JP2016122150A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2016122150A
JP2016122150A JP2014263347A JP2014263347A JP2016122150A JP 2016122150 A JP2016122150 A JP 2016122150A JP 2014263347 A JP2014263347 A JP 2014263347A JP 2014263347 A JP2014263347 A JP 2014263347A JP 2016122150 A JP2016122150 A JP 2016122150A
Authority
JP
Japan
Prior art keywords
image forming
voltage
frequency
forming apparatus
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014263347A
Other languages
English (en)
Inventor
陽介 香川
Yosuke Kagawa
陽介 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014263347A priority Critical patent/JP2016122150A/ja
Priority to US14/963,413 priority patent/US9880485B2/en
Publication of JP2016122150A publication Critical patent/JP2016122150A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0266Arrangements for controlling the amount of charge
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • G03G15/0178Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image
    • G03G15/0189Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image primary transfer to an intermediate transfer belt
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Inverter Devices (AREA)
  • Developing For Electrophotography (AREA)

Abstract

【課題】4つの像形成部があると、4色分の感光ドラムのそれぞれを帯電をする必要があり、各色の感光ドラムに使用されているD級アンプのPWM信号の周波数が重なり放射ノイズが悪化してしまう。【解決手段】複数の像形成部を有する画像形成装置であって、複数の像形成部を駆動する電圧を生成する複数の電圧生成回路を有し、複数の電圧生成回路のそれぞれは、スイッチングにより電圧を発生する電圧発生回路と、スイッチングの基準周波数となる周波数のクロック信号を発生する発振回路と、当該発振回路が発生するクロック信号の周波数を設定する設定手段とを有し、前記複数の電圧生成回路の設定手段は、複数の発振回路が発生するクロック信号の周波数が互いに異なるように、各クロック信号の周波数を設定している。【選択図】 図2

Description

本発明は、画像形成装置に関するものである。
電子写真方式の画像形成装置では、感光ドラムの表面を帯電器によって一様に帯電し、その帯電された感光ドラムの表面を、画像データに応じて変調され露光装置によって照射されるレーザ光で露光して静電潜像を形成する。そして、現像器から供給される現像剤(以下、トナー)により、その静電潜像を現像してトナー像を形成している。
感光ドラムの表面の帯電処理には、例えば、帯電ローラを感光ドラムの表面に当接させ、この帯電ローラに直流電圧と交流電圧を重畳させた電圧を印加して、感光ドラムの表面へ放電させることにより帯電させるAC帯電方式が用いられる。このAC帯電方式では、直流電圧に交流電圧を重畳した電圧を印加することにより、プラス側、マイナス側への放電が交互に発生するため、感光ドラムの表面を均一に帯電させることができる。
この帯電ローラへ印加する交流電圧を生成する交流電圧生成回路にD級アンプが用いられる。このD級アンプは、入力信号をパルス幅変調信号(PWM信号)に変換し、そのPWM信号でブリッジ回路を駆動している。これにより、従来のアナログ増幅方式に比べて高い効率で増幅信号を得ることができる。このような交流電圧生成回路では、D級アンプの出力でトランスの1次側を駆動することでトランスの2次側に高電圧の交流電圧を発生させている。
特開2013−65932号公報 特開平7−241083号公報
しかしながら、D級アンプは、ブリッジ回路を高周波でスイッチング駆動するため放射ノイズの発生があり、ノイズ対策としてフェライトビーズやフィルタを使用しているため、コストアップにもつながっていた。またD級アンプを、イエロー、マゼンタ、シアン、ブラックの4つの像形成部を有するカラー画像形成装置の帯電高電圧回路で使用した場合、4色分の感光ドラムのそれぞれを帯電をする必要がある。このため、各色の感光ドラムに対応して使用されているD級アンプのPWM信号の周波数が重なり放射ノイズが悪化してしまうという課題がある。
本発明の目的は、上記従来技術の課題を解決することにある。
本発明の特徴は、複数の像形成部を有する画像形成装置において、複数の像形成部で発生するノイズが互いに重畳しないようにしてノイズのピークを低く抑える技術を提供することにある。
上記目的を達成するために本発明の一態様に係る画像形成装置は以下のような構成を備える。即ち、
複数の像形成部を有する画像形成装置であって、
前記複数の像形成部を駆動する電圧を生成する複数の電圧生成手段を有し、
前記複数の電圧生成手段のそれぞれは、
スイッチングにより電圧を発生する電圧発生手段と、
前記スイッチングの基準周波数となる周波数のクロック信号を発生する発生手段と、
前記発生手段が発生する前記クロック信号の周波数を設定する設定手段とを有し、
前記複数の電圧生成手段の前記設定手段は、複数の前記発生手段が発生する前記クロック信号の周波数が互いに異なるように、各クロック信号の周波数を設定することを特徴とする。
本発明によれば、複数の像形成部を有する画像形成装置において、複数の像形成部で発生するノイズが互いに重畳しないようにしてノイズのピークを低く抑えることができるという効果がある。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。尚、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の実施形態1に係るカラー画像形成装置の像形成部の構成を説明する図。 実施形態1に係るカラー画像形成装置において、帯電ローラに供給する帯電電圧を発生する帯電電圧基板と制御基板の概略構成を示すブロック図。 実施形態1に係るAC高電圧生成回路の構成を説明するブロック図。 実施形態1に係るD級アンプの構成を説明するブロック図。 実施形態1に係る比較器413の入力信号と出力信号(PWM信号)との関係を説明する波形図。 実施形態1に係る比較器417の入力信号と出力信号(PWM信号)との関係を説明する波形図。 実施形態1において、正弦波生成部からの正弦波信号が停止状態の時のPWM信号を説明する図。 実施形態に係るスイッチング駆動部415,416の回路図。 実施形態1に係るAC高電圧生成回路が1500[Vp−p]出力時のACトランスの1次側の端子a,bに出力する駆動波形の一例を示す図。 実施形態1に係るAC高電圧生成回路がスタンバイ状態中(0[V])にACトランスの1次側の端子a,bに出力するPWM信号の波形の一例を示す図。 従来のカラー画像形成装置で、イエローとマゼンタの2つの像形成ステーションでD級アンプを同じ周波数で駆動させた場合に発生するノイズのスペクトルの一例を示す図。 実施形態1に係るカラー画像形成装置において、イエローとマゼンタの2つのD級アンプを異なる周波数で駆動させた場合に発生するノイズのスペクトルの一例を示す図。 実施形態1に係るカラー画像形成装置のイエロー、マゼンタ、シアン、ブラックの4つの高電圧回路の発振回路が出力しているクロック信号の一例を示す図。 本発明の実施形態2に係るカラー画像形成装置の現像電圧基板と制御基板の概略構成を示すブロック図。 実施形態2において、正の電圧Vp+を出力している時間と負の電圧Vp−を出力している時間が異なり、Vp+の絶対値がVp−の絶対値よりも小さく、かつブランク期間を備えた偏デューティーブランクパルス波形の一例を示す図。 実施形態2に係るAC高電圧生成回路の構成を説明するブロック図。 実施形態2に係るD級アンプの構成を示すブロック図。 実施形態2に係る比較器1713が、三角波生成部によって生成された三角波と、交流波形生成部から入力された交流信号とを比較してPWM信号を生成するときの波形例を示す図。 実施形態2に係る比較器1717が、三角波生成部によって生成された三角波と、反転回路を通して反転された交流信号とを比較してPWM信号を生成するときの波形例を示す図。 実施形態3に係るD級アンプの構成を示すブロック図。 実施形態3に係るD級アンプに接続されたフルブリッジ回路の出力のデューティが変動している時と、固定周波数、固定デューティの時に発生するノイズのスペクトルの一例を示す図。 実施形態3に係るカラー画像形成装置のイエロー、マゼンタ、シアン、ブラック用の4つの高電圧回路の発振回路が、画像形成中に出力しているクロック信号の一例を示す図。 実施形態3に係るカラー画像形成装置のイエロー、マゼンタ、シアン、ブラック用の4つの高電圧回路の発振回路が、スタンバイ中に出力しているクロック信号の一例を示す図。 実施形態3に係るカラー画像形成装置のCPUによる制御処理を説明するフローチャート。
以下、添付図面を参照して本発明の実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る本発明を限定するものでなく、また本実施形態で説明されている特徴の組み合わせの全てが本発明の解決手段に必須のものとは限らない。
[実施形態1]
図1は、本発明の実施形態1に係るカラー画像形成装置の像形成部の構成を説明する図である。
このカラー画像形成装置は、帯電用の高電圧電源回路を備えた電子写真プロセスで画像を形成する画像形成装置である。このカラー画像形成装置は、イエロー、マゼンタ、シアン、ブラックの4つの像形成部(ステーション)を有している。同図において、符号の数字の後に付されたa〜dはそれぞれイエロー、マゼンタ、シアン、ブラックの像形成部に対応する。図1の説明では、a〜dを省略した形で説明する。感光体1のドラムの周辺には帯電ローラ2、現像器4、感光体クリーナ6、1次転写ローラ53が配置されている。露光装置3はそれぞれ各色の画像データに応じたレーザ光を発生して、各対応する感光体1の表面を照射する。現像器4は、内部に現像スリーブ41を有し、現像剤であるトナーを収容しており、各対応する感光ドラム1に形成された静電潜像にトナーを吸着させて可視化したトナー像を形成する。こうして各色に対応する感光体1に形成されたトナー像は、1次転写ローラ53により中間転写ベルト51に重畳して転写され、この中間転写ベルト51上に転写されたカラー像は2次転写ローラ56,57により、紙やOHPシート等の記録材Pに転写される。こうしてカラーのトナー像が転写された記録材Pは定着器7に送られ、転写されたトナー像が記録材Pに定着される。Lは、感光体1を露光するレーザ光を示している。
この画像形成装置全体の制御を司る制御部は、記録材Pへの作像命令を受けると、感光体1、中間転写ベルト51、帯電ローラ2、現像スリーブ41、1次転写ローラ53、2次転写ローラ56,57、定着器7の定着ローラの回転を開始する。帯電ローラ2には、不図示の高電圧電源が接続されており、この高電圧電源から直流電圧に正弦波の電圧を重畳した高電圧が印加される。これにより、帯電ローラ2に接触している感光体1の表面が一様に帯電される。次に、この帯電された感光体1の表面が、露光装置3からのレーザ光の照射位置に至ると、画像信号に応じた露光がなされ、感光体1上に、その画像信号に応じた静電潜像が形成される。その後、現像器4の現像スリーブ41に、不図示の高電圧電源から、直流電圧に矩形のパルス波形電圧を重畳した高電圧が印加される。これにより負電荷のトナーが、現像スリーブ41より正電位(現像スリーブより正の電位でGNDに対して負)の静電潜像に吸着して静電潜像を可視像(トナー像)にし、そのトナー像は、感光体1の回転に伴って1次転写ローラ53の方向に移動する。こうして4個の感光体1上のトナー像は、各対応する1次転写ローラ53によって中間転写ベルト51に重ねて転写され、更に2次転写ローラ56,57によって記録材Pに転写される。尚、1次転写ローラ53と2次転写ローラ56,57にも、トナー像を転写するための直流高電圧が不図示の高電圧電源から印加されている。感光体1上に残った転写残トナーは、感光体クリーナ6によって掻き取られ回収される。また中間転写ベルト51に残った転写残トナーは、中間転写ベルトクリーナ55によって掻き取られ回収される。記録材Pに転写されたトナー像は、定着器7によって圧力と温度により転写材Pに定着されることにより、記録材Pにカラー画像が形成される。
図2は、実施形態1に係るカラー画像形成装置において、帯電ローラ2に供給する帯電電圧を発生する帯電電圧基板200と制御基板201の概略構成を示すブロック図である。
制御基板201は、このカラー画像形成装置全体の制御を司るCPU202と、そのプログラムを格納するメモリ203を含んでいる。この制御基板201は、帯電電圧基板200のAC高電圧生成回路101に対して、各色に対応する帯電ローラ2へのAC高電圧の(peak to peak)電圧であるVp−pを設定するVp−p設定信号Y,M,C,Kと、AC高電圧波形の周波数を決定する帯電ACクロックを出力している。また制御基板201は、帯電電圧基板200のDC高電圧生成回路102に対して、各色用のDC高電圧の電圧値を設定するDC電圧設定信号Y,M,C,Kと、DC高電圧生成回路102のトランス駆動を行う帯電DCクロックを出力している。
帯電電圧基板200は、AC高電圧生成回路101a〜101d、DC高電圧生成回路102a〜102d、AC電圧検出回路103a〜103dを有している。AC高電圧生成回路101a〜101dとDC高電圧生成回路102a〜102dは、制御基板201からの信号に基づいて動作し、各回路で生成されたAC電圧とDC電圧とを重畳して出力している。またAC電圧検出回路103a〜103dは、AC高電圧生成回路101a〜101dの出力電圧を検出し、その検出結果を示す検出信号Y〜Kを、各対応するAC高電圧生成回路101に供給している。尚、AC高電圧生成回路101a〜101d、DC高電圧生成回路102a〜102d、AC電圧検出回路103a〜103dの数字の後に付されたa〜dは、図1と同様に、それぞれイエロー、マゼンタ、シアン、ブラックに対応している。ここで各色に対応するAC高電圧生成回路101、DC高電圧生成回路102及びAC電圧検出回路103のそれぞれ構成は、全ての色に対して共通である。従って、以降の説明は4色のうちのイエロー用の回路についてのみ説明し、他の色用の回路の動作説明を省略する。
次に、イエロー用の回路のそれぞれの回路ブロックの動作について説明する。
AC高電圧生成回路101aは、帯電ACクロックの周波数に従って、Vp−p設定信号Yにより設定された振幅の正弦波のAC高電圧を出力する。DC高電圧生成回路102aは、帯電DCクロックによってAC高電圧生成回路101aに設けられる不図示のトランスの1次側を駆動し、DC電圧設定信号Yで設定された直流の高電圧を生成して出力する。AC電圧検出回路103aは、AC高電圧生成回路101aから出力されたAC電圧のVp−pを検出し、Vp−pに応じた検出信号YをAC高電圧生成回路101aに出力する。これによりAC高電圧生成回路101aは、Vp−p設定信号と、入力された検出信号Yの電圧とが一致するようにフィードバック制御している。即ち、Vp−p設定信号Yの電圧より検出信号Yの電圧が大きければ、AC電圧の出力が小さくなるように制御し、Vp−p設定信号Yの電圧より検出信号Yの電圧が小さければ、AC電圧の出力が大きくなるように制御する。こうしてAC高電圧生成回路101aにより生成された交流電圧に、DC高電圧生成回路102aで生成された直流電圧を重畳させた電圧が帯電ローラ2aに出力される。
図3は、実施形態1に係るAC高電圧生成回路101aの構成を説明するブロック図である。
AC高電圧生成回路101aは、正弦波生成部300とD級アンプ301、ACトランス302を有しており、正弦波生成部300の出力信号がD級アンプ301に入力され、D級アンプ301の出力をACトランス302で高電圧に変換して出力している。これら正弦波生成部300、D級アンプ301及びACトランス302は、電圧発生回路を構成している。
以下、AC高電圧生成回路101aの各部の動作について説明する。
正弦波生成部300には、Vp−p設定信号Yと帯電ACクロック、検出信号Yがそれぞれ入力され、正弦波信号が出力される。正弦波信号は、帯電ACクロックの周波数で、その振幅がVp−p設定信号Yと、検出信号Yの電圧が一致するようにフィードバック制御される。D級アンプ301は、正弦波生成部300で生成された正弦波信号を入力してパルス幅変調信号(PWM信号)に変換し、このPWM信号でフルブリッジ回路を駆動させてスイッチング出力を得ている。このフルブリッジ回路のスイッチング出力は、ACトランス302の1次側に入力され、ACトランス302の2次側に高電圧が出力される。
図4は、実施形態1に係るD級アンプ301の構成を説明するブロック図である。
D級アンプ301は、発振回路411、三角波生成部412、比較器413、比較器417、反転回路414及びスイッチング駆動部415,416を含むフルブリッジ回路を有している。三角波生成部412には、発振回路411から周波数調整抵抗R1によって調整された周波数のクロック信号が入力される。比較器413には、三角波生成部412の出力と正弦波信号がそのまま入力され、比較器417には三角波生成部412の出力と反転回路414を通して反転された正弦波信号が入力される。比較器413,417から出力されたPWM信号503,603は、スイッチング駆動部415,416に入力され、スイッチング駆動部415,416の出力をACトランス302で高電圧に変換して出力している。次にこのD級アンプ301の各部の動作を説明する。
発振回路411は、周波数調整抵抗R1と発振回路411内の容量成分Cとの時定数で調整された基準周波数のクロック信号を生成して三角波生成部412に出力する。三角波生成部412は、発振回路411からの周波数信号に同期して、所定の振幅の三角波を生成して比較器413に出力する。比較器413は、図5に示すように、三角波生成部412によって生成された三角波501と、正弦波生成部300から入力された正弦波502とを比較し、PWM信号503を生成して出力する。
図5は、実施形態1に係る比較器413の入力信号と出力信号(PWM信号)との関係を説明する波形図である。
ここでは、正弦波502の振幅よりも三角波501の振幅の方が大きい期間ではハイレベルとなるPWM信号503が得られている。
一方、比較器417は、図6に示すように、三角波生成部412によって生成された三角波501と、反転回路414を通して反転された正弦波602とを比較してPWM信号603を生成し出力する。
図6は、実施形態1に係る比較器417の入力信号と出力信号(PWM信号)との関係を説明する波形図である。
ここでは、正弦波602の振幅よりも三角波501の振幅の方が大きい期間ではハイレベルとなるPWM信号603が得られている。
これらPWM信号のそれぞれは、スイッチング駆動部415とスイッチング駆動部416で構成されたフルブリッジ回路に入力される。スイッチング駆動部415は、駆動電圧をACトランス302の1次側a端子に出力し、スイッチング駆動部416は、駆動電圧をACトランス302の1次側b端子に出力する。スイッチング駆動部415,416の出力電圧の電位差によってACトランス302の1次側a−b間に電流が流れ、ACトランス302の2次側にAC高電圧を発生する。こうしてスイッチング回路により発生された帯電ローラ用のAC高電圧は、帯電ローラ2aと感光体1aを含む容量負荷Cに供給される。
図7は、実施形態1において、正弦波生成部300からの正弦波信号が停止状態の時のPWM信号を説明する図である。
正弦波生成部300からの正弦波信号701が停止状態のとき、比較器413で生成されるPWM信号703は周波数が固定で、かつデューティも50%で固定となる。
次に比較器417が出力するPWM信号の周波数について説明する。
比較器417が出力するPWM信号の周波数は、発振回路411に接続された周波数調整抵抗R1と発振回路411内の不図示のコンデンサCとの時定数によって決まり、PWM信号の周波数は帯電用のAC高電圧波形が崩れないように設定する。例えば、帯電用のAC高電圧波形の周波数が1kHzの時、その波形が崩れないように、それより十分大きな周波数500kHzを設定する。この十分大きな周波数の目安は、ACトランス302の2次側の漏れインダクタンス成分と帯電ローラ2aと感光ドラム1aの負荷容量でローパスフィルタを構成すると仮定する。そして、このローパスフィルタが、PWM信号の帯電用のAC高電圧波形の周波数成分を通過させ、高周波成分を通過させないような範囲である。
次にスイッチング駆動部415,416を含むフルブリッジ回路の構成について説明する。
図8は、実施形態に係るスイッチング駆動部415,416の回路図である。
スイッチング駆動部415は、トランジスタQ1(p型MOS−FET)とトランジスタQ2(n型MOS−FET)を有し、スイッチング駆動部416はトランジスタQ3(p型MOS−FET)とトランジスタQ4(n型MOS−FET)を有している。スイッチング駆動部415のトランジスタQ1及びQ2のゲート端子には、比較器413から出力されたPWM信503号が入力されている。また、スイッチング駆動部416のトランジスタQ3及びQ4のゲート端子には、比較器417から出力されたPWM信号603が入力されている。またトランジスタQ1とQ2のドレイン端子同士が接続されており、またトランジスタQ3とQ4のドレイン端子同士が接続されている。またトランジスタQ1,Q3のソース端子には電源電圧Vinが接続され、トランジスタQ2,Q4のソース端子はグランドに接続されている。これら4つのトランジスタQ1〜Q4により、ハーフブリッジ回路を2つ使用したフルブリッジ回路が構成されている。
次にこの回路の動作について説明する。
スイッチング駆動部415,416に供給されるゲート制御のためのPWM信号503,603がローレベルのときトランジスタQ1,Q3がともにオンになり、トランジスタQ2,Q4がともにオフとなる。またPWM信号503,603がハイレベルのときトランジスタQ1,Q3がともにオフになり、トランジスタQ2,Q4がともにオンとなる。ここでスイッチング駆動部415,416の出力は、図5及び図6に示すように、デューティが互いに異なっている。このため、ACトランス302の1次側の端子a,bに生じる電位差によってACトランス302の1次側に電流が流れACトランス302の2次側に高電圧が発生して、帯電ローラ2aと感光ドラム1aからなる負荷容量に出力される。
ここで、D級アンプ301内のフルブリッジ回路が出力する駆動波形の1500[Vp−p]出力時と0[V]出力時の違いを説明する。
図9は、実施形態1に係るAC高電圧生成回路101aが1500[Vp−p]出力時、ACトランス302の1次側の端子a,bに出力されるPWM信号の波形の一例を示す図である。
2つのPWM信号503,603の波形には、図9に示すように、矩形波の立上りと立下りにノイズ成分901,902が発生している。しかしながら、ここでACトランス302の1次側の端子a,bに入力される2つのPWM信号503,603は、前述の図5及び図6で説明したように、常にデューティが変化している。このため、2つのPWM信号503,603の周波数及びデューティが固定ではない。従って、ノイズ成分901,902が同じタイミングで発生する割合が極めて少なくなる。
図10は、実施形態1に係るAC高電圧生成回路101aがスタンバイ状態中(0[V])にACトランス302の1次側の端子a,bに出力するPWM信号の波形の一例を示す図である。
これら2つのPWM信号の波形は、図7で示したように、周波数及びデューティ(50%)が共に固定であるため、図9の状態に比べて、ノイズ1001と1002が同じタイミングで発生する。これにより、よりノイズが増幅されることになる。
実施形態1に係るカラー画像形成装置は、イエロー、マゼンタ、シアン、ブラックの4つの像形成ステーションを有し、各色の像形成ステーションでD級アンプ内のフルブリッジ回路を同時に動作させている。このため、各色の像形成ステーションで発生するスイッチングノイズが重畳されると、更に、ノイズレベルが悪化することになる。
図11は、従来のカラー画像形成装置で、イエローとマゼンタの2つの像形成ステーションでそれぞれのD級アンプを同じ周波数で駆動させた場合に発生するノイズのスペクトルの一例を示す図である。
イエローとマゼンタの像形成ステーションのそれぞれのD級アンプを同じ周波数で駆動した場合、同じ周波数(タイミング)でノイズピークが発生するため、2色の像形成ステーションで発生するノイズが重畳されノイズピークが大きくなる。
図12は、実施形態1に係るカラー画像形成装置において、イエローとマゼンタの2つのD級アンプを、互いに異なる周波数で駆動させた場合に発生するノイズのスペクトルの一例を示す図である。
イエローとマゼンタの像形成ステーションのD級アンプを互いに異なる周波数で駆動させた場合、同じタイミングでノイズピークが発生しないため、2色の像形成ステーションで発生するノイズが重畳されない。このため、図11のように、2色の像形成ステーションのD級アンプのPWM信号を同じ周波数で駆動させた場合と比べて、ノイズピークを低く抑えることができる。
図13は、実施形態1に係るカラー画像形成装置のイエロー、マゼンタ、シアン、ブラックの4つの高電圧回路の発振回路411が出力しているクロック信号の一例を示す図である。クロック信号Y〜Kはそれぞれ、イエロー用、マゼンタ用、シアン用、黒用のD級アンプの発振回路411が出力しているクロック信号を示している。
実施形態1では、各色に対応する発振回路411が出力するクロック信号の周波数が互いに異なっているため、各色に対応するD級アンプ301のPWM信号の周波数も互いに異なる。従って、ノイズ成分の信号が同じ周期で発生しないため、図11で示した従来のD級アンプの駆動時に比べて放射ノイズのピークを低く抑えることができる。
ここでPWM信号の周波数は、発振回路411に接続された周波数調整抵抗R1の値によって決定され、本実施形態1では、各色に対応する周波数調整抵抗R1の値が互いに異なっている。また周波数調整抵抗R1の値として、個体ばらつきや温度ばらつき、各色に対応する発振回路411の内部容量のばらつきも考慮された値の抵抗値が選定されており、誤差で各色の周波数が同じになることはない。例えば、イエロー用のACトランス302を駆動しているD級アンプ301に接続された周波数調整抵抗R1の値を30kΩ±1%とした場合、発振回路411内の内部容量のばらつきも考慮して、マゼンタ用の周波数調整抵抗R1が決定されている。ここでは例えば、30kΩ±6%、つまり28.2kΩ〜31.8kΩの範囲に入らないような周波数調整抵抗R1の値が、マゼンタ用のD級アンプ301に接続されている。
同様に、シアン、ブラック用のD級アンプに接続された周波数調整抵抗R1の値も、誤差やばらつき等によって、他の色用のD級アンプに接続された周波数調整抵抗R1の値と同じにならないように選択されている。また、各色用のPWM信号の周波数は、ACトランス302が出力する帯電用のAC高電圧波形が崩れない程度の周波数になるように、周波数調整抵抗R1が選定されている。ここで帯電用のAC高電圧波形が崩れない程度のPWM信号の周波数は、目標とする帯電用のAC高電圧波形の周波数や、帯電ローラと感光ドラムの距離や負荷変動、環境、抵抗R1a〜R1dのばらつき等によって異なる。実施形態1に係るカラーの像形成装置におけるPWM信号の周波数は、約300〜600kHzとしている。
以上説明したように実施形態1によれば、各色用のD級アンプが出力するPWM信号の周波数を互いに異ならせることにより、各色の像形成で生じるノイズ成分の信号が、互いに異なるタイミングで発生するようになる。これにより、各色用のD級アンプが出力するPWM信号の周波数が同じになる場合とに比べて、ノイズのピークを低く抑えることができる。
実施形態1では、D級アンプを、フルブリッジ回路で説明したが、ハーフブリッジでトランスを駆動する場合でも、同様の効果を得ることができる。
また実施形態1では、D級アンプをイエロー、マゼンタ、シアン、ブラックの各色で使用していた。しかし本発明はこれに限定されるものでなく、例えば、1つのD級アンプで2色分のACトランスを同時に駆動しても良い。このように実施形態1と構成が異なっていても、使用されるD級アンプの数が複数であれば、同様の構成を採用することにより、同様の効果を得ることができる。
[実施形態2]
前述の実施形態1では、電子写真方式の画像形成装置の帯電用の高電圧回路の例で説明したが、実施形態2では、現像用電圧を発生する高電圧回路に用いた場合で説明する。尚、実施形態2に係る画像形成装置の基本的な構成は実施形態1と同じであるため、実施形態1と異なる部分について詳しく説明する。
図14は、本発明の実施形態2に係るカラー画像形成装置の現像電圧基板1401と制御基板201の概略構成を示すブロック図である。
制御基板201は、実施形態1の場合と同様に、カラー画像形成装置全体の制御を司るCPU202とそのプログラムを格納するメモリ203を含んでいる。そして制御基板201は、現像電圧基板1401に対してAC高電圧のVp−pを設定するVp−p設定信号Y,M,C,K、現像電圧基板1401のDC高電圧の電圧値を設定するDC電圧設定信号Y,M,C,Kを出力している。また更に、現像用のAC高電圧波形の周波数を決定する現像ACクロック及びDC高電圧生成回路のトランス駆動を行う現像DCクロックを出力している。
現像電圧基板1401は、AC高電圧生成回路1411a〜1411d、DC高電圧生成回路1412a〜1412d、AC電圧検出回路1413a〜1413dを有している。そして制御基板201からの信号に基づいて、AC高電圧生成回路1411a〜1411dとDC高電圧生成回路1412a〜1412dが動作し、各回路で生成された電圧を重畳して出力している。またAC電圧検出回路1413a〜1413dはそれぞれ、各AC高電圧生成回路1411a〜1411dの出力電圧を検出し、その検出信号が各対応するAC高電圧生成回路に入力される。尚、AC高電圧生成回路1411a〜1411d、DC高電圧生成回路1412a〜1412d、AC電圧検出回路1413a〜1413dの数字の後に付されたa〜dはそれぞれ、イエロー、マゼンタ、シアン、ブラックの像形成部に対応している。ここで各色に対応するAC高電圧生成回路、DC高電圧生成回路及びAC電圧検出回路のそれぞれは、各色に拘らず内部構成が共通であるため、これ以降の説明は、4色の内のイエローに対応する回路のみについて説明する。
まずAC高電圧生成回路1411a、DC高電圧生成回路1412a及びAC電圧検出回路1413aの動作について説明する。
AC高電圧生成回路1411aは、現像ACクロックの周波数で、かつVp−p設定信号Yにより設定された振幅のAC高電圧を出力する。DC高電圧生成回路1412aは、現像DCクロックによってAC高電圧生成回路1411aに設けられた不図示のトランスの1次側を駆動し、DC電圧設定信号Yで設定された電圧のDC高電圧を生成して出力する。AC電圧検出回路1413aは、AC高電圧生成回路1411aから出力されたAC高電圧のVp−pを検出し、そのVp−pに応じた検出信号YをAC高電圧生成回路1411aに出力する。AC高電圧生成回路1411aでは、Vp−p設定信号Yと、入力された検出信号Yの電圧とが一致するようにフィードバック制御がされている。即ち、Vp−p設定信号Yの電圧より検出信号Yの電圧が大きければAC高電圧の出力が小さくなるように制御し、Vp−p設定信号Yの電圧より検出信号Yの電圧が小さければ、AC高電圧の出力が大きくなるように制御する。こうしてAC高電圧生成回路1411aにより生成された交流電圧に、DC高電圧生成回路1412aで生成された直流電圧を重畳させた電圧が現像スリーブ41aに出力される。
現像スリーブ41aに印加する交流電圧波形について説明する。
現像スリーブ41aに印加する交流電圧波形には、正弦波、矩形波、矩形デューティ波、ブランクパルス等がある。
図15は、実施形態2において、正の電圧Vp+を出力している時間と負の電圧Vp−を出力している時間が異なり、Vp+の絶対値がVp−の絶対値よりも小さく、かつブランク期間を備えた偏デューティーブランクパルス波形の一例を示す図である。
ここで時間taとtbは、例えば、70μsと30μsであり、Vp+とVp−を出力する一周期の時間が100μs、即ち、周波数が10kHzになっている。Vp+,Vp−は、時間taとtbの逆の比である450V,1050Vになっており、全体の振幅として1500Vppといった値が使用される。
図16は、実施形態2に係るAC高電圧生成回路1411aの構成を説明するブロック図である。
AC高電圧生成回路1411aは、交流波形生成部1600、D級アンプ1601、ACトランス1602を有している。ここで、交流波形生成部1600の出力信号がD級アンプ1601に入力され、D級アンプ1601の出力をACトランス1602で高電圧に変換して出力している。それぞれの回路の動作について説明する。
交流波形生成部1600には、制御基板201から出力されたVp−p設定信号と現像ACクロック、AC電圧検出回路1413aからの検出信号Yがそれぞれ入力され交流信号が出力される。交流信号は、現像ACクロックの周波数で、その振幅が、Vp−p設定信号と検出信号Yの電圧とが一致するようにフィードバック制御される。D級アンプ1601は、交流波形生成部1600で生成された交流信号をPWM信号に変換し、PWM信号でフルブリッジ回路を駆動させてスイッチング出力を得ている。フルブリッジ回路のスイッチング出力は、ACトランス1602の1次側に入力され、ACトランス1602の2次側に高電圧を出力する。
図17は、実施形態2に係るD級アンプ1601の構成を示すブロック図である。
このD級アンプ1601は、発振回路1711、三角波生成部1712、比較器1713,1717、反転回路1714及びスイッチング駆動部1715,1716を有するフルブリッジ回路を含む。三角波生成部1712には、発振回路1711から周波数調整抵抗R2によって調整された周波数のクロック信号が入力され、比較器1713には三角波生成部1712の出力と交流信号がそのまま入力される。また比較器1717には、三角波生成部1712の出力と反転回路1714を通して反転された交流信号が入力される。比較器1713,1717から出力された信号がスイッチング駆動部1715,1716に入力され、スイッチング駆動部1715,1716の出力をACトランス1602で高電圧に変換して出力している。次に図17のそれぞれの回路ブロックの動作について説明する。
発振回路1711は、周波数調整抵抗R2と発振回路1711内のコンデンサCとの時定数で調整された周波数のクロック信号を生成して三角波生成部1712に出力する。三角波生成部1712は、発振回路1711からのクロック信号に同期して、所定の振幅で三角波を生成して比較器1713に出力する。
図18は、実施形態2に係る比較器1713が、三角波生成部1712によって生成された三角波1801と、交流波形生成部300から入力された交流信号1802とを比較してPWM信号1803を生成するときの波形例を示す図である。ここでは三角波1801の振幅が交流信号1802振幅よりも大きい期間ではハイレベルとなるPWM信号1803が生成されている。
図19は、実施形態2に係る比較器1717が、三角波生成部1712によって生成された三角波1801と、反転回路1714を通して反転された交流信号1902とを比較してPWM信号1903を生成するときの波形例を示す図である。ここでは三角波1801の振幅が、反転された交流信号1902の振幅よりも大きい期間ではハイレベルとなるPWM信号1903が生成されている。
こうして出力されるPWM信号1803,1903は、スイッチング駆動部1715とスイッチング駆動部1716で構成されたフルブリッジ回路に入力される。スイッチング駆動部1715は駆動電圧をACトランス1602の1次側の端子aに出力し、スイッチング駆動部1716は駆動電圧をACトランス1602の1次側の端子bに出力する。そしてスイッチング駆動部1715,1716の出力電圧の電位差によってACトランス1602の1次側の端子a−b間に電流が流れ、ACトランス1602の2次側にAC高電圧を発生させる。こうして発生された現像用のAC高電圧は現像スリーブ41aに入力される。
尚、実施形態2においても前述の実施形態1の場合と同様に、図7に示すように、交流波生成部1600からの入力が停止状態のときは、生成されるPWM信号は、周波数及びデューティ(50%)が共に固定になる。
次に比較器1717が出力するPWM信号1903の周波数について説明する。
PWM信号1903の周波数は、発振回路1711に接続された周波数調整抵抗R2と発振回路1711内の不図示のコンデンサCとの時定数によって決まり、PWM信号の周波数は現像AC高電圧波形が崩れないように設定する。例えば、現像用のAC高電圧波形の周波数が1kHzの時、その波形が崩れないように、それより十分大きな周波数500kHzを設定する。この十分大きな周波数の目安はACトランス1602の2次側に接続された不図示のローパスフィルタが、PWM信号の現像AC高電圧波形の周波数成分を通過させ、高周波成分を通過させないような範囲である。
ここで、D級アンプ1601に接続されたフルブリッジ回路が出力する駆動波形の1500[Vp−p]出力時と0[V]出力時の違いを説明する。
実施形態2に係るAC高電圧生成回路1411aが1500[Vp−p]出力時、ACトランス1602の1次側の端子a,bに出力する駆動波形の例は、前述の図9と同じである。
このとき2つの波形には、図9で示すように、矩形波の立上りと立下りにノイズ成分が発生する。しかし、この2つの波形は図18及び図19を参照して説明したように、入力された交流波信号に合わせて常にデューティが変化しているため、ノイズ成分が同じタイミングで発生する可能性が低くなりノイズ成分が低く抑えられる。一方、AC高電圧生成回路1411aがスタンバイ状態中(0[V])、ACトランス1602の1次側の端子a,bに出力する2つの駆動波形は、前述の図10と同じになる。この場合、2つの波形は、周波数及びデューティ(50%)が固定になるため、同じタイミングでノイズが発生し、図9の状態に比べてノイズレベルが悪化することになる。
また、実施形態2に係るカラー画像形成装置は、イエロー、マゼンタ、シアン、ブラックの4つの像形成ステーションを有し、各色でD級アンプ内のフルブリッジ回路を同時に動作させている。このため、各色用のD級アンプのノイズ成分の信号が重畳されると、よりノイズレベルが悪化することになる。
このとき、イエローとマゼンタの2つのステーションでそれぞれのD級アンプを同じ周波数で駆動させた場合に発生するノイズのスペクトルは、前述の図11と同じになる。このように、イエローとマゼンタのそれぞれのD級アンプを同じ周波数で駆動させた場合、同じ周波数でノイズピークが立つため、2色のノイズが重畳されノイズピークが大きくなる。
一方、イエローとマゼンタ用の2つのD級アンプを互いに異なる周波数で駆動させた場合に発生するノイズのスペクトルは、前述の図12に示すようになる。このように、イエローとマゼンタ用のD級アンプを互いに異なる周波数で駆動させた場合は、同じタイミングでノイズが発生しないため、2色用の駆動回路で発生するノイズが重畳されなくなる。こうして、2色用のD級アンプのPWM信号を同じ周波数で駆動させた時と比べてノイズピークを低く抑えることができる。
本実施形態2に係るカラー画像形成装置のイエロー、マゼンタ、シアン、ブラックの4つの高電圧回路の発振回路1711が出力しているクロック信号例は、前述の実施形態1の場合と同様に、図13のようになる。
実施形態2では、各色用の発振回路1711のクロック信号の周波数が互いに異なっており、クロック信号の周波数が各色で同じならないため、各D級アンプのPWM信号の周波数も同じにならない。従って、各色用の現像用の高電圧のノイズ成分が同じタイミングで発生しないため、図11で示した従来のD級アンプの駆動時に比べて放射ノイズを低減することができる。
尚、PWM信号の周波数は、発振回路1711に接続された周波数調整抵抗R2の値によって決定され、本実施形態2では、各色の周波数調整抵抗R2の値が互いに異なっている。また、周波数調整抵抗R2の値は個体ばらつきや温度ばらつき、発振回路1711の内部容量のばらつきも考慮した抵抗値に選定されており、誤差で各色の周波数が同じになることはない。例えば、イエロー用のACトランスを駆動しているD級アンプに接続された周波数調整抵抗R2の値を30kΩ±1%とする。このときマゼンタ用のD級アンプの周波数調整抵抗R2の抵抗値は、発振回路1711の内部容量のばらつきも考慮して、30kΩ±6%、つまり28.2kΩ〜31.8kΩの範囲に入らない値に設定されている。同様に、シアン、ブラック用のD級アンプに接続された周波数調整抵抗R2の抵抗値も、誤差やばらつき等によって他の色用のD級アンプに接続された周波数調整抵抗R2の抵抗と同じにならないように設定されている。
以上説明したように実施形態2によれば、各色用のD級アンプが出力するPWM信号の周波数を互いに異ならせることにより、各色用のD級アンプで発生するノイズ成分の信号が同じタイミングで発生しなくなる。これにより、各色用のD級アンプの出力するPWM信号の周波数が同じ場合に比べて放射ノイズを低減することができる。
本実施形態2では、D級アンプをフルブリッジの回路で説明したが、ハーフブリッジでトランスを駆動する場合でも、同様の効果を得ることができる。
また本実施形態2では、D級アンプをイエロー、マゼンタ、シアン、ブラックの各色用に使用していたが、1つのD級アンプで2色用のACトランスを同時に駆動させても良い。このように本実施形態2と構成が異なっていても、使用されるD級アンプが2つ以上であれば、同様の効果を得ることができる。
[実施形態3]
次に本発明の実施形態3を説明する。実施形態3では、画像形成時と画像形成を待機するスタンバイ状態時とでPWM信号の周波数を変更可能にしている。ここでは、実施形態1に係る発振回路411に接続された周波数調整抵抗R1に対して、別の周波数調整抵抗R2を並列に接続した場合の実施形態であり、その基本的な構成は実施形態1と同じである。
図20は、本実施形態3に係るD級アンプの構成を示すブロック図である。図20において、前述の図4と共通する部分は同じ記号で示している。このD級アンプ2001は、図2のAC高電圧生成回路101aに含まれている。
D級アンプ2001は、発振回路411、三角波生成部412、比較器413、比較器417、反転回路214及びスイッチング駆動部415,416を有するフルブリッジ回路を備えている。三角波生成部412には、発振回路411から周波数調整抵抗R1,R2によって調整された周波数のクロック信号が入力され、比較器413には三角波生成部412から出力された三角波501と正弦波信号502がそのまま入力されている。また比較器417には、三角波生成部412から出力された三角波501と反転回路214を通して反転された正弦波信号602が入力されている。比較器413,417から出力された信号がスイッチング駆動部415,416に入力され、スイッチング駆動部415,416の出力をACトランス302で高電圧に変換して出力している。次に図20の回路ブロックの動作について説明する。
発振回路411は、周波数調整抵抗R1,R2と発振回路411内の不図示のコンデンサCとの時定数で調整された周波数のクロック信号を生成して三角波生成部412に出力する。三角波生成部412は、発振回路411からのクロック信号に同期して、所定の振幅で三角波501を生成して比較器413,417に出力する。比較器413は、前述の図5に示すように、三角波生成部412によって生成された三角波501と、正弦波生成部300から入力された正弦波信号502とを比較してPWM信号503を出力する。
一方、比較器417は、前述の図6に示すように、三角波生成部412によって生成された三角波501と、反転回路214を通して反転された正弦波信号602とを比較してPWM信号を出力する。
これらPWM信号503,603は、スイッチング駆動部415とスイッチング駆動部416を含むフルブリッジ回路に入力されている。スイッチング駆動部415は、駆動電圧をACトランス302の1次側の端子aに出力し、スイッチング駆動部416は、駆動電圧をACトランス302の1次側の端子bに出力する。スイッチング駆動部415,416の出力電圧の電位差によってACトランス302の1次側の端子a−b間に電流が流れ、ACトランス302の2次側にAC高電圧を発生させる。こうして発生された帯電用のAC高電圧は、帯電ローラ2と感光ドラム1からなる容量負荷Cに入力される。
ここで、D級アンプに接続されたフルブリッジ回路が出力する駆動波形の1500[Vp−p]出力時と0[V]出力時の違いを説明する。
ここで、AC高電圧生成回路101が1500[Vp−p]出力時、ACトランス302の1次側の端子a,bに出力する駆動波形の例は、前述の図9に示す通りである。ここで2つの波形には、図9で示すように、矩形波の立上りと立下りでノイズ成分が発生する。しかし本実施形態では、図5、図6で示したように、ACトランス302を駆動するPWM信号は、各色ごとにデューティが変化している。このため、各色用の帯電電圧のノイズ成分が発生するタイミングが同じになる可能性が低くなり、各色のノイズ成分が重畳されることが少なくなるためノイズを低く抑えることができる。
一方、高電圧生成回路101がスタンバイ状態中(0[V])、ACトランス302の1次側の端子a,bに出力する2つの駆動波形は、前述の図10に示す通りである。この2つの波形は、図7で説明したように、PWM信号の周波数とデューティ(50%)が共に固定になるため、図9の状態に比べてノイズレベルが悪化することになる。
図21は、実施形態3に係るD級アンプに接続されたフルブリッジ回路の出力のデューティが変動している時と、固定周波数、固定デューティの時に発生するノイズのスペクトルの一例を示す図である。
各色用の帯電用の電圧回路が固定周波数、固定デューティで駆動されると、2100で示すように、一定の周波数でノイズピークが発生する。これに対して、各色用の電圧回路を駆動する信号のデューティが変動すると、2101で示すようにノイズがブロードになる。
実施形態3に係るカラー画像形成装置は、イエロー、マゼンタ、シアン、ブラック用の4つの像形成ステーションを有し、各色でD級アンプ内のフルブリッジ回路を同時に動作させている。このため、各色用の帯電用電圧のノイズ成分の信号が重畳され、さらにノイズレベルが悪化することになる。
このとき、イエローとマゼンタ用の2つの像形成ステーションで、スタンバイ時にD級アンプを同じ周波数で駆動した場合に発生するノイズのスペクトルの例は、前述の図11に示すようになる。このようにイエローとマゼンタ用のD級アンプを同じ周波数で駆動させた場合、同じ周波数でノイズピークが立つため、2色のノイズ成分の信号が重畳されノイズピークが大きくなる。
一方、イエローとマゼンタ用の2つのD級アンプを、スタンバイ時に、互いに異なる周波数で駆動した場合に発生するノイズのスペクトルの一例は前述の図12に示すようになる。このように、イエローとマゼンタ用のD級アンプを、互いに異なる周波数で駆動した場合、同じ周波数でノイズピークが立たなくなるため、2色用の電源のノイズが重畳されなくなる。このように、2色用のD級アンプのPWM信号を同じ周波数とした場合と比べてノイズピークを低く抑えることができる。
図22は、実施形態3に係るカラー画像形成装置のイエロー、マゼンタ、シアン、ブラック用の4つの高電圧回路の発振回路411が、画像形成中に出力しているクロック信号の一例を示す図である。
図23は、実施形態3に係るカラー画像形成装置のイエロー、マゼンタ、シアン、ブラック用の4つの高電圧回路の発振回路411が、スタンバイ中に出力しているクロック信号の一例を示す図である。
実施形態3では、スタンバイ中に各色用の電圧発生回路で駆動している発振回路411のクロック信号の周波数が互いに異なっている。このため、スタンバイ中ではクロック信号の周波数が各色で互いに異なり、各色用のD級アンプのPWM信号の周波数も互いに異なる。従って、各色用の電圧発生回路で発生するノイズ成分が同じ周期で発生しないため、前述の図11で示したような、従来のD級アンプの駆動時に比べて放射ノイズを低減することができる。
スタンバイ中のPWM信号の周波数の切り替えは、図20の発振回路411に接続された周波数調整抵抗R1とR2の接続をスイッチング素子SWで切り替えることにより行う。スイッチング素子SWの切り替えは、図2のCPU202により出力されるSW切替信号により行う。実施形態3に係るカラー画像形成装置がスタンバイ状態になると、SW切替信号がCPU202から出力されてスイッチング素子SWがオンし、発振回路411と周波数調整抵抗R1,R2の並列回路が形成される。
次に、この画像形成装置が画像形成状態に入るとSW切替信号によってSWがオフされ、発振回路411と周波数調整抵抗R1とが接続される。実施形態3では、周波数調整抵抗R1の抵抗値が各色用の像形成ステーションで同じで、R2の抵抗値が各色用の像形成ステーションで互いに異なっている。従って、スイッチング素子SWがオンして周波数調整抵抗R1,R2の並列回路が形成されると、各色用の像形成ステーションごとに、発振回路411が出力するクロック信号の周波数が異なることになる。その結果、各色用の像形成ステーションごとに、前述のPWM信号の周波数とデューティが異なることになり、図11に示すようなノイズ信号の重畳を抑えることができる。
また、周波数調整抵抗R1とR2とが並列回路を構成したときの抵抗値は、個体ばらつきや温度ばらつき、発振回路411の内部容量のばらつきも考慮された値の抵抗値に選定されており、各色のPWM信号の周波数が同じになることはない。例えば、イエロー用のACトランスを駆動しているD級アンプに接続された周波数調整抵抗R1とR2が並列回路を構成したときの抵抗値を30kΩ±1%とする。このとき、マゼンタ用のD級アンプでは、発振回路411の内部容量のばらつきも考慮し、30kΩ±6%つまり28.2kΩ〜31.8kΩの範囲に入らないように、R1とR2が並列回路を形成したときの抵抗値が選択されている。同様に、シアン、ブラック用のD級アンプに接続された周波数調整抵抗R1とR2の並列回路の抵抗値の値も、誤差やばらつき等によって他の色用のD級アンプに接続されたR1とR2の並列回路の抵抗値の値が同じにならないように選択されている。
また画像形成装置がスタンバイ中にPWM信号の周波数を低下させることによって、スイッチング駆動部415,416の駆動回数を減らし、ノイズの発生を更に低減することができる。スタンバイ中のPWM信号の周波数は、例えば300kHz程度になるような周波数調整抵抗R1とR2の並列回路の抵抗値が選定される。
以上説明したように実施形態3によれば、画像形成装置がスタンバイ中に各色用のD級アンプが出力するPWM信号の周波数を互いに異なる周波数にすることによって、ノイズ成分の信号が同じ周期で発生しないようにできる。これにより、スタンバイ中に各色で駆動しているD級アンプが出力するPWM信号の周波数が同じ場合に比べて放射ノイズを低減することができる。
また、画像形成装置がスタンバイ中にPWM信号の周波数が低くなるような周波数調整抵抗R1とR2の並列回路の抵抗値を選定することによって、スイッチング駆動部415,416の駆動回数を減らし、ノイズの発生を更に低減することができる。
図24は、実施形態3に係るカラー画像形成装置のCPU202による制御処理を説明するフローチャートである。このカラー画像形成装置は、イエロー、マゼンタ、シアン、ブラックの4色の像形成ステーションを有するが、ここではイエローとマゼンタのPWM信号の周波数を互いに異ならせる場合について説明する。尚、この処理を実行するプログラムはメモリ203に記憶されており、CPU202がこのプログラムを実行することにより、このフローチャートで示す処理が実現される。
この処理は、画像形成装置の主電源のスイッチがONされて、画像形成装置の各部に電力が供給されることにより開始される。まずS2401でCPU202は、環境設定等の初期設定を行う。このときCPU202は、SW切替信号によりスイッチング素子SWをオンさせて、イエロー用のPWM信号を生成する発振回路411aに接続された抵抗R1aとR2aの並列回路を形成させる。またマゼンタ用のPWM信号を生成する発振回路411bに接続された抵抗R1b,R2bの並列回路を形成させる。ここで抵抗R2aとR2bの抵抗値は互いに異なるため、イエロー、マゼンタの各色用のD級アンプにおけるPWM信号の周波数は、それぞれ300kHz付近の異なる周波数に設定される。例えば、イエローとマゼンタ用のPWM信号の周波数は、例えばそれぞれ300kHz,310kHzに設定される。
こうして初期設定が終了するとS2402に進みCPU202は、電源投入時の立ち上げ制御(前多回転)を行う。このときCPU202は、SW切替信号によりスイッチング素子SWをオフさせて、発振回路411aと抵抗R1aが接続され、発振回路411bに抵抗R1bが接続された状態になる。ここで抵抗R1aとR1bの抵抗値は同じであり、イエロー、マゼンタの各色用のD級アンプにおけるPWM信号の周波数は、例えば500kHzに設定される。
こうして前多回転が終了するとS2403に進みCPU202は、画像形成を待機するスタンバイ状態に移行する。このスタンバイ時、CPU202はSW切替信号を出力してイッチング素子SWをオンさせて、上述したように、イエローとマゼンタ用のPWM信号の周波数をそれぞれ300kHz,310kHzに設定する。つまり、画像形成装置がスタンバイのときは、各色用のD級アンプのPWM信号の周波数が互いに異なるため、各色用の電圧生成回路のPWM信号の周波数が同じのときに比べて、ノイズレベルを低減することができる。
次にS2404に進みCPU202は、画像形成のためのジョブのスタート指示が入力されたかどうかを判定し、スタート指示が入力されたと判定したときはS2405に進みそうでないときはS2408に進む。S2405でCPU202は、画像形成のための設定(前回転)を実行し、次にS2406に進んで画像形成処理を行う。この画像形成処理では、CPU202はSW切替信号によりスイッチング素子SWをオフさせる。これにより、各色用のD級アンプのPWM信号の周波数は同じ500kHzになる。また、このとき、帯電用ACの電圧は1500[Vp−p]を出力しているため、各色用のD級アンプから出力されるRWM信号のデューティは、図9に示すように互いに異なっている。従って、各色用の電圧に発生するノイズが、他の色用に電圧に発生するノイズと重畳することがなくなり、ノイズのピークを低く抑えることができる。こうして画像形成が終了するとS2407に進みCPU202は、画像形成終了後の制御(後回転)を行う。そしてこの後回転処理が終了するとS2403に進み、スタンバイ状態に移行する。スタンバイ状態に移行すると、CPU202は、SW切替信号によりスイッチング素子SWをオンさせる。これにより、各色用のD級アンプのPWM信号の周波数はそれぞれ300kHz,310kHzになる。
一方、S2404でCPU202が、ジョブのスタート指示が入力されないと判定するとS2408に進む。S2408でCPU202は、スタンバイ状態のまま、所定時間、動作しない状態が継続したかどうかを判定し、所定時間、動作しない状態が継続していないときはS2404に進む。S2408でCPU202は、所定時間、動作しない状態が継続したと判定するとS2409に進み、省電力状態に移行させるスリープ信号を出力し、高電圧基板200等への電力供給を停止してスリープモードに移行する。そしてS2410に進み、スリープモードの状態で、動作のための信号が外部から入力するのを待ち、動作のための信号が入力されるとスリープモードを解除してS2401に戻る。
以上説明した制御を行うことによって、画像形成装置がスタンバイ時、各色用のPWM信号の周波数が互いに異なるため、各色用のPWM信号の周波数が同じの時に比べて、ノイズレベルを低減することができる。
尚、実施形態3では、イエローとマゼンタ用のD級アンプのPWM信号の周波数を互いに異ならせる場合で説明したが、実際にはイエロー、マゼンタ、シアン、ブラックの4色用のD級アンプのPWM信号の周波数を互いに異ならせるのが好ましい。
また実施形態3では、D級アンプとしてフルブリッジ出力のもので説明したが、ハーフブリッジでトランスを駆動する場合でも、同様の効果を得ることができる。
また実施形態3では、D級アンプをイエロー、マゼンタ、シアン、ブラックの各色で使用していた。しかし本発明はこれに限定されるものでなく、例えば、1つのD級アンプで2色分のACトランスを同時に駆動しても良い。このように実施形態1と構成が異なっていても、使用されるD級アンプの数が複数であれば、同様の構成を採用することにより、同様の効果を得ることができる。
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
101…AC高電圧生成回路、102…DC高電圧生成回路、103…AC電圧検出回路、200…帯電電圧基板、201…制御基板、202…CPU、203…メモリ

Claims (14)

  1. 複数の像形成部を有する画像形成装置であって、
    前記複数の像形成部を駆動する電圧を生成する複数の電圧生成手段を有し、
    前記複数の電圧生成手段のそれぞれは、
    スイッチングにより電圧を発生する電圧発生手段と、
    前記スイッチングの基準周波数となる周波数のクロック信号を発生する発生手段と、
    前記発生手段が発生する前記クロック信号の周波数を設定する設定手段とを有し、
    前記複数の電圧生成手段の前記設定手段は、複数の前記発生手段が発生する前記クロック信号の周波数が互いに異なるように、各クロック信号の周波数を設定することを特徴とする画像形成装置。
  2. 複数の像形成部を有する画像形成装置であって、
    前記複数の像形成部を駆動する電圧を生成する複数の電圧生成手段を有し、
    前記複数の電圧生成手段のそれぞれは、
    スイッチングにより電圧を発生する電圧発生手段と、
    前記スイッチングの基準周波数となる周波数のクロック信号を発生する発生手段と、
    前記発生手段が発生する前記クロック信号の周波数を設定する設定手段とを有し、
    更に、前記画像形成装置が画像形成時とスタンバイ状態とで、前記設定手段により前記クロック信号の周波数を互いに異なる値に設定するように制御する制御手段を有することを特徴とする画像形成装置。
  3. 前記設定手段は、前記発生手段に接続された第1の抵抗と、前記発生手段にスイッチング素子を介して接続された第2の抵抗とを有し、
    前記制御手段は、前記スイッチング素子により接続を切り替えて前記発生手段が発生する前記クロック信号の周波数を設定することを特徴とする請求項2に記載の画像形成装置。
  4. 前記制御手段は、前記スタンバイ状態で前記発生手段が発生する前記クロック信号の周波数を、前記画像形成時より低い周波数に設定するように制御することを特徴とする請求項2に記載の画像形成装置。
  5. 前記電圧発生手段は、
    ACトランスと、
    前記ACトランスの1次側に接続されたスイッチング回路と、
    前記クロック信号に同期して、前記スイッチング回路を駆動するパルス幅変調信号を出力する生成手段と、
    を有することを特徴とする請求項1乃至4のいずれか1項に記載の画像形成装置。
  6. 前記生成手段は、
    所定の周波数の正弦波信号と、前記クロック信号に同期して生成された三角波とを比較して第1のパルス幅変調信号を出力する第1の比較器と、
    前記正弦波信号の反転した信号と前記クロック信号とを比較して第2のパルス幅変調信号を出力する第2の比較器とを有し、
    前記スイッチング回路は、前記第1と第2のパルス幅変調信号を入力して前記ACトランスの1次側の端子を駆動することを特徴とする請求項5に記載の画像形成装置。
  7. 前記所定の周波数の正弦波信号を生成する正弦波生成手段を更に有することを特徴とする請求項6に記載の画像形成装置。
  8. 前記電圧発生手段が発生する電圧を検出する検出手段を更に有し、
    前記正弦波生成手段は、前記検出手段が検出した電圧値に従って前記正弦波信号の振幅を調整することを特徴とする請求項7に記載の画像形成装置。
  9. 前記設定手段は、前記発生手段に接続された抵抗を含み、当該抵抗の抵抗値は、前記複数の電圧生成手段で互いに異なることを特徴とする請求項1に記載の画像形成装置。
  10. 前記像形成部は電子写真方式により像を形成し、
    前記電圧発生手段は、前記像形成部の帯電用電圧を発生することを特徴とする請求項1乃至9のいずれか1項に記載の画像形成装置。
  11. 前記像形成部は電子写真方式により像を形成し、
    前記電圧発生手段は、前記像形成部の現像用電圧を発生することを特徴とする請求項1乃至9のいずれか1項に記載の画像形成装置。
  12. 前記複数の像形成部は、イエロー、マゼンタ、シアン、及び黒の画像を形成することを特徴とする請求項1乃至11のいずれか1項に記載の画像形成装置。
  13. 複数の像形成部を有する画像形成装置であって、
    前記複数の像形成部を駆動する電圧を生成する複数の電圧生成手段を有し、
    前記複数の電圧生成手段のそれぞれは、
    設定信号により設定された振幅の正弦波を発生する正弦波生成手段と、
    前記正弦波生成手段により発生された前記正弦波に基づいて、設定された周波数のスイッチング出力を出力するD級アンプと、
    前記D級アンプのスイッチング出力を、より高い電圧に変換して出力するACトランスとを有し、
    前記複数の電圧生成手段のそれぞれの前記D級アンプは、それぞれ互いに異なる周波数のスイッチング出力が得られるように設定されていることを特徴とする画像形成装置。
  14. 前記ACトランスの出力電圧を検出して前記正弦波生成手段にフィードバックする電圧検出手段を更に有し、
    前記正弦波生成手段は更に、前記電圧検出手段によるフィードバックに応じて、発生する前記正弦波の振幅を変更することを特徴とする請求項13に記載の画像形成装置。
JP2014263347A 2014-12-25 2014-12-25 画像形成装置 Pending JP2016122150A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014263347A JP2016122150A (ja) 2014-12-25 2014-12-25 画像形成装置
US14/963,413 US9880485B2 (en) 2014-12-25 2015-12-09 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014263347A JP2016122150A (ja) 2014-12-25 2014-12-25 画像形成装置

Publications (1)

Publication Number Publication Date
JP2016122150A true JP2016122150A (ja) 2016-07-07

Family

ID=56164006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014263347A Pending JP2016122150A (ja) 2014-12-25 2014-12-25 画像形成装置

Country Status (2)

Country Link
US (1) US9880485B2 (ja)
JP (1) JP2016122150A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129421A (ja) * 2017-02-09 2018-08-16 パワーサプライテクノロジー株式会社 トランスと、これを搭載した自動車、電子機器、カラー複写機
JP2018160986A (ja) * 2017-03-23 2018-10-11 コニカミノルタ株式会社 電源装置および画像形成装置
JP2021101591A (ja) * 2019-12-24 2021-07-08 日立Astemo株式会社 電子制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122150A (ja) * 2014-12-25 2016-07-07 キヤノン株式会社 画像形成装置
JP6582801B2 (ja) * 2015-09-24 2019-10-02 富士ゼロックス株式会社 画像読取装置及び画像形成装置
KR102440975B1 (ko) * 2016-01-21 2022-09-07 삼성전자주식회사 전자 장치 및 전자 장치에서 근거리 무선 통신을 위한 방법
KR20200029865A (ko) 2018-09-11 2020-03-19 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 고전압 전원 공급 장치에서 결함을 검출하는 장치 및 방법
JP7358831B2 (ja) * 2019-08-09 2023-10-11 京セラドキュメントソリューションズ株式会社 画像形成装置
JP7476602B2 (ja) * 2020-03-25 2024-05-01 京セラドキュメントソリューションズ株式会社 画像形成装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323027A (ja) * 1997-05-19 1998-12-04 Kyocera Corp 電源回路
JP2007049832A (ja) * 2005-08-10 2007-02-22 Canon Inc 電源装置および画像形成装置
US20070098424A1 (en) * 2005-10-27 2007-05-03 Katsumi Okada Image forming device
JP2009130936A (ja) * 2007-11-19 2009-06-11 Toshiba Corp 画像形成装置及びその制御方法
JP2011123172A (ja) * 2009-12-09 2011-06-23 Ricoh Co Ltd 電源装置、画像形成装置および電源制御方法
JP2013182031A (ja) * 2012-02-29 2013-09-12 Ricoh Co Ltd 電源装置、帯電装置、現像装置および画像形成装置
JP2014007870A (ja) * 2012-06-25 2014-01-16 Oki Data Corp 電源装置、及びこれを用いた画像形成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06202445A (ja) * 1992-12-28 1994-07-22 Canon Inc 画像形成装置
JPH07241083A (ja) 1994-02-28 1995-09-12 Sony Corp 高電圧発生装置
JPH0836431A (ja) * 1994-07-26 1996-02-06 Matsushita Electric Ind Co Ltd 高電圧発生器
JP2003302825A (ja) * 2002-04-09 2003-10-24 Canon Inc 現像装置及びプロセスカートリッジ及び画像形成装置
US20060250918A1 (en) * 2005-05-06 2006-11-09 Chih-Chin Hsu High frequency modulation of a light beam in optical recording
TWM285135U (en) * 2005-09-02 2006-01-01 Princeton Technology Corp Self-oscillation system capable of eliminating interference
JP4991194B2 (ja) * 2005-09-12 2012-08-01 株式会社リコー 画像形成装置
US20080050143A1 (en) * 2006-08-23 2008-02-28 Raymond Jay Barry Shared High Voltage Power Supply for Photoconductor Charging in an Electrophotographic Device
US7652682B2 (en) * 2007-04-27 2010-01-26 Canon Kabushiki Kaisha Image forming apparatus
JP5552978B2 (ja) * 2010-09-14 2014-07-16 富士ゼロックス株式会社 高圧電源装置
JP2013065932A (ja) 2011-09-15 2013-04-11 Ricoh Co Ltd 電源回路、電源回路の信号切替方法、帯電装置、画像形成装置
US8618875B2 (en) * 2011-12-20 2013-12-31 Blackberry Limited Using a new synchronization scheme for a multi-channel class-D amplifier
JP2014068446A (ja) * 2012-09-25 2014-04-17 Fuji Xerox Co Ltd 画像形成装置およびバイアス電源装置
CN104076637B (zh) * 2013-03-26 2016-06-22 京瓷办公信息系统株式会社 图像形成装置
JP2016122150A (ja) * 2014-12-25 2016-07-07 キヤノン株式会社 画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323027A (ja) * 1997-05-19 1998-12-04 Kyocera Corp 電源回路
JP2007049832A (ja) * 2005-08-10 2007-02-22 Canon Inc 電源装置および画像形成装置
US20070098424A1 (en) * 2005-10-27 2007-05-03 Katsumi Okada Image forming device
JP2009130936A (ja) * 2007-11-19 2009-06-11 Toshiba Corp 画像形成装置及びその制御方法
JP2011123172A (ja) * 2009-12-09 2011-06-23 Ricoh Co Ltd 電源装置、画像形成装置および電源制御方法
JP2013182031A (ja) * 2012-02-29 2013-09-12 Ricoh Co Ltd 電源装置、帯電装置、現像装置および画像形成装置
JP2014007870A (ja) * 2012-06-25 2014-01-16 Oki Data Corp 電源装置、及びこれを用いた画像形成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129421A (ja) * 2017-02-09 2018-08-16 パワーサプライテクノロジー株式会社 トランスと、これを搭載した自動車、電子機器、カラー複写機
JP2018160986A (ja) * 2017-03-23 2018-10-11 コニカミノルタ株式会社 電源装置および画像形成装置
JP2021101591A (ja) * 2019-12-24 2021-07-08 日立Astemo株式会社 電子制御装置
JP7385462B2 (ja) 2019-12-24 2023-11-22 日立Astemo株式会社 電子制御装置

Also Published As

Publication number Publication date
US9880485B2 (en) 2018-01-30
US20160187802A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP2016122150A (ja) 画像形成装置
JP5558786B2 (ja) 高圧電源装置及び画像形成装置
US8891985B2 (en) Bias power supply device and image forming apparatus
JP5489048B2 (ja) Ac高圧電源装置、帯電装置、現像装置及び画像形成装置
JP6646490B2 (ja) 電源回路及び画像形成装置
JP5121538B2 (ja) 画像形成装置
JP2014119494A (ja) 画像形成装置
JP5654817B2 (ja) 画像形成装置
JP5219725B2 (ja) 画像形成装置及びその現像バイアス制御方法
JP4107307B2 (ja) 画像形成装置
JP5193748B2 (ja) 画像形成装置
JP2018087879A (ja) 画像形成装置
JP2003316128A (ja) 画像形成装置
JP4742741B2 (ja) 電源装置
JP2009163221A (ja) 画像形成装置
US9977394B2 (en) Power source device, image forming apparatus and voltage control method
JPH06197542A (ja) 交流バイアス電源装置
JP7441136B2 (ja) 画像形成装置
JP2015104302A (ja) 電源装置および画像形成装置
JP2017055219A (ja) 電圧発生装置および画像形成装置
JP2016004117A (ja) 画像形成装置及びその制御方法、並びにプログラム
JP2013254066A (ja) 画像形成装置
JP5809656B2 (ja) 高圧電源装置及び画像形成装置
JP2013182031A (ja) 電源装置、帯電装置、現像装置および画像形成装置
JP5740872B2 (ja) Ac高圧電源装置、帯電装置、現像装置、及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190204