WO2020045483A1 - ロボット制御装置 - Google Patents

ロボット制御装置 Download PDF

Info

Publication number
WO2020045483A1
WO2020045483A1 PCT/JP2019/033666 JP2019033666W WO2020045483A1 WO 2020045483 A1 WO2020045483 A1 WO 2020045483A1 JP 2019033666 W JP2019033666 W JP 2019033666W WO 2020045483 A1 WO2020045483 A1 WO 2020045483A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
robot
control device
unit
selection unit
Prior art date
Application number
PCT/JP2019/033666
Other languages
English (en)
French (fr)
Inventor
二川 正康
Original Assignee
株式会社不二越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二越 filed Critical 株式会社不二越
Publication of WO2020045483A1 publication Critical patent/WO2020045483A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices

Definitions

  • the present invention relates to a robot control device, and more particularly, to a robot control device that includes a calculation unit that calculates a force or torque acting on a robot from outside, and controls an operation of decelerating or stopping the robot according to the calculated value. Related to the device.
  • the above-mentioned cooperative robot erroneously determines that a change in external force in the direction of gravity caused by a change in load when a workpiece or the like is gripped or released is "contact with a person (force from outside)", and the robot stops. May be done.
  • the robot may incorrectly judge it as "contact with humans (force from outside)" It may stop.
  • Patent Document 1 proposes a method of disabling a contact detection function of a robot before and after gripping or releasing a work.
  • Patent Document 2 there is a method of preventing the robot from being stopped by holding the robot in a stopped state at the time of gripping or releasing the workpiece and another external additional axis moving the workpiece in and out of the gripping range of the robot hand. Proposed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a robot control device that can hold or release a work or the like while maintaining a safety function.
  • a robot control device includes a calculating unit that calculates a force or torque acting on a robot from outside, and a numerical value calculated by the calculating unit and a “first threshold”.
  • a comparison unit for comparing, wherein when the calculated numerical value exceeds a predetermined threshold value, the robot control device decelerates, stops, or avoids the robot, wherein the “second threshold value” is different from the “first threshold value”.
  • a storage unit that stores the “threshold value”; and a threshold value selection unit that switches the “first threshold value” to the “second threshold value”.
  • the robot control device of the present invention it is possible to hold or release a work or the like while maintaining the safety function.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present technology.
  • FIG. 2 is a block diagram illustrating a configuration of the robot control device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an operation of the robot control device according to the first embodiment of the present invention. 4 is a flowchart illustrating an operation of lifting a work of the robot control device according to the first embodiment of the present invention.
  • 5 is a flowchart illustrating an operation of placing a work of the robot control device according to the first embodiment of the present invention. It is a figure explaining operation of pressing work of the robot control device concerning a 1st embodiment of the present invention. It is a block diagram showing the composition of the robot control device concerning a 2nd embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a configuration of a robot 10 and a robot control device 20 according to the present embodiment.
  • an industrial robot 6 of a six-axis articulated type is connected to a base 11, an arm 12 connected to the base 11, and a tip of the arm 12. Wrist 13.
  • a tool 14 such as a robot hand capable of holding an object is attached to the wrist 13.
  • a force detection unit 15 such as a sensor for detecting a force or torque is attached to each joint of the arm unit 12 and the wrist unit 13. Note that the force detection unit 15 may be built in the base unit 11.
  • the robot control device 20 for controlling the operation of the robot 10 incorporates a robot program 21 in which operation instructions of the robot 10 and the like are stored.
  • the robot control device 20 further includes a position command generation unit 22, a threshold value selection unit 23, an external torque calculation unit 24, a torque comparison unit 25, and a power cutoff unit 26 that cuts off the operation power of the robot 10. Further, the robot control device 20 includes a storage unit 27 that sets and stores one or a plurality of thresholds, such as a first threshold, a second threshold,..., An n-th threshold.
  • the robot control device 20 is equipped with a robot monitoring device (RMU) 29.
  • the robot monitoring device 29 is a device for monitoring the movement of the robot 10 and ensuring safety when the robot 10 moves out of a predetermined position and a predetermined speed.
  • the robot monitoring device 29 includes an external torque calculation unit 24, a torque comparison unit 25, a power cutoff unit 26, and a storage unit 27.
  • the robot monitoring device 29 is not essential and can be omitted.
  • the robot control device 20 can include an external torque calculation unit 24, a torque comparison unit 25, a power cutoff unit 26, and a storage unit 27.
  • the position command generation unit 22 outputs a position command signal for operating each axis with respect to each axis of the robot 10 to the robot 10 via the base unit 11.
  • the threshold value selection unit 23 receives a command signal from the robot program 21 and outputs a control command for selectively changing a preset “first threshold value” to a “second threshold value” (n-th threshold value). I do. That is, the threshold selection unit 23 describes the operation of the robot 10 and executes the selection of the threshold according to the control command used in the robot program 21 stored in the storage unit 27. Further, after selecting and changing the first threshold to any one of the plurality of n-th setting thresholds, the threshold selecting unit 23 sets the n-th setting threshold selected and changed after a preset time elapses to the first threshold. You can go back.
  • the threshold selection unit 23 changes the first threshold to one of a plurality of n-th set thresholds and then changes the tool position of the preset robot 10 after moving the preset distance by a predetermined distance.
  • the n-th set threshold can be returned to the first threshold.
  • the threshold selection unit 23 selectively changes the first threshold to any one of the plurality of n-th set thresholds, and then changes the selection when the preset tool position of the robot 10 exceeds a preset speed.
  • the n-th set threshold can be returned to the first threshold.
  • a value larger than the “first threshold” is set as the “second threshold”, and when the contact detection sensitivity is high, the control command TOUCHMOVE [0] is executed to set the “first threshold”. When the contact detection sensitivity is low, the contact detection sensitivity is switched by the control command such that the control command TOUCHMOVE [1] is executed to select the “second threshold value”.
  • the external torque calculator 24 receives the torque information (force information) detected by the force detector 15 provided in the robot 10 and calculates the force or torque acting on the robot 10 from the outside.
  • the torque comparison unit 25 compares the numerical value calculated by the external torque calculation unit 24 with the first threshold value or the second threshold value.
  • the power cutoff unit 26 cuts off the power supply for operating the robot 10 when the calculated numerical value exceeds any one of the thresholds based on the comparison result by the torque comparison unit 25, and decelerates, stops, or avoids the operation of the robot 10.
  • the contact detection of the robot monitoring device 29 is kept at high sensitivity. Regardless of the TOUCHMOVE function, the robot monitoring device 29 does not turn off the servo if it is determined to be stopped by the stop monitoring width and the stop monitoring time after detecting the contact. If the speed is extremely low after the contact detection, the robot 10 can continue the operation.
  • the torque comparing unit 25 of the robot monitoring device 29 operates the power cutoff unit 26 to turn off the power. Do not shut off.
  • the robot 10 when the robot 10 is operating at an extremely low speed, the robot 10 can continue to operate even if the torque calculation unit 25 outputs a value switched to the second threshold value by the control command TOUCHMOVE.
  • FIGS. 2A to 2D are diagrams showing a procedure of an operation of lifting the workpiece W by the tool 14 attached to the robot 10.
  • FIG. FIG. 3 is a flowchart illustrating an operation of the robot control device 20 when performing an operation of lifting the workpiece W by the tool 14 attached to the robot 10.
  • the robot program 21 is incorporated in the robot controller 20 in advance, and the work W is placed on the work surface E of the worktable D as shown in FIG.
  • the operation of the robot 10 is started by a direct input of a command by the user or a command input by an external controller.
  • step S301 of FIG. 3 the position command generation unit 22 issues a position command for operating the robot 10 to a position where the tool 14 can grip the work W, and the robot 10 moves the tool 14 to a position where the tool W can be gripped. Let it.
  • step S302 the threshold value selection unit 23 receives a command signal from the robot program 21 and controls the control command TOUCHMOVE to switch from a preset first threshold value to a second threshold value larger than the first threshold value. Execute [1].
  • step S303 the robot 10 grips the workpiece W with the tool 14.
  • step S304 the tool number is changed to a tool number in which tool constants such as the weight and the position of the center of gravity of the tool 14 holding the workpiece W are correctly defined.
  • the weight of the work W can be set, and the weight of the work W can be subtracted from the external force. Thereby, when lifting the work W, the weight of the work W is counted as the external force, and it is possible to prevent the robot 10 from stopping when returning to the original threshold value.
  • step S305 the robot 10 performs an operation of lifting the workpiece W by the tool 14. This operation is performed at a speed equal to or lower than a predefined extremely low speed.
  • the execution of steps S303 and S304 may be interchanged.
  • step S306 after the work W is completely separated from the work surface E of the worktable D, the threshold selection unit 23 executes a control command TOUCHMOVE [0] for switching from the first threshold to a predetermined threshold set in advance. I do.
  • step S307 the robot 10 performs a transport operation of transporting the workpiece W to a predetermined location by the tool 14.
  • FIG. 4 is a flowchart showing the operation of the robot control device 20 when the operation of placing the workpiece W by the tool 14 attached to the robot 10 is performed.
  • step S401 the robot 10 moves to a position where the work W is placed.
  • step S402 the threshold value selection unit 23 receives a command signal from the robot program 21, and switches a predetermined threshold value set in advance to a first threshold value lower than the predetermined threshold value. Execute 1].
  • step S403 the tool number is changed to a tool number in which tool constants such as the weight and the position of the center of gravity when the tool 14 does not hold the work W are correctly defined.
  • step S404 the robot 10 performs an operation of placing the work W on the work surface E of the worktable D using the tool 14. This operation is performed at a speed equal to or lower than a predefined extremely low speed.
  • Step S403 may be performed after S404 or S405.
  • step S405 the robot 10 releases the tool 14 and places the work W on the work surface E.
  • step S406 after completely placing the work W on the work surface E of the worktable D, the threshold value selection unit 23 controls to switch from the set first threshold value to a preset predetermined threshold value. Execute the instruction TOUCHMOVE [0].
  • step S407 the robot 10 moves to the original position.
  • the robot control device 20 of the present embodiment it is possible to avoid a contact detection stop caused by a change in a load generated when a workpiece or the like is gripped or released while maintaining a safety function. .
  • FIGS. 5A and 5B are diagrams for explaining the operation C of the tool 14 according to the present embodiment.
  • the robot 10 when the robot 10 performs a pressing operation in an assembling operation or the like, when contact detection is effective, if the pressing is performed, the contact is detected and the operation stops.
  • the robot 10 moves the tool 14 to a position where a pressing operation such as pressing a button is performed.
  • the threshold selection unit 23 receives a command signal from the robot program 21 and controls the predetermined command to switch a predetermined threshold to a first threshold having a value lower than the predetermined threshold TOUCHMOVE [ 1].
  • the robot 10 performs an operation C of pressing a button with the tool 14.
  • This operation C is executed at a speed equal to or lower than a predefined extremely low speed.
  • the robot 10 lifts the tool 14 until the tool 14 is completely separated from the button. This operation is also performed at a speed equal to or lower than a predefined extremely low speed.
  • the robot 10 executes the control command TOUCHMOVE [0] for switching from the first threshold to a predetermined threshold set in advance.
  • FIG. 6 is a block diagram illustrating a configuration of the robot 10 and the robot control device 60 according to the present embodiment.
  • the present embodiment is different from the first embodiment in that the robot control device 60 includes a plurality of external torque calculation units, torque comparison units, and storage units.
  • the description of the configuration common to the first embodiment is omitted, and the configuration different from the first embodiment will be described below.
  • the robot control device 60 of the present embodiment includes a first external torque calculation unit 24, a first torque comparison unit 25, and a first storage unit 27. Further, the robot control device 60 has a robot monitoring device 61 mounted thereon, and the robot monitoring device 61 sets a second external torque calculation unit 62, a second torque comparison unit 63, a power cutoff unit 26, and an Xth threshold value. A second storage unit 64 for storing is provided.
  • the X-th set threshold value of the robot monitoring device 61 is not changed even when the control command TOUCHMOVE [1] is executed.
  • the second external torque calculator 62 of the robot monitoring device 61 calculates the torque independently of the first external torque calculator 24, and the second torque comparator 63 compares the torque with the Xth threshold. .
  • XAs the X-th threshold a value larger than the first threshold is set and a value smaller than the second threshold is set.
  • the comparison result by the first torque comparison unit 25 is processed first, and the robot 10 decelerates and stops, so that the power cutoff unit 26 operates according to the comparison result by the second torque comparison unit 63. There is no.
  • the second torque based on the Xth threshold of the robot monitoring device 61 is used.
  • the power cutoff unit 26 is operated by the comparison unit 63 to cut off the power of the robot 10.
  • the second torque comparison unit 63 of the robot monitoring device 61 operates the power cutoff unit 26 if it is determined that the robot is operating at a speed lower than the extremely low speed defined by the stop monitoring width and the stop monitoring time. Do not shut off the power. As a result, when the robot 10 is operating at an extremely low speed, the second external torque calculation unit 62 outputs a value that has been switched to the second threshold value by the control command TOUCHMOVE and that exceeds the Xth threshold value. However, the robot 10 can continue to operate.
  • the robot control device of the present embodiment has a calculation unit that calculates a force or torque acting on the robot from outside, and decelerates when the calculated external force or torque exceeds the first threshold.
  • a control device for a robot capable of performing a stop or avoidance operation wherein the first control unit causes the robot to perform deceleration, stop, or avoidance operation based on a first threshold value;
  • a second control unit that can set an Xth threshold value different from the threshold value, and that shuts off at least a part of the power of the robot when the detected external force or torque exceeds the Xth threshold value. Configuration.
  • the robot control device of the present embodiment has a time from when the second control unit determines that the external force or torque exceeds the Xth threshold value to when the second control unit shuts off the power.
  • the first control unit may determine that the force or torque from outside has exceeded the first threshold value, and may have a configuration that is slower than the time until the robot decelerates, stops, or performs the avoidance operation.
  • the robot control device can control each axis of the robot even when the second control unit determines that the external force or torque has exceeded the Xth threshold.
  • the power may not be shut off.
  • the present invention relates to a robot control device that controls the operation of a robot, and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本発明の目的は、安全機能を保持しつつ、ワーク等の把持または開放を行うことができるロボット制御装置を提供することである。 本発明に係るロボット制御装置は、外部からロボットに作用する力またはトルクを算出する算出部(24)と、算出部により算出された数値と所定の閾値とを比較する比較部(25)と、を備え、算出された数値が所定の閾値を超えた場合にロボットを減速、停止または回避させるロボット制御装置(20)であって、所定の閾値よりも値が低い第1の閾値を記憶する記憶部(27)と、所定の閾値を第1の閾値に切り替える閾値選択部(23)と、を備える。

Description

ロボット制御装置
 本発明は、ロボット制御装置に関し、より詳細には、外部からロボットに作用する力またはトルクを算出する算出部を備え、その算出した値に応じてロボットを減速または停止させる動作を制御するロボット制御装置に関する。
 近年、産業用ロボットにおいて、人と同じ作業空間で動作を行う協働ロボットが知られている。少なくとも一部の協働ロボットは、人と接触するなどにより外部から力が加わると減速または停止するように設定されている。
 ただし、上述の協働ロボットは、ワーク等の把持または開放時における負荷の変化によって発生する重力方向の外力の変動を「人との接触(外部からの力)」と誤判断し、ロボットが停止してしまうことがある。
 また、位置決めを目的として把持したワークを位置決め部材に突き当てたり、把持時にハンドとワークとを突き当てたりする場合も、「人との接触(外部からの力)」と誤判断してロボットが停止してしまうことがある。
 この誤判断を回避する方法として、特許文献1では、ワークの把持または解放時の前後はロボットの接触検知機能を無効にする方法が提案されている。
 また、特許文献2では、ワークの把持または解放時はロボットを停止状態として、別の外部追加軸がロボットハンドの把持範囲内にワークを出し入れすることでロボットが停止してしまうことを防ぐ方法が提案されている。
 これら特許文献1または特許文献2で提案された方法を用いることにより、協働ロボットが誤判断によって停止してしまうことを防ぐことができるとされている。
特許第5820013号公報 特開2015-217451号公報
 しかしながら、特許文献1で提案された方法では、ワークの把持または解放時の前後でロボットの接触検知機能を無効にしている。そのため、接触検知機能を切っている間は「協働ロボット」ではなくなり、安全が担保されない状態となっている。したがって、例えば安全柵などの別の安全対策が必要となる。
 また、特許文献2で提案された方法では、ワークの把持または解放時はロボットを停止状態として、別の外部追加軸がロボットハンドの把持範囲内にワークを出し入れしている。この「別の外部追加軸」は協働ロボットではない(接触検知・停止しない)ので、システムとしての安全が担保されない。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、安全機能を保持しつつ、ワーク等の把持または開放を行うことができるロボット制御装置を提供することにある。
 上記課題を解決するために本発明の一例に係るロボット制御装置は、外部からロボットに作用する力またはトルクを算出する算出部と、算出部により算出された数値と「第1の閾値」とを比較する比較部と、を備え、算出された数値が所定の閾値を超えた場合にロボットを減速、停止または回避させるロボット制御装置であって、「第1の閾値」とは異なる「第2の閾値」を記憶する記憶部と、「第1の閾値」を「第2の閾値」に切り替える閾値選択部と、を備える。
 本発明に係るロボット制御装置によれば、安全機能を保持しつつ、ワーク等の把持または開放を行うことができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本技術中に記載されたいずれかの効果であってもよい。
本発明の第1実施形態に係るロボット制御装置の構成を示すブロック図である。 本発明の第1実施形態に係るロボット制御装置の動作を説明する図である。 本発明の第1実施形態に係るロボット制御装置のワークを持ち上げる動作を説明するフローチャートである。 本発明の第1実施形態に係るロボット制御装置のワークを載置する動作を説明するフローチャートである。 本発明の第1実施形態に係るロボット制御装置の押し付け作業の動作を説明する図である。 本発明の第2実施形態に係るロボット制御装置の構成を示すブロック図である。
 以下、本発明の実施形態について図面を参照しながら説明する。以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
<第1実施形態>
 まず、本発明の第1実施形態に係るロボット10およびロボット制御装置20について説明する。図1は、本実施形態に係るロボット10およびロボット制御装置20の構成を示すブロック図である。
 図1に示されたように、例えば、6軸多関節型の産業用等のロボット10は、ベース部11と、ベース部11に接続されたアーム部12と、アーム部12の先端に接続された手首部13と、を備えている。
 手首部13には、例えば物を把持できるロボットハンド等のツール14が取り付けられている。
 本実施形態では、アーム部12や手首部13の各関節部分に、力またはトルクを検出するセンサ等の力検出部15が取付けられている。なお、力検出部15は、ベース部11に内蔵されていてもよい。
 このようなロボット10の動作を制御するロボット制御装置20には、ロボット10の動作命令等が記憶されたロボットプログラム21が組み込まれている。
 また、ロボット制御装置20は、位置指令生成部22、閾値選択部23、外部トルク算出部24、トルク比較部25およびロボット10の動作用電源を遮断する電源遮断部26を備えている。さらに、ロボット制御装置20は、第1の閾値、第2の閾値・・・、第nの閾値のように、一または複数の閾値を設定して記憶する記憶部27を備えている。
 また、本実施形態に係るロボット制御装置20にはロボット監視装置(RMU)29が搭載されている。ロボット監視装置29は、ロボット10の動きを監視し、ロボット10が所定の位置、所定の速度から逸脱した動きを行なった場合に、安全を確保するための装置である。本実施形態では、ロボット監視装置29が外部トルク算出部24、トルク比較部25、電源遮断部26および記憶部27を備えている。なお、ロボット監視装置29は必須ではなく省略することができ、その場合はロボット制御装置20内に外部トルク算出部24、トルク比較部25、電源遮断部26および記憶部27を備えることができる。
 次に、本実施形態に係るロボット制御装置20の構成要素についてより詳しく説明する。
 位置指令生成部22は、ロボット10の各軸に対して各軸を動作させる位置指令信号を、ベース部11を介してロボット10へ出力する。
 閾値選択部23は、ロボットプログラム21から指令信号を入力し、あらかじめ設定されている「第1の閾値」を「第2の閾値」(第nの閾値)に選択変更して切り替える制御命令を出力する。すなわち、閾値選択部23は、ロボット10の動作を記述し、記憶部27に記憶されるロボットプログラム21に使用される制御命令によって閾値の選択を実行する。また、閾値選択部23は、第1の閾値を複数の第nの設定閾値のいずれかに選択変更した後、予め設定された時間経過後に選択変更した第nの設定閾値を第1の閾値に戻すことができる。また、閾値選択部23は、第1の閾値を複数の第nの設定閾値のいずれかに選択変更した後、予め設定されたロボット10のツール位置が予め設定された距離を移動後に選択変更した第nの設定閾値を第1の閾値に戻すこともできる。さらに、閾値選択部23は、第1の閾値を複数の第nの設定閾値のいずれかに選択変更した後、 予め設定されたロボット10のツール位置が予め設定された速度を超えると選択変更した第nの設定閾値を第1の閾値に戻すこともできる。
 一例として、「第2の閾値」に「第1の閾値」よりも大きな値を設定しておき、接触検知感度が高い場合を制御命令TOUCHMOVE[0]を実行して「第1の閾値」を選択し、接触検知感度が低い場合を制御命令TOUCHMOVE[1]を実行して「第2の閾値」を選択するというように、制御命令により接触検知感度切り替える。
 これにより、制御命令TOUCHMOVE[1]を実行すると接触検知の感度が下がり、接触検知有効中のツール切り替えや、押し付け動作の際に接触を検知してロボット10が止まってしまうことを防ぐことができる。なお、TOUCHMOVE[1]の実行後にTOUCHMOVE[0]を実行するかロボットプログラム21が停止すると接触検知は高感度に戻る。
 外部トルク算出部24は、ロボット10に備えられた力検出部15で検出されたトルク情報(力情報)を入力し、外部からロボット10に作用する力またはトルクを算出する。
 トルク比較部25は、外部トルク算出部24により算出された数値と第1の閾値あるいは第2の閾値とを比較する。
 電源遮断部26は、トルク比較部25による比較結果により、算出した数値がいずれかの閾値を超えた場合にロボット10の動作用電源を遮断し、ロボット10の動作を減速、停止または回避させる。
 ここで、ロボット監視装置29の挙動について説明する。まず、ロボット監視装置29の接触検知は高感度のままにする。ロボット監視装置29は、TOUCHMOVEファンクションに関係なく、接触を検知した後に停止監視幅および停止監視時間によって停止と判断されていればサーボOFFしない。なお、接触検知後極低速であれば、ロボット10は作業を続行することができる。
 次に制御命令TOUCHMOVEによってのトルク比較部25の閾値が、第1の閾値から第2の閾値に切り替わっている場合について以下に説明する。
 ロボット監視装置29のトルク比較部25は、停止監視幅および停止監視時間によって定義される極低速以下の速度でロボット10が動作していると判断されていれば電源遮断部26を動作させて電源遮断を行なわない。
 その結果、ロボット10が極低速で動作している場合は、制御命令TOUCHMOVEによって第2の閾値に切り替わった値がトルク算出部25から出力されてもロボット10は動作を継続することができる。
 もちろん、その値が第2の閾値を超える場合や、かつ定義された極低速以上の動作速度でロボット10が動作している場合は、ロボット10は停止する。
 したがって、接触検知機能が無効となっている状態は存在しないのでロボット10の安全は確保される。
<ワークの持上げ動作>
 次に、図2および図3を用いて、ロボット10がワークWを持ち上げる動作を行う場合のロボット制御装置20の制御について説明する。
 図2(a)~(d)は、ロボット10に取り付けられたツール14によってワークWを持ち上げる動作の手順を示す図である。図3は、ロボット10に取り付けられたツール14によってワークWを持上げる動作を行う際のロボット制御装置20の動作を示すフローチャートである。
 まず、事前にロボットプログラム21をロボット制御装置20に組み込み、図2に示すように、ワークWを作業台Dの作業面Eに載置しておく。
 そして、使用者による指令の直接入力または外部コントローラによる指令の入力により、ロボット10の動作が開始される。
 図3のステップS301において、位置指令生成部22は、ツール14がワークWを把持できる位置までロボット10を動作させる位置指令を発行し、ロボット10は、ワークWを把持できる位置までツール14を移動させる。
 次いで、ステップS302において、閾値選択部23は、ロボットプログラム21から指令信号を入力し、あらかじめ設定されている第1の閾値から第1の閾値よりも値が大きい第2の閾値へ切り替える制御命令TOUCHMOVE[1]を実行する。
 ステップS303において、ロボット10は、ツール14によりワークWを把持する。
 次いで、ステップS304において、ツール番号をツール14がワークWを保持した状態における重さや重心位置等のツール定数が正しく定義されているツール番号に変更する。ステップS304でワークWの重さを設定して、外力からワークWの重さを引くことができる。これにより、ワークWを持ち上げる時にワークWの重さが外力としてカウントされて、元の閾値に戻した時にロボット10が停止することを防ぐことができる。
 次いで、ステップS305において、ロボット10は、ツール14によりワークWを持上げる動作を行う。この動作は予め定義された極低速以下の速度で実行する。なお、ステップS303とS304の実行は入れ替わっても良い。
 ステップS306において、閾値選択部23は、ワークWが作業台Dの作業面Eから完全に離間した後に、第1の閾値からあらかじめ設定されている所定の閾値へ切り替える制御命令TOUCHMOVE[0]を実行する。
 そし、ステップS307において、ロボット10は、ツール14によりワークWを所定の場所まで搬送する搬送動作を行う。
<ワークの載置動作>
 続いて、図2および図4を用いて、ロボット10がワークWを作業台Dに載置する動作を行う場合のロボット制御装置20の制御について説明する。
 図4は、ロボット10に取り付けられたツール14によってワークWを載置する動作を行う際のロボット制御装置20の動作を示すフローチャートである。
 ここで、ワークWを載置する動作については、図2(d)に示すように、ツール14でワークWを把持している状態から開始されるものとする。なお、この場合は、図2(d)から(c)、(b)および(a)へと手順が進んでいく。
 ステップS401において、ロボット10は、ワークWを載置する位置まで移動する。
 次いで、ステップS402において、閾値選択部23は、ロボットプログラム21から指令信号を入力し、あらかじめ設定されている所定の閾値をその所定の閾値よりも値が低い第1の閾値へ切り替える制御命令TOUCHMOVE[1]を実行するする。
 次いで、ステップS403において、ツール番号をツール14がワークWを保持していない場合における重さや重心位置等のツール定数が正しく定義されているツール番号に変更する。
 その後、ステップS404において、ロボット10は、ツール14によりワークWを作業台Dの作業面E上に載置する動作を行う。この動作は予め定義された極低速以下の速度で実行する。なお、ステップS403は、S404またはS405の後に実行しても良い。
 次いで、ステップS405において、ロボット10は、ツール14を解放して、ワークWを作業面E上に載置する。
 次いで、ステップS406において、閾値選択部23は、ワークWを作業台Dの作業面E上に完全に載置した後に、設定された第1の閾値からあらかじめ設定されている所定の閾値へ切り替える制御命令TOUCHMOVE[0]を実行するする。
 最後に、ステップS407において、ロボット10は、元の位置まで移動する。
 以上のように、本実施形態のロボット制御装置20によれば、安全機能を保持しつつ、ワーク等の把持または開放時に発生する負荷の変動によって発生する接触検知停止を回避可能にすることができる。
<押し付け動作>
 さらに、図5を用いて、ロボット10が、例えば組み立て作業で作業台Dのボタン等を押し付ける動作を行う場合のロボット制御装置20の制御について説明する。
 図5(a)および(b)は、本実施形態に係るツール14の動作Cを説明する図である。
 例えばロボット10が、組み立て作業等での押し付け動作を行う場合、接触検知が有効なとき、押し付けを行うと接触を検知して作業が止まってしまう。
 そこで、押し付け動作の前後でTOUCHMOVEファンクションを使用すれば作業を継続させることができる。
 図5に示すように、まず、ロボット10は、ボタンを押す等の押し付け作業を行う位置までツール14を移動させる。
 次に、閾値選択部23は、ロボットプログラム21から指令信号を入力し、あらかじめ設定されている所定の閾値をその所定の閾値よりも値が低く設定された第1の閾値へ切り替える制御命令TOUCHMOVE[1]を実行する。
 次に、ロボット10は、ツール14によりボタンを押し付ける動作Cを行う。この動作Cは予め定義された極低速以下の速度で実行する。
 次に、ロボット10は、ツール14がボタンから完全に離間するまでツール14を持ち上げる。この動作も予め定義された極低速以下の速度で実行する。
 次に、ロボット10は、ツール14がボタンから完全に離間した後に、第1の閾値からあらかじめ設定されている所定の閾値へ切り替える制御命令TOUCHMOVE[0]を実行する。
 最後に、ロボット10は、元の位置まで移動する。
 以上のように、本実施形態のロボット制御装置20を使用する場合も、安全機能を保持しつつ、押し付け動作C時に発生する負荷の変動によって発生する接触検知停止を回避可能にすることができる。
<第2実施形態>
 次に、本発明の第2実施形態に係るロボット10およびロボット制御装置60について説明する。図6は、本実施形態に係るロボット10およびロボット制御装置60の構成を示すブロック図である。
 本実施形態が第1実施形態と相違する点は、ロボット制御装置60内に外部トルク算出部、トルク比較部および記憶部を複数備えている点である。なお、第1実施形態と共通する構成については説明を省略し、第1実施形態と相違する構成について以下に説明する。
 本実施形態のロボット制御装置60は、第1の外部トルク算出部24、第1のトルク比較部25および第1の記憶部27を備えている。また、ロボット制御装置60はロボット監視装置61を搭載し、ロボット監視装置61が第2の外部トルク算出部62、第2のトルク比較部63、電源遮断部26および第Xの閾値を設定して記憶する第2の記憶部64を備えている。
 一方で、ロボット監視装置61の第Xの設定閾値は、制御命令TOUCHMOVE[1]を実効しても変更されることは無い。
 ロボット監視装置61の第2の外部トルク算出部62は、第1の外部トルク算出部24とは独立してトルクを計算し、第2のトルク比較部63で第Xの閾値との比較を行なう。
 第Xの閾値は、第1の閾値よりも大きな値が設定され、第2の閾値よりも小さい値を設定する。その結果、通常の場合は第1のトルク比較部25による比較結果が先に処理され、ロボット10は減速停止するので、第2のトルク比較部63の比較結果によって電源遮断部26が動作することはない。
 ロボット制御装置60に何らかの異常が発生し、第1の閾値による第1のトルク比較部25の結果によってロボット10が減速停止しない場合は、ロボット監視装置61の第Xの閾値に基づく第2のトルク比較部63によって電源遮断部26が動作し、ロボット10の電源を遮断する。
 次に制御命令TOUCHMOVEによって第1のトルク比較部25の閾値が第2の閾値に切り替わっている場合について以下に説明する。
 ロボット監視装置61の第2のトルク比較部63は、停止監視幅および停止監視時間によって定義される極低速以下の速度でロボットが動作していると判断されていれば電源遮断部26を動作させて電源遮断を行なわない。その結果、ロボット10が極低速で動作している場合は、制御命令TOUCHMOVEによって第2の閾値に切り替わっている場合でかつ第Xの閾値を超える値が第2の外部トルク算出部62より出力されてもロボット10は動作を継続することができる。
 もちろん出力された値が第2の閾値を超える場合や第Xの閾値を超え、かつ定義された極低速以上の動作速度でロボット10が動作している場合は、ロボット10は停止する。
 したがって、接触検知機能が無効となっている状態は存在しないのでロボットの安全は確保される。
 以上のように、本実施形態のロボット制御装置60を使用する場合も、第1実施形態と同様に、安全機能を保持しつつ、ワーク等の把持または開放時に発生する負荷の変動によって発生する接触検知停止を回避可能にすることができる。
 また、本実施形態のロボット制御装置は、外部からロボットに作用する力またはトルクを算出する算出部を有し、算出された外部からの力、若しくはトルクが第1の閾値を超えた場合に減速、若しくは停止、若しくは回避動作を行なうことが可能なロボットの制御装置であって、第1の閾値に基づいてロボットに減速、若しくは停止、若しくは回避動作を行なわせる第1の制御部と、第1の閾値とは異なる第Xの閾値を設定可能であって、検出された外部からの力、若しくはトルクが第Xの閾値を超えるとロボットの動力の少なくとも一部を遮断する第2の制御部を有する構成とすることができる。
 さらに、本実施形態のロボット制御装置は、上記構成に加えて、第2の制御部が外部からの力、若しくはトルクが第Xの閾値を超えたと判断してから動力を遮断するまでの時間は第1の制御部が外部から力、若しくはトルクが第1の閾値を超えたと判断し、ロボットを減速、若しくは停止、若しくは回避動作を行なわせるまでの時間よりも遅い構成とすることができる。
 さらに、本実施形態のロボット制御装置は、上記構成に加えて、第2の制御部が外部からの力、若しくはトルクが第Xの閾値を超えたと判断した場合であっても、ロボットの各軸の移動速度が0か、若しくは特定の閾値以下の場合は動力の遮断を行わない構成とすることができる。
 本発明は、ロボットの動作を制御するロボット制御装置に関するものであり、産業上の利用可能性を有するものである。
 10 ロボット
 11 ベース部
 12 アーム部
 13 手首部
 14 ツール
 15 力検出部
 20、60 ロボット制御装置
 21 ロボットプログラム
 22 位置指令生成部
 23 閾値選択部
 24、62 外部トルク算出部
 25、63 トルク比較部
 26 電源遮断部
 27、64 記憶部
 29、61 ロボット監視装置
 D 作業台
 E 作業面
 W ワーク

Claims (13)

  1.  外部からロボットに作用する力またはトルクを算出する算出部と、前記算出部により算出された数値と第1の閾値とを比較する比較部と、を備え、
     前記算出された数値が前記第1の閾値を超えた場合に前記ロボットを減速、停止または回避させるロボット制御装置であって、
     前記第1の閾値とは異なる設定閾値を記憶する記憶部と、
     前記第1の閾値を前記設定閾値に切り替える閾値選択部と、を備えるロボット制御装置。
  2.  前記閾値選択部は、前記ロボットの動作を記述し、前記記憶部に記憶されるロボットプログラムに使用される制御命令によって前記閾値の選択を実行する請求項1に記載のロボット制御装置。
  3.  前記記憶部は、複数の設定閾値を記憶し、
     前記閾値選択部は、前記第1の閾値を前記複数の設定閾値のいずれかに選択変更する制御命令を出力する請求項2に記載のロボット制御装置。
  4.  前記閾値選択部は、前記第1の閾値を前記設定閾値に選択変更した後、
     予め設定された時間経過後に前記選択変更した設定閾値を前記第1の閾値に戻す請求項2に記載のロボット制御装置。
  5.  前記閾値選択部は、前記第1の閾値を前記複数の設定閾値のいずれかに選択変更した後、
     予め設定された時間経過後に前記選択変更した設定閾値を前記第1の閾値に戻す請求項3に記載のロボット制御装置。
  6.  前記閾値選択部は、前記第1の閾値を前記設定閾値に選択変更した後、
     予め設定されたロボットのツール位置が予め設定された距離を移動後に前記選択変更した設定閾値を前記第1の閾値に戻す請求項2に記載のロボット制御装置。
  7.  前記閾値選択部は、前記第1の閾値を前記複数の設定閾値のいずれかに選択変更した後、
     予め設定されたロボットのツール位置が予め設定された距離を移動後に前記選択変更した設定閾値を前記第1の閾値に戻す請求項3に記載のロボット制御装置。
  8.  前記閾値選択部は、前記第1の閾値を前記設定閾値に選択変更した後、
     予め設定されたロボットのツール位置が予め設定された距離を移動後に前記選択変更した設定閾値を前記第1の閾値に戻す請求項4に記載のロボット制御装置。
  9.  前記閾値選択部は、前記第1の閾値を前記複数の設定閾値のいずれかに選択変更した後、
     予め設定されたロボットのツール位置が予め設定された距離を移動後に前記選択変更した設定閾値を前記第1の閾値に戻す請求項5に記載のロボット制御装置。
  10.  前記閾値選択部は、前記第1の閾値を前記設定閾値に選択変更した後、
     予め設定されたロボットのツール位置が予め設定された速度を超えると前記選択変更した設定閾値を前記第1の閾値に戻す請求項2に記載のロボット制御装置。
  11.  前記閾値選択部は、前記第1の閾値を前記複数の設定閾値のいずれかに選択変更した後、
     予め設定されたロボットのツール位置が予め設定された速度を超えると前記選択変更した設定閾値を前記第1の閾値に戻す請求項3に記載のロボット制御装置。
  12.  前記閾値選択部は、前記第1の閾値を前記設定閾値に選択変更した後、
     予め設定されたロボットのツール位置が予め設定された速度を超えると前記選択変更した設定閾値を前記第1の閾値に戻す請求項4に記載のロボット制御装置。
  13.  前記閾値選択部は、前記第1の閾値を前記複数の設定閾値のいずれかに選択変更した後、
     予め設定されたロボットのツール位置が予め設定された速度を超えると前記選択変更した設定閾値を前記第1の閾値に戻す請求項5に記載のロボット制御装置。
PCT/JP2019/033666 2018-08-30 2019-08-28 ロボット制御装置 WO2020045483A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162039A JP2021191594A (ja) 2018-08-30 2018-08-30 ロボット制御装置
JP2018-162039 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045483A1 true WO2020045483A1 (ja) 2020-03-05

Family

ID=69644256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033666 WO2020045483A1 (ja) 2018-08-30 2019-08-28 ロボット制御装置

Country Status (2)

Country Link
JP (1) JP2021191594A (ja)
WO (1) WO2020045483A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269850A1 (ja) * 2021-06-24 2022-12-29 株式会社Fuji ロボットおよびアームの制御方法
WO2023095926A1 (ja) * 2021-11-29 2023-06-01 京セラ株式会社 ロボット制御装置、ロボット制御システム、及びロボット制御方法
JP7288157B1 (ja) * 2022-11-07 2023-06-06 ファナック株式会社 数値制御装置及び数値制御システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043232A (ja) * 2011-08-23 2013-03-04 Ihi Corp ロボットとその制御方法
JP2013184249A (ja) * 2012-03-07 2013-09-19 Kobe Steel Ltd モータ駆動構造を備えたシステム、モータ駆動構造のシステムに用いられるプログラム、および溶接物製造方法
JP2015208834A (ja) * 2014-04-30 2015-11-24 ファナック株式会社 ワークを把持して搬送するロボットの安全監視装置
JP2016016490A (ja) * 2014-07-09 2016-02-01 ファナック株式会社 衝突判定部による誤判定を防止するロボット制御装置
JP2016064474A (ja) * 2014-09-25 2016-04-28 ファナック株式会社 人間協調ロボットシステム
JP2016153156A (ja) * 2015-02-20 2016-08-25 ファナック株式会社 外力に応じてロボットを退避動作させる人間協調ロボットシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043232A (ja) * 2011-08-23 2013-03-04 Ihi Corp ロボットとその制御方法
JP2013184249A (ja) * 2012-03-07 2013-09-19 Kobe Steel Ltd モータ駆動構造を備えたシステム、モータ駆動構造のシステムに用いられるプログラム、および溶接物製造方法
JP2015208834A (ja) * 2014-04-30 2015-11-24 ファナック株式会社 ワークを把持して搬送するロボットの安全監視装置
JP2016016490A (ja) * 2014-07-09 2016-02-01 ファナック株式会社 衝突判定部による誤判定を防止するロボット制御装置
JP2016064474A (ja) * 2014-09-25 2016-04-28 ファナック株式会社 人間協調ロボットシステム
JP2016153156A (ja) * 2015-02-20 2016-08-25 ファナック株式会社 外力に応じてロボットを退避動作させる人間協調ロボットシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269850A1 (ja) * 2021-06-24 2022-12-29 株式会社Fuji ロボットおよびアームの制御方法
WO2023095926A1 (ja) * 2021-11-29 2023-06-01 京セラ株式会社 ロボット制御装置、ロボット制御システム、及びロボット制御方法
JP7288157B1 (ja) * 2022-11-07 2023-06-06 ファナック株式会社 数値制御装置及び数値制御システム
WO2024100718A1 (ja) * 2022-11-07 2024-05-16 ファナック株式会社 数値制御装置及び数値制御システム

Also Published As

Publication number Publication date
JP2021191594A (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
US10252415B2 (en) Human collaborative robot system having safety assurance operation function for robot
JP6591818B2 (ja) 産業用ロボットシステムおよびその制御方法
WO2020045483A1 (ja) ロボット制御装置
US9682478B2 (en) Safety monitoring device for robot gripping and carrying workpiece
JP5931167B1 (ja) 人間協調型ロボットシステム
JP5218524B2 (ja) ロボットシステムおよびロボット動作規制方法
JP5835254B2 (ja) ロボットシステム、及び、ロボットシステムの制御方法
JP6055014B2 (ja) 物または人との接触を検知する機能を有するロボット制御装置
US9317032B2 (en) Robot and method for operating a robot
US20180257232A1 (en) Robot system and robot control method
JP2008188722A (ja) ロボット制御装置
US10996654B2 (en) Servo controller
JP2013043232A (ja) ロボットとその制御方法
JP2015000470A (ja) ロボット制御装置及びロボット制御方法
US10562185B2 (en) Robot system
EP2212064A1 (en) A method for controlling a plurality of axes in an industrial robot system and an industrial robot system
JP5778891B2 (ja) ロボット制御装置
CN111716329A (zh) 多关节型机器人系统及其多关节臂的驱动方法和控制装置
TWI774666B (zh) 協作型機器手臂的防夾方法
JPH1177580A (ja) ロボットの制御装置
JP6445114B2 (ja) 外力監視機能を有するワーク搬送方法システム
JP2017159428A (ja) 制御装置、ロボット、及びロボットシステム
JP2020142337A (ja) 産業用ロボットの制御システム
WO2020241905A1 (ja) 制御装置、制御方法およびプログラム
JP3855629B2 (ja) ロボットの干渉検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP