JP2016064474A - 人間協調ロボットシステム - Google Patents

人間協調ロボットシステム Download PDF

Info

Publication number
JP2016064474A
JP2016064474A JP2014195143A JP2014195143A JP2016064474A JP 2016064474 A JP2016064474 A JP 2016064474A JP 2014195143 A JP2014195143 A JP 2014195143A JP 2014195143 A JP2014195143 A JP 2014195143A JP 2016064474 A JP2016064474 A JP 2016064474A
Authority
JP
Japan
Prior art keywords
robot
physical quantity
threshold
force
external environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014195143A
Other languages
English (en)
Other versions
JP5926346B2 (ja
Inventor
悦来 王
Yuelai Wang
悦来 王
康広 内藤
Yasuhiro Naito
康広 内藤
有田 創一
Souichi Arita
創一 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2014195143A priority Critical patent/JP5926346B2/ja
Priority to CN201510493333.7A priority patent/CN105459120B/zh
Priority to US14/855,739 priority patent/US9579798B2/en
Priority to DE102015012232.0A priority patent/DE102015012232A1/de
Publication of JP2016064474A publication Critical patent/JP2016064474A/ja
Application granted granted Critical
Publication of JP5926346B2 publication Critical patent/JP5926346B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37351Detect vibration, ultrasound
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40201Detect contact, collision with human
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40541Identification of contact formation, state from several force measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42288Limit, stop drive current if axis obstructed, blocked, force against stop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/02Arm motion controller
    • Y10S901/09Closed loop, sensor feedback controls arm movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

【課題】安全を確保しながら、人間に安心感を与えるような停止動作を可能にする人間協調ロボットシステムを提供する。
【解決手段】人間協調ロボットシステム10は、ロボット3が外部環境と接触した際にロボット3が受ける接触力に応じて変化する物理量を直接的又は間接的に検出する検出部42と、検出部により検出された物理量を、第1の閾値Th1及び第1の閾値Th1よりも大きい第2の閾値Th2とそれぞれ比較し、物理量が第1の閾値Th1以上であって、かつ第2の閾値Th2未満であるときに、ロボット3を所定の停止方法に従って停止させるとともに、物理量が第2の閾値Th2以上であるときは、ロボット3を所定の停止方法よりも短時間で停止させる停止指令部43と、を備えている。
【選択図】図2

Description

本発明は、ロボット及び人間が作業空間を共有する人間協調ロボットシステムに関する。
安全柵によって人間の作業空間から隔離された作業空間で動作する従来のロボットに対し、近年、ロボット及び人間が作業空間を共有する人間協調ロボットの普及が進んでいる。人間協調ロボットは、人間に危害を加えないように安全を確保することが必要である。
特許文献1には、ロボット又はロボットに取付けられた作業機器に設置される力センサの検出値が所定の値を超えたときに、ロボットを停止させるか、又は力センサの検出値が小さくなるようにロボットの動作を制御するようにした人間協調ロボットシステムが開示されている。
特許文献2には、ロボットアームが障害物に衝突したことを検出する衝突検出装置を備えており、衝突検出装置からの情報に基づいて、ロボット及び障害物に対する機械的ダメージを最小限に抑えるように適切な停止方法を選択的に実行するようにしたロボットシステムが開示されている。具体的には、この公知技術によれば、サーボモータの回転方向と衝突トルクの方向との関係、及びサーボモータの回転速度などの情報に基づいて、急停止処理、柔軟停止処理、又は全軸引戻し処理のいずれかの方法に従って、ロボットを停止させる。
特開2012−040626号公報 特開2010−137312号公報
しかしながら、特許文献1に係る公知技術では、ロボットと人間との接触を検知したときにロボットに対して常に所定の動作を実行させる。そのため、例えばロボットに接触した作業者が、急停止するロボットによって危険を感じてしまい、実際には危険性が低いにもかかわらず、作業に支障を来すことがある。種々の停止処理を選択的に実行する特許文献2に係る公知技術においても、ロボットに接触した作業者に安心感を与えるような態様でロボットを停止させることは想定されていない。
したがって、ロボット及びロボットの外部環境の安全を確保しながら、人間に安心感を与えるようにロボットを円滑に停止できるように構成された人間協調ロボットシステムが求められている。
1番目の発明によれば、ロボット及び人間が作業空間を共有する人間協調ロボットシステムであって、ロボットが外部環境と接触した際にロボットが受ける接触力に応じて変化する物理量を直接的又は間接的に検出する検出部と、前記検出部により検出された物理量を、第1の閾値及び第1の閾値よりも大きい第2の閾値とそれぞれ比較し、前記物理量が前記第1の閾値以上であって、かつ前記第2の閾値未満であるときに、前記ロボットを所定の停止方法に従って停止させるとともに、前記物理量が前記第2の閾値以上であるときは、前記ロボットを前記所定の停止方法よりも短時間で停止させる停止指令部と、を備える、人間協調ロボットシステムが提供される。
2番目の発明によれば、1番目の発明に係る人間協調ロボットシステムにおいて、前記物理量は、前記ロボットが前記外部環境から受ける力又はトルクである。
3番目の発明によれば、1番目の発明に係る人間協調ロボットシステムにおいて、前記物理量は、前記ロボットが前記外部環境から受ける力又はトルクの時間に関する微分値である。
4番目の発明によれば、1番目の発明に係る人間協調ロボットシステムにおいて、前記物理量は、前記外部環境から受ける力又はトルクの所定の振動数における振動の振幅である。
5番目の発明によれば、ロボット及び人間が作業空間を共有する人間協調ロボットシステムであって、ロボットが外部環境と接触した際にロボットが受ける接触力に応じて変化する第1の物理量を直接的又は間接的に検出する第1の検出部と、ロボットが外部環境と接触した際にロボットが受ける接触力に応じて変化する第2の物理量を直接的又は間接的に検出する第2の検出部と、前記第1の検出部により検出される前記第1の物理量を第1の閾値と比較するとともに、前記第2の検出部により検出される前記第2の物理量を第3の閾値と比較し、前記第1の物理量が前記第1の閾値以上であって、かつ前記第2の物理量が前記第3の閾値未満であるときに、前記ロボットを所定の停止方法に従って停止させるとともに、前記第1の物理量が前記第1の閾値以上であって、かつ前記第2の物理量が前記第3の閾値以上であるときに、前記ロボットを前記所定の停止方法よりも短時間で停止させる停止指令部と、を備える、人間協調ロボットシステムが提供される。
6番目の発明によれば、5番目の発明に係る人間協調ロボットシステムにおいて、前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクであり、前記第2の物理量は、前記ロボットが前記外部環境から受ける力又はトルクの時間に関する微分値である。
7番目の発明によれば、5番目の発明に係る人間協調ロボットシステムにおいて、前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクであり、前記第2の物理量は、前記外部環境から受ける力又はトルクの所定の振動数における振動の振幅である。
8番目の発明によれば、5番目の発明に係る人間協調ロボットシステムにおいて、前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクであり、前記第2の物理量は前記ロボットの速度である。
9番目の発明によれば、5番目の発明に係る人間協調ロボットシステムにおいて、前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクの時間に関する微分値であり、前記第2の物理量は、前記ロボットが前記外部環境から受ける力又はトルクである。
10番目の発明によれば、5番目の発明に係る人間協調ロボットシステムにおいて、前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクの時間に関する微分値であり、前記第2の物理量は前記ロボットの速度である。
11番目の発明によれば、5番目の発明に係る人間協調ロボットシステムにおいて、前記第1の物理量は、前記外部環境から受ける力又はトルクの所定の振動数における振動の振幅であり、前記第2の物理量は、前記ロボットが前記外部環境から受ける力又はトルクである。
12番目の発明によれば、5番目の発明に係る人間協調ロボットシステムにおいて、前記第1の物理量は、前記外部環境から受ける力又はトルクの所定の振動数における振動の振幅であり、前記第2の物理量は前記ロボットの速度である。
これら及び他の本発明の目的、特徴及び利点は、添付図面に示される本発明の例示的な実施形態に係る詳細な説明を参照することによって、より明らかになるであろう。
本発明に係る人間協調ロボットシステムによれば、ロボットが外部環境と接触したときの接触力に応じて変化する物理量に基づいて、停止時間が異なる停止方法を選択的に適用してロボットを停止させる。すなわち、ロボットの周囲の作業者に対する危険性が高いときには、ロボットを急停止させるとともに、危険性が低いときにはロボットを円滑に停止させる。それにより、ロボット及び外部環境の安全を確保しつつ、作業者に安心感を与えるような円滑停止を可能にする人間協調ロボットシステムが提供される。
本発明に係る人間協調ロボットシステムにおいて使用されるロボットの構成例を示す図である。 第1の実施形態に係る人間協調ロボットシステムの機能ブロック図である。 検出部により検出される物理量が外力である場合の例を示すグラフである。 検出部により検出される物理量が外力の微分値である場合の例を示すグラフである。 検出部により検出される物理量が外力の振動の振幅である場合の例を示すグラフである。 検出部により検出される物理量が外力の振動の振幅である場合の例を示すグラフである。 第2の実施形態に係る人間協調ロボットシステムにおいて、検出部の構成を示す機能ブロック図である。 検出部により検出される第1の物理量が外力である場合の例を示すグラフである。 検出部により検出される第2の物理量が外力の微分値である場合の例を示すグラフである。 検出部により検出される第1の物理量が外力である場合の例を示すグラフである。 検出部により検出される第2の物理量が外力の振動の振幅である場合の例を示すグラフである。 検出部により検出される第1の物理量が外力である場合の例を示すグラフである。 検出部により検出される第2の物理量がロボットの速度である場合の例を示すグラフである。 検出部により検出される第1の物理量が外力の微分値である場合の例を示すグラフである。 検出部により検出される第2の物理量が外力である場合の例を示すグラフである。 検出部により検出される第1の物理量が外力の微分値である場合の例を示すグラフである。 検出部により検出される第2の物理量がロボットの速度である場合の例を示すグラフである。 検出部により検出される第1の物理量が外力の振動の振幅である場合の例を示すグラフである。 検出部により検出される第2の物理量が外力である場合の例を示すグラフである。 検出部により検出される第1の物理量が外力の振動の振幅である場合の例を示すグラフである。 検出部により検出される第2の物理量がロボットの速度である場合の例を示すグラフである。 第1の変形例において、検出部により検出される物理量が外力である場合の例を示すグラフである。 第2の変形例において、検出部により検出される第1の物理量が外力である場合の例を示すグラフである。 第2の変形例において、検出部により検出される第2の物理量がロボットの速度である場合の例を示すグラフである。
以下、添付図面を参照して本発明の実施形態を説明する。図示される構成要素は、本発明の理解を助けるために縮尺が適宜変更されている。また、同一又は対応する構成要素には、同一の参照符号が使用される。
図1は、本発明に係る人間協調ロボットシステム(以下、単に「ロボットシステム」という。)の構成例を示す図である。ロボットシステム10は、ロボット3及び人間が作業空間を共有することを意図して構成されている。ロボット3は、例えば図示されるような6軸の垂直多関節ロボットである。しかしながら、ロボット3は、他の任意の構成を有する公知のロボットであってもよい。ロボット3は、各関節軸に設けられたサーボモータ33(幾つかのサーボモータのみが図示される)によって、所望の位置及び姿勢を有するように動作する。ロボット3の各サーボモータ33は、通信ケーブル5などの公知の通信手段を介して制御装置4から送出される制御指令に従って駆動される。
ロボット3は、アーム31の先端の手首32に取付けられたエンドエフェクタ(図示せず)によって所望の作業を実行できるようになっている。エンドエフェクタは、用途に応じて交換可能な外部装置であり、例えば対象物を把持するハンド、溶接ガン、工具などである。
ロボット3は、ロボット3の動作状態を検出する各種センサ(図示せず)を備えている。センサには、例えばロボット3に作用する外力を検出する力センサ、ロボット3の各関節軸に作用するトルクを検出するトルクセンサ、ロボット3の加速度を検出する加速度センサ、サーボモータ33の回転位置を検出するエンコーダ、その他三次元測定器などが含まれるものの、それらには限定されない。各種センサは、ロボット3の機体内部に内蔵されていてもよいし、ロボット3の機体外部に取付けられてもよい。
制御装置4は、CPU、RAM、ROM、並びに表示デバイス及び入力デバイスなどの外部装置との間で信号ないしデータを送受信するインタフェースなどを含むハードウェア構成を有するデジタルコンピュータである。図2は、一実施形態に係るロボットシステム10の機能ブロック図である。図示されるように、制御装置4は、指令作成部41と、検出部42と、停止指令部43と、を備えている。
指令作成部41は、ロボット3に対する制御指令を作成する。制御指令は、例えばROMに記憶されたロボットプログラム44に従ってロボット3に所定の作業を実行させるように作成される。また、指令作成部41は、後述する停止指令部43から送出される信号に従って、ロボット3を安全のために停止させる停止指令を作成する。
検出部42は、ロボット3に設けられる種々のセンサ6と協働して、ロボット3の動作状態に関連付けられる物理量を検出する。検出部42によって検出される物理量は、ロボット3が外部環境(例えばロボット3の周囲の物体又は作業者)と接触したときに生じる接触力に応じて変化する物理量である。検出部42により検出される物理量は、ロボット3が受ける接触力の大きさに応じて増減する性質を有しており、例えばロボット3に作用する外力(力又はトルク)、時間に関する外力の微分値、外力の振動の振幅、ロボット3の速度などである。検出部42は、それら物理量を、センサ6の検出値から直接的に取得するか、或いはセンサ6の検出値に基づいて、演算によって間接的に取得する。
停止指令部43は、検出部42によって検出される所定の物理量と、予め定められる閾値を比較し、その比較結果に基づいてロボット3を急停止させるべきか否か、又は円滑停止させるべきか否かを判定する。「急停止」は、ロボット3を可及的速やかに停止させる停止処理を意味する。他方、「円滑停止」は、急停止に比べて、より長い停止時間をかけてロボット3を円滑に停止させる停止処理を意味する。円滑停止を実行するとき、制御装置4は、例えば減速度を所定の値以下に制限したり、或いはロボット3と外部環境との間に作用する接触力が小さくなるような方向にロボット3を退避させたりしてロボット3を円滑に停止させる。
一実施形態によれば、停止指令部43は、検出部42により検出される物理量が、第1の閾値Th1以上であって、かつ第2の閾値Th2未満であるときに、ロボット3を円滑停止させるように、所定の信号を指令作成部41に送出する。また、物理量が第2の閾値Th2以上であるときは、ロボット3を急停止させるように、対応する信号を指令作成部41に送出する。なお、物理量が第1の閾値Th1未満のときは、ロボット3と外部環境との接触が生じていないとみなす。この場合、停止指令部43から信号が指令作成部41に送出されず、ロボット3はロボットプログラム44の内容に従って所定の作業を継続する。
前述した実施形態に係るロボットシステム10においては、検出される物理量の大きさに応じてロボット3の停止動作が選択的に実行されるので、接触による危険度が高いときにはロボット3が速やかに停止し、ロボット及び作業者の安全を確保しながら、接触による危険度が比較的低いときには、作業者に対して安心感を与えるような態様でロボット3が円滑停止する。それにより、ロボット及び外部環境の安全を確保しながら、作業者が安心して作業できる作業環境を提供できるようになる。
図3〜図6を参照して第1の実施形態に係るロボットシステム10における停止指令部43によるロボット3の停止方法の選択について説明する。
図3は、検出部42により検出される物理量がロボット3に作用する外力(力又はトルク)である場合の例を示すグラフである。ロボット3に作用する外力は、例えばロボット3の手首32、若しくはロボット3のベース(床面に固定される非可動部)などのロボット3の機体に設けられる力センサ、又はロボット3の関節軸に設けられるトルクセンサなどによって検出される。検出部42により検出される外力は、ロボット3が外部環境に接触したときにロボット3が受ける反作用力である。そのため、検出部42により検出される外力が増大するのに従って、外部環境、例えば作業者の危険性は増大することが推定される。
図3のグラフの横軸は時間、縦軸は外力を表している。グラフの点線は第1の閾値Th1、破線は第2の閾値Th2を示している。図示される例において、時間t1において、検出部42により検出される外力が第1の閾値Th1に達する。したがって、停止指令部43は、時間t1においてロボット3が外部環境に接触したとみなし、ロボット3を円滑停止させるように指令作成部41に信号を送出する。
図示された例では、ロボット3を円滑停止させた結果、外力は第2の閾値Th2を超えることなく、ロボット3を停止することができた。他方、ロボット3を円滑停止させようとしたにもかかわらず、外力が第2の閾値Th2以上に達した場合、停止指令部43は指令作成部41に信号を送出し、ロボット3を急停止させる。なお、複数の力センサ又は複数のトルクセンサが用いられる場合、いずれか1つのセンサにおいてロボットと外部環境との接触が検出されたときに、ロボット3の停止処理が実行される。
図4は、検出部42により検出される物理量が、ロボット3に作用する外力(力又はトルク)の時間に関する微分値である場合の例を示すグラフである。図4のグラフの横軸は時間、縦軸は外力の微分値を表している。この場合、検出部42は、センサ6により検出されるロボット3に作用する外力に基づいて、外力の微分値を演算する。外力の微分値は、ロボット3が外部環境に接触したときの接触力の大きさに対する相関関係を有する。例えば、ロボット3と接触する外部環境が柔軟な物体(例えば人間の身体)である場合、物体が変形することにより一部の力が吸収される。その結果、外力の変化量、すなわち外力の微分値が小さくなる。他方、物体が剛性の高い材料から形成される場合、ロボット3と接触したときに物体が変形しないので、外力の変化量、すなわち外力の微分値が大きくなる。そのため、外力の微分値が増大するのに従って、ロボット3と外部環境との接触による危険性は増大する傾向にあるといえる。
図4のグラフの点線は第1の閾値Th1、破線は第2の閾値Th2を示している。図示される例において、時間t1において、検出部42により検出される外力の微分値が第1の閾値Th1以上の値をとる。したがって、停止指令部43は、時間t1においてロボット3が外部環境に接触したとみなし、ロボット3を円滑停止させるように指令作成部41に信号を送出する。他方、円滑停止を実行したにもかかわらず、外力の微分値が第2の閾値Th2以上に達した場合、停止指令部43は指令作成部41に信号を送出し、ロボット3を急停止させる。
図5A及び図5Bは、検出部42により検出される物理量がロボット3に作用する外力の振動の振幅である場合の例を示すグラフである。図5Aの横軸は時間、縦軸は外力を表している。図5Aのグラフに示される外力はノイズを含んでおり、比較的小さな振幅を伴って振動している。ロボット3が外部環境と接触したとき、ロボット3の振動が増大し、その結果として、所定の振動数における外力の振動の振幅が増大する。
図5Bのグラフの縦軸は、図5Aの外力から演算により求められる所定の振動数における外力の振動の振幅を表している。すなわち、本実施形態によれば、検出部42は、センサ6からの外力の検出値に基づいて、外力の振動の振幅を演算する。外力停止指令部43は、外力の振動の振幅が第1の閾値Th1以上に達した時間t1において、ロボット3を円滑停止させるように信号を指令作成部41に送出する。また、外力の振動の振幅がTh2以上に達した場合には、ロボット3と外部環境との接触による危険性が高いとみなして、停止指令部43は、ロボット3を急停止させるように信号を指令作成部41に送出する。
図6は、第2の実施形態に係るロボットシステム10において、検出部42の構成を示す機能ブロック図である。本実施形態において、ロボットシステム10は、二種類の異なる物理量(以下、「第1の物理量」、「第2の物理量」という。)に基づいて、ロボット3の停止動作を制御する。検出部42は、図示されるように第1の検出部42a及び第2の検出部42bを備えている。第1の検出部42a及び第2の検出部42bは、第1の物理量及び第2の物理量をそれぞれ検出する。第1の物理量及び第2の物理量は、それぞれロボット3が外部環境と接触したときの接触力に応じて変化する物理量である。第1の物理量及び第2の物理量は互いに異なる物理量であるものの、同一のセンサ6から直接的又は間接的にそれぞれ取得されてもよい。或いは、第1の物理量及び第2の物理量は、互いに別個のセンサからそれぞれ取得されてもよい。
本実施形態によれば、停止指令部43は、第1の検出部42aにより検出される第1の物理量が第1の閾値Th1以上であって、かつ第2の検出部42bにより検出される第2の物理量が第3の閾値Th3未満であるときに、ロボット3を円滑停止させるように、所定の信号を指令作成部41に送出する。また、停止指令部43は、第1の物理量が第1の閾値Th1以上であって、かつ第2の物理量が第3の閾値Th3以上であるときに、ロボット3を急停止させるように、対応する信号を指令作成部41に送出する。図7A〜図13Bを参照して、本実施形態の適用例を説明する。
図7A及び図7Bは、第1の検出部42aにより検出される第1の物理量がロボット3に作用する外力であり、第2の検出部42bにより検出される第2の物理量が外力の微分値である場合の例をそれぞれ示している。すなわち、図7Aのグラフの縦軸は外力であり、図7Bのグラフの縦軸は外力の微分値である。図7Aに示されるように、第1の検出部42aにより検出される外力は時間t1において第1の閾値Th1に達する。したがって、停止指令部43は、時間t1においてロボット3が外部環境と接触したと判定する。その場合、停止指令部43は、図7Bに示される外力の微分値と第3の閾値Th3とを比較し、ロボット3を円滑停止すべきか、又は急停止すべきかを判定する。
すなわち、停止指令部43は、外力が第1の閾値Th1以上であって、かつ外力の微分値が第3の閾値Th3未満であるときには、ロボット3を円滑停止させるとともに、外力が第1の閾値Th1以上であって、かつ外力の微分値が第3の閾値Th3以上であるときには、ロボット3を急停止させる。
図8A及び図8Bは、第1の検出部42aにより検出される第1の物理量がロボット3に作用する外力であり、第2の検出部42bにより検出される第2の物理量が所定振動数における外力の振動の振幅である場合の例をそれぞれ示している。本実施形態によれば、停止指令部43は、外力が第1の閾値Th1以上であって、かつ外力の振動の振幅が第3の閾値Th3未満であるときには、ロボット3を円滑停止させる。また、停止指令部43は、外力が第1の閾値Th1以上であって、かつ外力の振動の振幅が第3の閾値Th3以上であるときには、ロボット3を急停止させる。図示された例の場合、図8Bに示されるように、外力の振動の振幅が第3の閾値Th3未満である。したがって、停止指令部43は、ロボット3を円滑停止させるように対応する信号を指令作成部41に送出する。
図9A及び図9Bは、第1の検出部42aにより検出される第1の物理量がロボット3に作用する外力であり、第2の検出部42bにより検出される第2の物理量がロボット3の速度である場合の例をそれぞれ示している。ロボット3が外部環境と接触するとき、ロボット3の速度の大きさに従って、接触時の衝撃は大きくなる。したがって、ロボット3の速度が増大するのに従って、ロボット3及び外部環境に対する危険性が増大するとみなすことができる。ロボット3の速度は、例えば加速度センサの検出値、又は各々のサーボモータ33に対して設けられるエンコーダなどの検出値に基づいて、演算により求められる。
すなわち、本実施形態によれば、停止指令部43は、外力が第1の閾値Th1以上であって、かつロボット3の速度が第3の閾値Th3未満であるときには、ロボット3を円滑停止させる。また、停止指令部43は、外力が第1の閾値Th1以上であって、かつロボット3の速度が第3の閾値以上であるときには、ロボット3を急停止させる。
図10A及び図10Bは、第1の検出部42aにより検出される第1の物理量がロボット3に作用する外力の時間に関する微分値であり、第2の検出部42bにより検出される第2の物理量がロボット3に作用する外力である場合の例をそれぞれ示している。すなわち、停止指令部43は、外力の微分値が第1の閾値Th1以上であって、かつ外力が第3の閾値Th3未満であるときには、ロボット3を円滑停止させる。また、停止指令部43は、外力の微分値が第1の閾値Th1以上であって、かつ外力が第3の閾値Th3以上であるときには、ロボット3を急停止させる。
図11A及び図11Bは、第1の検出部42aにより検出される第1の物理量がロボット3に作用する外力の時間に関する微分値であり、第2の検出部42bにより検出される第2の物理量がロボット3の速度である場合の例をそれぞれ示している。すなわち、停止指令部43は、外力の微分値が第1の閾値Th1以上であって、かつロボット3の速度が第3の閾値Th3未満であるときには、ロボット3を円滑停止させる。また、停止指令部43は、外力の微分値が第1の閾値Th1以上であって、かつロボット3の速度が第3の閾値Th3以上であるときには、ロボット3を急停止させる。
図12A及び図12Bは、第1の検出部42aにより検出される第1の物理量が所定の振動数における外力の振動の振幅であり、第2の検出部42bにより検出される第2の物理量がロボット3に作用する外力である場合の例をそれぞれ示している。すなわち、停止指令部43は、外力の振動の振幅が第1の閾値Th1以上であって、かつ外力が第3の閾値Th3未満であるときには、ロボット3を円滑停止させる。また、外力の振動の振幅が第1の閾値Th1以上であって、かつ外力が第3の閾値Th3以上であるときには、ロボット3を急停止させる。
図13A及び図13Bは、第1の検出部42aにより検出される第1の物理量が所定の振動数における外力の振動の振幅であり、第2の検出部42bにより検出される第2の物理量がロボット3の速度である場合の例をそれぞれ示している。すなわち、停止指令部43は、外力の振動の振幅が第1の閾値Th1以上であって、かつロボット3の速度が第3の閾値Th3未満であるときには、ロボット3を円滑停止させる。また、外力が第1の閾値Th1以上であって、かつロボット3の速度が第3の閾値Th3以上であるときには、ロボット3を急停止させる。
別の実施形態において、物理量を3つ以上の閾値と比較して、ロボット3の停止動作を段階的に制御してもよい。図14は、この思想を第1の実施形態に適用した変形例を説明するグラフである。図14には、第1〜第6の閾値Th1〜Th6が破線で示されている。停止指令部43は、検出部42により検出される物理量、すなわちこの場合における外力が、いずれの2つの閾値の間の範囲に含まれるかに応じて段階的に停止処理を実行する。すなわち、制御装置4は、例えば、外力が第4の閾値Th4と第5の閾値Th5との間に含まれる場合、外力が第3の閾値Th3と第4の閾値Th4との間に含まれる場合よりも短時間でロボット3が停止するように停止方法を選択して実行する。したがって、指令作成部41は、停止指令部43から送出される信号に従って、検出部42によって検出される外力が増大するのに応じて、より短時間でロボット3を停止させるように停止指令を作成する。
図15A及び図15Bは、図14を参照して説明した思想を第2の実施形態に適用した変形例を説明するグラフである。図示された例においては、第1の検出部42a(図6参照)により検出される第1の物理量がロボット3に作用する外力であり、第2の検出部42bより検出される第2の物理量がロボット3の速度である。停止指令部43は、第1の検出部42aによって検出される外力が第1の閾値Th1以上である場合に、ロボット3の速度が第3の閾値Th3〜第8の閾値Th8のいずれの閾値を超えたかに応じて信号を指令作成部41に対して送出する。指令作成部41は、停止指令部43から送出される信号に従って、ロボット3の速度が増大するのに応じて、段階的により短時間でロボット3を停止させるように停止指令を作成する。
以上、本発明の種々の実施形態について説明したが、当業者であれば、他の実施形態によっても本発明の意図する作用効果を実現できることを認識するであろう。特に、本発明の範囲を逸脱することなく、前述した実施形態の構成要素を削除又は置換することができるし、或いは公知の手段をさらに付加することができる。また、本明細書において明示的又は暗示的に開示される複数の実施形態の特徴を任意に組合せることによっても本発明を実施できることは当業者に自明である。
10 人間協調ロボットシステム
3 ロボット
31 アーム
32 手首
33 サーボモータ
4 制御装置
41 指令作成部
42 検出部
42a 第1の検出部
42b 第2の検出部
43 停止指令部
44 ロボットプログラム
5 通信ケーブル
6 センサ

Claims (12)

  1. ロボット及び人間が作業空間を共有する人間協調ロボットシステムであって、
    ロボットが外部環境と接触した際にロボットが受ける接触力に応じて変化する物理量を直接的又は間接的に検出する検出部と、
    前記検出部により検出された物理量を、第1の閾値及び第1の閾値よりも大きい第2の閾値とそれぞれ比較し、前記物理量が前記第1の閾値以上であって、かつ前記第2の閾値未満であるときに、前記ロボットを所定の停止方法に従って停止させるとともに、前記物理量が前記第2の閾値以上であるときは、前記ロボットを前記所定の停止方法よりも短時間で停止させる停止指令部と、
    を備える、人間協調ロボットシステム。
  2. 前記物理量は、前記ロボットが前記外部環境から受ける力又はトルクである、請求項1に記載の人間協調ロボットシステム。
  3. 前記物理量は、前記ロボットが前記外部環境から受ける力又はトルクの時間に関する微分値である、請求項1に記載の人間協調ロボットシステム。
  4. 前記物理量は、前記外部環境から受ける力又はトルクの所定の振動数における振動の振幅である、請求項1に記載の人間協調ロボットシステム。
  5. ロボット及び人間が作業空間を共有する人間協調ロボットシステムであって、
    ロボットが外部環境と接触した際にロボットが受ける接触力に応じて変化する第1の物理量を直接的又は間接的に検出する第1の検出部と、
    ロボットが外部環境と接触した際にロボットが受ける接触力に応じて変化する第2の物理量を直接的又は間接的に検出する第2の検出部と、
    前記第1の検出部により検出される前記第1の物理量を第1の閾値と比較するとともに、前記第2の検出部により検出される前記第2の物理量を第3の閾値と比較し、前記第1の物理量が前記第1の閾値以上であって、かつ前記第2の物理量が前記第3の閾値未満であるときに、前記ロボットを所定の停止方法に従って停止させるとともに、前記第1の物理量が前記第1の閾値以上であって、かつ前記第2の物理量が前記第3の閾値以上であるときに、前記ロボットを前記所定の停止方法よりも短時間で停止させる停止指令部と、
    を備える、人間協調ロボットシステム。
  6. 前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクであり、前記第2の物理量は、前記ロボットが前記外部環境から受ける力又はトルクの時間に関する微分値である、請求項5に記載の人間協調ロボットシステム。
  7. 前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクであり、前記第2の物理量は、前記外部環境から受ける力又はトルクの所定の振動数における振動の振幅である、請求項5に記載の人間協調ロボットシステム。
  8. 前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクであり、前記第2の物理量は前記ロボットの速度である、請求項5に記載の人間協調ロボットシステム。
  9. 前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクの時間に関する微分値であり、前記第2の物理量は、前記ロボットが前記外部環境から受ける力又はトルクである、請求項5に記載の人間協調ロボットシステム。
  10. 前記第1の物理量は、前記ロボットが前記外部環境から受ける力又はトルクの時間に関する微分値であり、前記第2の物理量は前記ロボットの速度である、請求項5に記載の人間協調ロボットシステム。
  11. 前記第1の物理量は、前記外部環境から受ける力又はトルクの所定の振動数における振動の振幅であり、前記第2の物理量は、前記ロボットが前記外部環境から受ける力又はトルクである、請求項5に記載の人間協調ロボットシステム。
  12. 前記第1の物理量は、前記外部環境から受ける力又はトルクの所定の振動数における振動の振幅であり、前記第2の物理量は前記ロボットの速度である、請求項5に記載の人間協調ロボットシステム。
JP2014195143A 2014-09-25 2014-09-25 人間協調ロボットシステム Active JP5926346B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014195143A JP5926346B2 (ja) 2014-09-25 2014-09-25 人間協調ロボットシステム
CN201510493333.7A CN105459120B (zh) 2014-09-25 2015-08-12 人类协调机器人系统
US14/855,739 US9579798B2 (en) 2014-09-25 2015-09-16 Human collaborative robot system
DE102015012232.0A DE102015012232A1 (de) 2014-09-25 2015-09-18 Mit Menschen kollaborierendes Robotersystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195143A JP5926346B2 (ja) 2014-09-25 2014-09-25 人間協調ロボットシステム

Publications (2)

Publication Number Publication Date
JP2016064474A true JP2016064474A (ja) 2016-04-28
JP5926346B2 JP5926346B2 (ja) 2016-05-25

Family

ID=55485883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195143A Active JP5926346B2 (ja) 2014-09-25 2014-09-25 人間協調ロボットシステム

Country Status (4)

Country Link
US (1) US9579798B2 (ja)
JP (1) JP5926346B2 (ja)
CN (1) CN105459120B (ja)
DE (1) DE102015012232A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018215960A1 (de) 2017-09-25 2019-03-28 Fanuc Corporation Robotersystem
JP2019139414A (ja) * 2018-02-08 2019-08-22 ファナック株式会社 障害部位特定装置、障害部位特定方法及び障害部位特定プログラム
JP2020015100A (ja) * 2018-07-23 2020-01-30 セイコーエプソン株式会社 ロボット、制御装置および制御方法
JP2020032488A (ja) * 2018-08-30 2020-03-05 ファナック株式会社 人間協調ロボットシステム
WO2020045483A1 (ja) * 2018-08-30 2020-03-05 株式会社不二越 ロボット制御装置
JP2020179483A (ja) * 2019-04-26 2020-11-05 ファナック株式会社 ロボット
US10838394B2 (en) 2018-02-02 2020-11-17 Fanuc Corporation Failure classifying device, failure classifying method, and failure classifying program for specifying locations of failures in a machine
JP2021000686A (ja) * 2019-06-21 2021-01-07 ファナック株式会社 ロボットの制御装置およびプログラミング装置
WO2021182356A1 (ja) * 2020-03-12 2021-09-16 ファナック株式会社 ロボットの制御装置、ロボットシステム、ロボット制御方法
US11622821B2 (en) 2017-02-03 2023-04-11 Olympus Corporation Medical manipulator
WO2023157261A1 (ja) * 2022-02-18 2023-08-24 ファナック株式会社 ロボット制御装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013105036U1 (de) * 2013-11-08 2015-02-10 Daimler Ag Erfassungseinrichtung
JP6034900B2 (ja) * 2015-03-06 2016-11-30 ファナック株式会社 動作プログラムの再開を判断するロボット制御装置
JP6259413B2 (ja) * 2015-03-23 2018-01-10 ファナック株式会社 ロボットまたは工作機械の制御装置、無線教示操作盤および自動機械システム
US9868213B2 (en) * 2015-08-11 2018-01-16 Empire Technology Development Llc Incidental robot-human contact detection
US10272568B2 (en) * 2015-09-17 2019-04-30 Canon Kabushiki Kaisha Robot apparatus, robot controlling method, program, recording medium, and assembly manufacturing method
JP6733239B2 (ja) * 2016-03-18 2020-07-29 セイコーエプソン株式会社 制御装置及びロボットシステム
DE102016210060A1 (de) * 2016-06-08 2017-12-14 Kuka Roboter Gmbh Verfahren zum sicheren Stillsetzen eines Manipulators
DE102016007520A1 (de) * 2016-06-20 2017-12-21 Kuka Roboter Gmbh Überwachung einer Roboteranordnung
JP6571618B2 (ja) * 2016-09-08 2019-09-04 ファナック株式会社 人間協調型ロボット
CN107598968B (zh) * 2017-08-10 2018-11-23 北京康力优蓝机器人科技有限公司 一种服务型机器人末端执行器的力反馈系统及实现方法
EP3546134A1 (en) * 2018-03-28 2019-10-02 BAE SYSTEMS plc Collaborative robot system
EP3546135A1 (en) * 2018-03-28 2019-10-02 BAE SYSTEMS plc Collaborative robot system
WO2019186146A1 (en) * 2018-03-28 2019-10-03 Bae Systems Plc Collaborative robot system
US10369701B1 (en) 2018-10-30 2019-08-06 Mujin, Inc. Automated package registration systems, devices, and methods
JP7211007B2 (ja) * 2018-10-30 2023-01-24 セイコーエプソン株式会社 制御装置、ロボットシステムおよび制御方法
DE102019111168B3 (de) 2019-04-30 2020-08-06 Franka Emika Gmbh Vom Messbereich eines Drehmomentsensors eines Robotermanipulators abhängig erzeugbare Kraft
EP3976322A1 (en) * 2019-05-29 2022-04-06 Universal Robots A/S Detection of change in contact between robot arm and an object
JP7235596B2 (ja) * 2019-05-31 2023-03-08 ファナック株式会社 協働ロボットシステム
JP7351677B2 (ja) * 2019-09-03 2023-09-27 ファナック株式会社 ロボットシステム
DE102020106418A1 (de) 2020-03-10 2021-09-16 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Aufbringen von Kräften auf eine Umgebung
US11897706B2 (en) 2021-03-30 2024-02-13 Dexterity, Inc. Robotic system with zone-based control
US11981517B2 (en) * 2021-03-30 2024-05-14 Dexterity, Inc. Robotic line kitting system safety features
CN116394311B (zh) * 2023-06-08 2023-08-29 上海艾利特机器人有限公司 机器人急停保护处理方法、机器人及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170490A (ja) * 1997-06-30 1999-03-16 Nachi Fujikoshi Corp 産業用ロボットの衝突検出方法
JP2003025272A (ja) * 2001-05-08 2003-01-29 Mitsubishi Electric Corp ロボット制御装置
JP2010188504A (ja) * 2009-02-20 2010-09-02 Yaskawa Electric Corp ロボットの制御装置およびロボット
JP2013133192A (ja) * 2011-12-26 2013-07-08 Tokyo Electron Ltd 搬送装置及び搬送方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246924B1 (en) * 1998-11-30 2001-06-12 Honda Of America Mfg., Inc. Apparatus and method for automatically realigning an end effector of an automated equipment to prevent a crash
JP4763787B2 (ja) * 2005-08-11 2011-08-31 コリア ユニバーシティ インダストリー アンド アカデミー コオぺレーション ファウンデーション 安全ユニット及びこれを備えた安全装置{safetyunitandsafetydevicewiththesame}
JP4291385B2 (ja) * 2007-09-27 2009-07-08 ファナック株式会社 ロボット手先部の速度に基づいてロボットを停止させるロボット制御装置
KR101412130B1 (ko) * 2008-03-14 2014-06-27 삼성전자주식회사 컴플라이언트 조인트
JP5024383B2 (ja) * 2008-05-21 2012-09-12 パナソニック株式会社 ロボットの異常判定方法
JP5375062B2 (ja) * 2008-12-10 2013-12-25 株式会社安川電機 ロボットシステムおよび制御方法
JP5436160B2 (ja) * 2009-11-19 2014-03-05 三菱電機株式会社 力制御装置
JP5311294B2 (ja) * 2010-04-28 2013-10-09 株式会社安川電機 ロボットの接触位置検出装置
EP2586577A4 (en) * 2010-06-22 2013-12-04 Toshiba Kk ROBOT CONTROL DEVICE
JP4938118B2 (ja) 2010-08-17 2012-05-23 ファナック株式会社 人間協調ロボットシステム
JP5149416B2 (ja) * 2011-04-06 2013-02-20 ファナック株式会社 ロボットの異常検出機能を有するロボットシステム及びその制御方法
JP5863419B2 (ja) * 2011-11-29 2016-02-16 川崎重工業株式会社 内圧防爆構造を有する多関節ロボットの制御システム及び方法
US8738180B2 (en) * 2011-12-14 2014-05-27 GM Global Technology Operations LLC Robot control during an e-stop event
CN103192413A (zh) * 2012-01-06 2013-07-10 沈阳新松机器人自动化股份有限公司 一种无传感器的机器人碰撞检测保护装置及方法
JP5962020B2 (ja) * 2012-01-17 2016-08-03 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット及びロボット制御方法
JP5616478B1 (ja) * 2013-04-18 2014-10-29 ファナック株式会社 ワークを搬送するロボットを備えるロボットシステム
CN104608113B (zh) * 2013-11-01 2018-07-17 精工爱普生株式会社 机器人、机器人系统以及机器人控制装置
WO2015071974A1 (ja) * 2013-11-13 2015-05-21 三菱電機株式会社 回転機の制御装置および電動パワーステアリング装置
JP5820013B1 (ja) * 2014-04-30 2015-11-24 ファナック株式会社 ワークを把持して搬送するロボットの安全監視装置
JP2015217451A (ja) * 2014-05-14 2015-12-07 ファナック株式会社 外力監視機能を有するワーク搬送方法システム
JP6193816B2 (ja) * 2014-06-20 2017-09-06 ファナック株式会社 アームの退避機能を有する多関節ロボット
JP6140114B2 (ja) * 2014-07-31 2017-05-31 ファナック株式会社 移動式人協調型ロボット
JP5927284B1 (ja) * 2014-12-22 2016-06-01 ファナック株式会社 人との接触力を検出してロボットを停止させるロボット制御装置
JP5937706B1 (ja) * 2015-01-21 2016-06-22 ファナック株式会社 ロボットに加わる外力に基づいてロボットを制御するロボット制御装置、およびロボットシステム
JP6034895B2 (ja) * 2015-02-20 2016-11-30 ファナック株式会社 外力に応じてロボットを退避動作させる人間協調ロボットシステム
JP6055002B2 (ja) * 2015-02-20 2016-12-27 ファナック株式会社 ロボットを退避動作させる人間協調ロボットシステム
JP6034900B2 (ja) * 2015-03-06 2016-11-30 ファナック株式会社 動作プログラムの再開を判断するロボット制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170490A (ja) * 1997-06-30 1999-03-16 Nachi Fujikoshi Corp 産業用ロボットの衝突検出方法
JP2003025272A (ja) * 2001-05-08 2003-01-29 Mitsubishi Electric Corp ロボット制御装置
JP2010188504A (ja) * 2009-02-20 2010-09-02 Yaskawa Electric Corp ロボットの制御装置およびロボット
JP2013133192A (ja) * 2011-12-26 2013-07-08 Tokyo Electron Ltd 搬送装置及び搬送方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11622821B2 (en) 2017-02-03 2023-04-11 Olympus Corporation Medical manipulator
DE102018215960B4 (de) * 2017-09-25 2021-02-18 Fanuc Corporation Robotersystem
JP2019058956A (ja) * 2017-09-25 2019-04-18 ファナック株式会社 ロボットシステム
DE102018215960A1 (de) 2017-09-25 2019-03-28 Fanuc Corporation Robotersystem
US10639799B2 (en) 2017-09-25 2020-05-05 Fanuc Corporation Robot system
US10838394B2 (en) 2018-02-02 2020-11-17 Fanuc Corporation Failure classifying device, failure classifying method, and failure classifying program for specifying locations of failures in a machine
JP2019139414A (ja) * 2018-02-08 2019-08-22 ファナック株式会社 障害部位特定装置、障害部位特定方法及び障害部位特定プログラム
US11099550B2 (en) 2018-02-08 2021-08-24 Fanuc Corporation Failure location specifying device, failure location specifying method, and failure location specifying program
JP2020015100A (ja) * 2018-07-23 2020-01-30 セイコーエプソン株式会社 ロボット、制御装置および制御方法
JP7180165B2 (ja) 2018-07-23 2022-11-30 セイコーエプソン株式会社 ロボット、制御装置および制御方法
WO2020045483A1 (ja) * 2018-08-30 2020-03-05 株式会社不二越 ロボット制御装置
DE102019122864A1 (de) 2018-08-30 2020-04-23 Fanuc Corporation Robotersystem mit menschlicher mitwirkung
JP2020032488A (ja) * 2018-08-30 2020-03-05 ファナック株式会社 人間協調ロボットシステム
US11897135B2 (en) 2018-08-30 2024-02-13 Fanuc Corporation Human-cooperative robot system
JP2020179483A (ja) * 2019-04-26 2020-11-05 ファナック株式会社 ロボット
JP7057316B2 (ja) 2019-04-26 2022-04-19 ファナック株式会社 ロボット
US11872700B2 (en) 2019-04-26 2024-01-16 Fanuc Corporation Robot with a torque sensor and a force sensor
JP2021000686A (ja) * 2019-06-21 2021-01-07 ファナック株式会社 ロボットの制御装置およびプログラミング装置
JP7283994B2 (ja) 2019-06-21 2023-05-30 ファナック株式会社 ロボットの制御装置およびプログラミング装置
WO2021182356A1 (ja) * 2020-03-12 2021-09-16 ファナック株式会社 ロボットの制御装置、ロボットシステム、ロボット制御方法
WO2023157261A1 (ja) * 2022-02-18 2023-08-24 ファナック株式会社 ロボット制御装置

Also Published As

Publication number Publication date
US9579798B2 (en) 2017-02-28
CN105459120B (zh) 2017-05-24
DE102015012232A1 (de) 2016-03-31
CN105459120A (zh) 2016-04-06
US20160089790A1 (en) 2016-03-31
JP5926346B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5926346B2 (ja) 人間協調ロボットシステム
JP6193816B2 (ja) アームの退避機能を有する多関節ロボット
US9827681B2 (en) Human cooperation robot system in which robot is caused to perform retreat operation depending on external force
CN107717982B (zh) 机械手臂的控制装置及操作方法
US10564635B2 (en) Human-cooperative robot system
JP6238021B2 (ja) ロボット、ロボットの制御装置及び制御方法、並びに、ロボット用制御プログラム
US10011017B2 (en) Industrial robot system and control method thereof
US9737989B2 (en) Human cooperation robot system in which robot is caused to perform retreat operation
US10464210B2 (en) Method and device for open-loop/closed-loop control of a robot manipulator
US11548153B2 (en) Robot comprising safety system ensuring stopping time and distance
US20150306767A1 (en) Motion limiting device and motion limiting method
US20170113349A1 (en) Safety monitoring device for robot
KR20170000815A (ko) 수동 안내-작동모드로의 로봇의 제어기의 전환
JP2012051042A (ja) ロボットシステム及びロボット制御装置
KR20170102485A (ko) 로봇 시스템
US11897135B2 (en) Human-cooperative robot system
US11511429B2 (en) Method of improving safety of robot and method of evaluating safety of robot
KR20190079322A (ko) 로봇 제어 시스템
JP2016190292A (ja) ロボット制御装置、ロボットシステムおよびロボット制御方法
JP2018062026A (ja) ロボットの速度や加速度を制限する機能を備えたロボット制御装置
US9827673B2 (en) Robot controller inhibiting shaking of tool tip in robot equipped with travel axis
JP6606145B2 (ja) ロボットシステム
WO2023157261A1 (ja) ロボット制御装置
KR101968751B1 (ko) 충돌 감지 장치, 그를 갖는 엔드 이펙터, 로봇 및 그를 이용한 충돌 감지 방법
KR101970951B1 (ko) 로봇 매니퓰레이터 충돌 검출 장치 및 방법

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5926346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150