効果的に吸着できると共に、車輪が突出部材に引き寄せられる不都合を効果的に防止できる。ここで、上記遮蔽部は、磁力部を取り囲み、車輪の外径側のみが開口して磁力部の端面を車両の外径側に臨ませる一方、磁力部の他の部分を被覆する被覆部材で形成されるのが好ましい。
一実施形態の構造物点検ロボットは、上記走行装置は、進行方向に隣り合う上記車輪が、回転軸方向視において互いの磁力部の回転経路が交差するように配置され、かつ、回転軸の延在方向において互いに異なる位置に配置されている。
上記実施形態によれば、走行面である構造物の強磁性部材の表面が、進行方向において屈曲して角が形成されている場合、この角部を通過する構造物点検ロボットは、本体の進行方向と直角の幅方向軸の周りに回動するピッチングが生じる。ここで、走行装置の進行方向に隣り合う車輪が、回転軸方向視において互いの磁力部の回転経路が交差するように配置されているので、本体が走行面の角部に接触する不都合を防止できる。したがって、構造物としての例えば橋梁の箱桁を、横断方向に走行する場合においても、箱桁の鉛直面から、この鉛直面に連なる下向水平面へ、鉛直面と下向水平面との間の角部に本体が接触することなく走行することができる。しかも、鉛直面及び/又は下向水平面に突出部材が存在しても、車輪の接触部によって突出部材への係止や乗り上げを防止でき、落下することなく鉛直面と下向水平面との間の角部を通過できる。また、構造物としての例えば橋梁のI桁を、一方の側から他方の側に向かって走行する場合においても、ウェブの一方の面から他方の面に、ウェブの端部に本体が接触することなく走行することができる。しかも、ウェブに突出部材が存在しても、車輪の接触部によって突出部材への係止や乗り上げを防止でき、落下することなく板状部材の一方の面と他方の面との間を走行できる。
一実施形態の構造物点検ロボットは、上記走行装置は、同軸上に配置された2つの車輪を有し、これらの車輪の互いの距離が、上記突出部材の配置間隔の整数倍おきに調節可能に形成されている。
構造物の強磁性部材に存在する突出部材として、強磁性部材の相互を接続するボルトやリベットが存在する。これらのボルトやリベットは、強磁性部材の相互の接続部分に行列状に配置されることが多い。強磁性部材の接続部分に配置されたボルトやリベットは、所定の間隔で配置されることが多い。本実施形態によれば、構造物点検ロボットを用いた構造物の点検の準備を行う際に、車輪の相互間の距離を、突出部材の所定の配置間隔の整数倍おきに調節できるので、車輪が突出部材としてのボルトやリベットの間を通過できる互いの距離に容易に調節できる。したがって、構造物点検ロボットを、ボルトやリベットの設置位置を走破できるように、容易に調節できる。ここで、車輪の相互の最小の距離を、構造物点検ロボット本体の両側に配置可能な限界の最小下限距離から、最小上限距離までの間に設定するのが好ましい。最小上限距離は、上記最小下限距離よりも大きく、かつ、上記最小下限距離に最も近い突出部材の配置間隔の整数倍の値を与える整数に1を加え、この整数に突出部材の配置間隔を乗じた距離から、突出部材の径と、車輪の幅と、突出部材の頂部における接触部の幅の2倍とを差し引いた距離である。このような最小距離を設定することにより、車輪の相互の距離を、上記最小距離から突出部材の配置間隔の整数倍おきに調節することにより、いずれの調節距離においても、車輪が突出部材の間を走行可能にできる。本実施形態の構造物点検ロボットは、例えば、車輪と回転軸に、係合歯及び係合爪のいずれかを設け、係合歯の係合爪との係合間隔を、所定の距離の整数倍に設定することができる。ここで、係合歯の係合爪との係合間隔は、例えば100mm、120mm及び150mmの各々の整数倍ごとに設定することができる。
一実施形態の構造物点検ロボットは、上記本体を複数個備え、
上記本体の各々に、同軸上に配置された車輪の対が設けられ、
上記複数の本体の相互間が、弾性体で連結されている。
上記実施形態によれば、複数の本体の各々に、同軸上に配置された車輪の対が進行方向に2組設けられる。ここで、いずれかの本体に、車輪の接触部が突出部材に接触したとき、他の本体との間が弾性体で連結されているので、他の本体によって進行方向の変化が妨げられる不都合が少ない。したがって、本体毎に、突出部材との係止や乗り上げを防止できるので、走破性の高い構造物点検ロボットが得られる。なお、本体の車輪対は、軸方向視において互いの磁力部の回転経路が交差するように配置されるのが好ましい。これにより、強磁性部材の鉛直面と下向水平面との間や、板状の強磁性部材の一方の面と他方の面との間を、強磁性部材の角部に本体が接触することなく走行することができる。したがって、各本体の車輪が走行面から離脱する不都合を効果的に防止できる。
一実施形態の構造物点検ロボットは、上記走行装置は、進行方向の一方の側に、同軸上に配置された2つの車輪を有し、進行方向の他方の側に、同軸上に配置された2つの車輪を有する。
上記実施形態によれば、走行装置の一方の進行方向及び他方の進行方向のいずれにも、安定して走行可能な構造物点検ロボットが得られる。
一実施形態の構造物点検ロボットは、上記走行装置は、進行方向の一方の側に、同軸上に配置された2つの車輪を有し、進行方向の他方の側に1つの車輪を有する。
上記実施形態によれば、走行装置の進行方向と直角の幅方向において、車輪の走行経路を少なくできるので、突出部材の間を容易に通過できて、走破性の高い構造物点検ロボットが得られる。
本発明の第1実施形態の構造物点検ロボットを模式的に示す平面図である。 構造物点検ロボットを模式的に示す側面図である。 構造物点検ロボットの車輪を示す横断面図である。 構造物点検ロボットの車輪を示す縦断面図である。 構造物点検ロボットの車輪を示す分解図である。 構造物点検ロボットの車輪の変形例を示す平面図である。 構造物点検ロボットが橋梁の添接部を走行する様子を示す平面図である。 構造物点検ロボットが橋梁の添接部を走行する様子を示す正面図である。 橋梁の添接部に設置されたボルトを示す断面図である。 橋梁の添接部に設置されたリベットを示す断面図である。 構造物点検ロボットが橋梁を横断方向に走行する様子を示す断面図である。 構造物点検ロボットが橋梁の添接部を走行する様子を示す平面図である。 第2実施形態の構造物点検ロボットが橋梁の添接部を走行する様子を示す平面図である。 橋梁の添接部を走行する第2実施形態の構造物点検ロボットの車輪の様子を示す正面図である。 第3実施形態の構造物点検ロボットの車輪を示す横断面図である。 第3実施形態の構造物点検ロボットの車輪を示す縦断面図である。 第4実施形態の構造物点検ロボットを模式的に示す平面図である。 第5実施形態の構造物点検ロボットを模式的に示す平面図である。 第6実施形態の構造物点検ロボットを模式的に示す平面図である。 第6実施形態の構造物点検ロボットを模式的に示す側面図である。 構造物点検ロボットの車輪の変形例を示す断面図である。
以下、本発明を図示の実施の形態により詳細に説明する。
図1は、本発明の第1実施形態の構造物点検ロボットを模式的に示す平面図であり、図2は、第1実施形態の構造物点検ロボットを模式的に示す側面図である。第1実施形態の構造物点検ロボットは、構造物としての橋梁の点検を行うように形成され、走行装置の車輪に設けられた磁力部により、強磁性部材としての鋼製部材に磁力で吸着し、所定の点検位置に移動して点検を行うものである。
この構造物点検ロボット1は、可視光動画カメラや赤外線カメラ等の点検装置5を搭載した本体2と、この本体2の概ね四隅に配置された4つの車輪3,3,4,4を備える。
車輪3,3,4,4は、本体2の一方の側に同軸上に配置された一対の前輪3,3と、本体2の他方の側に同軸上に配置された一対の後輪4,4とで構成されている。一対の前輪3,3は、一対の後輪4,4よりも、互いの離隔距離が広く設定されている。なお、車輪3,4の配置位置に関する前及び後は、便宜的に定めたものであり、本体2に関していずれの側が前であってもよい。また、すなわち、互いの離隔距離が狭い一対の車輪4,4を前輪とし、互いの離隔距離が広い一対の車輪3,3を後輪としてもよい。
前輪3は、図3の横断面図と、図4の縦断面図とに示されるように、円盤状の車輪本体31の外径側に、複数の磁力部としての磁石35,35,35,・・・が、周方向に所定間隔をおいて配置されている。図3では、鋼製部材の法線が鉛直下方を向く下向水平面を、走行面20として、前輪3が吸着して走行する様子を示している。前輪3の磁石35は、ネオジム磁石やサマリウムコバルト磁石等の永久磁石が用いられる。なお、磁力部として、電磁石を用いてもよい。磁力部としての磁石35は、磁力を出射する径方向外側の端面以外の部分が、遮蔽部36によって覆われている。遮蔽部36は、一端が開口した円筒形状を有し、磁石35の端面を開口から臨ませるように、磁石35を収容している。遮蔽部36は、強磁性体で作成でき、特に、方向性けい素鋼、ニッケル鉄合金又は電磁ステンレス鋼等で作成するのが好ましい。車輪本体31及び磁力部の外径側であって、走行時に構造物の強磁性部材に接する面には、ゴム製又は樹脂製の滑り止め被膜を設けることができる。前輪3の車輪本体31は、図5に示すように、中心に設けられたハブ6により、駆動軸7に連結されている。前輪3のハブ6は、駆動軸7に対する固定位置が軸方向に調整可能になっている。これにより、前輪3の駆動軸7に沿った軸方向位置が変更可能に形成されている。すなわち、本体2の幅方向の両側に配置されて同一軸上に配置された一対の前輪3,3は、同軸上に配置された駆動軸7,7に沿って、互いの距離が調整可能に形成されている。前輪3,3の互いの距離は、駆動軸7,7に係合歯を設けると共に、前輪3,3のハブ6に係合爪を設け、これらの係合歯と係合爪との係合間隔が、100mmの整数倍と、120mmの整数倍と、150mmの整数倍とに設定されている。前輪3,3の互いの距離の最小値は、任意の値に調節可能になっている。これにより、前輪3,3の互いの距離が、最小値から、100mmの整数倍を加えた値と、120mmの整数倍を加えた値と、150mmの整数倍を加えた値とに設定可能に形成されている。なお、前輪3,3の間の距離は、駆動軸7,7に係合爪を設けると共に、前輪3,3のハブ6に係合歯を設けて調整可能に形成してもよい。また、駆動軸7の端部に前輪3のハブ6を固定し、駆動軸7をテレスコープ状に伸縮可能に形成して、2つの前輪3,3の間の距離を調節可能に形成してもよい。
後輪4もまた、前輪3と同様に、円盤状の車輪本体41の外径側に、複数の磁力部としての磁石35,35,35,・・・が周方向に所定間隔をおいて配置されており、これらの磁石35,35,35,・・・は、磁力を出射する径方向外側の端面以外の部分が、遮蔽部36によって覆われている。また、同一軸上の2つの後輪4は、前輪3と同様の機構により、互いの距離が、任意の最小値から、100mmの整数倍を加えた値と、120mmの整数倍を加えた値と、150mmの整数倍を加えた値とに設定可能に形成されている。
上記前輪3及び後輪4には、接触部32,42が、軸方向の両側に取り付けられている。図5は、接触部32が設けられた前輪3を示す分解図である。接触部32は、底面が開口した円錐形状に形成されている。この接触部32は、金属で作成された本体の円錐形状の表面に、低摩擦材として、PTFE(ポリテトラフルオロエチレン)で作成された被膜が設けられて、接触面32aが形成されている。接触部32の内側には、底面が開口した柱状の嵌合部が形成され、この嵌合部がハブ6の外側面に嵌合して車輪本体31に固定されている。車輪3の一方の側に固定された接触部32は頂点が尖っている一方、他方の側に固定された接触部32は、頂点部分に貫通穴が形成されて駆動軸7が挿通されている。この接触部32,42は、車輪3,4が走行面20に吸着して回転する際、走行面20である鋼製部材の表面に突出する突出部材に接触し、これにより突出部材から受けた反力で、走行装置の進行方向を変更するように構成されている。図6は、変形例の接触部132が設けられた前輪3を示す図である。変形例の接触部132は円錐台形状に形成され、接触面132aが円錐台状斜面に形成されている。この接触部132は、円錐台形状の頂部の平坦面が、ハブ6の端面に接するように車輪本体31に固定される。なお、接触部32の表面に設けられた被膜は、PTFE以外に、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PVDF(ポリビニリデンフルオライド)、PCTFE(ポリクロロトリフルオロエチレン)及びECTFE等の低摩擦材で形成されてもよい。また、接触部32の表面に低摩擦材で形成された被膜を設ける以外に、接触部32の一部又は全部を、PTFE等の低摩擦材で形成してもよい。
上記前輪3と後輪4は、図2に示すように、回転軸方向視において、互いに重複するように配置されている。これにより、前輪3の外径側に配置された磁石35が前輪3の回転に伴って描く回転経路と、後輪4の外径側部に配置された磁石が後輪4の回転に伴って描く回転経路とが、回転軸方向視において交差するように配置されている。また、上記前輪3と後輪4は、図1に示すように、駆動軸7,9の延在方向である幅方向において、互いに異なる位置に配置されている。すなわち、上記前輪3と後輪4は、幅方向にずらして配置されており、これにより、回転軸方向視において互いに重複しながら、互いに干渉することなく回転可能に形成されている。
本体2は、平面視において矩形の基台10上に、可視光動画カメラや赤外線カメラ等の点検装置5が設置されている。なお、点検装置5は、距離センサ等のような、橋梁の点検に関する他の機器であってもよい。基台10上には、2つの前輪3の駆動軸7と2つの後輪4の駆動軸9を夫々駆動するギヤードモータ11,11,11,11と、ギヤードモータ11の動作を制御するモータドライバ12が搭載されている。上記前輪3、後輪4、駆動軸7,9及びギヤードモータ11により、走行装置を構成している。また、基台10上には、図示しないリモートコントローラから操作に関する操作信号を受信する受信機13と、受信機13から操作信号を受けて制御信号を出力するメインコントローラ14が搭載されている。さらに、基台10には、上記モータドライバ12に電力を供給するバッテリ15が設けられている。メインコントローラ14からの制御信号がモータドライバ12に入力され、入力された制御信号に応じた電力をモータドライバ12がギヤードモータ11へ出力する。一対の前輪3及び一対の後輪4は、夫々のギヤードモータ11によって回転方向及び回転数が独立して制御される。各車輪3,4の回転方向及び回転数が制御されることにより、構造物点検ロボット1の前進及び後進の切り替えと、走行速度の調整と、左右の操舵が行われる。本体2の基台10の上記各機器が搭載された側と反対側の面である底面は、図2に示すように、前輪3の中心と後輪4の中心とを結ぶ線に対して直角を成す高さ方向の位置が、前輪3と後輪4の重複部分の内側となるように設定されている。なお、基台10の底面は、高さ方向の位置が、前輪3と後輪4の重複部分よりも高ければよい。
第1実施形態の構造物点検ロボット1は、次のように動作する。まず、構造物としての橋梁の鋼製部材に、前輪3,3及び後輪4,4を接触させて載置し、車輪3,4のいずれかの磁力部を鋼製部材に吸着させる。構造物点検ロボット1の姿勢が、本体2の基台10の底面が鋼製部材を向くように載置する。続いて、操作者がリモートコントローラを操作し、遠隔操作により車輪3,4を駆動し、橋梁の鋼製部材に沿って走行させ、所定の点検位置に移動させる。点検位置に達すると、カメラによる撮影や、センサによる点検情報の収集を行う。構造物点検ロボット1の移動中に、カメラによる撮影等を行ってもよい。
この構造物点検ロボット1は、前輪3及び後輪4の外径側に設けた磁力部としての複数の磁石35,35,35,・・・が、車輪3,4の回転に伴い、橋梁の鋼製部材の表面に順次吸着する。これにより、車輪3,4が、走行面20である鋼製部材の表面に吸着した状態が保たれながら回転駆動されて、構造物点検ロボット1が鋼製部材に沿って走行する。
橋梁には、鋼製部材の相互を接続する箇所に、添接部が形成される。添接部では、互いの鋼製部材の端部を重ね合せると共に添接板を添え、これらの鋼製部材と添接板に複数のボルトナットを貫通させ、これら複数のボルトナットで鋼製部材と添接板とを密着させることにより、鋼製部材の端部の相互を接続している。この添接部は、主桁や、横桁や、補剛材等のあらゆる部材に設けられる。この添接部を構造物点検ロボットが通過する際、走行面20である鋼製部材の表面から突出したボルト頭部や、ナットや、リベット頭部等が、走行の障害となることがある。橋梁の添接部では、鋼製部材の厚みや鋼製部材に作用する応力に対応して、ボルトナット又はリベットの配列間隔が決定されているが、100mm、120mm又は150mmの配列間隔とされる場合が比較的多い。そこで、前輪3,3の相互の距離と後輪4,4の相互の距離が、所定の最小値から、100mmの整数倍おきと、120mmの整数倍おきと、150mmの整数倍おきに調整可能に形成されている。すなわち、所定の最小値に、100mmの整数倍を加えた値と、120mmの整数倍を加えた値と、150mmの整数倍を加えた値とに調整可能に形成されている。これにより、添接部のボルトナット又はリベットの配列間隔に容易に対応できるようになっている。
図7は、構造物点検ロボット1が、ボルトナット25が設置された添接部を走行する様子を示した平面図である。また、図8は、構造物点検ロボット1が、ボルトナット25が設置された添接部を走行する様子を示した正面図である。図7,8に示すように、構造物点検ロボット1は、一対の前輪3,3の互いの離隔距離W1が、ボルトナット25の設置間隔dの2.3倍に設定されて、2つのボルトナット25を跨いで走行するように設定されている。なお、前輪3,3の離隔距離W1は、車輪本体31の幅方向中央の相互間の距離である。この前輪3,3の離隔距離W1は、調節可能な前輪3,3の間の距離の最小値である。この最小値に、ボルトナット25の設置間隔dの整数倍を加えた距離に、前輪3,3の間の距離が調節可能になっている。ここで、前輪3,3の離隔距離の最小値は、最小下限距離から最小上限距離の間に設定できる。最小下限距離は、本体2の両側に配置可能な最も近い距離である。最小上限距離は、上記最小下限距離よりも大きく、かつ、上記最小下限距離に最も近いボルトナット25の配置間隔dの整数倍の値を与える整数である2に1を加え、この整数の3に配置間隔dを乗じた距離から、ボルトナット25の径Dと、車輪本体31の幅wと、接触部32のボルトナット25の頂部における幅wの2倍とを差し引いた距離である。ここにおいて、ボルトナット25の径Dとは、ボルトナット25の鋼製部材の表面に露出する最大径の部分の径をいう。図8に示した記号を用いると、前輪3,3の互いの離隔距離の最小値は、本体2の両側に設置可能な距離である最小下限距離から、3d−D−w−2wの最小上限距離までの間に設定することができる。一方、一対の後輪4,4の互いの離隔距離W2は、ボルトナット25の設置間隔dの1.8倍に設定されて、2つのボルトナット25を跨いで走行するように設定されている。この後輪4,4の互いの離隔距離W2は、後輪4,4の間の距離の最小値である。この最小値に、ボルトナット25の設置間隔dの整数倍を加えた距離に、後輪4,4の間の距離が調節可能になっている。後輪4,4の互いの離隔距離の最小値もまた、前輪3,3と同様に設定する。すなわち、後輪4,4の互いの離隔距離の最小値は、本体2の両側に設置可能な最も近い距離である最小下限距離から、3d−D−w−2wで表される最小上限距離までの間に設定することができる。本実施形態では、前輪3と後輪4は、互いに接触しないように、幅方向にずらして配置している。また、前輪3,3の離隔距離W1と後輪4,4の離隔距離W2との間の差を、ボルトナット25の設置間隔dからボルトナット25の径Dを減じた値以下に設定し、前輪3,3と後輪4,4が互いに同じボルトナット25,45間を走行するように設定されている。
図9は、構造物点検ロボット1の前輪3,3の互いの離隔距離を、図7の離隔距離W1よりも大きい離隔距離W4に設定した場合を示す平面図である。図9の前輪3,3の離隔距離W4は、前輪3,3の間の離隔距離の最小値に、ボルトナット25の設置間隔dの2倍を加えた距離である。一方、後輪4,4の間の離隔距離は、図7の離隔距離W2と同一であり、前輪3,3の間の離隔距離W4と、後輪4,4の間の離隔距離とは、ボルトナット25の設置間隔dの2倍の差がある。前輪3,3の間の離隔距離を、最小値にボルトナット25の設置間隔dの2倍を加えた距離に設定することにより、最小値に設定されたときに通過するボルトナット25間位置から互いに遠い側に隣接するボルトナット25間位置を、前輪3,3が走行する。また、前輪3,3の離隔距離と後輪4,4の離隔距離との差を、ボルトナット25の設置間隔dの2倍とすることにより、前輪3,3がボルトナット25間を通過できれば、後輪4,4もまた、前輪3,3が通過したボルトナット25間の内側のボルトナット25間を通過できる。
走行装置の前輪3と後輪4に設けられた接触部32,42は、回転軸直角方向視における頂部の角度が、ボルトナットやリベットに対応して設定されている。
図10は、添接部に設置されたボルトナット25を示す断面図である。添接部において、ボルトナット25は、被接合部材22と、この被接合部材22の表裏両面に配置された添接板21,23とを貫通するボルト穴に挿通されたボルト26のボルト軸部26bが、ナット28で締結されている。ボルトナット25は、高力ボルトが用いられる。ボルト頭26aと上側添接板21の間と、ナット28と下側添接板23との間には、夫々ワッシャ27,29が設けられている。ボルトナット25のボルト頭26a側において、ワッシャ27が、表面が走行面20となる上側添接板21に接した状態で最大径を呈している一方、ボルト頭26aの上端縁が、上側添接板21の表面から最も突出している。また、ボルトナット25のナット28側において、ワッシャ29が、表面が走行面20となる下側添接板23に接した状態で最大径を呈し、次いで、ナット28の下端縁と、ボルト軸部26bの下端縁とが、この順に径が減少する。また、下側添接板23の表面からの突出量が、ワッシャ29、ナット28及びボルト軸部26bの順に増大する。ボルトナット25との関係において、車輪3,4の接触部32,42を、ワッシャ27,29に乗り上げず、また、ボルト軸部26bに乗り上げないように設定することにより、ボルトナット25を回避して走行することができる。そこで、ボルトナット25のボルト頭26a側と、ナット28側において、ボルトナット25の各部の間を結ぶ線を検討すると、ボルト頭26a側では、ワッシャ27の上端縁と、ボルト26の上端縁との間を結ぶ線が、ボルトの軸直角方向視において、θ1の傾斜角度を成す。一方、ナット28側では、ワッシャ29の下端縁と、ナット28の下端縁との間を結ぶ線が、ボルトの軸直角方向視において、θ2の傾斜角度を成す。また、ナット28側において、ナット28の下端縁と、ボルト軸部26bの下端縁との間を結ぶ線が、ボルトの軸直角方向視において、θ3の傾斜角度を成す。ここで、図10において、被接合部材22の断面が延在する方向と直角の方向に関して、ボルト頭26a側を上側といい、ナット28側を下側という。橋梁の添接部に多く用いられるISOメートルねじ規格のM20を想定した場合、θ1は73°であり、θ2は79°であり、θ3は59°である。M22を想定した場合、θ1は74°であり、θ2は80°であり、θ3は55°である。M24を想定した場合、θ1は77°であり、θ2は82°であり、θ3は56°である。ここで、ボルト軸の先端部がナット28から突出する長さである余長は、M20の場合は10mm、M22の場合は10mm、M24の場合は13mmとする。これらから、高力ボルトを用いた添接部を走破するためには、接触部32,42の回転軸直角方向視における頂部の角度を、59°以上73°以下に設定すればよい。
図11は、添接部に設置されたトルシア形ボルトナット50を示す断面図である。添接部において、トルシア形ボルトナット50は、被接合部材22と、この被接合部材22の表裏両面に配置された添接板21,23とを貫通するボルト穴に挿通されたボルト51のボルト軸部51bが、ナット52で締結されている。トルシア形ボルトナット50は、ボルト51のボルト軸部51bにナット52を螺合してナット52の回転を阻止した状態で、上記ボルト軸部51bの先端に形成されたピンテールに専用工具で締め付け力を付与する。ピンテールに締め付け力を与え、ボルト51とナット52との間に所定の締結力が発揮されると、上記ピンテールが破断してボルト軸部51bから分離する。こうして、ボルト51とナット52の間に所定の締結力が導入される。トルシア形ボルトナット50のボルト51は、ボルト頭51aに締め付け力を付与しないので、ボルト頭51aが丸頭になっている。ボルト51のボルト頭51aは上側添接板21に接する一方、ナット52と下側添接板23との間には、ワッシャ53が設けられている。トルシア形ボルトナット50のボルト頭51a側において、ボルト頭51aが、表面が走行面20となる添接板21に接した状態で最大径を呈している一方、ボルト頭51aの上端縁が、添接板21の表面から最も突出している。また、トルシア形ボルトナット50のナット52側において、ワッシャ53が、表面が走行面20となる下側添接板23に接した状態で最大径を呈し、次いで、ナット52の下端縁と、ボルト軸部51bの下端縁とが、この順に径が減少する。また、下側添接板23の表面からの突出量が、ワッシャ53、ナット52及びボルト軸部51bの順に増大する。トルシア形ボルトナット50との関係において、車輪3,4の接触部32,42を、ボルト頭51a又はワッシャ53に乗り上げず、また、ボルト軸部51bに乗り上げないように設定することにより、トルシア形ボルトナット50を回避して走行することができる。そこで、トルシア形ボルトナット50のボルト頭51a側と、ナット52側において、トルシア形ボルトナット50の各部の間を結ぶ線を検討すると、ボルト頭51a側では、ボルト頭51aの上端縁に接する線が、ボルトの軸直角方向視において、θ4の傾斜角度を成す。なお、ボルト頭51aの上側添接板21に接する下端縁の部分は、所定の高さに亘って円筒面に形成され、ボルトの軸直角方向視において直角を成している。一方、ナット52側では、ワッシャ53の下端縁と、ナット52の下端縁との間を結ぶ線が、ボルトの軸直角方向視において、θ5の傾斜角度を成す。また、ナット52側において、ナット52の下端縁と、ボルト軸部51bの下端縁との間を結ぶ線が、ボルトの軸直角方向視において、θ6の傾斜角度を成す。ここで、図11において、被接合部材22の断面が延在する方向と直角の方向に関して、ボルト頭51a側を上側といい、ナット52側を下側という。橋梁の添接部に多く用いられるISOメートルねじ規格のM20を想定した場合、θ4は55°であり、θ5は79°であり、θ6は58°である。M22を想定した場合、θ4は55°であり、θ5は80°であり、θ6は58°である。M24を想定した場合、θ4は55°であり、θ5は82°であり、θ6は59°である。ここで、ボルト軸の先端部がナット52から突出する長さである余長は、M20の場合は9.5mm、M22の場合は11mm、M24の場合は14mmとする。これらから、トルシア形ボルトナット50を用いた添接部を走破するためには、接触部32,42の回転軸直角方向視における頂部の角度を、59°以上79°以下に設定すればよい。
本実施形態の構造物点検ロボット1が添接部に進入すると、添接部に所定間隔で配置されたボルトナット25に前輪3が接触する場合がある。前輪3がボルトナット25に接触すると、接触部32がボルトナット25から反力を受け、この反力によって前輪3の進行方向がボルトナット25を避ける方向に変更されて、走行装置の進行方向が変更される。接触部32は、回転軸直角方向視における頂部の角度が、添接部に用いられたボルトナット25の種類に応じて所定の角度に設定されている。したがって、前輪3は、ボルトナット25に乗り上げることなく、鋼製部材の表面に吸着した状態が保たれる。前輪3の進行方向の変更により、後輪4のボルトナット25への接触が回避される。或いは、後輪4がボルトナット25に接触しても、後輪4の接触部42がボルトナット25から受けた反力により、後輪4の進行方向がボルトナット25を避ける方向に変更されて、走行装置の進行方向が変更される。また、前輪3及び後輪4の鋼製部材への吸着力を発揮する磁石35は、車輪の側方への磁気の影響が遮蔽部36で遮蔽されるので、磁石35の磁気によって車輪3,4がボルトナット25へ引き寄せられる不都合を効果的に防止できる。これにより、構造物点検ロボット1は、走行装置のボルトナット25への係止や乗り上げが生じることなく、添接部を走破することができる。したがって、橋梁の添接部よりも先の鋼製部材に到達して、点検を行うことができる。よって、本発明の構造物点検ロボットは、橋梁の到達できない部分を従来よりも削減でき、従来よりも広い部分の橋梁の点検ができる。
また、本実施形態の構造物点検ロボット1は、回転軸方向視において前輪3及び後輪4が互いに重複するように配置されているので、箱桁等の鋼製部材を縦断する際に、鋼製部材の鉛直面から、法線が鉛直下方を向く下向水平面へ移動するとき、鉛直面と下向水平面との間の角部に本体2が接触する不都合を防止できる。したがって、本体2が角部に接触して走行が停止する不都合や、本体2の角部への接触に起因して車輪3,4が走行面20から離脱する不都合を防止でき、構造物点検ロボット1の落下を効果的に防止できる。また、本実施形態の構造物点検ロボット1は、回転軸方向視において前輪3及び後輪4が互いに重複するように配置されているので、前輪3と後輪4のいずれも、鋼製部材の鉛直面から下向水平面へ移動する際に、常に鉛直面又は下向水平面に接触点を形成することができる。したがって、前輪3や後輪4が走行面20から離脱する不都合を防止でき、構造物点検ロボット1の落下を効果的に防止できる。
また、本実施形態の構造物点検ロボット1は、鋼製部材の鉛直面から下向水平面へ移動する場合と同様に、下向水平面から鉛直面へ移動する場合においても、下向水平面と鉛直面との間の角部に本体2が接触する不都合を防止でき、構造物点検ロボット1の落下を防止できる。また、本実施形態の構造物点検ロボット1は、直角を成す鉛直面と下向水平面のほか、種々の角度を成して連なる2つの面を通過する場合においても、本体2が2つの面の間の角部に接触して落下する不都合を防止できる。
さらに、本実施形態の構造物点検ロボット1は、回転軸方向視において前輪3及び後輪4が互いに重複するように配置されているので、水平方向に突出した板状の鋼製部材を、表面から裏面に向かって走行することができる。詳しくは、構造物点検ロボット1が板状の鋼製部材の上側面から端面へ移動する際、前輪3が上側面から端面へ移るとき、後輪4が上側面に接触した状態が保持される。続いて、後輪4が上側面から端面へ移るとき、前輪3が端面に接触した状態が保持される。この後、構造物点検ロボット1が板状の鋼製部材の端面から下側面へ移動する際、前輪3が端面から下側面へ移るとき、後輪4が端面に接触した状態が保持される。続いて、後輪4が端面から下側面へ移るとき、前輪3が下側面に接触した状態が保持される。この構造物点検ロボット1が、上側面と端面との間の角部と、上記端面と下側面との間の角部を通過するとき、回転軸方向視において前輪3と後輪4が重複すると共に重複部分よりも走行面20から遠い側に本体2が配置されているので、この本体2が上記角部に接触する不都合が防止される。したがって、前輪3や後輪4が走行面20から離脱する不都合を防止でき、構造物点検ロボット1の落下を効果的に防止できる。
このように、本実施形態の構造物点検ロボット1は、鋼製部材の鉛直面と下向水平面との間を落下することなく走行でき、板状の鋼製部材の上側面と下側面との間を落下することなく走行できる。したがって、図12に示すような橋梁の上部工の下側部分を、落下することなく走行できる。すなわち、Tの走行経路で示すように、鉛直下方を向くデッキプレート61の下側面から、このデッキプレート61の下側面に直角を成す横桁62のウェブ62aの一方の面に移り、更に、横桁62の下端の水平方向に延びるフランジ62bに移り、このフランジ62bの下側面を経由してウェブ62aの他方の面に移り、このウェブ62aに連なるデッキプレート61の下側面に移ることができる。上記走行経路Tにおいて、デッキプレート61の下側面と横桁62のウェブ62aの表面との間のように、90°を成す所謂入隅状の角部では、前輪3や後輪4が角部に達したときに両方の面に接触するので、容易に角部を通過することができる。したがって、橋梁の従来よりも広い領域に到達し、点検を行うことができる。なお、図12では、構造物点検ロボット1が橋梁の橋軸方向に縦断して走行する様子を示したが、橋梁の橋軸直角方向に横断して走行することもできる。構造物点検ロボット1が橋梁を横断する場合、デッキプレート61と箱桁との間に形成された入隅状の角部や、箱桁の下端に形成された出隅状の角部を、落下を防止しながら走行することができる。また、デッキプレート61とI桁との間に形成された入隅状の角部や、I桁の下端の板状のフランジを、落下を防止しながら走行することができる。また、橋梁の上部工には、横桁62や、主桁としての箱桁やI桁に、添接部が存在するが、走行装置の前輪3及び後輪4に設けられた接触部32,42により、添接部のボルトナット25への係止や乗り上げを防止でき、添接部を走破することができる。したがって、横桁62や主桁の添接部よりも先の位置に到達して、各部の点検を行うことができる。したがって、橋梁の従来よりも広い領域の点検を行うことができる。
図13は、第2実施形態の構造物点検ロボット102が添接部を走行する様子を示す平面図であり、図14は、添接部を走行する第2実施形態の構造物点検ロボット102の車輪3,4の様子を示す正面図である。る。第2実施形態において、第1実施形態と同様の構成部分には第1実施形態と同じ参照番号を引用し、詳細な説明を省略する。
第2実施形態の構造物点検ロボット102は、1対の前輪3,3と、1個の後輪4と、点検装置5を搭載した本体2を備える。本体2には、前輪3,3及び後輪4を駆動するギヤードモータ11及びモータドライバ12と、受信機13と、メインコントローラ14と、バッテリ15が設けられている。なお、図13において、ギヤードモータ11、モータドライバ12、受信機13、メインコントローラ14及びバッテリ15の図示は省略している。この構造物点検ロボット102は、一対の前輪3の幅方向の内側に、第1実施形態と同様の接触部32が夫々設けられている。一方、一対の前輪3の幅方向の外側には、接触部32が設けられず、車輪本体31が露出している。また、1個の後輪4の両側に、接触部42が設けられている。1対の前輪3,3は、互いの離隔距離W3が、第1実施形態と同様に調節可能に形成されている。
第2実施形態の構造物点検ロボット102によれば、添接部を走行する際に、前輪3の駆動軸7に対する位置を調節するのみでよい。詳しくは、1対の前輪3の離隔距離W3を、偶数のボルトナット25,25,・・・を跨いで走行可能な幅に設定すれば、後輪4は、前輪3が跨ぐボルトナット25,25の相互間の中央を、ボルトナット25で干渉されずに走行することができる。図13において、1対の前輪3の離隔距離W3を、2つのボルトナット25を跨ぐ幅に設定している。これにより、1つの後輪4を、2つのボルトナット25の間の中央に、ボルトナット25の干渉を受けずに走行させることができる。また、第2実施形態の構造物点検ロボット102は、前輪3の幅方向の内側に接触部32を有するので、前輪3が添接部のボルトナット25に接触しても、接触部32がボルトナット25から反力を受け、この反力によって前輪3の進行方向がボルトナット25を避ける方向に変更される。したがって、前輪3は、ボルトナット25への係止や乗り上げが生じることなく、鋼製部材の表面に吸着した状態で、走行を継続することができる。この前輪3の進行方向の変更により、後輪4のボルトナット25への接触を回避できる。或いは、後輪4がボルトナット25に接触しても、後輪4の両側の接触部42がボルトナット25から反力を受け、この反力により、後輪4の進行方向がボルトナット25を避ける方向に変更される。これにより、構造物点検ロボット102は、走行装置のボルトナット25への係止や乗り上げが生じることなく、添接部を走破することができる。また、第2実施形態の構造物点検ロボット102は、前輪3の幅方向の内側に接触部32を設け、幅方向の外側には接触部32を設けないので、構造物点検ロボット102の幅を比較的小さくできる。
図15は、第3実施形態の構造物点検ロボットの車輪を示す横断面図であり、図16は、第3実施形態の構造物点検ロボットの車輪を示す縦断面図である。第3実施形態の構造物点検ロボットは、車輪本体の構造が、第1実施形態の構造物点検ロボットと相違する。本実施形態において、第1実施形態と同様の構成部分には第1実施形態と同じ参照番号を引用し、詳細な説明を省略する。
第3実施形態の構造物点検ロボットは、車輪130の車輪本体131が、図15に示すように、ハブ6と、このハブ2の中心軸回りに45°の角度をおいて外周面に固定された8本の径方向部材としてのスポーク113,113,113,・・・と、各スポーク113の先端に揺動可能に連結された吸着ユニット114を有して構成されている。吸着ユニット114は、略円筒形状のケーシング115と、このケーシング115の先端部分に収容された磁力部としての磁石116で形成されている。上記ケーシング115は、先端の全面が開口しており、この開口部分に円筒形状の磁石116が内嵌し、この磁石116の端面が、吸着面として車輪130の外径側を向いている。このケーシング115は、強磁性体で作成され、磁石116の径方向の端面以外の部分を覆うように形成されて、磁石116の磁力の方向を径方向の外側向きに限定する遮蔽部として機能する。上記ケーシング115の基端部分には、端面に開口する接続用開口が形成されており、この接続用開口に、スポーク113の先端部が挿入されている。このスポーク113の先端部に設けられた揺動軸117により、ケーシング115が揺動可能に軸支されている。上記揺動軸117の近傍には、上記ケーシング115の接続用開口の縁に連なるように、このケーシング115の端面の部材が屈曲して形成された当接部材119が形成されている。この当接部材119は、上記接続用開口に関して、図15において矢印Rで示す車輪130の回転方向、すなわち、スポーク113の回動方向の後ろ側に配置されている。上記接続用開口は、上記当接部材119に連なる位置から、スポーク113の回動方向の前側に向かって延在している。スポーク113の先端部の揺動軸117回りに吸着ユニット114が揺動する際、磁石116の中心軸がスポーク113の中心軸と一致して0°を成すとき、当接部材119がスポーク113の側面に当接するように形成されている。一方、磁石116の中心軸がスポーク113の中心軸に対して22.5°の角度を成すとき、接続用開口の当接部材119と反対側の縁が、スポーク113の当接部材119が当接する側と反対側の側面に当接するように形成されている。このように、当接部材119がスポーク113に当接する角度と、接続用開口の当接部材119と反対側の縁がスポーク113に当接する角度の間に、吸着ユニット114の揺動範囲が定められている。
第3実施形態の構造物点検ロボットの車輪130は、上記車輪本体131の幅方向の両側に、接触部32,32が取り付けられている。この接触部32は、底面が開口した円錐形状に形成されていると共に、内部に、中心軸に沿った円筒形の支柱32bが形成されている。この接触部32は、金属で作成された接触部本体の円錐形状の接触面32aに、PTFEで作成された被膜が設けられている。支柱32bの底面側の端部がハブ6の端面に連結されて、接触部32が車輪本体131に固定されている。点検ロボット本体側の接触部32の支柱32bには、駆動軸7が挿通されている。
第3実施形態の構造物点検ロボットの車輪130は、鋼製部材に吸着する磁石116を内蔵した吸着ユニット114を、8本のスポーク113,113,113,・・・の先端で支持するので、いずれかの磁石116が常に鋼製部材の表面に吸着する。これにより、構造物点検ロボットの走行面20に、継目による段差等の障害物が存在しても、隣り合うスポーク113,113で上記障害物を跨いで乗り越えることができる。
この構造物点検ロボットは、鋼製部材の法線が鉛直下方を向く下向水平面を走行する際、図15に示すように、2個の吸着ユニット114A,114Bが同時に下向水平面に接触する。以下、吸着ユニット114及び吸着ユニット114の構成部分について、進行方向Fの前側に位置する場合は添え字Aを付加し、進行方向Fの後側に位置する場合は添え字Bを付加して説明する。上記下向水平面に接する2個の吸着ユニット114A,114Bは、進行方向Fの前側に位置する前側吸着ユニット114Aの磁石116Aから下向水平面へ作用する作用磁力が、進行方向Fの後側に位置する後側吸着ユニット114Bの磁石116Bから下向水平面へ作用する作用磁力よりも大きくなる。
詳しくは、前側吸着ユニット114Aは、下向水平面に接触する際、下向水平面の側に揺動可能であるので、磁石116Aの磁力によって揺動軸117A回りに揺動し、磁石116Aの吸着面が、下向水平面に対して実質的に零の傾斜角度を成して密着する。一方、後側吸着ユニット114Bは、前側吸着ユニット114Aが下向水平面に接触する前は、単独で下向水平面に吸着している。後側吸着ユニット114Bとなる吸着ユニット114は、単独で下向水平面に吸着しているとき、磁石116の中心軸がスポーク113の中心軸と一致して当接部材119がスポーク113の側面に当接したときから、回動方向の後側に向かって揺動不可となる。このように、磁石116を含む吸着ユニット114は、スポーク113の中心軸に対して0°が基準角度になっている。回動方向の後側に向かって揺動不可となった吸着ユニット114は、スポーク113と共に回動し、これにより、磁石116の吸着面の下向水平面に対する傾斜角度αが、徐々に増大する。そして、図1に示すように、前側吸着ユニット114Aが下向水平面に接触したとき、後側吸着ユニット114Bの磁石116Bの吸着面は、下向水平面に対して約22.5°の傾斜角度αを成す。これらにより、前側吸着ユニット114Aは磁石116Aの100%の作用磁力で下向水平面に吸着する一方、後側吸着ユニット114Bは磁石116Bの8%の作用磁力で下向水平面に吸着する。
引き続いて、図15の状態から更に車輪130が回転してスポーク113,113,113・・・が回動し、後側吸着ユニット114Bが下向水平面から離脱しても、前側吸着ユニット114Aが、磁石116Aの吸着面が下向水平面に密着したまま残留する。したがって、後側吸着ユニット114Bが離脱する前後において、車輪130の全体の吸着力は、磁石116の108%の作用磁力から100%の作用磁力に低下するのみである。その結果、車輪130は、作用する荷重によって下向水平面から離脱するおそれを少なくでき、構造物点検ロボットの落下を効果的に防止できる。
また、後側吸着ユニット114Bが離脱するとき、磁石116Bの吸着面が下向水平面に対して約22.5°の傾斜角度αとなり、下向水平面への作用磁力が約8%であるので、少ないトルクで後側吸着ユニット114Bを下向水平面から離脱させることができる。このように、本実施形態の構造物点検ロボットの車輪130は、磁石116の磁力を従来よりも増大することなく、前側吸着ユニット114Aで100%の作用磁力を得て落下防止を行うと共に、後側吸着ユニット114Bの作用磁力を8%に低減するので、駆動に必要なトルクを増大する必要が無い。したがって、本実施形態の車輪130によれば、駆動源やバッテリを大型化することなく、構造物点検ロボットの落下防止を行うことができる。
また、本実施形態の構造物点検ロボットの車輪130は、鋼製部材の添接部を走行する場合、車輪本体131の幅方向の両側に接触部32を有するので、添接部のボルトナット25に車輪130が接触しても、接触部32がボルトナット25から受ける反力によって車輪130の進行方向をボルトナット25を避ける方向に変更できる。したがって、車輪130は、ボルトナット25に乗り上げることなく、鋼製部材の表面に吸着した状態を保ちながら、回転することができる。また、車輪130の鋼製部材への吸着力を発揮する磁石116は、車輪の側方への磁気の影響がケーシング115で遮蔽されるので、磁石116の磁気によって車輪130がボルトナット25へ引き寄せられる不都合を効果的に防止できる。これにより、構造物点検ロボットは、走行装置のボルトナット25への係止や乗り上げが生じることなく、添接部を走破することができる。したがって、橋梁の添接部よりも先の鋼製部材に到達して、点検を行うことができる。よって、本発明の構造物点検ロボットは、橋梁の到達できない部分を従来よりも削減でき、従来よりも広い部分の橋梁の点検ができる。
図17は、第4実施形態の構造物点検ロボット103を示す平面図である。第4実施形態の構造物点検ロボット103は、前輪3と後輪4の配置位置が、第1実施形態の構造物点検ロボットと異なる。第4実施形態において、第1実施形態と同様の構成部分には第1実施形態と同じ参照番号を引用し、詳細な説明を省略する。
第4実施形態の構造物点検ロボット103は、前輪3と後輪4が、回転軸方向視において、互いに離隔して配置されている。また、上記前輪3と後輪4は、駆動軸7,9の延在方向である幅方向において、互いに同じ位置に配置されている。すなわち、上記前輪3と後輪4は、走行装置が直進するときに、同じ軌跡を描くように配置されている。第4実施形態の構造物点検ロボット103によれば、添接部を走行する際に、ボルトナット25の配置間隔dが狭い場合でも、前輪3と後輪4が同一の直線状の経路に沿って走行できる。したがって、ボルトナット25の間の走行面20を、ボルトナット25に係止又は乗り上げることなく走行できて、添接部を走破することができる。
図18は、第5実施形態の構造物点検ロボット104を示す平面図である。第5実施形態の構造物点検ロボット104は、2つの本体201,202を備え、これらの2つの本体201,202に、1対の前輪3,3と1対の後輪4,4が各々設けられている。第5実施形態において、第1実施形態と同様の構成部分には第1実施形態と同じ参照番号を引用し、詳細な説明を省略する。第5実施形態の構造物点検ロボット104は、第1の本体201の進行方向の両側に、2つの前輪3,3が設けられている。前輪3,3は、幅方向の両側に、円錐形状の接触部32,32が設けられている。後輪4,4は、幅方向の両側に、円錐形状の接触部42,42が設けられている。第1の本体201は、進行方向に向かって幅広の基体210と、基体210上に搭載されて駆動軸7を介して前輪3を駆動するギヤモータ11と、モータドライバ12と、受信機13と、メインコントローラ14を備える。第2の本体202の進行方向の両側には、2つの後輪4,4が設けられている。第2の本体202は、進行方向に向かって幅広の基体211と、基体上211に搭載されて駆動軸9を介して後輪4を駆動するギヤモータ11と、モータドライバ12と、バッテリ15を備える。なお、図18において、ギヤードモータ11、モータドライバ12、受信機13、メインコントローラ14及びバッテリ15の図示は省略している。第1の本体201と第2の本体202は、弾性部材213によって連結されている。第5実施形態の構造物点検ロボット104は、前輪3と後輪4が回転軸方向視において重複して配置されている。更に、前輪3を有する第1の本体201と、後輪4を有する第2の本体202が、弾性部材213で連結されている。これにより、この構造物点検ロボット104は、第1の本体201と第2の本体202とが個別に進行方向を向く軸回りに回動するローリングが可能である。したがって、走行面20が不均一の凹凸を有する場合に、第1の本体201と第2の本体202が個別にローリングを行うことができるので、構造物点検ロボット104の走行を安定にできる。また、第1の本体201及び第2の本体202のいずれかが、走行面20の凹凸等に起因して走行方向に相対変位が生じた場合、弾性部材213の弾性力により前進方向に付勢力が作用するので、構造物点検ロボット104の走破性を向上することができる。また、前輪3の両側と後輪4の両側に、接触部32,42が設けられているので、添接部を走行するときに、ボルトナット25への係止や乗り上げを効果的に防止できる。したがって、添接部によって構造物点検ロボット104の走行が妨げられる不都合を防止でき、従来よりも橋梁の広い範囲の点検が可能となる。
図19は、第6実施形態の構造物点検ロボット105を示す平面図であり、図20は構造物点検ロボット105の側面図である。第6実施形態の構造物点検ロボット105は、第5実施形態の構造物点検ロボット104の第1の本体201と第2の本体202に、補助車輪203,204を夫々設けたものである。第6実施形態において、第5実施形態と同様の構成部分には第5実施形態と同じ参照番号を引用し、詳細な説明を省略する。なお、図20では、第6実施形態の構造物点検ロボット105の構成要素のうち、車輪のみを図示している。第6実施形態の構造物点検ロボット105は、第1の本体201の弾性部材213と連結された側の反対側に、第1の補助車輪203が設けられており、第2の本体202の弾性部材213と連結された側の反対側に、第2の補助車輪204が設けられている。第1の補助車輪203は、第1の本体201から突出して設けられた支持アーム205によって、回動可能に支持されている。この第1の補助車輪203は、外径側に磁力部が設けられており、構造物の強磁性部材に吸着して回転する。第1の補助車輪203の幅方向の両側には、円錐形状の接触部232,232が設けられている。第1の補助車輪203は、駆動力が入力されない従動輪である。第2の補助車輪204は、第2の本体202から突出して設けられた支持アーム206によって、回動可能に支持されている。この第2の補助車輪204は、外径側に磁力部が設けられており、構造物の強磁性部材に吸着して回転する。第2の補助車輪204の幅方向の両側には、円錐形状の接触部242,242が設けられている。第2の補助車輪204は、駆動力が入力されない従動輪である。第6実施形態の構造物点検ロボットは、第1の本体201を、磁力部を有する第1の補助輪203と、1対の前輪3とで支持することにより、平面視において3点で支持する。また、第2の本体202を、磁力部を有する第2の補助輪204と、1対の後輪4とで支持することにより、平面視において3点で支持する。このように、第1の本体201と第2の本体202を、平面視において3点で夫々支持するので、構造物点検ロボット105の走行時の安定性を更に高めることができる。また、第1の本体201又は第2の本体202において、1対の前輪3又は後輪4に駆動力が入力される際のトルクの反力を、軸直角方向に離れて磁力部を有する第1又は第2の補助輪203,204によって支持することができるので、第1又は第2の本体201,202の駆動トルクの反作用による回転を防止できる。また、進行方向の最前部に、走行装置の幅方向の略中央に位置する第1又は第2の補助輪203,204を設け、これらの第1又は第2の補助輪203,204は接触部232,242を有するので、構造物点検ロボット105が橋梁の添接部を走行する際に、効果的にボルトナット25を回避することができる。
上記第5及び第6実施形態において、2個の本体201,203を弾性部材213で連結したが、3個以上の本体を設け、互いの本体を弾性部材で連結してもよい。
上記実施形態において、接触部32,42,232,242は円錐形状を有し、接触部132は円錐台形状を有したが、他の形状の接触部を用いてもよい。例えば、図21の変形例に示すように、車輪本体31の幅方向の両側に、接触面332aの径方向断面が曲線をなす曲面形状の接触部332を、前輪3に設置してもよい。また、曲面形状の接触部332は、車輪3の幅方向の一方のみに設置してもよい。また、曲面形状の接触部は、後輪4に設置してもよい。
また、上記実施形態において、車輪3,4の磁力部としての磁石35,35は、強磁性部材としての鋼製部材に吸着して走行したが、他の強磁性部材に吸着して走行してもよい。
上記実施形態では、構造物点検ロボット1,102,103,104,105を、橋梁の点検に用いる場合について説明したが、橋梁以外に、鉄塔、煙突、プラント、各種土木構造物又は建築物等の他の構造物の点検に、本発明の構造物点検ロボットを用いることができる。また、上記実施形態では、構造物点検ロボット1,102,103,104,105は、突出部材としてのボルトナット25が配列された添接部を走破したが、他の突出部材を有する強磁性部材を、突出部材に係止又は乗り上げることなく走破することができる。
1,102,103,104,105 構造物点検ロボット
2,201,202 本体
3 前輪
4 後輪
5 点検装置
7,9 駆動軸
10 基台
11 ギヤードモータ
12 モータドライバ
13 受信機
14 メインコントローラ
20 走行面
25 ボルトナット
31,41,131 車輪本体
32,42,132,232,242 接触部
35,116 磁石
36 遮蔽部

Claims (10)

  1. 構造物の点検装置を搭載する本体と、
    車輪を上記構造物の強磁性部材に磁力で吸着させて回転駆動することにより、上記本体を上記強磁性部材に沿って移動させる走行装置と
    を備える構造物点検ロボットであって、
    上記走行装置は、上記車輪の側部に、走行面から突出する突出部材に接触することにより進行方向が変更される接触部を有することを特徴とする構造物点検ロボット。
  2. 請求項1に記載の構造物点検ロボットにおいて、
    上記走行装置の車輪の接触部は、表面が円錐形状又は円錐台形状に形成されていることを特徴とする構造物点検ロボット。
  3. 請求項1に記載の構造物点検ロボットにおいて、
    上記走行装置の車輪の接触部は、表面が曲面に形成されていることを特徴とする構造物点検ロボット。
  4. 請求項1に記載の構造物点検ロボットにおいて、
    上記走行装置の車輪の接触部は、低摩擦材で形成されていることを特徴とする構造物点検ロボット。
  5. 請求項1に記載の構造物点検ロボットにおいて、
    上記接触部は、上記車輪の厚み方向の一方の側、かつ、同一軸上の複数の車輪の互いに異なる側に設けられていることを特徴とする構造物点検ロボット。
  6. 請求項2に記載の構造物点検ロボットにおいて、
    上記構造物は橋梁であり、
    上記車輪の回転軸の直角方向視において、上記接触部の表面の輪郭が、上記回転軸に対して59°以上79°以下の角度をなすように形成されていることを特徴とする構造物点検ロボット。
  7. 請求項1に記載の構造物点検ロボットにおいて、
    上記走行装置の車輪は、外径側に設けられて磁力を発生する磁力部と、この磁力部から車輪の側方への磁気の影響を遮蔽する遮蔽部とを有することを特徴とする構造物点検ロボット。
  8. 請求項1に記載の構造物点検ロボットにおいて、
    上記走行装置は、進行方向に隣り合う上記車輪が、回転軸方向視において互いの磁力部の回転経路が交差するように配置され、かつ、回転軸の延在方向において互いに異なる位置に配置されていることを特徴とする構造物点検ロボット。
  9. 請求項1に記載の構造物点検ロボットにおいて、
    上記走行装置は、同軸上に配置された2つの車輪を有し、これらの車輪の互いの距離が、上記突出部材の配置間隔の整数倍おきに調節可能に形成されていることを特徴とする構造物点検ロボット。
  10. 請求項1に記載の構造物点検ロボットにおいて、
    上記本体を複数個備え、
    上記本体の各々に、同軸上に配置された車輪の対が設けられ、
    上記複数の本体の相互間が、弾性体で連結されている
    ことを特徴とする構造物点検ロボット。
JP2015000933A 2015-01-06 2015-01-06 構造物点検ロボット Expired - Fee Related JP5828973B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015000933A JP5828973B1 (ja) 2015-01-06 2015-01-06 構造物点検ロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000933A JP5828973B1 (ja) 2015-01-06 2015-01-06 構造物点検ロボット

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015158864A Division JP5832690B1 (ja) 2015-08-11 2015-08-11 構造物点検ロボット

Publications (2)

Publication Number Publication Date
JP5828973B1 JP5828973B1 (ja) 2015-12-09
JP2016125289A true JP2016125289A (ja) 2016-07-11

Family

ID=54784332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000933A Expired - Fee Related JP5828973B1 (ja) 2015-01-06 2015-01-06 構造物点検ロボット

Country Status (1)

Country Link
JP (1) JP5828973B1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371896B1 (ja) * 2017-11-16 2018-08-08 公立大学法人大阪市立大学 壁面走行ロボット
JP2019107957A (ja) * 2017-12-18 2019-07-04 住友重機械工業株式会社 ロボット及び回転体装置
CN111156138A (zh) * 2020-01-12 2020-05-15 蚌埠普源电气科技有限公司 一种风力发电塔筒自动清洗装置
JP7431688B2 (ja) 2020-07-21 2024-02-15 西日本高速道路株式会社 歩廊構造及び歩廊桁

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247083B (zh) * 2016-09-13 2018-10-12 广州特种承压设备检测研究院 轮式检测机器人
CN108227344A (zh) * 2018-03-12 2018-06-29 苏州科技大学 高速拍照机器人
CN109927807A (zh) * 2019-04-24 2019-06-25 重庆科技学院 一种自适应复杂3d金属曲面的智能移动机器人
CN112429106A (zh) * 2019-08-26 2021-03-02 临颍县爬杆机器人有限公司 磁助力爬杆机器人
CN114808689A (zh) * 2022-05-19 2022-07-29 大连理工大学 一种提取桥梁模态参数的检测车
US11977005B1 (en) 2023-06-07 2024-05-07 Anhui Jianzhu University Crack detection apparatus for detecting building structure
CN116395053B (zh) * 2023-06-07 2023-08-04 安徽建筑大学 一种建筑结构检测用裂缝检测装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121177A (ja) * 1983-12-01 1985-06-28 Mitsubishi Electric Corp 移動装置
JPH04293689A (ja) * 1991-03-25 1992-10-19 Osaka Gas Co Ltd 磁気吸着車輪及び磁気吸着車輪付車両
JPH05148819A (ja) * 1991-11-29 1993-06-15 Kawasaki Steel Corp 鋼桁の連結方法
JPH07116684B2 (ja) * 1992-08-31 1995-12-13 丸藤シートパイル株式会社 橋梁などにおける主桁の継手構造
JP2000168305A (ja) * 1998-12-07 2000-06-20 Shuji Akiyama 磁気接着型車輪
JP3452825B2 (ja) * 1999-01-29 2003-10-06 株式会社日立製作所 磁石クローラ式走行装置
US7263955B1 (en) * 2006-06-20 2007-09-04 Sandra Corporation Combustion powered linear actuator
SG172061A1 (en) * 2008-12-09 2011-07-28 Reconrobotics Inc Two-wheeled robot with enhanced climbing features
US8851211B2 (en) * 2010-09-30 2014-10-07 Keith L. Schlee Multi-unit mobile robot
JP4779062B1 (ja) * 2011-01-27 2011-09-21 株式会社日本橋模型Rcセンター 作業ロボット
US8849451B2 (en) * 2011-04-11 2014-09-30 Boston Dynamics, Inc. Hopping robot
WO2014087999A1 (ja) * 2012-12-04 2014-06-12 公立大学法人大阪市立大学 移動ロボット

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371896B1 (ja) * 2017-11-16 2018-08-08 公立大学法人大阪市立大学 壁面走行ロボット
JP2019090264A (ja) * 2017-11-16 2019-06-13 公立大学法人大阪市立大学 壁面走行ロボット
JP2019107957A (ja) * 2017-12-18 2019-07-04 住友重機械工業株式会社 ロボット及び回転体装置
CN111156138A (zh) * 2020-01-12 2020-05-15 蚌埠普源电气科技有限公司 一种风力发电塔筒自动清洗装置
CN111156138B (zh) * 2020-01-12 2021-03-12 傅洁 一种风力发电塔筒自动清洗装置
JP7431688B2 (ja) 2020-07-21 2024-02-15 西日本高速道路株式会社 歩廊構造及び歩廊桁

Also Published As

Publication number Publication date
JP5828973B1 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5828973B1 (ja) 構造物点検ロボット
JP5832690B1 (ja) 構造物点検ロボット
JP2019214362A (ja) ヒンジ付ビークルシャーシ
JP6351465B2 (ja) 壁面等の移動装置、及びその転舵方法
CN109436119A (zh) 一种非接触轮式爬壁机器人底盘装置
JP2008155652A (ja) 自走式搬送台車
JP2009113135A (ja) 2足型移動機構
US10806106B2 (en) System, method and apparatus for providing a pull-out force compensating gearbox mount
JPWO2018061122A1 (ja) 壁面移動装置および壁面移動方法
ITTO20110037A1 (it) Sistema di prelievo di lavoro meccanico per l'azionamento di estensioni articolate in applicazioni veicolari.
JP2016107893A (ja) クローラ型壁面吸着走行ロボット
JP2019090264A (ja) 壁面走行ロボット
JP4883395B2 (ja) 無軌道式管検査装置
JP6659038B2 (ja) ロボット
JP6027064B2 (ja) 点検ロボット
JP2016094719A (ja) 移動ロボットおよび画像撮影システム
JP5145505B2 (ja) 対向面間の走行装置
JP7315158B2 (ja) 構造物点検システム及び飛行ロボット
CN113090864A (zh) 管道机器人航向保证系统及航向修正方法
JP2017065565A (ja) 走行装置
JPH03154790A (ja) 起伏地面に対処できる相対的配置可変な作業用車両
JP6436605B1 (ja) 屋外傾斜面用の階段
JP2011084261A (ja) 車輪型走行ユニット及びこれを用いた車輪型走行機構
CN108177138B (zh) 一种机器人
CN116001938A (zh) 履带式双旋翼爬壁机器人

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model
LAPS Cancellation because of no payment of annual fees