JP2016012115A - 現像装置、画像形成装置およびプロセスカートリッジ - Google Patents

現像装置、画像形成装置およびプロセスカートリッジ Download PDF

Info

Publication number
JP2016012115A
JP2016012115A JP2014247834A JP2014247834A JP2016012115A JP 2016012115 A JP2016012115 A JP 2016012115A JP 2014247834 A JP2014247834 A JP 2014247834A JP 2014247834 A JP2014247834 A JP 2014247834A JP 2016012115 A JP2016012115 A JP 2016012115A
Authority
JP
Japan
Prior art keywords
toner
developer
developing device
correction value
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014247834A
Other languages
English (en)
Other versions
JP2016012115A5 (ja
Inventor
一矢 斎藤
Kazuya Saito
一矢 斎藤
博臣 田村
Hiroomi Tamura
博臣 田村
哲人 上田
Tetsuhito Ueda
哲人 上田
翔 関口
Sho Sekiguchi
翔 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014247834A priority Critical patent/JP2016012115A/ja
Priority to US14/719,649 priority patent/US9709919B2/en
Publication of JP2016012115A publication Critical patent/JP2016012115A/ja
Publication of JP2016012115A5 publication Critical patent/JP2016012115A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0848Arrangements for testing or measuring developer properties or quality, e.g. charge, size, flowability
    • G03G15/0849Detection or control means for the developer concentration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/20Humidity or temperature control also ozone evacuation; Internal apparatus environment control
    • G03G21/203Humidity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】精度よくケーシング内の現像剤のトナー濃度を検知することができ、ケーシング内の現像剤のトナー濃度を規定の濃度に維持することができる現像装置、並びにこの現像装置を備えたプロセスカートリッジ及び画像形成装置を提供する。
【解決手段】嵩密度変動推定手段としての制御部は、現在の現像剤が規定のトナー濃度であるとすればとるであろう嵩密度の新品の現像剤の嵩密度に対する嵩密度変動量を推定する。そして、補正手段としての制御部は、嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検出手段の出力値を補正する。
【選択図】図12

Description

本発明は、現像装置、画像形成装置およびプロセスカートリッジに関するものである。
従来から、潜像担持体上に形成した潜像を現像装置で顕像化する現像装置として、現像剤としてトナーと磁性キャリアとからなる二成分現像剤を用いる現像装置が知られている。この現像装置では、ケーシング内に収容する二成分現像剤を現像剤担持体に供給し、現像剤担持体が潜像担持体に対向する現像領域で現像剤担持体の表面上の二成分現像剤中のトナーを潜像剤担持体上の潜像に供給し、潜像を可視像化している。
二成分現像剤を用いる現像装置では、ケーシング内の現像剤中のトナーが現像により消費されるため、トナー補給装置によりトナーが補給される。現像装置の現像能力を維持するには、現像に供される現像剤中の磁性キャリアに対するトナーの混合比率[wt%](以下、トナー濃度という。)が所定の範囲内になるようにトナー補給装置からのトナー補給を適切に制御する必要がある。現像剤のトナー濃度を検出するトナー濃度センサとしては、現像剤の透磁率がトナー濃度によって異なることを利用してトナー濃度を検出するものが知られている(例えば:特許文献1)。現像剤の透磁率変化を利用したトナー濃度センサの出力は、トナー濃度が低ければセンサ近傍のキャリアの量が増加して透磁率が高くなり、センサ出力値が上昇する。逆に、トナー濃度が高ければセンサ近傍のキャリアの量が減少して透磁率が低くなり、センサ出力値が下降する。このセンサ出力値およびセンサ出力値とトナー濃度との関係を示す出力特性から、トナー濃度を検知する。
また、特許文献1には、標準の攪拌速度以外のとき、標準の攪拌速度のときの出力特性(トナー濃度センサの出力値とトナー濃度との関係)となるように、センサの出力値を補正している。
現像剤の嵩密度は、キャリアの帯電量により変動する。キャリアの帯電量が低いとキャリア同士の静電的な反発力が低下するため、現像剤が締まって嵩密度が高くなる。一方、キャリアの帯電量が高いと、キャリア同士の静電的な反発力が増加するため、現像剤が嵩密度が低くなる。キャリアの帯電量は、例えば、湿度により変動する。湿度が低いほど、キャリアが帯電しやすくなり、キャリアの帯電量が高くなるのである。
上記特許文献1では、標準の攪拌速度のときの出力特性は、不変なものとして扱っており、予め決められた1つの出力特性を用いている。しかし、湿度などによりキャリアの帯電しやすさが異なるため、標準の攪拌速度において、同じトナー濃度でも湿度などの条件で嵩密度が異なってしまう。すなわち、攪拌速度が標準のときの出力特性は、湿度などによって異なるのである。よって、特許文献1では、環境などの条件によっては、予め決められた一つの出力特性と、センサの出力値とを用いて、把握した標準の攪拌速度のときのトナー濃度が、実際のトナー濃度とは異なってしまう。よって、特許文献1では、環境などによって、攪拌速度が標準のときに正確なトナー濃度を検知できない。その結果、ケーシング内の現像剤中のトナー濃度を規定のトナー濃度に制御できなくなり、画像濃度不良が生じるおそれがある。
本発明は以上の問題点に鑑みなされたものであり、その目的は、次の通りである。すなわち、精度よくケーシング内の現像剤のトナー濃度を検知することができ、ケーシング内の現像剤のトナー濃度を規定の濃度に維持することができる現像装置、並びにこの現像装置を備えたプロセスカートリッジ及び画像形成装置を提供することである。
上記目的を達成するために、請求項1の発明は、トナーとキャリアとを含む二成分現像剤を内部に収容したケーシングと、該二成分現像剤を表面に担持して表面移動し、潜像担持体に対向する現像領域まで該二成分現像剤を搬送する現像剤担持体と、該ケーシング内の該二成分現像剤のトナー濃度に応じた出力値を出力するトナー濃度検知センサを有し、該トナー濃度検知センサの出力値、および、トナー濃度と上記出力値とを関係づけた出力特性に基づいて、トナー濃度を検出するトナー濃度検出手段とを備える現像装置であって、上記ケーシング内の新品の現像剤についてのトナー濃度検知センサの出力値と、新品の現像剤の予め決められた規定のトナー濃度とに基づいて、上記出力特性を取得する取得手段と、現在の現像剤が上記規定のトナー濃度であるとすればとるであろう嵩密度の上記新品の現像剤の嵩密度に対する嵩密度変動量を推定する嵩密度変動推定手段と、上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検出手段の出力値を補正する補正手段とを備えたことを特徴とするものである。
本発明によれば、精度よくケーシング内の現像剤のトナー濃度を検知することができ、ケーシング内の現像剤のトナー濃度を規定の濃度に維持することができる。
画像形成装置の概略を示す図。 (a)は、プロセスカートリッジの斜視図。(b)は、プロセスカートリッジの断面図。 クリーニング装置で回収したトナーの搬送について説明する説明図。 現像装置の外観を示す斜視図。 現像装置の現像剤収容部内が視認できるように上部ケーシングと現像ローラとを取り外した状態の斜視図。 現像装置内の現像剤の循環経路を模式的に示す図。 トナー濃度センサの斜視図。 トナー濃度センサの内部構成について説明するブロック図。 現像装置へのトナー濃度センサの取り付け態様を示す図。 本プリンタの電気回路の一部を示すブロック図。 トナー濃度とトナー濃度センサの出力値との関係を示す図。 初期剤の現像剤嵩密度に対する嵩密度変動量「Δ嵩」を算出して、トナー濃度センサの出力値Vtを補正する補正値を算出するまでの制御フロー図。 補正値ΔVt(嵩)算出処理の制御フロー図。 補正値算出判定フロー図。
図1は本発明の一実施形態に係る画像形成装置の概略を示す図である。
画像形成装置たる複写機の装置本体100の上部には、画像読取装置200が取り付けられている。
装置本体100の内部には、プロセスカートリッジ1が設けられている。
図2(a)は、プロセスカートリッジの斜視図であり、図2(b)は、プロセスカートリッジの断面図である。
図2(b)に示すように、プロセスカートリッジ1は、潜像担持体たる感光体10と、感光体10の周囲に配置され、感光体10に作用するプロセス手段としての帯電装置11、現像装置12およびクリーニング装置14などを備えている。プロセスカートリッジ1は、装置本体100に着脱可能に装着されている。感光体10、帯電装置11、現像装置12及びクリーニング装置14がプロセスカートリッジ1としてユニット化されることにより、交換やメンテナンスの作業が容易になる。また、各部材間の位置精度を高精度の維持することができ、形成される画像品質の向上を図ることができる。
帯電手段たる帯電装置11は、帯電バイアスを印加され、感光体10表面に電荷を与えて感光体10を一様帯電する帯電ローラ11aと、帯電ローラ11aの表面に付着したトナーなどの付着物を除去する除去ローラ11bとを備えている。
現像手段たる現像装置12は、現像剤搬送手段としての第一搬送スクリュウ12bが配設された第一剤収容室V1を有している。また、現像剤搬送手段としての第二搬送スクリュウ12c、現像剤担持体としての現像ローラ12a、現像剤規制部材としてのドクターブレード12dなどが配設された第二剤収容室V2も有している。
これら2つの剤収容室V1,V2内には、磁性キャリアとマイナス帯電性のトナーとからなる二成分現像剤である現像剤が内包されている。第一搬送スクリュウ12bは、駆動手段によって回転駆動することで、第一剤収容室V1内の現像剤を図中の手前側へ搬送する。そして、第一搬送スクリュウ12bにより第一剤収容室V1の図中手前側端部まで搬送された現像剤は、第二剤収容室V2に進入する。
第二剤収容室V2内の第二搬送スクリュウ12cは、駆動手段によって回転駆動することで、現像剤を図中の奥側へ搬送する。このようにして現像剤を搬送する第二搬送スクリュウ12cの上方には、現像ローラ12aが第二搬送スクリュウ12cと平行な姿勢で配設されている。この現像ローラ12aは、回転駆動する非磁性スリーブからなる現像スリーブ内に固定配置されたマグネットローラを内包した構成となっている。
第二搬送スクリュウ12cによって搬送される現像剤の一部は、現像ローラ12a内のマグネットローラの発する磁力によって現像ローラ12aの表面に汲み上げられる。そして、現像ローラ12aの表面と所定の間隙を保持するように配設されたドクターブレード12dによってその層厚が規制された後、感光体10と対向する現像領域まで搬送され、感光体10上の静電潜像にトナーを付着させる。この付着により、感光体10上にトナー像が形成される。現像によってトナーを消費した現像剤は、現像ローラ12aの表面移動に伴って第二搬送スクリュウ12c上に戻される。そして、第二搬送スクリュウ12cにより第二剤収容室V2の端部まで搬送された現像剤は、第一剤収容室V1内に戻る。このようにして、現像剤は現像装置内を循環搬送される。
また、現像装置12は、第一剤収容室V1の現像剤のトナー濃度を検知するトナー濃度検知手段たるトナー濃度センサ124を有している。トナー濃度センサ124は、現像剤の透磁率から現像剤のトナー濃度を測定するもので、トナー濃度が低くなると磁性体のキャリアが密集してくるので透磁率は高くなる。このトナー濃度センサ124によって測定された値が、狙いの値(閾値)を超える場合は図1に示すトナー収容器としてのトナーボトル20からトナー補給され、トナー濃度を一定濃度に制御する。狙いの値は、感光体10に形成されたトナーパターンのトナー付着量を光学センサで検知し、その検知結果に基づいて決められる。
このような動作によって、感光体上の基準パターン濃度を一定に保つように制御しているが、トナーボトル20のトナーがなくなった場合は、濃度低下を抑制できなくなる。このような状況においては、所定期間、トナーボトル20からトナーを補給する動作をしたにも係わらず、光学センサによるトナーパターンの検知結果が改善されない。従って、トナーボトル20からトナーを補給する動作をしたにも係わらず、光学センサによるトナーパターンの検知結果が改善されなかった場合は、トナーがなくなった(トナーエンド)と、判断(あるいは推定判断)する。
また、トナーエンドと判断した後、トナーボトル20を交換し、交換したトナーボトル20内のトナーを現像装置12へ供給するトナーエンドのリカバリのときは、以下のような動作を行う。すなわち、補給されたトナーと現像剤を良好に混合させるために、現像ローラ12aや各搬送スクリュウ12b,12cを回転させる。また、このとき、現像ローラ12a上の現像剤に不均一な摺動が生じるのを防ぐために、感光体10も回転させるよう、駆動を付与する。
クリーニング手段たるクリーニング装置14は、感光体10表面に当接して感光体10に付着している転写残トナーを掻き取るクリーニングブレード14aを備えている。また、回収部Wに収容され、クリーニングブレード14aにより回収された回収トナーを搬送するトナー回収コイル14bを備えている。トナー回収コイル14bにより搬送された回収トナーは、後述するトナー搬送装置50により、現像装置12または廃トナーボトル41へ搬送される。
図1に示す転写手段たる転写装置17は、転写ローラ16を備えており、転写ローラ16は、感光体10の周面に押圧されて当接されている。また、転写装置17の上方には、定着手段たる熱定着装置24が設けられている。熱定着装置24は、加熱ローラ25と加圧ローラ26を有する。また、装置本体100には、潜像形成手段たるレーザ書込装置21が備えられている。レーザ書込装置21には、レーザ光源、走査用の回転多面鏡、ポリゴンモータ、fθレンズなどを備えている。また、装置本体は、転写紙、OHPフィルムなどのシートSを収納するシートカセット22が多段に備えられている。
以上のような構成の装置を用いてコピーするとき、ユーザーがスタートスイッチを押す。すると、まず、画像読取装置200にセットされた原稿内容を読み取る。また、このとき同時に、感光体駆動モータで感光体10を回転し、帯電ローラ11aを用いた帯電装置11で感光体10の表面を一様に帯電する。次いで画像読取装置200によって読み取った原稿内容に応じてレーザ光を照射してレーザ書込装置21を用いて書き込み工程を実行する。そして、感光体10の表面に静電潜像を形成した後、現像装置12を用いてトナーを付着させて静電潜像を可視像化(現像)する。
また、スタートスイッチをユーザーが押すと同時に、多段のシートカセット22から選択されたシートSを呼出ローラ27により送り出す。次いで、供給ローラ28と分離ローラ29で1枚ずつ分離して供給路R1に送る。供給路R1に送られたシートSは、シート搬送ローラ30で搬送されて、レジストローラ23に突き当てて止められる。そして、感光体10の可視像化したトナー画像と回転タイミングを合わせて、転写ローラ16が感光体10と当接して形成された転写ニップへと送り込まれる。
転写ニップへと送り込まれたシートSは、転写装置17により感光体10上のトナー画像を転写される。画像転写後の感光体10上の残留トナーはクリーニング装置14で除去・清掃され、残留トナーを除去された感光体10上の残留電位は、除電装置で除去される。そして、帯電装置11から始まる次の画像形成に備える。
一方、画像転写された後のシートSは、熱定着装置24に導かれ、加熱ローラ25と加圧ローラ26の間に通されて、これらローラに搬送されながら、熱と圧力を加えられてトナー画像を定着される。画像定着されたシートSは、その後、排紙ローラ31により排紙スタック部32上に排出されてスタックされる。
本実施形態においては、クリーニング装置14で回収したトナーを、現像装置12、或いは廃トナーボトル41(図1参照)のいずれか一方に選択的に搬送している。
図3は、クリーニング装置14で回収したトナーの搬送について説明する説明図である。
図3に示すように、クリーニング装置14で回収された回収トナーは、トナー回収コイル14bにより、トナー搬送装置50の回収トナー搬送路55の回収トナー搬送方向上流端へ搬送される。回収トナー搬送路55のトナー搬送方向下流端には、廃トナーボトル41へ回収トナーを落下させる廃トナー連通路56が接続されている。また、回収トナー搬送路55には、現像装置12へ回収トナーを供給するための回収トナー供給路52が接続されている。また、回収トナー搬送路55と回収トナー供給路52との間を開閉するシャッター部材54が設けられている。
回収トナー搬送路55へ搬送された回収トナーを廃トナーボトル41へ搬送するときは、シャッター部材54が、回収トナー供給路52と回収トナー搬送路55との接続部を閉じている。従って、この場合は、回収トナー搬送路55内の回収トナーは、回収トナー搬送路内の回収トナー搬送コイル53により、回収トナー搬送路55内を下流端まで移動する。そして、廃トナー連通路56内を自由落下して、廃トナーボトル41へ移動する。
一方、回収トナーを再利用する場合は、回収トナー搬送路55と回収トナー供給路52との接続部からシャッター部材54を退避させる。これにより、回収トナー搬送路55内の回収トナーは、回収トナー搬送コイル53により廃トナー連通路56へ向かう途中で、回収トナー供給路52へと落下する。そして、現像装置のトナー補給口12eから現像装置12へ供給される。
次に、現像装置12の構成及び動作について、さらに詳しく説明する。
図4は、現像装置12の外観を示す斜視図である。
図5は、現像装置12の現像剤収容部内が視認できるように上部ケーシングと現像ローラ12aとを取り外した状態の斜視図である。
図6は、現像装置12内の現像剤の循環経路を模式的に示す図である。図6中の破線の矢印が現像剤の流れを示し、図6中の実線の矢印が、トナー補給口12eから補給されるトナーの流れを示している。
現像ケーシング121によって、現像装置12の内部には、現像剤収容部が形成される。現像剤収容部には、第一の剤収容室V1と第二の剤収容室V2とに仕切る仕切壁122を有している。第一の剤収容室V1と、第二の剤収容室V2には、それぞれ、搬送スクリュウ12b,12cが設けられている。第一の剤収容室V1と第二の剤収容室V2とは、仕切壁122の端部の受け渡し開口部122a,122bにより連通している。
搬送スクリュウ12cにより第二の剤収容室V2の下流端まで搬送された現像剤は仕切壁122の端部の受け渡し開口部122aを通過し、第一の剤収容室V1へと移動する。第一の剤収容室V1内の現像剤は、第一搬送スクリュウ12bにより攪拌されながら第二の剤収容室V2内の現像剤とは反対方向に搬送される。そして、第一の剤収容室V1の搬送方向下流側端部に達すると、仕切壁122の端部の受け渡し開口部122bを通過して第二の剤収容室V2へと移動する。このように現像剤は、第一の剤収容室V1と第二の剤収容室V2とにそれぞれ設けた各搬送スクリュウ12b,12cによって、仕切壁122により仕切られた現像剤収容部内を循環している。
また、第一の剤収容室V1の現像剤搬送上流側端部には、補給トナー搬送路123が連結されている。補給トナー搬送路123には、トナー補給口12eが設けられており、このトナー補給口12eから、新品のトナーや、クリーニング装置14で回収された回収トナーが補給される。第一の剤収容室V1に設けられた第一搬送スクリュウ12bは、補給トナー搬送路123まで延設されている。トナー補給口12eから補給されたトナーは、第一搬送スクリュウ12bにより補給トナー搬送路123内を搬送された後、第一の剤収容室V1と補給トナー搬送路123とを連通する連通穴123aを通って第一の剤収容室V1に受け渡される。また、図6中の符号124は、現像剤のトナー濃度を検知する濃度検知センサであり、現像ケーシング121の第一の剤収容室V1の下に設置されている。
図7は、トナー濃度センサ124の斜視図である。
本実施形態では、トナー濃度センサ124として、現像剤の透磁率を検知する透磁率センサを用いている。トナー濃度センサ124は、基板130を有しており、この基板130の図中上面の検知面130aには、平面パターンコイル124aと、パターン抵抗124bとが形成されている。パターン抵抗132は、平面パターンコイル131と直列に接続され、検知面130aにパターニングされている。平面パターンコイル131は平面上に螺旋状に形成された信号線のパターンである。また、パターン抵抗132は、平面上につづら折状に形成された信号のパターンであり、これらのパターンによって現像剤の透磁率を検知する機能が実現される。
図8は、トナー濃度センサ124の内部構成について説明するブロック図である。
図8に示すように、トナー濃度センサ124は、コルピッツ型のLC発振回路を基本とする発振回路であり、上述した平面パターンコイル131、パターン抵抗132の他に、第一コンデンサ133および第二コンデンサ134を有している。また、フィードバック抵抗135、アンバッファIC136、107及び出力端子138を有している。
基板130上に平面状にパターニングされた信号線によって構成される平面パターンコイル131は、コイルによって得られるインダクタンスLを有する。平面パターンコイル131は、コイルが形成された平面に対抗する空間の透磁率によってインダクタンスLの値が変化する。その結果、トナー濃度センサ124は、平面パターンコイル131のコイル面が対向する空間の透磁率に応じた周波数の信号を発振する。
平面パターンコイル131と同様に基板上に形成された信号線のパターンによって構成されたパターン抵抗132は、つづら折り状に形成されたパターンであり、これによって直線状のパターンよりも電流の流れにくい状態を作り出している。図8に示すように、平面パターンコイル131とパターン抵抗132とは直列に接続されている。
第一コンデンサ133及び第二コンデンサ134は、平面パターンコイル131と共にコルピッツ型LC発振回路を構成する容量である。従って、第一コンデンサ133及び第二コンデンサ134は、平面パターンコイル131及びパターン抵抗132と直列に接続される。平面パターンコイル131、パターン抵抗132、第一コンデンサ133及び第二コンデンサ134によって構成されるループによって共振電流ループが構成される。
フィードバック抵抗135は、バイアス電圧を安定化させるために挿入される。アンバッファIC136及びアンバッファIC137の機能により、共振電流ループの一部の電位の変動が、共振周波数に応じた矩形波として出力端子138から出力される。このような構成により、トナー濃度センサ124は、インダクタンスL、抵抗値RP、第一コンデンサ133及び第二コンデンサ134の静電容量Cに応じた周波数で発振する。
そして、インダクタンスLは、平面パターンコイル131の近傍における磁性体の存在やその濃度によっても変化する。従って、トナー濃度センサ124の発振周波数により、平面パターンコイル131近傍の空間における透磁率を判断することが可能となる。
なお、本実施形態では、透磁率に応じた周波数の信号を発振するトナー濃度センサを用いているが、透磁率に応じた電圧を出力するトナー濃度センサを用いてもよい。
図9は、現像装置12へのトナー濃度センサ124の取り付け態様を示す図である。
図9に示すように、現像ケーシング121の外周面には、トナー濃度センサ124が取り付けられるセンサ取り付け部121aが形成されている。センサ取り付け部121aは、第一の剤収容室V1の底壁の外面に形成されている。このセンサ取り付け部121aは、平面状に形成されており、この平面に対してトナー濃度センサ124の基板130の検知面130aを対向させて取り付ける。
図9に示すように、現像ケーシングの外周面は、2つの搬送スクリュウ12b、12cの形状に応じて形成されており、センサ取り付け部121a以外の第一の剤収容室V1の底壁は第一の搬送スクリュー12bの断面形状である円に合わせて弧状に形成されている。そして、センサ取り付け部121aは、平面上に成形されて構成される。そのため、第一の剤収容室V1の底壁のセンサ取り付け部121aの厚みが、他の箇所よりも薄くなっている。これにより、センサ取り付け部121aに取り付けられるトナー濃度センサ124の検知面130aと、第一の剤収容室V1内の現像剤との距離を近づけることができる。その結果、トナー濃度センサ124により、第一の剤収容室V1内の透磁率を好適に検知することが可能となる。
図10は、本プリンタの電気回路の一部を示すブロック図である。同図において、制御手段たる制御部60は、演算手段たるCPU(Central Processing Unit)を有している。また、RAM(Random Access Memory)やROM(Read Only Memory)等の記憶手段も有している。装置全体の制御を司る制御部60には、様々な機器やセンサが接続されているが、同図では、回収トナーの補給制御に用いる主要な機器だけを示している。
制御部60は,RAMやROM内に記憶している制御プログラムに基づいて、各手段の制御を行っている。例えば、制御部60は、所定の制御プログラムに基づいて、画像データから画像面積率を演算し、演算した画像面積率に基づいて、シャッター部材54の開閉を制御している。また、制御部60は、電源投入時や所定枚数画像形成後などの所定のタイミングで、画像濃度制御を実施する。画像濃度制御は、感光体10にトナーパターンを形成し、このトナーパターンのトナー付着量を光学センサで検知する。その検知結果に基づいて、トナー濃度の狙いの値(トナー濃度センサの出力値の目標値)を調整する制御である。また、制御部60は、後述するように、温湿度センサ62の検知結果などに基づいて、トナー濃度センサ124の出力値Vtを補正する。
トナーと磁性キャリアとからなる二成分現像剤を用いる現像装置では、現像ケーシング内の現像剤中のトナーが現像により消費されるため、現像ケーシング内における現像剤のトナーの濃度が変動する。現像ケーシング内部におけるトナーの濃度が変動すると、センサ取り付け部121aに対向する空間における透磁率が変化することとなる。その結果、トナー濃度センサ124の発振周波数が変化し、現像ケーシング内部のトナー濃度を検知することが可能となる。具体的には、制御部60は、トナー濃度センサ124からの発振信号をカウントし、所定時間におけるカウント値から、トナー濃度センサ124の発振周波数を把握し、把握した発振周波数に基づいて、トナー濃度センサ124の出力値Vtを得る。トナー濃度センサ124の出力値Vtを得る式は、以下のとおりである。
Vt=α×[μ(現在値)−μ(初期値)]+Vt(シフト)・・・(式1)
μ(現在値):現在の発振周波数(発振信号カウント値)
μ(初期値):初期剤検知時の発振周波数(発振信号カウント値)
Vt(シフト):初期剤のトナー濃度に対応する出力値
α:変換係数
なお、上記初期剤とは、トナーおよびキャリアが所定の帯電量にまでチャージアップされて、使用可能となった新品の現像剤のことである。
制御部60は、上記式により求めたトナー濃度センサ124の出力値Vtと、予め制御部60のメモリに記憶されているトナー濃度センサの出力値Vtとトナー濃度との関係を示す特性データとに基づいて、現像剤のトナー濃度を把握する。
また、制御部60は、現像装置内の現像剤が交換されたときや、新品の現像剤が収容された現像装置12に交換されたときなどに、トナー濃度センサ124の出力特性の取得を行う。
新品の現像剤に交換されたときや、新品の現像剤が収容された新品の現像装置12に交換されたとき、交換初期動作モードを実行する。この交換初期動作モードは、例えば、サービスマンが操作パネルを操作することで実行される。また、現像装置12に設けられた不揮発性記憶手段たる現像メモリ125に、新品の現像剤が収容されていることを示す情報(例えば、フラグ)を記憶しておく。この現像装置が画像形成装置に装着されたとき、制御部60が、現像メモリ125と通信を行い、新品の現像剤が収容されていることを示す情報があるか否かをチェックする。新品の現像剤が収容されていることを示す情報があった場合は、交換初期動作モードが実行される。
交換初期動作モードが実行されたら、現像装置内の新品の現像剤を所定時間、所定の速度で攪拌搬送して、現像装置内のトナーおよびキャリアを摩擦帯電させ、所定の帯電量にまでチャージアップさせ、現像に使用可能な状態(初期剤)にする。攪拌搬送動作中、制御部60は、μ(初期値)として、トナー濃度センサ124の発振周波数(発振信号カウント値)を取得する。次に、取得したμ(初期値)と、予め内部メモリに記憶されているVt(シフト)と、変換係数αとから、トナー濃度とトナー濃度センサ124の出力値Vtとの関係を、制御部60に記憶されている特性データに合わせる。以上が、トナー濃度センサ124の出力特性の取得である。
しかしながら、同じトナー濃度でも現像ケーシング内の現像剤の嵩密度が変わることにより透磁率が変化して、トナー濃度とトナー濃度センサ124の出力値Vtとの関係が、特性データに合わなくなる。現像剤の嵩密度が高くなると、現像剤を構成するトナーやキャリアの各粒子の間の隙間が狭くなり、現像剤中のキャリアの体積比が大きくなる。その結果、図11に示すように、透磁率が大きくなり、トナー濃度がTc0であってもトナー濃度センサ出力値としては、Vt0よりも大きなVt1となる。そのため、図中実線で示す制御部60に記憶されているトナー濃度とトナー濃度センサ124の出力値Vtとの関係を示す特性データと、トナー濃度センサの出力値Vt1とにより求めたトナー濃度が、実際のトナー濃度Tc0よりもよりも低いTc1となってしまう。この場合、制御部60は、トナー濃度センサの出力値がVt0となるまで、トナー補給装置70を制御し、現像装置12にトナーを補給することにより、現像装置内のトナー濃度が、狙いのトナー濃度よりも高くなってしまう。
一方、現像剤の嵩密度が小さくなると、現像剤を構成するトナーやキャリアの各粒子の間の隙間が広がり、現像剤中のキャリアの体積比が小さくなる。その結果、透磁率が小さく、トナー濃度がTc0で同じであってもトナー濃度センサ出力値としては、Vt0よりも小さなVt2となる。そのため、図中実線で示す制御部60に記憶されているトナー濃度とトナー濃度センサ124の出力値Vtとの関係を示す特性データと、トナー濃度センサの出力値Vt1とにより求めたトナー濃度が、実際のトナー濃度Tc0よりもよりも高いTc2となってしまう。この場合、制御部60は、トナー濃度センサの出力値がVt0となるまで、現像装置12にトナーを補給しないため、現像装置内のトナー濃度が、規定のトナー濃度よりも低くなってしまう。
現像ケーシング内のトナー濃度が、極端に高くなったり、極端に低くなったりしてしまうと、画像品質が低下したり、現像剤中のキャリアが現像されることによる不具合が発生したりする。そのため、トナー濃度の狙いの値には通常上下限が設定されており、狙いの値が、画像品質が低下したり、現像剤中のキャリアが現像されることによる不具合が発生したりする値に設定されないようにしている。
トナー濃度の狙いの値は、上述したように、感光体10に形成されたトナーパターンのトナー付着量を光学センサで検知し、その検知結果に基づいて決められる。このトナー濃度の狙いの値は、トナー濃度センサ124の出力値Vtで設定されている。そして、光学センサで検知した検知結果に基づいて決定されたトナー濃度センサ124の出力値(狙いの値)が、上限値または下限値を超える場合は、トナー濃度センサ124の出力値(狙いの値)を、上限値または下限値に設定する。
しかしながら、現像装置内の嵩密度の変動により、トナー濃度センサ124が正しくトナー濃度を検知できないと、現像ケーシング内のトナー濃度が狙いのトナー濃度に対し高かったり、低くかったりしてしまう。そのため、狙いの値が、例えば、下限値に制御されている(狙いのトナー濃度は上限で制御されている)とき嵩密度が変化し、トナー濃度が上限になっているにもかかわらず、トナー濃度センサの出力値が、下限値に達していない事態が発生するおそれがある。その場合、トナー濃度センサの出力値が、下限値に達するように、さらなるトナー補給が行われてしまい、極端にトナー濃度が高くなり、余白部にトナーが付着してしまうなど、画像品質が著しく低下するおそれがある。
現像剤の嵩密度の変動は、キャリアの帯電量の変動によって変動する。すなわち、キャリアの帯電量が低い場合は、キャリア同士の静電的な反発力が低下するため、現像剤が締まって嵩密度が高くなる。一方、キャリアの帯電量が高い場合は、キャリア同士の静電的な反発力が増加するため、現像剤が嵩密度が低くなる。本出願人の鋭意研究の結果、キャリアの帯電量は、装置内の環境(湿度)、現像剤中の劣化トナーの割合、キャリアの経時劣化によって変化することがわかった。すなわち、嵩密度変化量は、装置内の環境(湿度)、現像剤中の劣化したトナー量、キャリアの経時劣化に基づいて、推定することができることがわかったのである。
湿度が低いほど、キャリアが摩擦帯電しやすくなり、キャリアの帯電量が増加する。また、現像剤中の劣化トナーの割合が少ないほど、キャリアとトナーとが摩擦帯電し、キャリアの帯電量が増加する。また、キャリアが劣化するほど、キャリアが摩擦帯電し難くなり、キャリアの帯電量が減少する。
現像剤中の劣化トナーの割合は、現像ローラまたは搬送スクリュウの単位走行距離当たりの画像面積率から把握することができる。単位走行距離当たりの画像面積率が低いと、トナーの消費が少なく、トナーの入れ換えが少ない。従って、単位走行距離当たりの画像面積率が低い場合は、現像剤中の劣化トナーの割合が多いことがわかる。また、現像剤中の劣化トナーの割合は、例えば、1ページ当たりの画像面積率でも把握可能である。また、現像ローラまたは搬送スクリュウの単位走行距離当たりの画像面積、1ページ当たりの画像面積でも把握可能である。
また、キャリアの経時劣化は、現像ローラ12aや搬送スクリュウ12b,12cの走行距離や、現像装置の総駆動時間などから把握することができる。
本実施形態では、使用初期時の現像剤(初期剤)の嵩密度に対する現在の現像剤の嵩密度変動量「Δ嵩」を、装置内の環境(湿度)、現像剤中の劣化トナーの割合、キャリアの経時劣化に基づいて求める。そして、求めたΔ嵩に基づいて、トナー濃度センサ124の出力値Vtを補正するようにした。
初期剤の嵩密度に対する現在の現像剤の嵩密度変動量「Δ嵩」は、本出願の研究の結果、下記(式2)で求めることができることがわかった。
Δ嵩(ΔAH、R、Co)=f(ΔAH)+g(ΔAH、R、Co)・・(式2)
ΔAH[g/m]:初期剤のときの絶対湿度と現在の絶対湿度との差分
R[km]:初期剤のときから現在までの現像ローラまたは搬送スクリュウの総走行距離
Co[%]:初期剤のときから現在までの画像面積率の累積
現像ローラ12aや各搬送スクリュウの走行距離R[km]は、以下のようにして算出することができる。
R=現像装置の総駆動時間×搬送スクリュウの線速または現像ローラの線速
現像装置の総駆動時間としては、例えば、現像ローラを駆動する駆動モータがONのとき、時間計測を行い、駆動モータがOFFになったら、時間計測をストップすることにより、計測することができる。
上記f(ΔAH)は、研究の結果、一例として下記式が成り立つことが分かった。
f(ΔAH)=γ×ΔAH・・・(式3)
=γ×(現在絶対湿度−初期剤時の絶対湿度)
γ:変換係数
上記式は、あくまで一例であり、使用する現像剤やシステムによっては非線形にしてもよい。
また、g(ΔAH、R、Co)の一実施例としては、下記表1、表2に示すテーブルで算出することができることができる。下記表1は、現在の絶対湿度が15[g/m]未満のときに、上記gを求めるためのテーブルの一例であり、下記表2は、現在の絶対湿度が15[g/m]以上のときに、上記gを求めるためのテーブルの一例である。
Figure 2016012115
Figure 2016012115
表1、表2からわかるように、gは、現在の絶対湿度AHと、現像ローラ12aまたは搬送スクリュウ12b,12cの単位走行距離あたりの画像面積率(R/Co)と、現像ローラ12aまたは搬送スクリュウ12b,12cの走行距離Rとから求める。
以上のようにして、初期剤に対する現像剤嵩密度の変化量「Δ嵩」を算出したら、「Δ嵩」に基づいて、トナー濃度センサ124の発振周波数(発振信号カウント値)の補正量「Δμ」を算出する。「Δμ(嵩)」は、以下の(式4)により算出することができる。
Δμ(嵩)=β×Δ嵩・・・(式4)
β:変換係数
そして、下記(式5)に示すように、上記(式4)で算出した「Δμ(嵩)」に、上記(式1)に示したトナー濃度センサの発振周波数「μ」をトナー濃度センサの出力値「Vt」に変換するための変換係数αを乗算する。これにより、トナー濃度センサの出力値を補正するための補正値「ΔVt(嵩)」を算出することができる。
ΔVt(嵩)=α×Δμ(嵩)・・・(式5)
上記(式1)で示したトナー濃度出力値Vtの算出式に現像剤の嵩密度変動に基づく補正値「ΔVt(嵩)」で補正する式は、下記(式6)のようになる。
Vt=α×(μ(現在値)−μ(初期値))+Vt(シフト)+ΔVt(嵩)・(式6)
以上、現像剤の嵩密度変動量「Δ嵩」に基づいて、トナー濃度センサ124の出力値「Vt」を補正するための補正値「ΔVt(嵩)」を算出し、トナー濃度センサ124の出力値Vtを補正することで、現像剤の嵩密度が変動しても、正しくトナー濃度Tcを検知することが可能となる。
このように、本実施形態においては、制御部60が、ケーシング内に投入された新品の現像剤の現像剤嵩密度に対する嵩密度変動量Δ(嵩)を推定する嵩密度変動推定手段として機能する。また、制御部60は、推定した嵩密度変動量Δ(嵩)に基づいて、トナー濃度センサ124の出力値を補正する補正値ΔVt(嵩)を算出する補正値算出手段としての機能も有する。また、制御部60は、算出した補正値に基づいて、トナー濃度検出手段の出力値を補正する補正手段としての機能も有する。
図12は、初期剤の現像剤嵩密度に対する嵩密度変動量「Δ嵩」を算出して、トナー濃度センサ124の出力値Vtを補正する補正値を算出するまでの制御フロー図である。
制御部60は、交換初期動作モードが実行され、現像装置内の初期剤が所定の帯電量にまでチャージアップしたら、温湿度センサ62で検知した温度[℃]と相対湿度[%RH]とから、絶対湿度[g/m]を求める。そして、求めた絶対湿度[g/m]を内部メモリ61に記憶する(S1のYes,S2)。また、内部メモリ61に記憶されている画像面積率のカウント値と、現像ローラの走行距離とをリセットする(S3)。
次に、所定のタイミングとなったら(S4のYES)、補正値算出フラグを立て、補正値ΔVt(嵩)の算出処理を行う(S5)。上記、所定のタイミング(補正値算出フラグを立てるタイミング)としては、以下のタイミングを挙げることができる。
1.画像形成動作開始前(現像動作開始前)
2.画像濃度制御開始前
3.連続印刷中の所定のタイミング(連続現像動作の所定のタイミング)
4.連続印刷中における一時停止時(連続現像動作中の一時停止)
1.印刷ジョブ開始前について
印刷ジョブ開始前に、補正値ΔVt(嵩)を算出することにより、算出した補正値ΔVt(嵩)に用いて、トナー濃度センサ124の出力値Vtを補正し、補正されたトナー濃度センサ124の出力値Vtに基づいて、現像剤のトナー濃度を調整することができる。これにより、現像剤のトナー濃度が精度よく調整されたうえで、画像形成動作を開始することができる。この場合、例えば、制御部60に画像データが入力されたら、補正値ΔVt(嵩)算出フラグを立てるようにする。
2.画像濃度制御開始前について
画像濃度制御開始前に、補正値ΔVt(嵩)を算出することにより、上述と同様に、現像剤のトナー濃度が精度よく調整されたうえで、画像濃度制御を行うことができる。これにより、精度よく画像濃度制御を行うことができる。この場合は、画像濃度制御を行うタイミングとなったら、補正値ΔVt(嵩)算出フラグを立てるようにする。
3.連続印刷中の所定のタイミングについて
連続印刷中に現像剤の嵩密度が変動する場合がある。従って、連続印刷中の所定のタイミング(例えば、50枚)で、補正値ΔVt(嵩)算出フラグを立てて、補正値ΔVt(嵩)を算出する処理を実行する。これにより、連続印刷中に嵩密度が変動しても、現像剤のトナー濃度を狙いのトナー濃度に維持して連続印刷を行うことができる。これにより、連続印刷で出力された画像濃度の変動を抑制することができる。
また、連続印刷中に補正値ΔVt(嵩)算出する所定のタイミングは、環境(湿度)、連続印刷開始するまでの放置時間やキャリアの劣化状態などに基づいて、変えてもよい。例えば、嵩密度が変動しやすい環境(湿度条件)下の場合は、所定のタイミングを短くして、補正値ΔVt(嵩)算出する頻度を上げることにより、現像剤のトナー濃度を狙いのトナー濃度に維持して連続印刷を行うことができる。本出願人は、鋭意研究の結果、標準的な環境(絶対湿度8[g/m]以上、16[g/m]未満)よりも絶対湿度が高い環境下においては、嵩密度が変動しやすく、標準的な環境よりも絶対湿度が低い環境下においては、嵩密度が変動しにくいことを見出した。
このため、例えば、内部メモリ61などの不揮発性記憶手段に下記表3に示すように、規定のタイミング(例えば、50枚)に乗算する係数ζと、絶対湿度AHとを関連づけたテーブルを記憶しておく。そして、絶対湿度AHと、下記表3のテーブルとに基づいて、補正値ΔVt(嵩)の算出タイミングを変更する。
Figure 2016012115
制御部60は、連続印刷中、温湿度センサ62の値を監視する。温湿度センサ62の温度と相対湿度とから求めた絶対湿度AHが8[g/m]以上、16[g/m]未満を検知しているときは、表3に示すテーブルに基づいて、係数ζ=1を設定する。これにより、絶対湿度AHが8[g/m]以上、16[g/m]未満のときは、連続印刷枚数が、規定のタイミング(例えば、50枚)となったときに、補正値ΔVtを算出する。
一方、求めた絶対湿度AHが8[g/m]未満を検知しているときは、表3に示すテーブルに基づいて、係数ζ=2を設定する。これにより、絶対湿度AHが8[g/m]未満のときは、連続印刷枚数が、規定の枚数(例えば、50枚)に対して2倍(例えば、100枚)の枚数となったときに、補正値ΔVt(嵩)を算出する。
また、求めた絶対湿度AHが16[g/m]以上を検知しているときは、表3に示すテーブルに基づいて、係数ζ=0.5を設定する。これにより、絶対湿度AHが16[g/m]以上のときは、連続印刷枚数が、規定の枚数(例えば、50枚)に対して0.5倍(例えば、25枚)の枚数となったときに、補正値ΔVt(嵩)を算出する。
このように、絶対湿度AHが高いほど、補正値を算出するタイミングを短くして、補正値ΔVt(嵩)算出する頻度を上げることで、現像剤のトナー濃度を狙いのトナー濃度に維持して連続印刷を行うことができる。また、絶対湿度AHが低いときは、補正値を算出するタイミングを長くすることにより、演算メモリの負荷を低減することができる。
また、連続印刷開始前の放置時間によって、連続印刷時の嵩密度の変わりやすさが異なる。放置時間が短いときは、連続印刷開始時においてキャリアが十分に帯電しており、連続印刷中でもキャリアの帯電量があまり変化せず、嵩密度の変化も少ない。一方、放置時間が長いと、連続印刷開始時のキャリアの帯電量は低く、連続印刷中にキャリアの帯電量が上がっていくため、現像剤の嵩密度の変動が大きい。
このため、例えば、内部メモリ61などの不揮発性記憶手段に下記表4に示すように、補正値ΔVtを算出する規定の枚数(例えば、50枚)に乗算する係数ηと、放置時間Tとを関連づけたテーブルを記憶しておく。そして、放置時間Tと、下記表3のテーブルとに基づいて、補正値ΔVt(嵩)の算出タイミングを変更する。
Figure 2016012115
制御部60は、画像形成動作が終了したら、タイマーをスタートさせる。次に、連続印刷動作が開始されたら、タイマーをストップし、放置時間Tを検知する。放置時間Tが、1時間未満のときは、連続印刷開始時から十分にキャリアが帯電しており、連続印刷動作中に嵩密度の変動が少ない。従って、このときは、表4に示すテーブルに基づいて、係数η=2が設定される。これにより、放置時間が1時間未満のときは、連続印刷枚数が、規定の枚数に対して2倍(例えば、100枚)の枚数となったタイミングで、補正値ΔVt(嵩)を算出する。
また、放置時間Tが、1時間以上4時間未満のときは、表4に示すテーブルに基づいて、係数η=1が設定される。これにより、放置時間Tが、1時間以上4時間未満のときは、連続印刷枚数が、規定の枚数(例えば、50枚)となったときに、補正値ΔVtを算出する。
また、放置時間Tが、4時間以上のときは、表4に示すテーブルに基づいて、係数η=0.5が設定される。これにより、放置時間Tが、4時間以上のときは、連続印刷枚数が、規定の枚数(例えば、50枚)に対して0.5倍(例えば、25枚)の枚数となったときに、補正値ΔVt(嵩)を算出する。
このように、放置時間Tが長いほど、補正値ΔVt(嵩)を算出するタイミングを短くして、補正値ΔVt(嵩)を算出する頻度を上げることで、現像剤のトナー濃度を狙いのトナー濃度に維持して連続印刷を行うことができる。また、放置時間Tが短いときは、補正値ΔVt(嵩)を算出するタイミングを長くすることにより、演算メモリの負荷を低減することができる。
また、キャリアの劣化状態により、キャリアの帯電しやすが異なるため、連続印刷中の嵩密度の変わりやすさも異なってくる。キャリアの劣化が進むと、現像剤の嵩密度が変動しやすい。キャリアの劣化状態は、現像装置の総駆動時間や、現像ローラ12aや各搬送スクリュウの走行距離などにより把握することができる。本実施形態では、現像ローラ12aや各搬送スクリュウの走行距離R[km]に基づいて、キャリアの劣化状態を把握する。
上述と同様、この場合も、内部メモリ61などの不揮発性記憶手段に下記表5に示すように、予め決められた補正値ΔVtを算出する規定の枚数(例えば、50枚)に乗算する係数θと、走行距離R[km]とを関連づけたテーブルを記憶しておく。そして、走行距離Rと、下記表5のテーブルとに基づいて、補正値ΔVt(嵩)の算出タイミングを変更する。走行距離Rは、上述したように、R=現像装置の総駆動時間×搬送スクリュウ12b,12cの線速または現像ローラ12aの線速で求めることができる。
Figure 2016012115
制御部60は、現像装置内の現像剤が、初期剤のとき、走行距離R、現像装置の総駆動時間をリセットして、0から現像装置12の総駆動時間を計測する。現像装置12の総駆動時間としては、上述したように、現像ローラ12aを駆動する駆動モータがONのとき、時間計測を行い、駆動モータがOFFになったら、時間計測をストップすることにより、計測することができる。この計測した現像装置12の総駆動時間と、予め内部メモリ61などの不揮発性記憶手段に記憶されている搬送スクリュウの線速または現像ローラ12aの線速とから、走行距離Rを把握する。次に、把握した走行距離Rが、20[km]未満のときは、キャリアが、新品の状態であり、連続印刷中の嵩密度の変動が少ない。よって、このときは、表4に示すテーブルに基づいて、係数θ=2が設定される。これにより、走行距離Rが20[km]未満のときは、連続印刷枚数が規定の枚数(例えば、50枚)に対して2倍(例えば、100枚)の枚数となったタイミングで、補正値ΔVt(嵩)を算出する。
また、走行距離Rが、20[km]以上、50[km]未満のときは、表5に示すテーブルに基づいて、係数θ=1が設定される。これにより、走行距離Rが、20[km]以上、50[km]未満のときは、連続印刷枚数が、規定の枚数(例えば、50枚)となったときに、補正値ΔVtを算出する。
また、走行距離Rが、50[km]以上のときは、表5に示すテーブルに基づいて、係数η=0.5が設定される。これにより、走行距離Rが50[km]を越えることは、連続印刷枚数が、規定枚数(例えば、50枚)に対して0.5倍(例えば、25枚)の枚数となったときに、補正値ΔVt(嵩)を算出する。
このように、走行距離Rが長くなるほど、補正値ΔVt(嵩)を算出するタイミングを短くして、補正値ΔVt(嵩)算出する頻度を上げることで、現像剤のトナー濃度を狙いのトナー濃度に維持して連続印刷を行うことができる。また、走行距離Rが短いときは、補正値ΔVt(嵩)を算出するタイミングを長くすることにより、演算メモリの負荷を低減することができる。
また、絶対湿度AH,放置時間Tおよび走行距離R全ての要素に基づいて、連続印刷時の補正値ΔVt(嵩)の算出タイミングを変更してもよい。この場合は、補正値算出タイミングは、以下のように式となる。
補正値算出タイミング=規定枚数×ζ×η×θ
ζ:絶対湿度AHに基づく補正係数
η:放置時間Tに基づく補正係数
θ:現像ローラ12aまたは搬送スクリュウ12b,12cの走行距離Rに基づく補正係数
各補正係数ζ、η、θは、上記表3、表4、表5に示したようなテーブルを用いて求めることができる。テーブルは、上記表3、表4、表5に示したテーブルを用いてもよいし、上記表3、表4、表5に示したテーブルとは、区分けや、各区分けに対応する係数の値を異ならせてもよい。
4.連続印刷中における画像形成動作一時停止時について
連続印刷中における画像形成動作一時停止時に補正値算出フラグを立てて、補正値算出処理を実行してもよい。画像形成動作一時停止時は、画像形成動作中に比べて、制御部60の演算メモリの負荷が低い。従って、連続印刷中における画像形成動作一時停止時のタイミングで補正値ΔVt(嵩)を算出することで、画像形成動作中に補正値ΔVt(嵩)を算出する場合に比べて、演算負荷を低減することができる。なお、連続印刷中における画像形成動作一時停止時としては、例えば、用紙詰まり、トナーエンド、サービスマンコールエラー発生時、機内温度を下げるための装置停止時などである。
図13は、補正値ΔVt(嵩)算出処理の制御フロー図である。
図13に示すように、制御部60は、補正値算出フラグが立っているか否かをチェック(S11)し、補正値算出フラグが立っている場合(S11のYES)は、制御部60は、内部メモリ61から情報を取得する(S12)。内部メモリ61から取得する情報は、
(1)現像ローラ12aまたは搬送スクリュ12b,12cの初期剤から現像までの走行距離R[km]
(2)初期剤から現像までの累計画像面積率Co
(3)初期剤時の絶対湿度AH
である。
次に、制御部60は、温湿度センサ62が検知した温度と相対湿度とから現在の絶対湿度AHを求める(S13)。次に、制御部60は、先の(式2)で示したf(ΔAH)と、g(ΔAH、R、Co)とをそれぞれ算出する(S14−1),(S14−2)。f(ΔAH)の算出は、取得した現在の絶対湿度AHと、初期剤時の絶対湿度AHと、内部メモリ61に記憶されている変換係数γとを用いて、先の(式3)に基づき算出する。また、g(ΔAH、R、Co)は、まず、取得した現在の絶対湿度AHから、上記した表1に示したテーブルを用いるか、表2に示したテーブルを用いるかを選択する。具体的には、現在の絶対湿度が15[g/m]未満のときは、表1に示したテーブルを選択し、現在の絶対湿度が15[g/m]以上のときは、表1に示したテーブルを選択する。次に、制御部60は、累計画像面積率Coを、現像ローラ12aまたは搬送スクリュ12b,12cの初期剤から現在までの走行距離Rで除算して、単位走行距離当たりの画像面積率(Co/R)を求める。そして、選択したテーブルと、求めた単位走行距離当たりの画像面積率(Co/R)と、現像ローラ12aまたは搬送スクリュ12b,12cの初期剤から現像までの走行距離Rとから、g(ΔAH、R、Co)を求める。
次に、算出したf(ΔAH)とg(ΔAH、R、Co)とを加算して、嵩密度変動量Δ嵩を求める(S15)。次に、制御部60は、求めた嵩密度変動量Δ嵩に内部メモリ61から読み出した変換係数βを乗算して、トナー濃度センサ124の発振周波数(発振信号カウント値)の補正量Δμ(嵩)を求める。次に、制御部60は、求めた発振周波数(発振信号カウント値)の補正量Δμ(嵩)に内部メモリ61から読み出した変換係数αを乗算して、補正値ΔVt(嵩)を算出する(S16)。そして内部メモリ61に記憶されている補正値ΔVt(嵩)を、算出した補正値ΔVt(嵩)に更新する。
上述では、現像剤中の劣化トナーの割合を示す情報として、単位走行距離当たりの画像面積率(Co/R)を用いているが、単位走行距離当たりの画像面積を用いてもよい。画像面積率は、用紙に対する画像面積率であるので、同じ画像面積率であっても、用紙サイズによりトナー消費量が異なる。単位走行距離当たりの画像面積を用いることにより、トナー消費量を正しく検知することができ、現像剤中の劣化トナーの割合を精度よく把握することができる。この場合は、内部メモリ61に初期剤からの画像面積の累計値を記憶する。そして、g(ΔAH、R、Co)を算出する際に、画像面積の累計値を現像ローラまたは搬送スクリュウの走行距離Rで除算することにより、単位走行距離当たりの画像面積を求める。
また、画像の線画部は、ベタ部よりもトナー付着量が多く、一般的に、ベタ部よりも1.4〜2倍、線画部のトナー付着量が多くなる。従って、画像における線画部とベタ部との比を考慮に入れた画像面積または画像面積率の累積して、単位走行距離当たりの画像面積(率)(Co/R)の算出に用いてもよい。具体的には、以下の式となる。
Co’=X×{(A/(A+B))×1+(B/(A+B))×ε}
X:画像面積または画像面積率
A:ベタ部の割合
B:線画部の割合
ε:線画部のベタ画像に対するトナー付着量の比(1.4〜2.0)
この線画部とベタ部との比を考慮にいれた画像面積または画像面積率を累積して、単位走行距離当たりの画像面積(率)(Co’/R)の算出に用いることで、よりトナー消費量を正しく検知することができる。これにより、現像剤中の劣化トナーの割合をより精度よく把握することができる。
また、上述では、画像形成動作開始前(現像動作開始前)毎に補正値ΔVt(嵩)を算出しているが、前回の補正値ΔVt(嵩)算出時のときと、現像剤の嵩密度がほぼ同じであれば、補正値ΔVtを算出しなくてもよい。前回の補正値ΔVt(嵩)算出時と、今回補正値ΔVt(嵩)算出時の現像剤嵩密度が同じであるかは、補正値算出時のキャリア帯電量による。補正値算出時のキャリア帯電量は、(1)前回の画像形成動作終了後のキャリア帯電量、(2)放置期間におけるキャリア帯電量の減少量から求めることができる。
(1)前回の画像形成動作終了(現像動作終了)後のキャリア帯電量は、前回の画像形成動作における連続画像形成枚数や前回の画像形成動作終了直前の画像面積率から把握することができる。画像形成動作の連続画像形成枚数が、1枚のときと、100枚のときとでは、100枚の方が、現像剤の攪拌時間が長いため、画像形成動作終了後のキャリアの帯電量が高くなる。従って、放置期間におけるキャリア帯電量の減少量が同じ場合、前回の連続画像形成枚数が、100枚のときの方が、キャリア帯電量が高くなる。その結果、連続画像形成枚数が多い場合、前回の補正値ΔVt(嵩)算出時のときに比べて、今回の補正値ΔVt(嵩)算出時のキャリア帯電量が高いおそれがある。よって、連続画像形成枚数が多い場合には、補正値算出フラグを立てて、補正値ΔVt(嵩)を算出する。
また、前回の画像形成動作終了直前の画像面積率が高くなるほど、トナー消費量が多く、帯電能力が高い新しいトナーが補給されるので、画像形成動作終了後のキャリア帯電量が高くなる。そのため、前回の画像形成動作終了直前の画像面積率が高い場合、前回の補正値ΔVt(嵩)算出時のときに比べて、今回の補正値ΔVt(嵩)算出時のキャリア帯電量が高いおそれがある。よって、前回の画像形成動作終了直前の画像面積率が高い場合は、補正値算出フラグを立てて、補正値ΔVt(嵩)を算出する。
(2)放置期間におけるキャリア帯電量の減少量は、放置時間、放置期間における温度、放置期間における湿度により把握することができる。放置時間が長くなればなるほど、キャリアの帯電量の減少量が多くなる。そのため、放置時間が長い場合、前回の補正値ΔVt(嵩)算出時のときに比べて、今回の補正値ΔVt(嵩)算出時のキャリア帯電量が低いおそれがある。よって、放置時間が長い場合は、補正値算出フラグを立てて、補正値ΔVt(嵩)を算出する。
また、放置期間の温度や湿度が、高いほど放電しやすいため、キャリアの帯電量の減少量が多くなる。そのため、放置期間の温度や湿度が高い場合、前回の補正値ΔVt(嵩)算出時のときに比べて、今回の補正値ΔVt(嵩)算出時のキャリア帯電量が低いおそれがある。よって、放置期間の温度や湿度が高い場合、補正値算出フラグを立てて、補正値ΔVt(嵩)を算出する。
図14は、補正値算出判定フロー図である。
図14におけるNuは、前回の画像形成動作における連続画像形成枚数であり、Naは、前回の画像形成動作終了直前の画像面積率である。また、Lhは、放置時間(hour)であり、Ltは、放置期間における温度(℃)であり、Lahは、放置期間における湿度(g/m)である。
図14に示すように、補正値算出のタイミングとなったら(S21のYes)、補正値算出フラグを立てるか否かの判定を行う。具体的には、前回の画像形成動作における連続画像形成枚数Nu、前回の画像形成動作終了直前の画像の画像面積率Nar、放置時間Lh、放置期間の温度Lt、放置期間の湿度Lahのいずれかひとつでも閾値を越えたとき(S22〜S26のいずれか一つがYes)は、前回の補正値算出時に対して、キャリア帯電量が異なる場合がある。従って、このときは、補正値算出フラグを立てる(S28)。一方、前回の画像形成動作における連続画像形成枚数Nu、前回の画像形成動作終了直前の画像の画像面積率Nar、放置時間Lh、放置期間の温度Lt、放置期間の湿度Lahの全てが閾値未満(S22〜S26のいずれもNo)のときは、前回の補正値算出時とキャリア帯電量がほぼ同じである。従って、このときは、補正値算出フラグを立てない(S27)。
そして、補正値算出フラグがある場合(S29のYes)は、先の図13に示した補正値算出処理を実施する(S31)。一方、補正値算出フラグがない場合(S29のNo)は、補正値算出処理を行わず、次の補正値算出タイミングまでは、前回算出した補正値を用いて、トナー濃度センサの出力値を補正する。
このように、補正値算出時において、前回の補正値ΔVt(嵩)算出時のキャリア帯電量がほぼ同じであり、嵩密度が、前回の補正値算出時とほぼ同じである場合は、補正値を算出しない。これにより、演算負荷を低減できる。
また、本実施形態では、クリーニング装置14で回収した回収トナーを、現像装置12へ搬送して再利用している。この回収トナーは、クリーニング装置から現像装置への搬送の過程でストレスを受けるなどして通常のトナーと帯電性や流動性が異なる。従って、回収トナーが、現像剤の嵩密度の変動の一要因となる。また、回収トナーには、紙粉が混入されており、この回収トナーに含まれる紙粉も、現像剤の嵩密度を変動させる一要因となりうる。従って、回収トナーの比率が多い場合、算出した補正値ΔVtが正確でなくなり、算出した補正値ΔVtでトナー濃度センサの出力値を補正すると、かえってトナー濃度センサの検知結果が、実際のトナー濃度に対してかけ離れる結果となる。従って、現像剤中の回収トナーの比率が高い場合は、補正値ΔVtの算出をしない方がよい。
現像剤中の回収トナーの比率は、絶対湿度AHと、単位走行距離当たりの画像面積率Co/Rとにより、予測することができる。絶対湿度AHが高いほど、転写率が悪くなり、現像装置12に搬送される回収トナーが多くなり、現像装置内の回収トナーの比率が上がる。また、単位距離当たりの画像面積率が低いほど、回収トナーに含まれる紙粉が多くなる。また、単位距離当たりの画像面積率が低いほど、転写率が悪くなる。その結果、現像剤中の紙粉を含めた回収トナーの比率が上がる。
このため、例えば、内部メモリ61などの不揮発性記憶手段に下記表6に示すように、単位走行距離当たりの画像面積率Co/Rと絶対湿度AHとを関連づけたテーブルを記憶しておく。
Figure 2016012115
これに基づき、予測した回収トナーの比率が20%よりも高い場合は、補正値ΔVtの算出を行わない。
また、回収トナーを現像装置12へ搬送するか、廃トナーボトル41へ搬送するかを切替えるシャッター部材を持っている場合、その切替状態も考慮する。現像装置12へ搬送する場合は上述したように予測した回収トナー比率によって補正値ΔVtの算出を行うか行わないかを判断するが、廃トナーボトル41へ搬送される場合は、回収トナーの比率は低いため、補正値ΔVtの算出を行う。
この回収トナーの比率を予測した時点では、現像剤の回収トナーは、予測した比率ではない。しかし、予測後に、絶対湿度AHが高い環境下や単位走行距離当たりの画像面積率Co/Rが低いような、回収トナーの比率が増える条件で画像形成が行われた回収トナーが、順次、現像装置へ搬送されていく。従って、ある程度、画像形成動作が行われると、現像剤の回収トナーの比率が予測した比率に収束していく。
このように、回収トナーの比率が多い場合は、補正値ΔVtの算出を行わないことで、算出した補正値ΔVtで補正したトナー濃度センサの出力値によるトナー濃度検知が、実際のトナー濃度に対して大きくずれてしまうのを抑制することができる。
また、感光体10の非画像部に付着しているトナーを光学センサなどで検知し、その情報をさらに加えて、現像剤の回収トナーの比率を予測してもよい。これにより、現像剤の回収トナーの比率の予測精度を高めることができる。また、転写位置からクリーニング位置までの間に光学センサを設け、感光体上の転写残トナーや紙粉を光学センサにより検知し、その検知結果をさらに加えて、現像剤の回収トナーの比率を予測してもよい。これにより、現像剤の回収トナーの比率の予測精度を高めることができる。
また、紙種情報をさらに加えて、現像剤の回収トナーの比率を予測してもよい。紙種によって、感光体に付着し、クリーニングブレードにより除去される紙粉量が異なる。従って、紙種情報をさらに追加して、現像剤中の紙粉を含む回収トナーの比率を予測することにより、現像剤の回収トナーの比率の予測精度を高めることができる。
紙種情報は、ユーザーの操作パネルの紙種設定の操作により取得してもよいし、用紙の平滑度を検知する平滑度検知手段たる平滑度センサを設けて、紙種情報を取得してもよい。紙の平滑度と、感光体に付着する紙粉量とには、相関があることがわかっている。従って、紙種情報として、紙の平滑度を用いることにより、精度よく回収トナーに含まれる紙粉量を把握することができ、現像剤中の紙粉を含む回収トナーの比率を精度よく予測することができる。
さらには、用紙を搬送する搬送ローラに付着した紙粉を検知する紙粉検知手段を設けて、紙粉検知手段の検知結果をさらに加えて、現像剤の回収トナーの比率を予測してもよい。搬送ローラに付着する紙粉が多いということは、感光体に付着する紙粉も多くなり、回収トナーに含まれる紙粉量を精度よく把握することが可能となる。これにより、現像剤中の紙粉を含む回収トナーの比率を精度よく予測することができる。
また、補正値算出に用いる情報(初期剤時における絶対湿度、初期剤時から現在までの現像ローラまたは搬送スクリュウの走行距離R、初期剤時からの累計画像面積率)を内部メモリ61に記憶するときに、現像装置に設けられた現像メモリ125(図10参照)に記憶するのが好ましい。制御部60は、現像装置12が交換された際、現像メモリ125と通信を行って、現像メモリ125に初期剤時における絶対湿度AH、初期剤時から現在までの現像ローラまたは搬送スクリュウの走行距離R、初期剤時からの累計画像面積率Coが記憶されているか否かをチェックする。これらが現像メモリ125に記憶されている場合は、それらの情報を読み出す。そして、内部メモリ61に記憶されている絶対湿度AH、初期剤時から現在までの現像ローラまたは搬送スクリュウの走行距離R、初期剤時からの累計画像面積率Coを、現像メモリ125の情報に更新する。
このような制御を行うことで、新品ではない現像装置が画像形成装置にセットされた場合、その現像装置内の現像剤の嵩密度の算出に用いる情報を、引き継げることができる。よって、画像形成装置本体が変更されても、トナー濃度センサの出力値を正しく補正することができる。なお、上記では、現像装置に現像メモリ125を設けているが、プロセスカートリッジのフレームにメモリを有し、そのメモリに絶対湿度AH、初期剤時から現在までの現像ローラまたは搬送スクリュウの走行距離R、初期剤時からの累計画像面積率Coを記憶しておいてもよい。この場合は、プロセスカートリッジが交換された際に、上述した処理を行う。
上述では、初期剤の嵩密度に対する現在の現像剤の嵩密度変動量「Δ嵩」を、初期剤のときの絶対湿度と現在の絶対湿度との差分(ΔAH[g/m])、初期剤のときから現在までの現像ローラまたは搬送スクリュウの総走行距離(R[km])、初期剤のときから現在までの画像面積率の累積(Co[%])の3つのパラメータから求めているが、さらに、次の1〜4パラメータを付加して「Δ嵩」を求めてもよい。
1.現像剤攪拌頻度
2.現像装置に補給するトナーの物性
3.キャリアの物性
4.現像剤攪拌速度
1.現像剤攪拌頻度について
上述したように、現像剤の嵩密度は、キャリアの帯電量により変化する。キャリアはトナーと擦れ合い、摩擦帯電するため、現像剤の攪拌頻度が多く、トナーとキャリアとが擦れ合う頻度が高いほど、キャリアの帯電量は、高くなる。例えば、1日10枚の通紙で1000枚通紙後のキャリア帯電量は、1日で1000枚通紙したときよりも、トナーと擦れ合う頻度が少ないため、同じ1000枚通紙後であっても、1日で1000枚通紙後の帯電量よりも低くなる。そのため、1日10枚の通紙で1000枚通紙後の現像剤嵩密度が、1日で1000枚通紙後の嵩密度よりも低くなる。よって、嵩密度変動量「Δ嵩」の算出に、現像剤攪拌頻度に関するパラメータを追加することにより、「Δ嵩」の算出精度を高めることができる。
現像剤攪拌頻度は、例えば、単位時間当たりの現像ローラの走行距離から推定することができる。すなわち、単位時間当たりの現像ローラの走行距離T1が長ければ、所定の期間内で多くの画像形成動作が行われ、現像剤が攪拌される頻度が多いと推定することができる。また、上述では、単位時間当たりの画像形成枚数、単位時間当たりの搬送スクリュウ走行距離などでもよい。
2.現像装置に補給するトナーの物性について
現像装置に補給するトナーの物性は、ロットにより異なる。トナーの物性が異なると、現像剤の嵩密度に対する影響が異なる。例えば、トナーの物性として、トナーの嵩密度が標準のトナーの嵩密度よりも高いと、現像剤の嵩密度が高くなり、現像装置に補給するトナーの嵩密度が標準の嵩密度よりも低いと、現像剤の嵩密度も低くなる。また、トナーの物性として、トナーの耐久性能が異なると、単位走行距離当たりの画像面積率(Co/R)が同じであっても、現像剤中の劣化トナーの割合が異なり、嵩密度の変動量が異なる。また、トナーの帯電能力が異なれば、同じ攪拌時間でもキャリアの帯電量が異なり、現像剤の嵩密度が異なってくる。よって、嵩密度の変動量「Δ嵩」の算出に、トナーの物性に関するパラメータを追加することにより、「Δ嵩」の算出精度を高めることができる。
現像装置12に補給するトナーの物性情報は、次のようにして把握することができる。すなわち、トナーボトル内のトナーの嵩密度などのトナーの物性情報を記憶した記憶手段たるIDチップをトナーボトル20に設ける。画像形成装置には、このトナーボトルのIDチップと通信を行う通信手段を設けられており、このIDチップと通信を行い、IDチップに記憶されているトナー物性情報を読み出すことにより、現像装置12に補給するトナーの物性を把握する。なお、読み出したトナー物性情報は、内部メモリ61(図10参照)に保存する。
IDチップに記憶されるトナーの物性情報は、同ロットであれば一部を抜き取り、抜き取ったトナーについて測定したトナー物性情報を用いることができる。
3.キャリアの物性について
帯電能力や、耐久性能など、キャリアの物性も、トナーと同様にロットにより異なる。キャリアの物性として、帯電能力が異なると、同じ攪拌時間でもキャリアの帯電量が異なり、現像剤の嵩密度が異なってくる。また、キャリアの物性として、耐久性能が異なると、キャリアの経時劣化の進行度合いが異なり、現像ローラや搬送スクリュウの走行距離Rが同じであっても、嵩密度変動量が異なってくる。
よって、嵩密度の変動量「Δ嵩」の算出に、キャリアの物性に関するパラメータを追加することにより、「Δ嵩」の算出精度を高めることができる。
キャリア物性情報は、次のようにして把握することができる。すなわち、現像装置の現像メモリ125(図10参照)にキャリアの帯電能力などのキャリア物性情報を記憶しておき、現像装置12が交換された際に現像メモリ125に記憶されているキャリア物性情報を読み出すことにより、把握することができる。把握したキャリア物性情報は、内部メモリ61に保存する。キャリア物性情報は、同ロットであれば一部を抜き取り、抜き取ったキャリアについて測定したキャリア物性情報を用いることができる。
4.現像剤攪拌速度について
現像剤攪拌速度が速いほど、トナーとキャリアとが擦れ合いキャリアの帯電量は、高くなる。画像形成装置によっては、例えば、シートSの種類によって画像形成速度を変更する場合がある。例えば、シートが厚紙のときは、普通紙のときよりも画像形成速度を落として画像形成を行う。また、サービスマンにより、良好な画像が得られるよう、画像形成速度が調整され、標準の画像形成速度よりも速くしたり、遅くしたりする場合もある。このように、画像形成速度を変更する場合、現像ローラの線速および搬送スクリュウの線速も変更される。搬送スクリュウの線速が変更されると、現像剤攪拌速度が変わってくる。よって、このように、画像形成速度が変更される装置においては、嵩密度変動量「Δ嵩」の算出に、現像剤攪拌速度に関するパラメータを追加することにより、「Δ嵩」の算出精度を高めることができる。
現像剤攪拌速度は、搬送スクリュウの線速から推定することができる。また、通常、現像ローラの線速と搬送スクリュウの線速とは、対応関係にあるので、現像ローラの線速から間接的に搬送スクリュウの線速を把握してもよい。
上記1.〜4.を加味した「Δ嵩」の算出式の一例を、以下に示す。以下の一例では、現像剤攪拌頻度として、単位時間当たりの現像ローラの走行距離X[mm/sec]を用い、トナーの物性として、トナーの嵩密度TDを用い、キャリアの物性として、キャリア帯電能力CAを用いた。また、現像剤攪拌速度として、現像ローラの線速Vdevを用いた。なお、下記式は、一例であり、使用するシステムや現像剤によってはこの限りではない。
Δ嵩(ΔAH、R、Co、T1、TD、CA、Vdev)=f(ΔAH)+g(ΔAH、R、Co、T1、TD、CA、Vdev)
・g(ΔAH、R、Co、T1、TD、CA、Vdev)=g(ΔAH、R、Co)+g1(T1)+g2(TD)+g3(CA)+g4(Vdev)
・g1(T1)=δ×(X−Y)
・g2(TD)=ε×(TD−TD0)
・g3(CA)=ζ×(CA−CA0)
・g4(Vdev)=η×(Vdev−Vdev0)
※X[mm/sec]:単位時間あたりの現像ローラの走行距離
Y[mm/sec]:想定している標準的な単位時間あたりの現像ローラの走行距離
TD0:初期剤のトナーの嵩密度
CA0:基準キャリアの帯電能力
Vdev0:標準の線速
δ、ε、ζ、η:変換係数
変換係数δ、ε、ζ、ηの値は、X、TD、CA、Vdevの値を変化させた際の嵩密度の変化量を測定することで求めることができる。具体的な値の一例としては、下記が挙げられる。
δ : 0.1
ε : 1.0
ζ : 1.0
η : 0.5
上記値は、使用されるトナーとキャリアの組み合わせやシステム構成によって異なるため、この限りではない。
単位時間あたりの現像ローラの走行距離X[mm/sec]は、一日の最初の印刷ジョブを受信した時からカウントを開始し、10分置きに更新して算出する。また、単位時間あたりの現像ローラの走行距離X[mm/sec]は、日付の切り替わりか、6時間以上放置されたらリセットする。
また、トナー嵩密度TDは、例えば、JIS K5101に記載の方法で測定することができる。また、キャリア帯電能力CAは、規定の物性を有する標準トナーと一定時間攪拌した後のトナー帯電量を測定することで、求めることができる。
また、初期剤のトナー嵩密度TD0は、現像メモリ125に記憶されており、現像装置12が交換された際に現像メモリ125に記憶されている初期剤のトナー嵩密度TD0を読み出すことにより、取得することができる。取得したした初期剤のトナー嵩密度TD0は、内部メモリ61に保存する。
基準キャリアの帯電能力は、上記表1や表2、各変換係数δ、ε、ζ、ηの算定に用いたキャリアの帯電能力である。標準の線速も、上記表1や表2、各変換係数δ、ε、ζ、ηの算定に用いた現像ローラの標準的な線速である。
さらに、トナーの物性情報として、トナーの耐久性能、トナーの帯電能力などを付加してもよい。この場合は、上記表1や表2、各変換係数δ、ε、ζ、ηの算定に用いた基準のトナーの物性に対する補給トナーの物性の差を算出し、所定の変換係数を乗算した値を加えることで、トナーの耐久性能、トナーの帯電能力の影響を考慮にいれた「Δ嵩」を算出することができる。また、キャリアの物性情報として、キャリアの耐久性能などを付加してもよい。この場合も、上記表1や表2、各変換係数δ、ε、ζ、ηの算定に用いた基準キャリアの耐久性能と用いられキャリアとの差分を算出し、所定の変換係数を乗算した値を加えることで、キャリアの耐久性能の影響を考慮にいれた「Δ嵩」を算出することができる。
以上に説明したものは一例であり、本発明は、以下の態様毎に特有の効果を奏する。
(態様1)
トナーとキャリアとを含む二成分現像剤を内部に収容した現像ケーシングなどのケーシングと、二成分現像剤を表面に担持して表面移動し、感光体10などの潜像担持体に対向する現像領域まで二成分現像剤を搬送する現像ローラ12aなどの現像剤担持体と、ケーシング内の二成分現像剤のトナー濃度に応じた出力値を出力するトナー濃度検知センサ124を有し、トナー濃度検知センサの出力値、および、トナー濃度と上記出力値とを関係づけた出力特性に基づいて、トナー濃度を検出するトナー濃度検出手段とを備える現像装置であって、ケーシング内の新品の現像剤についてのトナー濃度検知センサ124の出力値と、新品の現像剤の予め決められた規定のトナー濃度とに基づいて、出力特性を取得する取得手段と、現在の現像剤が上記規定のトナー濃度であるとすればとるであろう嵩密度の上記新品の現像剤の嵩密度に対する嵩密度変動量を推定する嵩密度変動推定手段と、嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検出手段の出力値を補正する補正手段とを備えた。
(態様1)では、ケーシング内の現像剤が新品の現像剤であるとき、新品の現像剤のトナー濃度検知センサの出力値と、新品の現像剤の予め決められた規定のトナー濃度とに基づいて、トナー濃度検知センサの出力特性(トナー濃度検知センサの出力値とトナー濃度との関係)を取得している。ケーシング内に投入される新品の現像剤は、工場出荷時において、規定のトナー濃度に調整されている。従って、このときのトナー濃度検知センサの出力値は、規定のトナー濃度のときの出力値である。また、新品の現像剤をある決まった攪拌速度で、ある決まった時間攪拌した後、出力特性を取得する。従って、出力特性の出力値を取得したときの現像剤の嵩密度は、所定の嵩密度である。よって、新品の現像剤を検知したときのトナー濃度検知センサの出力値は、所定の嵩密度で規定のトナー濃度の現像剤を検知したときの出力値であり、それから、所定の嵩密度のときの出力特性を正確に把握できる。
そして、(態様1)では、現在の現像剤が規定のトナー濃度であるとすればとるであろう嵩密度の新品の現像剤の嵩密度に対する嵩密度変動量を推定している。よって、現在の現像剤のトナー濃度が規定のトナー濃度のとき、出力特性を取得した上記所定の嵩密度に対する現在の現像剤の嵩密度変動量を推定できる。この推定した嵩密度変動量から、規定のトナー濃度となっている現在の現像剤をトナー濃度センサで検知した出力値における嵩密度変動による影響を把握することができる。この嵩密度変動量による出力値の影響は、規定のトナー濃度以外でも、同じである。従って、現在の現像剤を検知したトナー濃度センサの出力値を、推定した嵩密度変動量で補正することにより、トナー濃度センサの出力値から、新品の現像剤に対する現在の現像剤の嵩密度の変動の影響を除去することができる。これにより、トナー濃度センサの出力値を、新品の現像剤のときの所定の嵩密度に対応する出力値にでき、正確に把握された出力特性に基づいて、トナー濃度を検知することができる。よって、特許文献1よりも、精度のよいトナー濃度検知を行うことができる。これにより、ケーシング内の現像剤のトナー濃度を規定の濃度に維持することができ、感光体の潜像を良好に現像することができる。
(態様2)
(態様1)において、装置の湿度を検知する湿度検知手段(本実施形態では、温湿度センサ62と制御部とで構成)を備え、嵩密度変動推定手段は、取得手段により出力特性を取得したときの湿度検知手段が検知した湿度と、現在の湿度検知手段が検知した湿度とに基づいて、嵩密度変動量を推定する。
現像剤使用初期時の湿度情報AHと、現在の湿度情報AHとに基づいて、嵩密度変動量を推定する。
実施形態で説明したように、湿度が低いほど、キャリアが摩擦帯電しやすくなり、キャリアの帯電量が増加して、現像剤の嵩密度が低くなる。従って、現像剤使用初期時の湿度情報AHから、初期剤の嵩密度を推定でき、現在の湿度情報AHから、現在の嵩密度を推定できる。これにより、使用初期時に対する現像剤の嵩密度の変動を精度よく推定することができる。
(態様3)
(態様1)または(態様2)において、嵩密度変動推定手段は、磁性キャリアの劣化状態および/または、現像剤中の劣化トナーの割合に基づいて、嵩密度変動量を推定する。
実施形態で説明したように、磁性キャリアが劣化するほど、磁性キャリアが帯電し難くなり、嵩密度高くなる。また、現像剤中の劣化トナーの割合が少ないほど、キャリアとトナーとが良好に摩擦帯電し、キャリアの帯電量が増加し、現像剤の嵩密度が低下する。よって、磁性キャリアの劣化状態および/または、現像剤中の劣化トナーの割合に基づいて、嵩密度変動量を推定することにより、使用初期時に対する現像剤の嵩密度の変動を精度よく推定することができる。
(態様4)
(態様3)において、磁性キャリアの劣化状態として、現像ローラ12aなどの現像剤担持体またはケーシング内の現像剤を攪拌する搬送スクリュウ12b,12cなどの現像剤攪拌部材の総駆動時間または走行距離を用い、現像剤中の劣化トナーの割合として、現像剤担持体または現像剤攪拌部材の単位走行距離当たりの画像面積または画像面積率を用いた。
現像剤担持体またはケーシング内の現像剤を攪拌する現像剤攪拌部材の総駆動時間または走行距離から、磁性キャリアの経時劣化を把握することができる。また、現像剤担持体またはケーシング内の現像剤を攪拌する現像剤攪拌部材の単位走行距離当たりの画像面積または画像面積率Co/Rから、トナーの消費量がわかり、トナーの入れ換量がわかる。トナー入れ換え量が少ないほど、消費されずに、現像剤中に経時で残留するトナーが多くなり、現像剤中の劣化トナーの割合が多くなる。よって、現像剤担持体またはケーシング内の現像剤を攪拌する現像剤攪拌部材の単位走行距離当たりの画像面積または画像面積率Co/Rから、現像剤中の劣化トナーの割合を把握することができる。
(態様5)
(態様4)において、現像剤中の劣化トナーの割合として、画像における線画部とベタ部との比を考慮に入れた現像剤担持体またはケーシング内の現像剤を攪拌する現像剤攪拌部材の単位走行距離当たりの画像面積または画像面積率を用いる。
実施形態で説明したように、ベタ部に比べて、線画部の方が、トナー付着量が、1.4〜2倍ほど多い。よって、、画像における線画部とベタ部との比を考慮に入れた現像剤担持体または現像剤攪拌部材の単位走行距離当たりの画像面積または画像面積率を用いることにより、より正確に消費トナー量を把握することができる。これにより、現像剤中の劣化トナーの割合を精度よく把握することができる。
(態様6)
(態様1)乃至(態様5)いずれかにおいて、上記嵩密度変動推定手段は、現像剤の攪拌頻度に基づいて、上記嵩密度変動量を推定する。
これによれば、実施形態で説明したように、現像剤の攪拌頻度が多く、トナーとキャリアとが擦れ合う頻度が高いほど、キャリアの帯電量は高くなり、現像剤の嵩密度が低下する。よって、現像剤の攪拌頻度に基づいて、嵩密度変動量を推定することにより、使用初期時に対する現像剤の嵩密度の変動を精度よく推定することができる。
(態様7)
(態様1)乃至(態様6)いずれかにおいて、トナーを収納したトナーボトル20などのトナー収容器と、該トナー収容器内のトナーを前記ケーシングに補給するトナー補給手段とを備え、上記嵩密度変動推定手段は、前記トナー収容器内のトナーの物性に基づいて、上記嵩密度変動量を推定する。
これによれば、実施形態で説明したように、トナーの嵩密度、トナーの帯電能力、トナーの耐久性能などのトナーの物性が異なれば、現像剤の攪拌条件や環境条件などが同じであっても、現像剤の嵩密度が異なってくる。よって、トナー収容器内のトナーの物性に基づいて、嵩密度変動量を推定することにより、使用初期時に対する現像剤の嵩密度の変動を精度よく推定することができる。
(態様8)
(態様1)乃至(態様7)いずれかにおいて、上記嵩密度変動推定手段は、前記キャリアの物性に基づいて、上記嵩密度変動量を推定する。
これによれば、実施形態で説明したように、キャリアの耐久性能、キャリアの帯電性能などのキャリアの物性により、現像剤の攪拌条件や環境条件などが同じであっても、キャリアの帯電量などが異なり、現像剤の嵩密度が異なってくる。よって、キャリアの物性に基づいて、嵩密度変動量を推定することにより、使用初期時に対する現像剤の嵩密度の変動を精度よく推定することができる。
(態様9)
(態様1)乃至(態様8)いずれかにおいて、上記ケーシング内の現像剤攪拌速度に基づいて、上記嵩密度変動量を推定する。
これによれば、実施形態で説明したように、現像剤攪拌速度が速ければ、それだけ現像剤が攪拌され、キャリアの帯電量が増加し、現像剤の嵩密度が低下する。よって、上記ケーシング内の現像剤攪拌速度に基づいて、上記嵩密度変動量を推定することにより、使用初期時に対する現像剤の嵩密度の変動を精度よく推定することができる。
(態様10)
(態様1)乃至(態様9)いずれかにおいて、上記補正手段は、上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検知センサ124の出力値を補正する補正値を算出する補正値算出手段を有し、補正値算出手段により算出した補正値に基づいて、トナー濃度検知センサの出力値を補正しており、上記補正値算出手段による補正値算出は、現像動作開始前に行う。
(態様10)によれば、実施形態で説明したように、現像動作開始前に行うことにより、現像剤のトナー濃度が精度よく調整されたうえで、現像動作を開始することができ、感光体10などの潜像担持体上潜像を良好に現像することができる。
(態様11)
(態様1)乃至(態様10)いずれかにおいて、補正手段は、上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検知センサの出力値を補正する補正値を算出する補正値算出手段を有し、該補正値算出手段により算出した補正値に基づいて、トナー濃度検知センサの出力値を補正しており、補正値算出手段による補正値算出は、感光体10などの潜像担持体の潜像画像を連続で現像する連続現像動作中の所定タイミングで行う。
(態様11)によれば、実施形態で説明したように、連続現像動作中に嵩密度が変動しても、現像剤のトナー濃度を狙いのトナー濃度に維持して連続現像を行うことができる。これにより、連続現像で得られた画像の画像濃度を一定に維持することができる。
(態様12)
(態様11)において、連続現像動作中における補正値算出手段により補正値を算出するタイミングは、連続現像動作中の環境、および/または、連続現像動作前の放置時間に基づいて、決定する。
実施形態で説明したように、環境によって、嵩密度が変動しやすい場合がある。また、放置時間が長いと、キャリア帯電量が低下しており、連続現像動作中にキャリア帯電量が増加していき、連続現像動作中に嵩密度が変動しやすい。従って、連続現像動作中の環境、および/または、連続現像動作前の放置時間に基づいて、補正値を算出するタイミングを決定することにより、適切なタイミングで、補正値を算出し、現像剤の嵩密度に対応する補正値にすることができる。これにより、連続現像動作中現像剤のトナー濃度を狙いのトナー濃度に維持して連続現像を行うことができる。
(態様13)
(態様1)乃至(態様12)いずれかにおいて、補正手段は、嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検知センサの出力値を補正する補正値を算出する補正値算出手段を有し、該補正値算出手段により算出した補正値に基づいて、上記トナー濃度検知センサの出力値を補正しており、上記補正値算出手段による補正値算出は、感光体10などの潜像担持体の潜像画像を連続で現像する連続現像動作中の一時中断時に行う。
(態様13)によれば、実施形態で説明したように、連続現像動作中に補正値を算出する場合に比べて、演算メモリの負荷を低減することができる。
(態様14)
(態様1)乃至(態様13)いずれかにおいて、補正手段は、上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検知センサの出力値を補正する補正値を算出する補正値算出手段を有し、該補正値算出手段により算出した補正値に基づいて、上記トナー濃度検知センサの出力値を補正しており、補正値算出手段による補正値算出のタイミングとき、前回の補正値算出時のキャリアの帯電量に対する現在のキャリアの帯電量の変動量が、閾値未満と推定されるときは、補正値算出手段による補正値算出を取り止める。
(態様14)によれば、実施形態で説明したように、前回の補正値算出時のキャリアの帯電量に対して、キャリアの帯電量がさほど変わらない場合は、現像剤の嵩密度は、ほぼ同じであり、前回の補正値を用いても、精度よくトナー濃度を狙いの値に維持することができる。よって、前回補正値算出時のときのキャリアの帯電量に対する現在のキャリアの帯電量の変動量が、閾値未満のときは、補正値を算出しないことで、演算メモリの負荷を低減し、かつ、狙いのトナー濃度を維持して、現像を行うことができる。
(態様15)
(態様14)において、補正値算出手段による補正値算出のタイミングが現像動作開始前であり、前回の現像動作終了時のキャリアの推定帯電量と、現像動作終了時点から現在までのキャリアの帯電量の推定低下量とに基づいて、前回の補正値算出時のキャリアの帯電量に対する現在のキャリアの帯電量の変動量を推定する。
(態様15)によれば、実施形態で説明したように、補正値算出するタイミングである現像動作開始前のキャリアの帯電量は、前回の現像動作終了時のキャリアの推定帯電量と、放置時のキャリアの帯電量の推定低下量とにより推定することができる。これにより、現在のキャリアの帯電量が、前回の補正時算出時のキャリアの帯電量に対してどのくらい変動しているのか精度よく推定することができる。
(態様16)
(態様15)において、前回の現像動作終了時のキャリアの推定帯電量は、前回現像動作の連続現像動作回数および/または前回の現像動作の終了直前の画像面積率に基づいて推定する。
実施形態で説明したように、前回現像動作の連続現像動作回数が多ければ、多いほど、キャリアはトナーと擦れ合い、摩擦帯電し、前回の現像動作終了時の磁性キャリアの帯電量が増加する。また、前回の現像動作の終了直前の画像面積率が高いほど、帯電能力の高い新しいトナーが供給されるので、前回の現像動作終了時のキャリアの帯電量が増加する。従って、前回現像動作の連続現像動作回数および/または前回の現像動作の終了直前の画像面積率を用いることにより、前回の現像動作終了時のキャリアの帯電量を推定することができる。
(態様17)
(態様15)または(態様16)において、放置時のキャリアの帯電量の推定低下量は、放置時間、放置時の温度および放置時の湿度のうち少なくとも一つに基づいて、推定する。
実施形態で説明したように、放置時間が長いほど、キャリアが放電し、キャリアの帯電量の低下量が多くなる。また、放置時の温度や湿度が高いほど、キャリアが放電しやすくなり、キャリアの帯電量の低下量が多くなる。従って、これらの少なくとも一つを用いることにより、放置時のキャリアの帯電量の低下量を推定することができる。
(態様18)
潜像を担持する感光体10などの潜像担持体と、潜像担持体上の潜像を現像する現像装置12などの現像手段とを備えた画像形成装置であって、現像手段として、(態様1)乃至(態様17)のいずれかの現像装置を用いた。
(態様18)によれば、画像濃度を所定の濃度に維持することができ、良好な画像を得ることができる。
(態様19)
(態様18)において、現像装置12には、嵩密度変動量を推定するために用いる情報(本実施形態では、初期剤時の絶対湿度、初期剤から現在までの累計画像面積(率)、初期剤から現在までの現像ローラ12aまたは搬送スクリュウ12b,12cの走行距離)を記憶する現像メモリ125などの記憶手段と、現像装置12が交換されたとき、記憶手段に記憶されている上記嵩密度変動量を推定するために用いる情報を、画像形成装置本体の内部メモリ61などの記憶手段に保存するよう、制御する制御部60など制御手段を備えた。
(態様19)によれば、実施形態で説明したように、新品ではない現像装置が画像形成装置にセットされた場合、その現像装置内の現像剤の嵩密度変動量の推定に用いる情報を、引き継げることができる。よって、画像形成装置本体が変更されても、トナー濃度センサの出力値を正しく補正することができる。
(態様20)
潜像を担持する感光体10などの潜像担持体と、潜像担持体上の潜像を現像する現像装置12などの現像手段とを備える画像形成装置における少なくとも潜像担持体と現像手段とを1つのユニットとして共通の保持体に保持させて画像形成装置本体に対して着脱可能にしたプロセスカートリッジ1であって、上記現像手段として、(態様1)乃至(態様19)いずれかに記載の現像装置を用いた。
(態様20)によれば、画像濃度を所定の濃度に維持することができ、良好な画像を得ることができるプロセスカートリッジを提供することができる。
1:プロセスカートリッジ
10:感光体
12:現像装置
12a:現像ローラ
12b:第一搬送スクリュウ
12c:第二搬送スクリュウ
14:クリーニング装置
50:トナー搬送装置
54:シャッター部材
60:制御部
61:内部メモリ
62:温湿度センサ
121:現像ケーシング
124:トナー濃度センサ
125:現像メモリ
特開2012−108483号公報

Claims (20)

  1. トナーとキャリアとを含む二成分現像剤を内部に収容したケーシングと、
    該二成分現像剤を表面に担持して表面移動し、潜像担持体に対向する現像領域まで該二成分現像剤を搬送する現像剤担持体と、
    該ケーシング内の該二成分現像剤のトナー濃度に応じた出力値を出力するトナー濃度検知センサを有し、該トナー濃度検知センサの出力値、および、トナー濃度と上記出力値とを関係づけた出力特性に基づいて、トナー濃度を検出するトナー濃度検出手段とを備える現像装置であって、
    上記ケーシング内の新品の現像剤についてのトナー濃度検知センサの出力値と、新品の現像剤の予め決められた規定のトナー濃度とに基づいて、上記出力特性を取得する取得手段と、
    現在の現像剤が上記規定のトナー濃度であるとすればとるであろう嵩密度の上記新品の現像剤の嵩密度に対する嵩密度変動量を推定する嵩密度変動推定手段と、
    上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検出手段の出力値を補正する補正手段とを備えたことを特徴とする現像装置。
  2. 請求項1に記載の現像装置であって、
    装置の湿度を検知する湿度検知手段を備え、
    上記嵩密度変動推定手段は、上記取得手段により上記出力特性を取得したときの上記湿度検知手段が検知した湿度と、現在の上記湿度検知手段が検知した湿度とに基づいて、上記嵩密度変動量を推定することを特徴とする現像装置。
  3. 請求項1または2に記載の現像装置であって、
    上記嵩密度変動推定手段は、上記キャリアの劣化状態および/または、現像剤中の劣化トナーの割合に基づいて、上記嵩密度変動量を推定することを特徴とする現像装置。
  4. 請求項3に記載の現像装置であって、
    上記キャリアの劣化状態として、上記現像剤担持体または上記ケーシング内の現像剤を攪拌する現像剤攪拌部材の総駆動時間または走行距離を用い、
    現像剤中の劣化トナーの割合として、上記現像剤担持体または上記現像剤攪拌部材の単位走行距離当たりの画像面積または画像面積率を用いたことを特徴とする現像装置。
  5. 請求項4に記載の現像装置であって、
    上記現像剤中の劣化トナーの割合として、画像における線画部とベタ部との比を考慮に入れた上記現像剤担持体または上記現像剤攪拌部材の単位走行距離当たりの画像面積または画像面積率を用いることを特徴とする現像装置。
  6. 請求項1乃至5いずれかに記載の現像装置であって、
    上記嵩密度変動推定手段は、現像剤の攪拌頻度に基づいて、上記嵩密度変動量を推定することを特徴とする現像装置。
  7. 請求項1乃至6いずれかに記載の現像装置であって、
    前記トナーを収納したトナー収容器と、
    該トナー収容器内のトナーを前記ケーシングに補給するトナー補給手段とを備え、
    上記嵩密度変動推定手段は、前記トナー収容器内のトナーの物性に基づいて、上記嵩密度変動量を推定することを特徴とする現像装置。
  8. 請求項1乃至7いずれかに記載の現像装置であって、
    上記嵩密度変動推定手段は、前記キャリアの物性に基づいて、上記嵩密度変動量を推定することを特徴とする現像装置。
  9. 請求項1乃至8いずれかに記載の現像装置であって、
    上記ケーシング内の現像剤攪拌速度に基づいて、上記嵩密度変動量を推定することを特徴とする現像装置。
  10. 請求項1乃至9いずれかに記載の現像装置であって、
    上記補正手段は、上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検知センサの出力値を補正する補正値を算出する補正値算出手段を有し、該補正値算出手段により算出した補正値に基づいて、上記トナー濃度検知センサの出力値を補正しており、
    上記補正値算出手段による補正値算出は、現像動作開始前に行うことを特徴とする現像装置。
  11. 請求項1乃至10いずれかに記載の現像装置であって、
    上記補正手段は、上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検知センサの出力値を補正する補正値を算出する補正値算出手段を有し、該補正値算出手段により算出した補正値に基づいて、上記トナー濃度検知センサの出力値を補正しており、
    上記補正値算出手段による補正値算出は、上記潜像担持体の潜像画像を連続で現像する連続現像動作中の所定タイミングで行うことを特徴とする現像装置。
  12. 請求項11に記載の現像装置であって、
    連続現像動作中における補正値を算出するタイミングは、連続現像動作中の環境、および/または、連続現像動作前の放置時間に基づいて、決定することを特徴とする現像装置。
  13. 請求項1乃至12いずれかに記載の現像装置であって、
    上記補正手段は、上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検知センサの出力値を補正する補正値を算出する補正値算出手段を有し、該補正値算出手段により算出した補正値に基づいて、上記トナー濃度検知センサの出力値を補正しており、
    上記補正値算出手段による補正値算出は、上記潜像担持体の潜像画像を連続で現像する連続現像動作中の一時中断時に行うことを特徴とする現像装置。
  14. 請求項1乃至13いずれかに記載の現像装置であって、
    上記補正手段は、上記嵩密度変動推定手段が推定した嵩密度変動量に基づいて、上記トナー濃度検知センサの出力値を補正する補正値を算出する補正値算出手段を有し、該補正値算出手段により算出した算出した補正値に基づいて、上記トナー濃度検知センサの出力値を補正しており、
    上記補正値算出手段による補正値算出のタイミングとき、現在のキャリアの帯電量が、前回の補正値算出時のキャリアの帯電量に対して異なるか否かを推定し、
    前回の補正値算出時のキャリアの帯電量に対する現在のキャリアの帯電量の変動量が、閾値未満と推定されるときは、上記補正手段による補正値算出を取り止めるを特徴とする現像装置。
  15. 請求項14に記載の現像装置であって、
    上記補正値算出手段による補正値算出のタイミングが現像動作開始前であり、
    前回の現像動作終了時のキャリアの推定帯電量と、放置時のキャリアの帯電量の推定低下量とに基づいて、前回の補正値算出時のキャリアの帯電量に対する現在のキャリアの帯電量の変動量を推定することを特徴とする現像装置。
  16. 請求項15に記載の現像装置において、
    前回の現像動作終了時のキャリアの推定帯電量に関する情報として、前回現像動作の連続現像動作回数および/または前回の現像動作の終了直前の画像面積率を用いたことを特徴とする現像装置。
  17. 請求項15または16に記載の現像装置において、
    放置時のキャリアの帯電量の推定低下量に関する情報として、放置時間、放置時の温度および放置時の湿度のうち少なくとも一つを用いることを特徴とする現像装置。
  18. 潜像を担持する潜像担持体と、該潜像担持体上の潜像を現像する現像手段とを備えた画像形成装置であって、
    該現像手段として、請求項1乃至17のいずれかに記載の現像装置を用いたことを特徴とする画像形成装置。
  19. 請求項18に記載の画像形成装置であって、
    上記現像装置には、嵩密度変動量を推定するために用いる情報を記憶する記憶手段と、
    上記現像装置が交換されたとき、上記記憶手段に記憶されている上記嵩密度変動量を推定するために用いる情報を、画像形成装置本体の記憶手段に保存するよう、制御する制御手段を備えたことを特徴とする画像形成装置。
  20. 潜像を担持する潜像担持体と、該潜像担持体上の潜像を現像する現像手段とを備える画像形成装置における少なくとも該潜像担持体と該現像手段とを1つのユニットとして共通の保持体に保持させて画像形成装置本体に対して着脱可能にしたプロセスカートリッジであって、
    上記現像手段として、請求項1乃至19いずれかに記載の現像装置を用いたことを特徴とするプロセスカートリッジ。
JP2014247834A 2014-06-05 2014-12-08 現像装置、画像形成装置およびプロセスカートリッジ Pending JP2016012115A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014247834A JP2016012115A (ja) 2014-06-05 2014-12-08 現像装置、画像形成装置およびプロセスカートリッジ
US14/719,649 US9709919B2 (en) 2014-06-05 2015-05-22 Developing device, image forming apparatus, and process cartridge

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014117047 2014-06-05
JP2014117047 2014-06-05
JP2014247834A JP2016012115A (ja) 2014-06-05 2014-12-08 現像装置、画像形成装置およびプロセスカートリッジ

Publications (2)

Publication Number Publication Date
JP2016012115A true JP2016012115A (ja) 2016-01-21
JP2016012115A5 JP2016012115A5 (ja) 2018-01-25

Family

ID=54769502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247834A Pending JP2016012115A (ja) 2014-06-05 2014-12-08 現像装置、画像形成装置およびプロセスカートリッジ

Country Status (2)

Country Link
US (1) US9709919B2 (ja)
JP (1) JP2016012115A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696654B2 (en) * 2015-04-03 2017-07-04 Ricoh Company, Ltd. Image forming apparatus comprising image density detector and toner concentration detector
JP2019086597A (ja) * 2017-11-02 2019-06-06 キヤノン株式会社 画像形成装置
US10809646B2 (en) * 2018-06-07 2020-10-20 Toshiba Tec Kabushiki Kaisha Toner cartridge and image forming apparatus
JP7318309B2 (ja) * 2019-05-28 2023-08-01 京セラドキュメントソリューションズ株式会社 画像形成装置
US10852664B1 (en) 2020-02-14 2020-12-01 Toshiba Tec Kabushiki Kaisha Image forming apparatus and toner cartridge

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419765A (ja) * 1990-05-15 1992-01-23 Minolta Camera Co Ltd 画像形成装置のトナー濃度制御装置
JPH0419764A (ja) * 1990-05-15 1992-01-23 Minolta Camera Co Ltd 画像形成装置のトナー濃度制御装置
JPH0713430A (ja) * 1993-06-28 1995-01-17 Ricoh Co Ltd 画像形成装置
JPH10171237A (ja) * 1996-12-09 1998-06-26 Ricoh Co Ltd 画像形成装置
JPH11316495A (ja) * 1998-05-01 1999-11-16 Ricoh Co Ltd 画像形成装置
JP2004085710A (ja) * 2002-08-23 2004-03-18 Canon Inc 画像形成装置
JP2004126219A (ja) * 2002-10-02 2004-04-22 Canon Inc 画像形成装置及びその制御方法とカートリッジ
JP2005148368A (ja) * 2003-11-14 2005-06-09 Sharp Corp 現像装置及びそれを具備する画像形成装置,現像装置の制御方法
JP2006267973A (ja) * 2005-03-25 2006-10-05 Fuji Xerox Co Ltd 画像形成装置および方法
JP2007025106A (ja) * 2005-07-14 2007-02-01 Kyocera Mita Corp 画像形成装置
JP2007057621A (ja) * 2005-08-22 2007-03-08 Ricoh Co Ltd 画像濃度制御装置、画像形成装置及びカラー画像形成装置
JP2007079233A (ja) * 2005-09-15 2007-03-29 Konica Minolta Business Technologies Inc 画像形成装置
JP2007333876A (ja) * 2006-06-13 2007-12-27 Ricoh Co Ltd 現像装置、プロセスユニット及び画像形成装置
JP2009115848A (ja) * 2007-11-01 2009-05-28 Ricoh Co Ltd 現像装置・プロセスカートリッジ及び画像形成装置
JP2009122261A (ja) * 2007-11-13 2009-06-04 Ricoh Co Ltd 画像形成装置
JP2012108483A (ja) * 2010-10-22 2012-06-07 Ricoh Co Ltd 画像形成装置
JP2013182251A (ja) * 2012-03-05 2013-09-12 Ricoh Co Ltd 画像形成装置
JP2013250513A (ja) * 2012-06-04 2013-12-12 Canon Inc 画像形成装置
JP2015125159A (ja) * 2013-12-25 2015-07-06 キヤノン株式会社 画像形成装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720720B2 (ja) * 2000-03-01 2005-11-30 キヤノン株式会社 画像形成装置
JP2006208919A (ja) 2005-01-31 2006-08-10 Ricoh Co Ltd 画像形成装置
JP5015544B2 (ja) 2005-11-25 2012-08-29 株式会社リコー 画像形成装置及びその画像濃度制御方法
JP4355002B2 (ja) 2007-03-06 2009-10-28 シャープ株式会社 画像形成装置
JP4902432B2 (ja) 2007-06-11 2012-03-21 株式会社リコー 画像形成装置及びその制御方法
JP5424106B2 (ja) 2009-09-10 2014-02-26 株式会社リコー 画像形成装置
JP2013148859A (ja) 2011-12-19 2013-08-01 Ricoh Co Ltd 画像形成装置
JP5891887B2 (ja) 2012-03-22 2016-03-23 株式会社リコー 画像形成媒体充填装置及び画像形成媒体充填方法
JP5929591B2 (ja) 2012-07-27 2016-06-08 カシオ電子工業株式会社 画像形成装置
US9042778B2 (en) 2012-07-30 2015-05-26 Ricoh Company, Ltd. Powder refilling device, process cartridge and image including same, and powder refilling method
JP2015087721A (ja) * 2013-11-01 2015-05-07 キヤノン株式会社 現像装置
JP6218028B2 (ja) * 2013-11-15 2017-10-25 株式会社リコー 画像形成装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419765A (ja) * 1990-05-15 1992-01-23 Minolta Camera Co Ltd 画像形成装置のトナー濃度制御装置
JPH0419764A (ja) * 1990-05-15 1992-01-23 Minolta Camera Co Ltd 画像形成装置のトナー濃度制御装置
JPH0713430A (ja) * 1993-06-28 1995-01-17 Ricoh Co Ltd 画像形成装置
JPH10171237A (ja) * 1996-12-09 1998-06-26 Ricoh Co Ltd 画像形成装置
JPH11316495A (ja) * 1998-05-01 1999-11-16 Ricoh Co Ltd 画像形成装置
JP2004085710A (ja) * 2002-08-23 2004-03-18 Canon Inc 画像形成装置
JP2004126219A (ja) * 2002-10-02 2004-04-22 Canon Inc 画像形成装置及びその制御方法とカートリッジ
JP2005148368A (ja) * 2003-11-14 2005-06-09 Sharp Corp 現像装置及びそれを具備する画像形成装置,現像装置の制御方法
JP2006267973A (ja) * 2005-03-25 2006-10-05 Fuji Xerox Co Ltd 画像形成装置および方法
JP2007025106A (ja) * 2005-07-14 2007-02-01 Kyocera Mita Corp 画像形成装置
JP2007057621A (ja) * 2005-08-22 2007-03-08 Ricoh Co Ltd 画像濃度制御装置、画像形成装置及びカラー画像形成装置
JP2007079233A (ja) * 2005-09-15 2007-03-29 Konica Minolta Business Technologies Inc 画像形成装置
JP2007333876A (ja) * 2006-06-13 2007-12-27 Ricoh Co Ltd 現像装置、プロセスユニット及び画像形成装置
JP2009115848A (ja) * 2007-11-01 2009-05-28 Ricoh Co Ltd 現像装置・プロセスカートリッジ及び画像形成装置
JP2009122261A (ja) * 2007-11-13 2009-06-04 Ricoh Co Ltd 画像形成装置
JP2012108483A (ja) * 2010-10-22 2012-06-07 Ricoh Co Ltd 画像形成装置
JP2013182251A (ja) * 2012-03-05 2013-09-12 Ricoh Co Ltd 画像形成装置
JP2013250513A (ja) * 2012-06-04 2013-12-12 Canon Inc 画像形成装置
JP2015125159A (ja) * 2013-12-25 2015-07-06 キヤノン株式会社 画像形成装置

Also Published As

Publication number Publication date
US20150355572A1 (en) 2015-12-10
US9709919B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
JP2016012115A (ja) 現像装置、画像形成装置およびプロセスカートリッジ
CN110058501B (zh) 图像形成装置
CN102165377A (zh) 图像形成装置以及显影剂补给方法
JP2008191177A (ja) 画像形成装置
JP7167598B2 (ja) 画像形成装置
JP2015230409A (ja) 現像装置、画像形成装置およびプロセスカートリッジ
JP2009271360A (ja) 再利用方法及び再利用システム、画像形成装置
JP2006220909A (ja) 現像装置
JP5297956B2 (ja) 画像形成装置
JP5440247B2 (ja) 画像形成装置、画像形成装置の保守管理システム、現像剤寿命算出方法、現像剤寿命算出プログラム及び記憶媒体
JP5693166B2 (ja) 画像形成装置
JP2015125159A (ja) 画像形成装置
JP7413744B2 (ja) 画像形成装置
JP7415722B2 (ja) 画像形成装置
JP7415523B2 (ja) 画像形成装置
JP7419892B2 (ja) 画像形成装置
JP5573101B2 (ja) 画像形成装置
JP2010060707A (ja) 現像装置、画像形成装置
JP2009020209A (ja) 現像装置、プロセスカートリッジおよび画像形成装置
JP2020095145A (ja) 画像形成装置
JPH05333700A (ja) 現像装置
JP2018005039A (ja) 画像形成装置
JP2023088626A (ja) 画像形成装置、制御プログラムおよび制御方法
JP2013254140A (ja) 画像形成装置および画像形成方法
JP2022064601A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190412