JP2016061592A - 接触燃焼式ガスセンサ - Google Patents

接触燃焼式ガスセンサ Download PDF

Info

Publication number
JP2016061592A
JP2016061592A JP2014187770A JP2014187770A JP2016061592A JP 2016061592 A JP2016061592 A JP 2016061592A JP 2014187770 A JP2014187770 A JP 2014187770A JP 2014187770 A JP2014187770 A JP 2014187770A JP 2016061592 A JP2016061592 A JP 2016061592A
Authority
JP
Japan
Prior art keywords
film
gas
gas sensor
combustion type
type gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014187770A
Other languages
English (en)
Other versions
JP6467172B2 (ja
Inventor
服部 敦夫
Atsuo Hattori
敦夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Fine Technologies Co Ltd
Original Assignee
Yamaha Fine Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Fine Technologies Co Ltd filed Critical Yamaha Fine Technologies Co Ltd
Priority to JP2014187770A priority Critical patent/JP6467172B2/ja
Publication of JP2016061592A publication Critical patent/JP2016061592A/ja
Application granted granted Critical
Publication of JP6467172B2 publication Critical patent/JP6467172B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】可燃性ガスを検出するガスセンサの検出感度をより高くする。【解決手段】ガスセンサ100は、ガス検出部と、補償部とを備えている。ガス検出部は、ヒータ141と、ヒータ141上に形成され、燃焼触媒を担持した担体を含むガス反応膜161と、ガス反応膜161の近傍に形成された測温素子HJとを有している。補償部は、基板上に形成されたヒータ142と、ヒータ142の近傍に形成された測温素子HJとを有している。そして、これらのガス検出部と補償部とは、熱的に分離されている。【選択図】図3

Description

この発明は、可燃性ガスを検出する接触燃焼式ガスセンサにおいて、可燃性ガスの検出感度をより高くする技術に関する。
従来より、水素等の可燃性ガスを検出するガスセンサとして、触媒を用いて可燃性ガスを燃焼させ、燃焼熱による触媒温度の上昇を電気的に検出する接触燃焼式ガスセンサが使用されてきている。このような接触燃焼式ガスセンサにおいても、種々のセンサと同様に、検出感度をより高くすることが常に求められており、様々な方法により高感度化が図られている。例えば、特許文献1では、低濃度の可燃性ガスや感度の低い可燃性ガスに対してガス検出感度を高めるため、可燃性ガスの燃焼に対して触媒として作用する触媒層の近傍に可燃性ガスの燃焼を促すためのヒータを形成することが提案されている。
特開2001−99801号公報
ところで、近年、リークテストに使用されるヘリウム(He)は、供給不足の状態が続き、さらには、近い将来において枯渇することが懸念されている。そこで、Heに替えて水素を用いてリークテストを行うため、検出感度の高いガスセンサが求められている。しかしながら、様々な方法により高感度化が行われているものの、従来の接触燃焼式ガスセンサでは、その検出感度はリークテストに使用するために十分とは言えなかった。また、リークテスト用に限らず、一般的に、検出感度をより高くすることは、可燃性ガスのセンサに対して常に求められている課題である。
本発明は、上述した従来の課題を解決するためになされたものであり、可燃性ガスを検出する接触燃焼式ガスセンサにおいて、可燃性ガスの検出感度をより高くする技術を提供することを目的とする。
上記課題の少なくとも一部を達成するために、本発明の接触燃焼式ガスセンサは、前記基板上に形成された第1のヒータと、前記第1のヒータ上に形成され、可燃性ガスの燃焼触媒を担持した担体を含むガス反応膜と、前記ガス反応膜の近傍に形成された第1の測温素子と、を有するガス検出部と、前記基板上に形成された第2のヒータと、前記第2のヒータの近傍に形成された第2の測温素子と、を有する補償部と、を備え、前記ガス検出部と前記補償部とは、熱的に分離されていることを特徴とする。
この構成によれば、第1のヒータを発熱させることにより、ガス反応膜が有する燃焼触媒の活性を高くすることができるとともに、第2のヒータを発熱させることにより、第2のヒータ近傍の温度を、可燃性ガスが存在しない場合におけるガス反応膜の温度と略同等にすることができる。そのため、ガス反応膜と第2のヒータ近傍との温度差を求め、外的要因によるガス反応膜の温度変化を補償することができる。そして、ガス検出部と補償部とを熱的に分離することにより、ガス反応膜における触媒燃焼で生じた熱による補償部の温度上昇が抑制される。これにより、外的要因によるガス反応膜の温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜の温度上昇量をより正確に求めることが可能となるので、可燃性ガスの検出感度をより高くすることができる。
前記接触燃焼式ガスセンサは、さらに、前記基板に設けられた断熱部と、前記ガス検出部と前記補償部との境界部の下において、前記断熱部が形成されていない放熱部と、を備えており、前記第1および第2のヒータと、前記ガス反応膜と、前記第1および第2の測温素子とは、前記断熱部上に配置され、前記放熱部は、前記ガス反応膜において発生した熱を前記接触燃焼式ガスセンサの外部に放出するものとしてもよい。
放熱部は、所望の形状に断熱部を形成することにより形成される。そのため、ガス検出部と補償部とを熱的に分離する構造をより容易に形成することが可能となる。また、ガス検出部と補償部とを近接配置できるため、ガスセンサの小型化および小型化による低コスト化を図ることができる。
前記第1および第2のヒータと、前記第1および第2のヒータに通電するための配線は、前記ガス検出部と前記補償部とを跨がないように形成されているものとしても良い。
一般に、ヒータやヒータに通電するための配線は、熱伝導度が高い。そのため、ヒータやヒータに通電するための配線を、ガス検出部と補償部とを跨がないように形成することにより、ガス検出部と補償部との熱的な分離状態をより良好に維持することができる。
前記第1の測温素子は、複数の熱電対を直列接続した第1のサーモパイルの温接点であり、前記第2の測温素子は、複数の熱電対を直列接続した第2のサーモパイルの温接点であり、前記第1のサーモパイルを構成する温接点は、冷接点よりも前記ガス反応膜に近い位置に配置され、前記第2のサーモパイルを構成する温接点は、冷接点よりも前記第2のヒータに近い位置に配置されているものとしても良い。
熱電対を直列接続することにより、その両端の電圧として出力される、ガス反応膜や第2のヒータの温度を表す信号を十分に大きくすることができる。そのため、ガス反応膜および第2のヒータの温度をより正確に測定することが可能となるので、可燃性ガスの検出感度をより高くすることができる。
前記第1および第2のサーモパイルを構成する熱電対は、互いに異なる材料で形成された第1と第2の熱電素子を有しており、前記第1および第2のサーモパイルを構成する熱電対のうち、前記直列接続の末端に位置する前記第1の熱電素子がフロート状態で接続されているものとしても良い。
この構成によれば、可燃性ガス濃度に対応した信号を直接出力することができるので、可燃性ガスの検出回路をより簡単にすることが可能となる。
前記補償部は、さらに、前記可燃性ガスの燃焼触媒を担持していない担体を含む参照膜を有しており、前記参照膜は、前記第2のヒータ上の前記第2の測温素子の近傍を含む領域に形成されているものとしても良い。
参照膜を形成することにより、ガス反応膜と第2のヒータ近傍との熱容量が近くなるので、外的要因によりガス反応膜と第2のヒータ近傍の温度差の発生が抑制される。そのため、より正確に外的要因によるガス反応膜の温度変化を補償することができるので、可燃性ガスの検出感度をより高くすることができる。
なお、本発明は、種々の態様で実現することが可能である。例えば、ガスセンサ、そのガスセンサを利用したセンサモジュール、そのセンサモジュールを使用した可燃ガス検出装置および可燃ガス検出システム、それらのガスセンサ、センサモジュールおよび可燃ガス検出装置を用いたリークテスト装置やリークテストシステム等の態様で実現することができる。
第1実施形態におけるセンサモジュールの構成を示す説明図。 ガスセンサの構造を示す説明図 ガスセンサの機能的な構成を示す説明図。 第2実施形態におけるガスセンサの構造を示す説明図。 第3実施形態におけるガスセンサの構造を示す説明図。 第4実施形態におけるガスセンサの構造を示す説明図。
A.第1実施形態:
A1.センサモジュール:
図1は、本発明の第1実施形態における接触燃焼式ガスセンサモジュール10(以下、単に「センサモジュール10」とも呼ぶ)の構成を示す説明図である。図1(a)は、センサモジュール10の断面を示している。第1実施形態のセンサモジュール10では、センサチップ100が、ヘッダ11とキャップ12とからなるパッケージ19内に実装されている。キャップ12は、例えば、ステンレス鋼や真鍮等の焼結金属、ステンレス鋼等からなる金網、あるいは、多孔質セラミックスで形成されている。これにより、パッケージ19内外の通気性が確保されるとともに、センサチップ100の汚染が抑制され、また、センサモジュール10自体の防爆化が図られている。センサチップ100は、その基板110がダイボンド材15によりヘッダ11に接着されることにより、ヘッダ11に固定されている。
図1(b)は、ヘッダ11に固定されたセンサチップ100を上面から見た様子を示している。なお、図1(b)における一点鎖線は、図1(a)で示した断面の位置を示している。センサチップ100の上面には、導電膜が露出したボンディングパッド191〜194が形成されている。このボンディングパッド191〜194と、封止材13を介してヘッダ11に取り付けられた端子14とをワイヤ16で接続することにより、センサチップ100は外部の回路に接続される。
図1(a)および図1(b)に示すように、センサチップ100の上面には、可燃性ガスを触媒燃焼させるためのガス反応膜161と、比較のための参照膜162とが設けられている。可燃性ガスがキャップ12を透過してセンサチップ100に到達すると、ガス反応膜161では、可燃性ガスが触媒燃焼し、可燃性ガスの濃度に応じた量の熱が発生する。そのため、ガス反応膜161は、可燃性ガスの濃度に応じて温度が上昇する。一方、参照膜162は、触媒燃焼による温度上昇が発生しない。詳細については後述するが、センサチップ100は、ガス反応膜161と参照膜162とのそれぞれの温度を表す信号を出力する。これらの出力信号に基づいて、可燃性ガスの触媒燃焼により温度上昇するガス反応膜161と、可燃性ガスによる温度上昇がない参照膜162との温度差を求めることにより、雰囲気中の可燃性ガスの濃度を測定することができる。なお、このように、センサチップ100は、センサモジュール10において、ガスを検出する機能を担っているので、ガスセンサそのものであると謂える。そのため、以下では、センサチップ100を単に「ガスセンサ100」と呼ぶ。
A2.ガスセンサ:
図2は、ガスセンサ100の構造を示す説明図である。図2(a)は、ガスセンサ100を上面から見た様子を示しており、図2(b)および図2(c)は、それぞれ、図2(a)の切断線A−A’および切断線B−B’におけるガスセンサ100の断面を示している。
ガスセンサ100は、2つの空洞部117,118が設けられた基板110と、基板110の上面に形成された絶縁膜120とを有している。絶縁膜120上には、ガスの検出機能を実現するための構造(後述する)を形成する複数の膜(機能膜)が積層されている。具体的には、絶縁膜120上には、半導体膜130と、導電膜140と、保護膜150と、ガス反応膜161もしくは参照膜162とが、この順で積層されている。これらの機能膜のうち、半導体膜130と、導電膜140と、保護膜150とは、半導体デバイスの製造方法として周知の技術を用いて形成することができる。なお、絶縁膜120および絶縁膜120上に積層される機能膜は、ガスセンサの製造工程や構造の変更に伴い、適宜追加あるいは省略される。
ガスセンサ100の作製工程では、まず、空洞部117,118を有さないシリコン(Si)基板を準備する。次いで、準備したSi基板上に、酸化ケイ素(SiO)、窒化ケイ素(Si)およびSiOをこの順に成膜することにより、絶縁膜120を形成する。なお、絶縁膜120を、SiOとSiとの多層膜とせず、酸窒化ケイ素(SiON)の単層膜とすることも可能である。絶縁膜120を形成した後、ポリシリコンの成膜・パターニングを行うことにより、半導体膜130を形成する。半導体膜130を形成する材料として、ポリシリコンに替えて、鉄シリサイド(FeSi)、シリコン・ゲルマニウム(SiGe)あるいはビスマス・アンチモン(BiSb)等の種々の半導体を用いても良い。次いで、白金(Pt)の成膜・パターニングを行うことにより、導電膜140を形成する。導電膜140を形成する材料として、Ptに替えて、タングステン(W)、タンタル(Ta)、金(Au)、アルミニウム(Al)あるいはAl合金等、種々の金属や合金を用いても良い。また、導電膜140の少なくとも一方の面に、チタン(Ti)やクロム(Cr)からなる密着層を形成しても良い。導電膜140を形成した後、SiOの成膜・パターニングを行うことにより、保護膜150を形成する。パターニングにより保護膜150に開口部(コンタクトホール)151〜154を設けることにより、導電膜140が露出したボンディングパッド191〜194が形成される。
保護膜150を形成した後、基板110に設けられる空洞部117,118を形成する。空洞部117,118の形成に際しては、まず、基板の機能膜130,140,150が形成されていない面(裏面)を研磨する。研磨により基板を所望の厚さにした後、裏面をエッチングすることにより、空洞部117,118を形成する。空洞部117,118の形成は、ドライエッチングと、ウェットエッチングとのどちらによっても行うことができる。ドライエッチングを行う場合には、Cプラズマによるパッシベーションと、SFプラズマによるエッチングとのステップを短い時間間隔で繰り返すエッチング方法(いわゆるボッシュプロセス)を用いるのが好ましい。また、ウェットエッチングを行う場合には、結晶異方性エッチングを行うのが好ましい。空洞部117,118を形成することにより、外枠部111と、2つの空洞部117,118を隔てる板状部112とを備える基板110が形成される。また、空洞部117,118を形成することにより、絶縁膜120が裏面側において露出したメンブレン121,122が形成される。なお、図2から明らかなように、メンブレン121,122は、空洞部117,118を渡るように形成されている。
空洞部117,118の形成後、保護膜150上に、ガス反応膜161および参照膜162を形成する。ガス反応膜161および参照膜162は、担体であるアルミナ粒子を含むペーストを保護膜上に塗布し、その後焼成することにより形成することができる。ペーストの塗布は、ディスペンサによる塗布技術やスクリーン印刷技術を用いて行うことができる。ガス反応膜161を形成するためのペーストには、燃焼触媒としてのPt微粒子を担持させたアルミナ粒子を用いる。一方、参照膜162を形成するためのペーストには、触媒を担持させないアルミナ粒子を用いる。なお、ガス反応膜161に使用する燃焼触媒として、Pt微粒子に替えて、パラジウム(Pd)微粒子を用いることも可能である。また、参照膜162の比熱をガス反応膜161に近づけるため、参照膜162を形成するためのペーストに酸化銅(CuO)等の金属酸化物を混ぜても良い。さらに、参照膜162に含まれる担体に、特定のガスについて選択的に触媒として作用する燃焼触媒(例えば、Auの超微粒子)を担持するものとしても良い。この場合においても、当該特定のガス以外の可燃性ガスに関しては、参照膜162の担体には燃焼触媒が担持されていないと謂うことができる。
図3は、ガスセンサ100の機能的な構成を示す説明図である。図3(a)は、図2(a)と同様に、ガスセンサ100を上面から見た様子を示している。但し、図3(a)および図3(b)においては、図示の便宜上、保護膜150のハッチングを省略している。図3(b)は、図3(a)において二点鎖線で囲んだ領域の拡大図である。
ガスセンサ100は、ガスの検出機能を実現するための構造として、4つのサーモパイルTP1〜TP4と、導電膜140(図2)として形成された2つのヒータ141,142および各部を接続する配線144,145,146と、ヒータ141,142の上部にそれぞれ形成されたガス反応膜161および参照膜162とを有している。なお、図3(a)に示すように、ガス反応膜161、参照膜162およびヒータ141,142は、メンブレン121,122上に形成されている。メンブレン121,122は、一般に薄く(約1〜5μm)形成されるので、メンブレン121,122自体の熱容量は小さい。また、メンブレン121,122の下面には、熱を伝達しない空洞部117,118が形成されている。このように、ガス反応膜161を空洞部117,118上に形成された熱容量が小さいメンブレン121の上部に形成することにより、ガス反応膜161における可燃性ガスの触媒燃焼で発生する熱量が少ない場合においても、ガス反応膜161の温度を十分に上昇させることができる。そのため、ガスセンサ100における可燃性ガスの検出感度をより高くすることができる。なお、メンブレン121,122の下面に形成された空洞部117,118は、熱を伝達しないので、断熱部とも言うことができる。
図3(a)に示すように、ガスセンサ100は、図3(a)において上下方向(以下、「縦方向」と謂う)に伸びる中心線C1に対して、略対称に形成されている。また、サーモパイルTP1〜TP4は、図3(a)において左右方向(以下、「横方向」と謂う)に伸びる中心線C2に対して、略対称に形成されている。以下では、必要性がない限り、このように対称性を有する部分については、その1つについてのみ説明する。なお、後述するように、ガスセンサ100のうち、中心線C1の左側の部分は、ガス反応膜161の温度を表す信号(すなわち、雰囲気中の可燃性ガスの濃度に応じた信号)を出力するように構成されており、中心線C1の右側の部分は外的要因によるガス反応膜161の温度変化を補償するための信号を出力する。そのため、中心線C1の左側の部分は、ガスを検出するガス検出部とも謂うことができ、中心線C1の右側の部分は外的要因による出力変動を補償する補償部とも謂うことができる。
サーモパイルTP1は、図3(b)に示すように、半導体膜130(図2)として形成された半導体熱電素子131と、導電膜140として形成された金属熱電素子143とを有している。サーモパイルTP1では、縦方向に伸びる半導体熱電素子131および金属熱電素子143が横方向に複数配列されている。金属熱電素子143は、ガス反応膜161の下部と、基板110(図2(b))の外枠部111の上部とにおいて、隣接する半導体熱電素子131に接続されている。これにより、半導体熱電素子131および金属熱電素子143は、温接点HJと冷接点CJとを有する熱電対として機能し、冷接点CJを基準としたガス反応膜161の温度を表す電圧を出力する。冷接点CJは、ダイボンド材15(図1)を介してヘッダ11に接着された外枠部111(すなわち、断熱部である空洞部117,118が設けられていない領域)の上部に形成されているので、ヘッダ11と略同温度となる。そのため、ガス反応膜161の温度の測定基準は、ヘッダ11の温度、すなわち、環境温度となる。このように、サーモパイルTP1,TP2の温接点HJは、ガス反応膜161の温度を測定する機能を有し、同様に、サーモパイルTP3,TP4の温接点HJは、参照膜162の温度を測定する機能を有する。そのため、これらのサーモパイルTP1〜TP4の温接点HJは、測温素子とも謂うことができる。なお、図3の例では、温接点HJは、ガス反応膜161および参照膜162の下に形成されているが、一般に、温接点HJは、ガス反応膜161および参照膜162の近傍に形成されていればよい。このようにしても、温接点HJによりガス反応膜161および参照膜162の温度を測定することができる。
サーモパイルTP1を構成する半導体熱電素子131のうち、中心線C1側(内側)の半導体熱電素子131は、導電膜140として形成された接続線144により、中心線C2に対して略対称に形成されたサーモパイルTP2に接続される。一方、中心線C1とは反対側(外側)の金属熱電素子143は、ボンディングパッド193と連続するように形成されている。接続線144は、基板110(図2(b))の外枠部111を跨ぎ、サーモパイルTP2における内側の金属熱電素子143と連続するように形成されている。また、サーモパイルTP2における外側の半導体熱電素子131は、横方向に拡がるグランド配線145に接続されている。これにより、グランド配線145上のボンディングパッド191と、サーモパイルTP1に接続されたボンディングパッド193との間では、ガス反応膜161の下部に配置された温接点HJと、外枠部111の上部に配置された冷接点CJとを有する熱電対が直列接続される。このように、熱電対が直列接続されることにより、2つのボンディングパッド191,193間の電圧、すなわち、ガス反応膜161の温度を表す出力信号を十分に大きくすることができる。また、同様にして、参照膜162の温度を表す出力信号を十分に大きくすることができるので、ガス反応膜161および参照膜162の温度をより正確に測定することができる。
図3(a)に示すように、ヒータ141,142は、ガス反応膜161の下部の、2つのサーモパイルTP1,TP2の間に配置されている。このヒータ141,142は、グランド配線145と、横方向に拡がるヒータ配線146との間の線幅の狭い領域として形成され、ガスセンサ100の外周側から、グランド配線145およびヒータ配線146に接続されている。これらのヒータ141,142は、グランド配線145上のボンディングパッド191と、ヒータ配線146上のボンディングパッド192との間に電圧を印加してヒータ141,142に通電することにより発熱する。ヒータ141,142に通電するためのグランド配線145とヒータ配線146とは、いずれも、外枠部111上に配置されているので、これらの配線は、空洞部117,118およびメンブレン121,122の上において、中心線C1の左側のガス検出部と、中心線C1の右側の補償部とを跨がない。なお、第1実施形態では、導電膜140として形成したヒータ141,142を用いているが、半導体膜としてヒータを形成することも可能である。
ヒータ141を発熱させると、ガス反応膜161の温度が上昇する。これにより、ガス反応膜161が有する触媒の活性が高くなり、ガス反応膜161における可燃性ガスの触媒燃焼が促進されるので、ガスセンサ100における可燃性ガスの検出感度が高くなる。また、可燃性ガスとして水素ガス(H)を検出する場合、ガス反応膜161における触媒燃焼により水(HO)が生成される。このとき、ガス反応膜161の温度が低いと、生成されたHOが凝結してガス反応膜161が濡れ、検出感度が低下する虞がある。第1実施形態では、ヒータ141によりガス反応膜161を加熱することにより、生成されたHOによる検出感度の低下を抑制することが可能となる。また、参照膜162は、ガス反応膜161と同様にヒータ142により加熱されるので、雰囲気に可燃性ガスが含まれない場合、ガス反応膜161と参照膜162とは、略同温度となる。そのため、ガス反応膜161と参照膜162とのそれぞれの温度を表す出力信号の差を求めることにより、外的要因によるガス反応膜161の温度変化を補償し、可燃性ガスの濃度に対応したガス反応膜161の温度上昇量をより正確に求めることが可能となる。
第1実施形態のガスセンサ100では、ガス反応膜161と参照膜162とを、それぞれ分離した2つの空洞部117,118上に形成している。そして、2つの空洞部117,118の間の板状部112は、図1(a)に示すように、ダイボンド材15を介して、パッケージ19のヘッダ11に接着されている。そのため、可燃性ガスの燃焼によりガス反応膜161で生じた熱は、その大部分が板状部112とダイボンド材15とを介してヘッダ11に伝達される。これにより、ガス反応膜161で生じた熱は、ガスセンサ100の外部に放出され、参照膜162側にはほとんど伝達されず、ガス検出部と補償部とが熱的に分離される。なお、板状部112は、ガス反応膜161で生じた熱をガスセンサ100の外部に放出する機能を有しているので、放熱部と謂うことができる。このような放熱部は、必ずしも板状である必要はなく、また、外枠部111を渡るように形成されている必要はない。一般的には、ガス反応膜161で生じた熱をガスセンサ100の外部に放出する放熱部は、基板としてガス検出部と補償部との境界部である中心線C1の下に形成されていればよい。
さらに、第1実施形態のガスセンサ100では、2つのヒータ141,142は、それぞれ別個に形成されている。また、ヒータ141,142に通電するための配線は、上述の通り、空洞部117,118およびメンブレン121,122の上において、ガス検出部と補償部とを跨がない。そのため、ヒータ141,142、グランド配線144およびヒータ配線146は、熱伝導度の高い導電膜140として形成されているが、ガス反応膜161で生じた熱を参照膜162にほとんど伝達しない。これにより、ガス検出部と補償部との熱的な分離状態がより良好に維持される。
このように第1実施形態によれば、ガス検出部と補償部とを熱的に分離することにより、ガス反応膜161で生じた熱による参照膜162の温度上昇が抑制される。そのため、外的要因によるガス反応膜161の温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜161の温度上昇量をより正確に求めることが可能となるので、可燃性ガスの検出感度をより高くすることができる。
B.第2実施形態:
図4は、第2実施形態におけるガスセンサ100aの構造を示す説明図である。図4(a)は、ガスセンサ100aを上面から見た様子を示しており、図4(b)および図4(c)は、それぞれ、図4(a)の切断線A−A’および切断線D−D’におけるガスセンサ100aの断面を示している。なお、図4(a)においても、図3と同様に、保護膜150aのハッチングを省略している。
第2実施形態のガスセンサ100aは、基板110aに単一の空洞部119を形成している点と、絶縁膜120aおよび保護膜150aのそれぞれにスリット穴129,159を形成している点と、スリット穴129,159の形成に合わせて、導電膜140aとして形成される接続線144aの位置を変更している点とで、第1実施形態のガスセンサ100と異なっている。他の点は、第1実施形態のガスセンサ100と同様である。
絶縁膜120aおよび保護膜150aへのスリット穴129,159の形成は、保護膜150aとなるSiO膜の成膜後、SiOとSiとを選択的にエッチングすることにより、コンタクトホール151〜154の形成と同時に行うことができる。このような選択的なエッチングは、例えば、CHF等のプラズマによるエッチングにより行うことが可能である。
図4(a)に示すように、スリット穴129,159は、ガス検出部(切断線D−D’の左側)と補償部(切断線D−D’の右側)との境界に沿って、基板110aの外枠部111を跨ぐように形成されている。これにより、図4(a)および図4(b)に示すように、空間的に分離した2つのメンブレン121a,122aが形成される。そのため、第2実施形態のガスセンサ100aにおいても、ガス検出部と補償部とが熱的に分離され、ガス反応膜161で生じた熱による参照膜162の温度上昇が抑制される。これにより、外的要因によるガス反応膜161の温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜161の温度上昇量をより正確に求めることが可能となるので、可燃性ガスの検出感度をより高くすることができる。但し、スリット穴は、ガス反応膜161と参照膜162との間に設けられていれば、必ずしも外枠部111を跨ぐ必要はない。
なお、第2実施形態のガスセンサ100aでは、絶縁膜120aおよび保護膜150aにスリット穴129,159を形成しているが、スリット穴129,159を形成しないものとしても良い。この場合、ガス反応膜161と参照膜162とは、単一のメンブレン上に配置される。しかしながら、図4に示すように、第2実施形態のガスセンサ100aにおいても、ガス検出部と補償部との境界に沿って、空洞部119を跨ぐように接続線144aが形成されている。この接続線144aは熱伝導度の高い導電膜140aとして形成されているので、ガス反応膜161で発生し参照膜162方向に伝達される熱の大部分は、接続線144aから外枠部111に伝達され、ガス反応膜161から参照膜162への熱の伝達が抑制される。このように、スリット穴129,159を形成しない場合においても、ガス検出部と補償部とは熱的に分離されるので、ガス反応膜161で生じた熱による参照膜162の温度上昇が抑制される。但し、より確実に熱の伝達を抑制するためには、スリット穴129,159を設けるのが好ましい。
C.第3実施形態:
図5は、第3実施形態におけるガスセンサ100bの構造を示す説明図である。図4(a)は、ガスセンサ100bを上面から見た様子を示しており、図5(b)は、それぞれ、図5(a)の切断線B−B’におけるガスセンサ100bの断面を示している。なお、図5(a)においても、図3と同様に、保護膜150が残存する領域のハッチングを省略している。
第3実施形態のガスセンサ100bは、第1実施形態のガスセンサ100においてグランド配線145に接続されているサーモパイルTP2,TP4の外側の半導体熱電素子131、すなわち、直列接続された熱電対の端にあたる半導体熱電素子131を、グランド配線145bとは別個の連結線147によりフロート状態で互いに接続している点と、連結線147を形成するために、グランド配線145bの形状を変更している点とで、第1実施形態のガスセンサ100と異なっている。他の点は、第1実施形態のガスセンサ100と同様である。
図5(a)および図5(b)に示すように、第3実施形態のガスセンサ100bでは、外枠部111の上部に配置された連結線147によりサーモパイルTP2,TP4の外側の半導体熱電素子131を互いに接続している。このように半導体熱電素子131を互いに接続することにより、ボンディングパッド193からボンディングパッド194に繋がる回路として見たときに、中心線C1の左側のガス検出部におけるサーモパイルTP1,TP2と、中心線C1の右側の補償部におけるサーモパイルTP3,TP4とにおいて、熱電対としての接続順序が逆になっている。具体的に言えば、ガス検出部では、ボンディングパッド193から連結線147に向かって順に、温接点HJにおいて金属熱電素子143から半導体熱電素子131に接続され、冷接点CJにおいて半導体熱電素子131から金属熱電素子143に接続されている。一方、補償部では、連結線147からボンディングパッド194に向かって順に、冷接点CJにおいて金属熱電素子143から半導体熱電素子131に接続され、温接点HJにおいて半導体熱電素子131から金属熱電素子143に接続されている。
このように、直列接続された熱電対の端にあたる半導体熱電素子131をフロート状態で互いに接続することにより、2つのボンディングパッド193,194間の電圧は、ガス反応膜161と参照膜162との温度差を表す電圧となる。言い換えれば、2つのボンディングパッド193,194からは、雰囲気中の可燃性ガス濃度に対応した信号が直接出力される。そのため、第3実施形態のガスセンサ100bを用いることにより、センサモジュール10(図1)の外部において差動増幅器により出力信号の差を求めることを省略できるので、可燃性ガスの検出回路をより簡単にすることが可能となる。また、一般的に差動増幅器等の増幅器は、入力電圧が電源電圧を超えると動作しない。そのため、差動増幅器により出力信号の差を求める場合には、出力信号の電圧が差動増幅器の電源電圧を超えないように、サーモパイルTP1〜TP4を構成する熱電対の段数や、熱電素子131,143として使用する材料が制限される。一方、第3実施形態によれば、ガス反応膜161と参照膜162との温度差を表す電圧が出力される。そのため、サーモパイルTP1〜TP4を構成する熱電対の段数を増やし、また、より熱起電力が大きくなるように熱電素子として使用する材料を選択することにより、可燃性ガスの検出感度をより高くすることが可能となる。
また、第3実施形態では、連結線147が外枠部111の上部に配置されているため、連結線147はガス反応膜161から参照膜162への熱の伝達経路とならない。そのため、第3実施形態においても、第1実施形態と同様に、ガス検出部と補償部とが熱的に分離されているので、ガス反応膜161で生じた熱による参照膜162の温度上昇が抑制される。これにより、可燃性ガスによるガス反応膜161の温度上昇分をより正確に求めることが可能となり、可燃性ガスの検出感度をより高くすることができる。但し、第3実施形態においては、ガス検出部と補償部とは、必ずしも熱的に分離する必要はない。この場合においても、直列接続された熱電対の端にあたる半導体熱電素子131を、フロート状態で互いに接続することにより、雰囲気中の可燃性ガス濃度に対応した信号を直接出力することができるので、可燃性ガスの検出回路をより簡単にすることが可能となるとともに、可燃性ガスの検出感度をより高くすることが可能となる。
D.第4実施形態:
図6は、第4実施形態におけるガスセンサ100cの構造を示す説明図である。図6(a)は、ガスセンサ100cを上面から見た様子を示しており、図6(b)および図6(c)は、それぞれ、図6(a)の切断線A−A’および切断線B−B’におけるガスセンサ100cの断面を示している。
第4実施形態のガスセンサ100cは、断熱部として、基板110に形成された2つの空洞部117,118に替えて、絶縁膜120上に空洞部171c,172cを形成している点と、空洞部171c、172cを形成することにより、機能膜130c,140c,150c,161c,162cの形状が変化している点と、保護膜150cに4つの貫通穴155c〜158cが形成されている点とで、第1実施形態のガスセンサ100と異なっている。他の点は、第1実施形態のガスセンサ100と同様である。
ガスセンサ100cの製造工程では、絶縁膜120に空洞部171c,172c形成するため、絶縁膜120の成膜後、まず、絶縁膜120上の空洞部171c,172cを形成する領域に、ポリイミド等の樹脂で犠牲膜(図示しない)を形成する。犠牲膜の形成後、半導体膜130、導電膜140c、および貫通穴155c〜158cが設けられた保護膜150cを形成する。次いで、保護膜150cに設けられた貫通穴155c〜158cを通して、アッシングを行うことにより犠牲膜を除去する。このようにして空洞部171c,172cを形成した後、保護膜150c上にガス反応膜161と参照膜162を形成することにより、第4実施形態のガスセンサ100cが得られる。なお、犠牲膜を形成する材料として、ポリイミド等の樹脂に替えて、ポリシリコン等の半導体を用いることができる。半導体からなる犠牲膜は、貫通穴155c〜158cを通してエッチングを行うことにより除去することができる。この場合、半導体膜130のエッチングを阻止するため、絶縁膜120および犠牲膜の上面には、SiOやSi等からなる阻止膜が形成される。
第4実施形態では、絶縁膜120の上面に空洞部171c、172cを形成しているが、基板と絶縁膜との間に空洞部を形成することもできる。この場合、保護膜と絶縁膜とを貫通する貫通穴を設け、当該貫通穴を通して犠牲膜を除去すればよい。また、絶縁膜120の形成を省略し基板の上面に空洞部を形成することもできる。なお、これらの場合においても、犠牲膜をポリシリコン等の半導体で形成する場合には、基板や半導体膜のエッチングを阻止するための阻止膜が形成される。
このように、第4実施形態のガスセンサ100cでは、基板110c上に空洞部171,172を形成することにより、基板をエッチングして空洞部117,118を形成した第1実施形態のガスセンサ100よりも、基板110cの強度をより高くすることができる。一方、ガスセンサの製造工程をより簡略化できる点においては、第1実施形態のように基板をエッチングして空洞部117,118を形成するのが好ましい。
図6に示すように、ガスセンサ100cにおいても、ガス反応膜161cと参照膜162cとは、分離した2つの空洞部171c,172c上に形成されている。また、2つの空洞部171,172の間の領域、すなわち、断熱部となる空洞部が形成されていない領域においては、導電膜140cと保護膜150cとが絶縁膜120と接触している。そのため、可燃性ガスの燃焼によりガス反応膜161cで生じた熱は、導電膜140cおよび保護膜150cと絶縁膜120との接触部、絶縁膜120、および、基板110cを通してガスセンサ100cの外部に放出され、参照膜162c側にはほとんど伝達されない。このように、第4実施形態においても、ガス検知部と補償部とが熱的に分離されているので、第1実施形態と同様に、ガス反応膜161cで生じた熱による参照膜162cの温度上昇が抑制される。そのため、外的要因によるガス反応膜161cの温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜161cの温度上昇量をより正確に求めることが可能となるので、可燃性ガスの検出感度をより高くすることができる。なお、このように、空洞部171,172の間の空洞部が形成されていない領域は、ガス反応膜161cで生じた熱をガスセンサ100cの外部に放出する機能を有しているので、放熱部とも謂うことができる。
なお、第4実施形態では、第1実施形態と同様に、2つの空洞部171,172を形成したガスセンサ100cを例示しているが、第2実施形態のように、単一の空洞部を形成し、スリット穴によりガス検知部と補償部とを熱的に分離することも可能である。この場合、犠牲膜の除去はスリット穴を通して行うことができるので、第4実施形態のように、保護膜150cに貫通穴155c〜158cを別途設ける必要はない。
E.変形例:
本発明は上記各実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
E1.変形例1:
上記各実施形態では、2つのヒータ141,142を並列に接続して、2つのヒータ141,142に同時に通電しているが、2つのヒータ141,142に別個に通電するものとしても良い。この場合、例えば、ヒータ配線146を2つに分割し、それぞれに、電圧印加用のボンディングパッドを設ければよい。2つのヒータ141,142に別個に通電すれば、通電電流を調整することができる。そのため、通電電流を調整することにより、雰囲気中に可燃性ガスがない状態において、ガス濃度に対応する出力信号のオフセットを0に調整すれば、より低濃度のガスを検出することが可能となる。
E2.変形例2:
上記各実施形態では、ガス検出部と補償部とのそれぞれにおいて、2つのサーモパイルを設けているが、サーモパイルの数は、任意の数とすることができる。例えば、ガス検出部と補償部とのそれぞれにおいて、単一のサーモパイルを設けるものとしても良く、また、さらにサーモパイルを増やすものとしても良い。また、上記各実施形態では、ガス反応膜161と参照膜162との温度を測定するために、熱電対を直列接続したサーモパイルを用いているが、ガス検出部と補償部とのそれぞれにおいて、単一の熱電対を設け、それによりガス反応膜161と参照膜162との温度を測定するものとしても良い。但し、出力信号をより大きくすることができる点で、熱電対を直列接続したサーモパイルを用いるのが好ましい。
E3.変形例3:
上記各実施形態では、半導体膜130として形成された半導体熱電素子131と、導電膜140,140a,140bとして形成された金属熱電素子143とを接続することにより、サーモパイルTP1〜TP4を構成しているが、サーモパイルは、極性の異なる2つの半導体膜として形成された2種の半導体熱電素子を接続するものとしても良く、また、材質の異なる2つの導電膜として形成された2種の金属熱電素子を接続するものとしても良い。但し、出力信号をより大きくするとともに、ガスセンサを製造するための工程数の増加を抑制することができる点で、半導体膜130として形成された半導体熱電素子131と、導電膜140,140a,140bとして成された金属熱電素子143とを接続して、サーモパイルTP1〜TP4を構成するのが好ましい。
E4.変形例4:
上記各実施形態では、サーモパイルTP1〜TP4の温接点HJによりガス反応膜161と参照膜162との温度を測定しているが、ガス反応膜161と参照膜162との温度は、測温抵抗体やサーミスタ等の他の測温素子を用いて測定することも可能である。但し、ガス反応膜161と参照膜162との温度を表す十分に高い電圧信号が直接出力され、可燃性ガスの検出感度をより高くすることが容易となる点で、サーモパイルTP1〜TP4の温接点HJによりガス反応膜161と参照膜162との温度を測定するのが好ましい。
E5.変形例5:
上記各実施形態では、単一のセンサチップ100,100a,100b上に、ガス検出部と補償部とを設けているが、ガス検出部と補償部とを別個のチップとしても良い。この場合、パッケージ19(図1)に、ガス検出部を有するチップと、補償部を有するチップとを近接して配置すればよい。このようにしても、ガス検出部と補償部とは熱的に分離されるので、外的要因によるガス反応膜161の温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜161の温度上昇量をより正確に求めることができ、ガスセンサの検出感度をより高くすることが可能となる。なお、この場合、ヒータと、ガス反応膜もしく参照膜とをメンブレン上に形成しなくても、ガス検出部と補償部とを熱的に分離することができる。但し、可燃性ガスの検出感度をより高くすることができる点で、ヒータと、ガス反応膜もしく参照膜とは、メンブレン上に形成するのが好ましい。
E6.変形例6:
上記各実施形態では、補償部に燃焼触媒を担持していない担体を含む参照膜162,162cを形成しているが、製造工程を簡略化するために参照膜162,162cの形成を省略することも可能である。この場合、補償部のサーモパイルTP3,TP4の温接点HJ(測温素子)は、温度がガス反応膜161,161cに近くなるヒータ142の温度を測定するように、ヒータ142の近傍に形成されていればよい。なお、このとき、補償部のヒータ142は、補償部の測温素子の近傍を含む領域に形成されているといえる。但し、参照膜162,162cが形成されている領域の熱容量をガス反応膜161,161cが形成されている領域の熱容量に近くし、気流等の影響による可燃性ガスの検出精度の低下を抑制することができる点で、参照膜161,161cを形成するのが好ましい。
E7.変形例7:
上記各実施形態では、断熱部として、基板110,110a自体に設けられた空洞部117〜119、もしくは、基板110c上に形成された空洞部171,172を用いているが、断熱部は必ずしも空洞である必要はない。断熱部は、例えば、基板自体に設けられた空洞部に、多孔質材や樹脂等の断熱材を埋め込むことにより形成することができる。多孔質材としてSiOを用いる場合には、周知の低比誘電率(Low-k)絶縁膜やシリカエアロゲルの形成技術により空洞部に多孔質SiOを埋め込むことができる。多孔質材として樹脂を用いる場合には、当該樹脂のモノマやプレポリマを空洞部に充填し、その後、熱や紫外線によりモノマやプレポリマを重合させればよい。また、断熱部として、基板上に多孔質材や樹脂等の断熱膜を形成するものとしても良い。この場合、第4実施形態において基板110c上に空洞部171,172を形成する工程と同様に、基板もしくは絶縁膜120上に多孔質材や樹脂等の断熱膜を形成し、形成した断熱膜を残存させることにより断熱部を形成することができる。また、基板上に断熱膜を形成するためのポリシリコン膜を形成し、当該ポリシリコン膜を陽極酸化により多孔質化しても良い。さらに、断熱部として、基板自体に多孔質部を形成するものとしても良い。多孔質部は、例えば、基板としてSi基板を用いている場合には、基板自体に空洞部を形成する工程と同様に、基板の下面側もしくは基板の上面側から、空洞部に相当する領域を陽極酸化により多孔質化することで形成することができる。なお、空洞でない断熱部を用いる場合において、断熱部の材料が導電性を有する場合には、断熱部と、半導体膜あるいは導電膜との間には絶縁膜が追加される。このように、空洞でない断熱部を用いることにより、断熱部上に形成された機能膜の破損が抑制される。
10…センサモジュール、11…ヘッダ、12…キャップ、13…封止材、14…端子、15…ダイボンド材、16…ワイヤ、19…パッケージ、100,100a,100b,100c…ガスセンサ、110,110a,110c…基板、111…外枠部、112…板状部、117,118,119,171c,172c…空洞部、120,120a…絶縁膜、121,122,121a,122a…メンブレン、129,159…スリット穴、130,130c…半導体膜、131…半導体熱電素子、140,140a,140b,140c…導電膜、141,142…ヒータ、143…金属熱電素子、144,144a…接続線、145,145b…グランド配線、146…ヒータ配線、147…連結線、150,150a,150c…保護膜、151,151c,152,152c,153,153c,154,154c…コンタクトホール、155c,156c,157c,158c…貫通穴、161,161c…ガス反応膜、162,162c…参照膜、191,191c,192,192c,193,193c,194,194c…ボンディングパッド、CJ…冷接点、HJ…温接点TP1,TP2,TP3,TP4…サーモパイル

Claims (7)

  1. 可燃性ガスを検出する接触燃焼式ガスセンサであって、
    基板上に形成された第1のヒータと、前記第1のヒータ上に形成され、前記可燃性ガスの燃焼触媒を担持した担体を含むガス反応膜と、前記ガス反応膜の近傍に形成された第1の測温素子と、を有するガス検出部と、
    前記基板上に形成された第2のヒータと、前記第2のヒータの近傍に形成された第2の測温素子と、を有する補償部と、
    を備え、
    前記ガス検出部と前記補償部とは、熱的に分離されている、
    接触燃焼式ガスセンサ。
  2. 請求項1記載の接触燃焼式ガスセンサであって、さらに、
    前記基板に設けられた断熱部と、
    前記ガス検出部と前記補償部との境界部の下において、前記断熱部が形成されていない放熱部と、
    を備えており、
    前記第1および第2のヒータと、前記ガス反応膜と、前記第1および第2の測温素子とは、前記断熱部上に配置され、
    前記放熱部は、前記ガス反応膜において発生した熱を前記接触燃焼式ガスセンサの外部に放出する、
    接触燃焼式ガスセンサ。
  3. 請求項2記載の接触燃焼式ガスセンサであって、
    前記断熱部は、前記基板自体に設けられた第1の空洞部と、前記基板上に形成された第2の空洞部と、前記第1の空洞部に埋め込まれた多孔質材または樹脂と、前記基板上に形成された多孔質膜または樹脂膜と、前記基板自体に形成された多孔質部と、のいずれかである、
    接触燃焼式ガスセンサ。
  4. 請求項1ないし3のいずれか記載の接触燃焼式ガスセンサであって、
    前記第1および第2のヒータと、前記第1および第2のヒータに通電するための配線は、前記ガス検出部と前記補償部とを跨がないように形成されている、
    接触燃焼式ガスセンサ。
  5. 請求項1ないし4のいずれか記載の接触燃焼式ガスセンサであって、
    前記第1の測温素子は、複数の熱電対を直列接続した第1のサーモパイルの温接点であり、
    前記第2の測温素子は、複数の熱電対を直列接続した第2のサーモパイルの温接点であり、
    前記第1のサーモパイルを構成する温接点は、冷接点よりも前記ガス反応膜に近い位置に配置され、
    前記第2のサーモパイルを構成する温接点は、冷接点よりも前記第2のヒータに近い位置に配置されている、
    接触燃焼式ガスセンサ。
  6. 請求項5記載の接触燃焼式ガスセンサであって、
    前記第1および第2のサーモパイルを構成する熱電対は、互いに異なる材料で形成された第1と第2の熱電素子を有しており、
    前記第1および第2のサーモパイルを構成する熱電対のうち、前記直列接続の末端に位置する前記第1の熱電素子がフロート状態で接続されている、
    接触燃焼式ガスセンサ。
  7. 請求項1ないし6のいずれか記載の接触燃焼式ガスセンサであって、
    前記補償部は、さらに、前記可燃性ガスの燃焼触媒を担持していない担体を含む参照膜を有しており、
    前記参照膜は、前記第2のヒータ上の前記第2の測温素子の近傍を含む領域に形成されている、
    接触燃焼式ガスセンサ。
JP2014187770A 2014-09-16 2014-09-16 接触燃焼式ガスセンサ Active JP6467172B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187770A JP6467172B2 (ja) 2014-09-16 2014-09-16 接触燃焼式ガスセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187770A JP6467172B2 (ja) 2014-09-16 2014-09-16 接触燃焼式ガスセンサ

Publications (2)

Publication Number Publication Date
JP2016061592A true JP2016061592A (ja) 2016-04-25
JP6467172B2 JP6467172B2 (ja) 2019-02-06

Family

ID=55797492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187770A Active JP6467172B2 (ja) 2014-09-16 2014-09-16 接触燃焼式ガスセンサ

Country Status (1)

Country Link
JP (1) JP6467172B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065269A1 (en) 2018-09-26 2020-04-02 Ams Sensors Uk Limited Gas sensors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7350290B2 (ja) 2019-06-28 2023-09-26 ヤマハファインテック株式会社 ガス濃度検出方法、ガス濃度検出装置、及びガス生成システム

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151893A (ja) * 1997-08-07 1999-02-26 Yazaki Corp 接触燃焼式ガスセンサ
JP2000009671A (ja) * 1998-06-26 2000-01-14 Yazaki Corp ガスセンサ
JP2000171422A (ja) * 1998-12-04 2000-06-23 Fujikin Inc ガス検出センサー
JP2001099801A (ja) * 1999-09-29 2001-04-13 Yazaki Corp 接触燃焼式ガスセンサ
JP2001201397A (ja) * 2001-04-10 2001-07-27 Hamamatsu Photonics Kk 赤外線センサ
JP2005502480A (ja) * 2001-07-31 2005-01-27 エヌシーエスアール“デモクリトス”−インスティテュート オブ マイクロエレクトロニクス 掛架した多孔質シリコンの微小構造の製造方法、及びガスセンサへの適用
KR20060021982A (ko) * 2004-09-06 2006-03-09 재단법인 포항산업과학연구원 써모파일 적외선 센서
JP2007248458A (ja) * 2006-02-15 2007-09-27 Ngk Spark Plug Co Ltd 接触燃焼式ガス検出装置
JP2008241554A (ja) * 2007-03-28 2008-10-09 Horiba Ltd 可燃性ガスセンサ
WO2008123092A1 (ja) * 2007-03-28 2008-10-16 Horiba, Ltd. 可燃性ガスセンサ
JP2008298665A (ja) * 2007-06-01 2008-12-11 Mitsubishi Electric Corp 赤外線センサ及び赤外線検出装置
JP2009294138A (ja) * 2008-06-06 2009-12-17 Horiba Ltd インライン型可燃性ガスセンサ
JP2010256172A (ja) * 2009-04-24 2010-11-11 Yazaki Corp ガス検出装置及びガス検出装置の温度補正方法
JP2011027699A (ja) * 2009-06-25 2011-02-10 Panasonic Electric Works Co Ltd 赤外線式ガス検知器および赤外線式ガス計測装置
JP2012058067A (ja) * 2010-09-08 2012-03-22 Tateyama Kagaku Kogyo Kk 接触燃焼式ガスセンサの制御回路

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151893A (ja) * 1997-08-07 1999-02-26 Yazaki Corp 接触燃焼式ガスセンサ
JP2000009671A (ja) * 1998-06-26 2000-01-14 Yazaki Corp ガスセンサ
JP2000171422A (ja) * 1998-12-04 2000-06-23 Fujikin Inc ガス検出センサー
JP2001099801A (ja) * 1999-09-29 2001-04-13 Yazaki Corp 接触燃焼式ガスセンサ
JP2001201397A (ja) * 2001-04-10 2001-07-27 Hamamatsu Photonics Kk 赤外線センサ
JP2005502480A (ja) * 2001-07-31 2005-01-27 エヌシーエスアール“デモクリトス”−インスティテュート オブ マイクロエレクトロニクス 掛架した多孔質シリコンの微小構造の製造方法、及びガスセンサへの適用
KR20060021982A (ko) * 2004-09-06 2006-03-09 재단법인 포항산업과학연구원 써모파일 적외선 센서
JP2007248458A (ja) * 2006-02-15 2007-09-27 Ngk Spark Plug Co Ltd 接触燃焼式ガス検出装置
JP2008241554A (ja) * 2007-03-28 2008-10-09 Horiba Ltd 可燃性ガスセンサ
WO2008123092A1 (ja) * 2007-03-28 2008-10-16 Horiba, Ltd. 可燃性ガスセンサ
JP2008298665A (ja) * 2007-06-01 2008-12-11 Mitsubishi Electric Corp 赤外線センサ及び赤外線検出装置
JP2009294138A (ja) * 2008-06-06 2009-12-17 Horiba Ltd インライン型可燃性ガスセンサ
JP2010256172A (ja) * 2009-04-24 2010-11-11 Yazaki Corp ガス検出装置及びガス検出装置の温度補正方法
JP2011027699A (ja) * 2009-06-25 2011-02-10 Panasonic Electric Works Co Ltd 赤外線式ガス検知器および赤外線式ガス計測装置
JP2012058067A (ja) * 2010-09-08 2012-03-22 Tateyama Kagaku Kogyo Kk 接触燃焼式ガスセンサの制御回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065269A1 (en) 2018-09-26 2020-04-02 Ams Sensors Uk Limited Gas sensors

Also Published As

Publication number Publication date
JP6467172B2 (ja) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6467173B2 (ja) 接触燃焼式ガスセンサ
JP5210491B2 (ja) 熱式流量センサ
US7255001B1 (en) Thermal fluid flow sensor and method of forming same technical field
JP3364115B2 (ja) 感熱式流量検出素子
US20100078753A1 (en) Flow Sensor and Method of Fabrication
US20080304544A1 (en) Vacuum Sensor
US7117736B2 (en) Flow sensor
JP2006258520A (ja) 電子体温計用プローブ
US20040040592A1 (en) Heat sink for silicon thermopile
JP6467172B2 (ja) 接触燃焼式ガスセンサ
JP2015064305A (ja) 熱型センサとこれを用いた熱計測モジュール
WO2016132934A1 (ja) 接触燃焼式ガスセンサ
WO2016132935A1 (ja) 接触燃焼式ガスセンサ
JP2016109527A (ja) 接触燃焼式ガスセンサ
JP2022139173A (ja) フローセンサチップ
JP2014048138A (ja) 感光性ドライフイルムレジストを用いた多重層薄膜サーモパイルとこれを用いた放射温度計およびその多重層薄膜サーモパイルの製造方法
JP2016151473A (ja) 熱型センサ
JP6769720B2 (ja) ガスセンサ
JP6685789B2 (ja) ガスセンサ
JP2008089475A (ja) 温度差出力回路および温度差出力方法
JP5319744B2 (ja) 熱式流量センサ
US12085456B2 (en) Assessing the measurement quality of the sensor element for measuring an object temperature
JP5949573B2 (ja) 物理量センサの製造方法
JP6467254B2 (ja) 赤外線センサ
JP2002156279A (ja) サーモパイル型赤外線センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190111

R150 Certificate of patent or registration of utility model

Ref document number: 6467172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532