JP2015211266A - 差動増幅回路及び表示駆動回路 - Google Patents

差動増幅回路及び表示駆動回路 Download PDF

Info

Publication number
JP2015211266A
JP2015211266A JP2014090365A JP2014090365A JP2015211266A JP 2015211266 A JP2015211266 A JP 2015211266A JP 2014090365 A JP2014090365 A JP 2014090365A JP 2014090365 A JP2014090365 A JP 2014090365A JP 2015211266 A JP2015211266 A JP 2015211266A
Authority
JP
Japan
Prior art keywords
mos transistor
channel mos
source
transistor
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014090365A
Other languages
English (en)
Inventor
穣 佐伯
Minoru Saeki
穣 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synaptics Japan GK
Original Assignee
Synaptics Display Devices GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synaptics Display Devices GK filed Critical Synaptics Display Devices GK
Priority to JP2014090365A priority Critical patent/JP2015211266A/ja
Priority to US14/690,816 priority patent/US9692374B2/en
Priority to CN201510195716.6A priority patent/CN105007051A/zh
Publication of JP2015211266A publication Critical patent/JP2015211266A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45022One or more added resistors to the amplifying transistors in the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45032Indexing scheme relating to differential amplifiers the differential amplifier amplifying transistors are multiple paralleled transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Amplifiers (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】一時的にスルーレートを向上することができる差動増幅回路において、スルーレートを向上させるタイミングを、入力される差動信号の遷移に応じて適切に制御する。【解決手段】差動入力信号が供給される差動対トランジスタと、差動対トランジスタに直列接続される電流源と、差動入力信号に基づいて出力端子を駆動する出力トランジスタとを備え、出力トランジスタが出力端子の電圧レベルを遷移させるタイミングに基づいて電流源の電流値を増加させる。出力トランジスタは出力端子を遷移させる期間にのみ、出力端子駆動するので、その期間の差動対トランジスタのバイアス電流を増やして、スルーレートを向上する。【選択図】図5

Description

本発明は、差動増幅回路及びそれを用いた表示駆動回路に関し、特に高精細の表示パネルに接続される表示駆動回路に好適に利用できるものである。
液晶表示(LCD:Liquid Crystal Display)パネルなどの表示パネルは、複数の走査電極(ゲート電極とも呼ばれる)と複数の信号電極(ソース電極とも呼ばれる)を備え、その交点に画素容量(液晶容量)を持つ表示セルを備える。表示の解像度は画素の数であり、ライン数(ゲート電極数)と1ライン当たりの画素数(ソース電極数に対応)の積によって規定される。表示パネルに接続されてそのソース電極を駆動する表示駆動回路は、表示パネルの高解像度化、高精細化に伴い、ソース電極の負荷が増大し、合せてソース出力チャネル数が増加している。表示駆動回路が搭載される表示ドライバIC(Integrated Circuit)は、表示パネルの1辺に沿って実装されるので、ライン数(ゲート電極数)の増加に伴って遠端の表示セルの画素容量までの配線長が長くなり配線抵抗と配線容量が大きくなる。このような背景により、表示駆動回路では、表示パネルの高解像度化、高精細化に伴って、ソース電極の負荷が増大している。
特許文献1には、このような液晶表示装置の液晶パネル駆動回路(ソースアンプ)に好適であり、スルーレートの高い差動増幅回路が開示されている。差動入力信号の反転動作に同期して差動入力信号の反転動作の遷移時間より短い時間だけ、差動対を構成するトランジスタに流れる電流を増加する。特許文献1に開示される差動増幅器は、差動信号が入力される差動対トランジスタと、差動対トランジスタに流れる電流を制御する定電流源とを備え、さらに定電流源と並列に接続され差動対トランジスタに流れる電流を増加させるスイッチを備える。スイッチがオンされている期間は、差動増幅器のスルーレートが向上する。スイッチは、表示タイミングを示すストローブ信号などの同期信号STBから生成された制御信号SRNとSRPによってオン/オフ制御される。スルーレートを向上させる時間の幅は、制御信号SRNとSRPのパルス幅によって調整される。
特開2011−124782号公報
特許文献1について本発明者が検討した結果、以下のような新たな課題があることがわかった。
特許文献1に開示される差動増幅器が、スルーレートを向上させるためにタイミング制御信号を必要としている点である。液晶表示装置においては、表示タイミングを示すストローブ信号を利用することができるが、他の装置でそのような制御信号が存在する保証はない。また、差動対トランジスタに流れる電流を増加させるスイッチをオンする制御信号のパルス幅、即ちスルーレートを向上させる時間の幅は、制御信号生成回路の設計によって規定されるため、必ずしも実際に表示パネルが接続されたときの差動入力信号の遷移の大きさに応じた適切なパルス幅になるとは限らない。差動入力信号の遷移の大きさが、表示されるデータによって変化するため、また、接続される表示パネルも1品種とは限らないためである。そのため、差動対トランジスタに流れる電流を増加させるスイッチをオンする制御信号のパルス幅が、適切なパルス幅よりも短い場合には、スルーレートを十分に向上させることができず、長い場合には、必要以上に電力を消費することとなる。
本発明の目的は、一時的にスルーレートを向上することができる差動増幅回路において、スルーレートを向上させるタイミングを、出力信号の遷移に応じて適切に制御することである。
このような課題を解決するための手段を以下に説明するが、その他の課題と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
一実施の形態によれば、下記の通りである。
すなわち、本発明の一実施の形態に係る差動増幅回路は、差動入力信号が供給される差動対トランジスタと、差動対トランジスタに直列接続されるバイアス電流源と、差動入力信号に基づいて出力端子を駆動する出力トランジスタとを備え、出力トランジスタが出力端子の電圧レベルを遷移させるタイミングに基づいてバイアス電流源の電流値を増加させる。出力トランジスタは出力端子を遷移させる期間にのみ、出力端子駆動するので、その期間の差動対トランジスタのバイアス電流を増やして、スルーレートを向上する。
前記一実施の形態によって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、一時的にスルーレートを向上することができる差動増幅回路において、スルーレートを向上させるタイミングを、出力信号の遷移に応じて適切に制御することができる。
図1は、本発明に係る差動増幅回路がソースアンプとして搭載される表示駆動回路を含む電子機器の構成例を示すブロック図である。 図2は、表示駆動回路(表示ドライバIC)の構成例を示すブロック図である。 図3は、ソースアンプの表示パネルによる負荷の等価回路を模式的に示す説明図である。 図4は、ソースアンプバイアス制御回路の構成例を示す回路図である。 図5は、本発明に係る差動増幅回路によるソースアンプの構成例を示す回路図である。 図6は、図5の差動増幅回路(ソースアンプ)の動作例を示す波形図である。 図7は、図5の差動増幅回路(ソースアンプ)の出力信号(Vout)を示す波形図である。 図8は、図5の差動増幅回路(ソースアンプ)によって駆動された表示パネルの遠端での信号(Vout_Far)の波形図である。 図9は、本発明に係る差動増幅回路の第1の変形例を示す回路図である。 図10は、本発明に係る差動増幅回路の第2の変形例を示す回路図である。 図11は、実施形態2の差動増幅回路によるソースアンプの構成例を示す回路図である。 図12は、図11に示される差動増幅回路の動作例を示すタイミングチャートである。 図13は、実施形態3の差動増幅回路によるソースアンプの構成例を示す回路図である。 図14は、実施形態3の差動増幅回路における制御信号を内部生成する回路の回路図である。 図15は、図14に示される差動増幅回路の動作例を示すタイミングチャートである。
1.実施の形態の概要
先ず、本願において開示される代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
〔1〕<自己制御によるスルーレート向上>
本願において開示される代表的な実施の形態に係る差動増幅回路(4)は、差動入力信号が供給される差動対トランジスタ(MP2,MP3,MN2,MN3)と、前記差動対トランジスタに直列接続される電流源(MP1,MP20,MN1,MN20)と、前記差動入力信号に基づいて出力端子(Vout)を駆動する出力トランジスタ(MP10,MN10)とを備え、前記出力トランジスタが前記出力端子の電圧レベルを遷移させるタイミングに基づいて前記電流源の電流値の絶対値を増加させる。
これにより、一時的にスルーレートを向上することができる差動増幅回路において、スルーレートを向上させるタイミングを、出力電圧(Vout)の遷移に応じて適切に制御することができる。
〔2〕<MOSトランジスタによる回路>
項1において、前記出力トランジスタは第1MOSトランジスタ(MP10,MN10)であり、前記電流源は定電流源(MP1,MN1)と第2MOSトランジスタ(MP20,MN20)とを並列接続して構成され、前記第1MOSトランジスタのゲート端子に入力される信号(Vpon,Vnon)で前記第2MOSトランジスタのゲート端子を制御することにより、前記電流源の電流値の絶対値を増加させる。
これにより、出力トランジスタが負荷を充放電する充放電電流と同じタイミング且つ概ね比例する大きさで、差動対トランジスタのバイアス電流を増加させることができ、スルーレートを向上させるタイミングだけでなくその大きさを、出力電圧(Vout)の遷移に応じて適切に制御することができる。
〔3〕<追加電流源の遮断スイッチ>
項1において、前記出力トランジスタは第1MOSトランジスタ(MP10,MN10)であり、前記電流源は、定電流源(MP1,MN1)と、前記定電流源と並列接続され互いに直列接続されるスイッチ(SW1,SW2)と第2MOSトランジスタ(MP20,MN20)とで構成され、前記第1MOSトランジスタのゲート端子に入力される信号(Vpon,Vnon)で前記第2MOSトランジスタのゲート端子を制御することにより、前記電流源の電流値の絶対値を増加させる。
これにより、項2と同様の作用効果を奏し、さらに、スルーレートを向上する必要がない期間には、スイッチ(SW1,SW2)を遮断して、第2MOSトランジスタ(MP20,MN20)による、差動対トランジスタ(MP2,MP3,MN2,MN3)における電流のリークを抑えることができる。
〔4〕<追加電流源の遮断スイッチの自己制御>
項3において、前記第1MOSトランジスタのゲート端子に入力される信号(Vpon,Vnon)に基づいて、前記スイッチを遮断する。
これにより、出力端子からの出力電圧(Vout)が安定したことを検出するタイミング信号を、差動増幅回路の内部信号(Vpon,Vnon)から生成し、このタイミング信号で前記スイッチを制御することで適切なタイミングで、追加電流源である第2MOSトランジスタ(MP20,MN20)を遮断することができる。
〔5〕<表示駆動回路>
本願において開示される代表的な実施の形態に係る表示駆動回路(1)は、項1から項4のうちのいずれか1項に記載される差動増幅回路によって構成されるボルテージフォロワアンプを、接続される表示パネルのソース電極を駆動するソースアンプ(4_1〜4_n)として含む。
これにより、接続される表示パネルのソース電極の負荷の大きさに応じて、スルーレートを向上する期間を自律的かつ適切に制御することができる、表示駆動回路を提供することができる。
〔6〕<表示ドライバIC>
項5において、前記表示駆動回路は、単一の半導体基板上に形成される。
これにより、接続される表示パネルごとにスルーレートを最適化した別品種の表示ドライバICを開発したり、接続される表示パネルごとにソースアンプのスルーレートを調整する表示ドライバICを提供することなく、1つの製品で広範囲の表示パネルに適応することができる表示ドライバICを提供することができる。
〔7〕<Rail to Railの差動増幅回路>
本願において開示される代表的な実施の形態に係る差動増幅回路(4)は、差動入力信号が供給される差動対トランジスタ(MP2,MP3,MN2,MN3)と、前記差動対トランジスタに直列接続される電流源(MP1,MP20,MN1,MN20)と、出力端子(Vout)を駆動する出力トランジスタ(MP10,MN10)とを備え、以下のように構成される。
前記出力トランジスタは、高電位側電源(例えばVDD)と前記出力端子との間に接続される第1PチャネルMOSトランジスタ(MP10)と低電位側電源(例えばGND)と前記出力端子との間に接続される第1NチャネルMOSトランジスタ(MN10)とによって構成される。
前記差動対トランジスタは、前記差動入力信号の一方がそれぞれゲート端子に入力される第3PチャネルMOSトランジスタ(MP2)と第3NチャネルMOSトランジスタ(MN2)と、前記差動入力信号の他方がそれぞれゲート端子に入力される第4PチャネルMOSトランジスタ(MP3)と第4NチャネルMOSトランジスタ(MN3)とによって構成される。
前記電流源は、前記高電位側電源から正の電流を供給する高電位側定電流源(MP1)と第2PチャネルMOSトランジスタ(MP20)とが並列接続され、前記低電位側電源から負の電流を供給する低電位側定電流源(MN1)と第2NチャネルMOSトランジスタ(MN20)とが並列接続されて構成される。前記高電位側電源から前記正の電流を前記第3PチャネルMOSトランジスタと前記第4PチャネルMOSトランジスタのソース端子に供給し、前記負電位側電源から前記負の電流を前記第3PチャネルMOSトランジスタと前記第4PチャネルMOSトランジスタのソース端子に供給する。
前記第1PチャネルMOSトランジスタのゲート端子に入力される信号(Vpon)で前記第2PチャネルMOSトランジスタ(MP20)のゲート端子を制御することにより、前記高電位側電源から供給される前記正の電流を増加させ、前記第1NチャネルMOSトランジスタのゲート端子に入力される信号(Vnon)で前記第2NチャネルMOSトランジスタ(MN20)のゲート端子を制御することにより、前記低電位側電源から供給される前記負の電流の絶対値を増加させる。
これにより、出力電圧(Vout)が高電位側電源から低電位側電源までの間の所謂レールトゥレール(Rail to Rail)でフルスイングする差動増幅回路において、出力電圧(Vout)の遷移に応じた適切なタイミングで、スルーレートを向上させることができる。
〔8〕<追加電流源へのフィードバック量>
項7において、前記第1PチャネルMOSトランジスタ(MP10)と前記第2PチャネルMOSトランジスタ(MP20)の相互コンダクタンスの比率(N)と、前記第1NチャネルMOSトランジスタ(MN10)と前記第2NチャネルMOSトランジスタ(MN20)の相互コンダクタンスの比率(N)とが等しくされる。
これにより、スルーレートを向上するためのバイアス電流量が、出力の立上りと立下りにおいてバランスされる。当該比率によって追加電流源へのフィードバック量が規定される。ここで、「等しく」とは、数学的に厳密な等しさを要件とするものではなく、工業的に許容される誤差を含んだ範囲で、概ね同じ比率になるように設計されることを意味する(本願において同様)。
〔9〕<N×W/L>
項8において、前記第1PチャネルMOSトランジスタ(MP10)と前記第2PチャネルMOSトランジスタ(MP20)のゲート長と、前記第1NチャネルMOSトランジスタ(MN10)と前記第2NチャネルMOSトランジスタ(MN20)のゲート長とはそれぞれ等しく、前記第1PチャネルMOSトランジスタ(MP10)と前記第2PチャネルMOSトランジスタ(MP20)のゲート幅の比率と、前記第1NチャネルMOSトランジスタ(MN10)と前記第2NチャネルMOSトランジスタ(MN20)のゲート幅の比率は、それぞれ前記相互コンダクタンスの比率(N)と等しくされる。
これにより、トランジスタサイズによって追加電流源へのフィードバック量が規定される。
〔10〕<追加電流源の遮断スイッチ>
項7において、前記第2PチャネルMOSトランジスタ(MP20)に直列に挿入される第1スイッチ(SW1)と、前記第2NチャネルMOSトランジスタ(MN20)に直列に挿入される第2スイッチ(SW2)とをさらに備える。
これにより、項7と同様の作用効果を奏し、さらに、スルーレートを向上する必要がない期間には、第1及び第2スイッチ(SW1,SW2)を遮断して、第2PチャネルMOSトランジスタ(MP20)と第2NチャネルMOSトランジスタ(MN20)とによる差動対トランジスタ(MP2,MP3,MN2,MN3)における電流のリークを抑えることができる。
〔11〕<追加電流源の遮断スイッチの自己制御>
項10において、前記第1PチャネルMOSトランジスタと前記第1NチャネルMOSトランジスタのそれぞれのゲート端子に入力される信号(Vpon,Vnon)に基づいて、前記1スイッチと前記2スイッチを遮断する制御を行う。
これにより、出力端子からの出力電圧(Vout)が安定したことを検出するタイミング信号を、差動増幅回路の内部信号(Vpon,Vnon)から生成し、このタイミング信号で前記スイッチを制御することで適切なタイミングで、追加電流源である第2PチャネルMOSトランジスタ(MP20)及び第2NチャネルMOSトランジスタ(MN20)を遮断することができる。
〔12〕<追加電流源の遮断スイッチの制御回路>
項10において、前記出力端子からの出力が立上る遷移期間に前記第2スイッチをオンし、前記出力端子からの出力が立下る遷移期間に前記第1スイッチをオンする、スイッチ制御回路(コンパレータ)をさらに備える。
これにより、項11と同様に、適切なタイミングで、追加電流源である第2PチャネルMOSトランジスタ及び第2NチャネルMOSトランジスタを遮断することができる。
〔13〕<コンパレータによりスイッチ制御回路>
項12において、前記スイッチ制御回路は、前記高電位側電源と立下り検出ノード(Vpsw)との間に接続される第5PチャネルMOSトランジスタ(MP11)と、前記低電位側電源と前記立下り検出ノード(Vpsw)との間に接続される第5NチャネルMOSトランジスタ(MN11)と、前記高電位側電源と立上り検出ノード(Vnsw)との間に接続される第6PチャネルMOSトランジスタ(MP12)と、前記低電位側電源と前記立上り検出ノード(Vnsw)との間に接続される第6NチャネルMOSトランジスタ(MN12)とを含む。
前記第5PチャネルMOSトランジスタと前記第5NチャネルMOSトランジスタの相互コンダクタンスの比率は、前記第1PチャネルMOSトランジスタと前記第1NチャネルMOSトランジスタの相互コンダクタンスの比率よりも大きい。
前記第6PチャネルMOSトランジスタと前記第6NチャネルMOSトランジスタの相互コンダクタンスの比率は、前記第1PチャネルMOSトランジスタと前記第1NチャネルMOSトランジスタの相互コンダクタンスの比率よりも小さい。
これにより、追加電流源のスイッチを自己制御によって遮断するためのスイッチ制御回路(コンパレータ)を、簡単な回路で構成することができる。スイッチ制御回路を構成する2つのコンパレータに適切なオフセットを持たせ、一方に出力電圧(Vout)の立下り期間を、他方を出力電圧(Vout)の立上り期間を、それぞれ検出させることができる。即ち、第5PチャネルMOSトランジスタ(MP11)と第5NチャネルMOSトランジスタ(MN11)によって構成されるコンパレータは、出力トランジスタに対してオフセットを持ち、出力電圧(Vout)の立上り期間と安定期間にはハイ、立下り期間にロウを出力するので、第1スイッチ(SW1)をオンして差動段のPチャネル側のバイアス電流を増やして立下りのスルーレートを向上する。第6PチャネルMOSトランジスタ(MP12)と第6NチャネルMOSトランジスタ(MN12)によって構成されるコンパレータは、出力トランジスタに対して逆のオフセットを持ち、出力電圧(Vout)の立下り期間と安定期間にはロウ、立下り期間にハイを出力するので、第2スイッチ(SW2)をオンして差動段のNチャネル側のバイアス電流を増やして立上りのスルーレートを向上する。
〔14〕<表示駆動回路>
本願において開示される代表的な実施の形態に係る表示駆動回路(1)は、項7から項13のうちのいずれか1項に記載される差動増幅回路によって構成されるボルテージフォロワアンプを、接続される表示パネルのソース電極を駆動するソースアンプ(4_1〜4_n)として含む。
これにより、項5と同様に、接続される表示パネル(2)のソース電極の負荷の大きさに応じて、スルーレートを向上する期間を自律的かつ適切に制御することができる、表示駆動回路(1)を提供することができる。
〔15〕<表示ドライバIC>
項14において、前記表示駆動回路は、単一の半導体基板上に形成される。
これにより、項6と同様に、接続される表示パネル(2)ごとにスルーレートを最適化した別品種の表示ドライバIC(1)を開発したり、接続される表示パネルごとにソースアンプのスルーレートを調整する表示ドライバICを提供することなく、1つの製品で広範囲の表示パネルに適応することができる表示ドライバICを提供することができる。
2.実施の形態の詳細
実施の形態について更に詳述する。
〔実施形態1〕
図1は、本発明に係る差動増幅回路がソースアンプとして搭載される表示駆動回路(表示ドライバIC)1を含む電子機器100の構成例を示すブロック図である。電子機器100は、本発明に係る電子機器の一例であり、例えばPDA(Personal Digital Assistant)や携帯電話機などの携帯端末の一部を構成し、表示パネル2、表示駆動回路(表示ドライバIC)1及びホストプロセッサ3を備える。電子機器100では、ホストプロセッサ3から供給される画像データが、表示駆動回路(表示ドライバIC)1によって表示パネル2に表示される。
電子機器100は、図示は省略されるが、さらにタッチパネル、タッチパネルコントローラ、タッチ検出のためのサブプロセッサなどを含んで構成されてもよい。このとき、表示駆動回路1とタッチパネルコントローラ、或いはさらにサブプロセッサやホストプロセッサ3が、単一の半導体チップ上に形成され、又は例えばマルチチップモジュールとして1個のパッケージに搭載されて1個の半導体装置として構成されてもよい。また、表示パネル2とタッチパネルは、互いに重ね合せて実装されても良く、これらが一体として製造されたインセル構成でも、個別に製造されて重ね合わされたオンセル構成でも良い。ホストプロセッサ3は画像データを生成し、表示駆動回路1は、ホストプロセッサ3から受け取った画像データを表示パネル2に表示するための表示制御を行う。また、ホストプロセッサ3は、接触イベント(タッチ)が発生したときの位置座標のデータをサブプロセッサから取得し、表示パネル2における位置座標のデータと表示駆動回路1に与えて表示させた画面との関係から、タッチパネルの操作による入力を解析するように構成されても良い。さらに、ホストプロセッサ3に、通信制御ユニット、画像処理ユニット、音声処理ユニット、及びその他アクセラレータなどが内蔵され或いは接続されることによって、電子機器100は例えば携帯端末として構成される。
表示パネル2には、横方向に形成された走査電極としてのゲート配線G1〜Gmと縦方向に形成された信号電極としてのソース配線S1〜Snとが配置され、その各交点部分には表示セル16が配置される。表示セル16は、図中に破線で囲まれる領域に例示されるように、ゲート配線にゲート端子がソース配線にソース端子が接続されるトランスファゲートTrと、トランスファゲートTrのドレイン端子と共通電圧Vcomの間に形成された、例えば液晶などの画素容量Cxによって構成される。トランスファゲートTrの構造は対称であり、上述のドレイン端子とソース端子の関係は逆でもよい。走査電極であるゲート配線G1〜Gmは、表示パネル2に形成されたゲート駆動回路15によって走査駆動される。ゲート駆動回路15を構成する回路は、例えば表示パネル2のガラス基板上に形成された薄膜トランジスタ(TFT:Thin Film Transistor)を使って構成される。このとき、ゲート駆動回路15はゲートインパネル(GIP:Gate In Panel)と呼ばれる。ゲート駆動回路(GIP)15を制御するための信号Gctlは、表示駆動回路1から供給される。例えば、ゲート駆動回路(GIP)15がシフトレジスタで構成されているとき、供給される信号Gctlには、シフト動作のためのクロックや開始フラグ、シフト方向やシフト動作をイネーブル/ディセーブルする信号などが含まれる。信号電極としてのソース配線S1〜Snには、表示駆動回路1から、直接またはデマルチプレクサを介して、表示されるべき輝度に対応する階調レベルの信号が印加され、走査電極によって選択されたラインの画素容量Cxが並列に充電される。表示パネル2が液晶表示パネルの場合、画素容量Cxに保持される電荷によって形成される電界の大きさにより、液晶の偏光の大きさが決まり、光の透過量即ちその画素の輝度が決まる。画素容量Cxは次のフレームで同じラインが選択され新たな表示レベルが充電されるまで、電荷を保持して同じ輝度を表示する。画素容量Cxに表示レベルに対応する電荷を転送するために、走査電極と信号電極を上述のように駆動することを、表示駆動と称し、表示駆動期間(略して表示期間と言う場合も含む)は、表示駆動が行われる期間を意味する。表示パネル2の構成は、図示された例に制限されず任意である。例えば、ゲート駆動回路15を備える代わりに、ゲート配線G1〜Gmが表示駆動回路(表示ドライバIC)1または別チップのゲートドライバICによって直接駆動される構成とすることもできる。
図2は、表示駆動回路(表示ドライバIC)1の構成例を示すブロック図である。表示駆動回路1は、ホストインターフェース9と、制御部8と、フレームメモリ7と、ラインラッチ6と、ソースアンプ4_1〜4_nと、階調レベル選択回路5_1〜5_nと、ソースアンプバイアス制御回路14と、階調レベル生成回路13と、ゲート制御信号駆動回路12と、電源回路11とを含んで構成される。ソースアンプ4_1〜4_nには、本発明に係る差動増幅回路が適用される。
表示駆動回路1は、ホストインターフェース9を介してホストプロセッサ3と接続され、制御コマンドを受信し、各種パラメータを送受信し、さらに表示パネル2に表示すべき画像データを高速に受信し、垂直同期信号(Vsync)及び水平同期信号(Hsync)などのタイミング情報も合わせて受信する。ホストインターフェース9は、例えば表示デバイスの標準的な通信インターフェースの1つである、MIPI−DSI(Mobile Industry Processor Interface Display Serial Interface)に準拠するインターフェースであってもよい。制御部8は、ホストプロセッサ3から受信した制御コマンドやパラメータを保持するコマンドレジスタ(不図示)とパラメータレジスタ(不図示)を備え、それに基づいて各回路の動作、例えばゲート制御信号駆動回路12からゲート駆動回路15の制御信号Gctlを出力させる動作、を制御する。制御部8は、ホストインターフェース9を介してホストプロセッサ3から受信する画像データを、フレームメモリ7に書き込む。フレームメモリ7は、例えばSRAM(Static Random Access Memory)で構成される。フレームメモリ7から1ライン分の画像データがラインラッチ6に読み出され、ラインラッチ6は1ライン分の画像データを並列に階調レベル選択回路5_1〜5_nに供給する。階調レベル選択回路5_1〜5_nには、階調レベル生成回路13から、多階調のアナログ階調電圧が供給されている。階調レベル選択回路5_1〜5_nは、それぞれ、供給される多階調のアナログ階調電圧の中からラインラッチ6から入力される画像データに対応する、1つの階調レベルを選択し、または、複数の階調レベルを選択してそれらから中間の階調レベルを生成して、接続されるソースアンプ4_1〜4_nに供給する。ソースアンプ4_1〜4_nは、図2に例示されるように、差動増幅回路で構成されるボルテージフォロワアンプであり、供給される階調レベルを電流増幅して、接続される表示パネル2の信号電極であるソース配線S1〜Snを駆動する。ソースアンプ4_1〜4_nには、ソースアンプバイアス制御回路14からバイアス電圧が供給されている。
電源回路11は、昇圧回路、降圧回路、安定化回路(レギュレータ)などを含んで構成され、外部から供給される電源VDD/VSSから、表示駆動回路(表示ドライバIC)1内の各回路で使用される内部電源を生成し供給する。
上述の表示駆動回路(表示ドライバIC)1は、フレームメモリ7を内蔵する構成例について説明したが、フレームメモリを内蔵しない構成も採用し得る。フレームメモリ7を内蔵する構成例では、表示する画像が静止画の場合に、1フレームの静止画をフレームメモリ7に保持し、繰り返し読み出して表示することにより、静止画が表示されている期間のホストプロセッサ3からの画像データの転送を省略することができる。一方、フレームメモリを内蔵しない構成では、チップ面積が小さくて済み、コストが低減される。
図3は、ソースアンプ4の表示パネル2による負荷の等価回路を模式的に示す説明図である。ソースアンプ4の出力は、端子Soutを介してソース配線に接続される。ソース配線には、上述のようにライン数と同数の表示セル16が接続されている。ソースアンプ4の負荷の等価回路は、ソース配線の配線抵抗Rと、配線容量などの寄生容量Cによる分布定数回路である。ただし、図3には集中定数回路として図示されている。また、ゲート配線によって選択されたラインの表示セル16では画素容量Cxが負荷の寄生容量Cに含まれるが、非選択のラインではトランスファゲートTrのオフ時の拡散層容量等のみが、負荷の寄生容量Cに含まれ、画素容量Cxは含まれない。ソースアンプ4の出力端子における電圧Voutは、図示される等価回路によって減衰して遠端ではVout_Farとなる。Vout_FarはVoutに対して抵抗Rと容量Cによって遅延されるので、ソースアンプ4のスルーレートを大きくすることにより、この遅延を相殺することが期待される。
図5は、本発明に係る差動増幅回路によるソースアンプ4の構成例を示す回路図であり、図4は、ソースアンプ4_1〜4_nにバイアスを供給するソースアンプバイアス制御回路14の構成例を示す回路図である。通常、表示駆動回路1には複数のソースアンプ4_1〜4_nが搭載されているが、その1個を指すときは、符号「4」を用いる。ソースアンプバイアス制御回路14は複数のソースアンプ4_1〜4_nに共通するバイアスを供給することができる。ソースアンプバイアス制御回路14は、電流源30と3個のNチャネルMOSトランジスタMN0,MN8,MN9と、2個のPチャネルMOSトランジスタMP8,MP9と、抵抗Rbによって構成される。MN0とMN8によってカレントミラーが構成され、電流源30によって規定される電流値が、MN0とMN8のサイズ(相互コンダクタンス)の比率にしたがって増幅されて、MN8とMN9とMP8とMP9と抵抗Rbに流れる。MN8とMN9とMP8とMP9は、後述のソースアンプ4の差動段と中間段のMOSトランジスタとによってそれぞれカレントミラーを構成し、バイアス制御線Vbp1,Vbp2,Vbn2,Vbn1を介してそれぞれのバイアス電流を制御する。
図5は、ソースアンプ4の構成例を示す回路図である。ソースアンプ4は、差動段と中間段と出力段からなる差動増幅器(演算増幅器)であり、出力Voutが差動入力の一方にフィードバックされて、ボルテージフォロワアンプが構成されている。差動段は、3個のPチャネルMOSトランジスタMP1〜MP3と、3個のNチャネルMOSトランジスタMN1〜MN3を含んで構成される。MP1とMN1にはバイアス制御線Vbp1とVbn1がそれぞれ接続され、ソースアンプバイアス制御回路14のMP8とNN8との間でカレントミラーを構成して、ソースアンプ4の差動段にバイアス電流IbpとIbnを与えるテール電流源として機能する。本発明では、MP1とMN1にそれぞれ並列にPチャネルMOSトランジスタMP20とNチャネルMOSトランジスタMN20が付加されるが、この構成と動作については後段で詳述する。MP2とMN2のゲート端子にはVoutからのフィードバックが接続され、MP3とMN3のゲート端子には、他方の入力であるVinが入力される。中間段は、4個のPチャネルMOSトランジスタMP4〜MP7と、4個のNチャネルMOSトランジスタMN4〜MN7とによって構成される。MP4とMP6とMN6とMN4で構成される電流路と、MP5とMP7とMN7とMN5で構成される電流路の2本の電流路が、それぞれ同じ値の電流Ibを流すように構成され、差動段への2つの入力VinとVoutの差に従って、差動段から流入する電流と、差動段へ流出する電流とによって差動電圧を生成し、VponとVnonとして出力段へ出力する。MP6とMP7、MN6とMN7それぞれゲート端子へは、ソースアンプバイアス制御回路14からバイアス制御線Vbp2とVbn2が入力され、ソースアンプバイアス制御回路14のMP9とNN9との間でカレントミラーを構成して、MP6とMN6、MP7とMN7がそれぞれ抵抗性負荷として機能するように構成されている。出力段は、ゲート端子にVponが入力される1個のPチャネルMOSトランジスタMP10と、Vnonが入力される1個のNチャネルMOSトランジスタMN10と、それぞれのドレイン端子とゲート端子の間に接続されたフィードバック容量CpとCnとによって構成される。中間段から入力される差動電圧を電流増幅して、Voutを出力する。
本発明では、差動段のPチャネルMOSトランジスタMP1に変動バイアス源として機能するMP20が並列に付加され、そのゲート端子には出力段のゲート電圧Vponがフィードバックされ、NチャネルMOSトランジスタMN1に変動バイアス源として機能するMN20が並列に付加され、そのゲート端子には出力段のゲート電圧Vnonがフィードバックされている。MP20のゲート幅/ゲート長比はWp/Lp、出力トランジスタMP10のゲート幅/ゲート長比はN×Wp/Lp、MN20のゲート幅/ゲート長比はWn/Ln、出力トランジスタMN10のゲート幅/ゲート長比はN×Wn/Lnとされ、変動バイアス源として機能するMP20とMN20の相互コンダクタンスは、出力トランジスタMP10とMN10の1/Nに設定されている。
差動段の入力トランジスタMP2とMP3,MN2とMN3には通常それぞれバイアス電流IbpとIbnが流されているが、変動バイアス源MP20とMN20がオンすると、変動バイアスIpdとIndがそれぞれ加算される。これにより、変動バイアス源MP20とMN20がオンする期間に、スルーレートを向上させソースアンプ4を高速動作させることができる。
ソースアンプ4の動作について、より詳しく説明する。図6は、図5の差動増幅回路(ソースアンプ4)の動作例を示す波形図である。横軸は時間であり、縦軸方向には上から順に、入力電圧Vin、出力トランジスタMP10とMN10に流れる電流IoupとIoutn、変動バイアス電流IpdとIndの波形が示される。図7は図5の差動増幅回路の出力信号(Vout)を示す波形図であり、図8は表示パネル2の遠端での信号(Vout_Far)の波形図である。図7と図8はそれぞれ横軸が時間であり、縦軸に出力信号(Vout)と遠端での信号(Vout_Far)の波形が示される。実線は図5の差動増幅回路(ソースアンプ4)の動作における波形であり、破線は比較例である、変動バイアス源MP20とMN20を付加しない差動増幅回路の波形である。
時刻t1において入力電圧Vinの立上りに伴って出力電圧Voutが立上る場合、出力段のゲート電圧VponとVnonは、VoutからVinのもう一方の入力端子へのフィードバック制御により、MP10をオンしMN10をオフする。出力端子Soutに接続される負荷(図3参照)を充電するために、出力電流Ioutpが流れる。出力段のゲート電圧Vponは、差動段の変動バイアス源MP20にも入力されているので、MP10と同様にMP20もオンしてIpdが流れ、差動入力トランジスタMP2とMP3に流れるバイアス電流を、IbpからIbp+Ipdに増加させる。これに伴って中間段のカレント部であるMN4とMN5は高速化し、Vnon電位を急峻に降下させ出力トランジスタMN10を高速にオフする。一方、差動段の変動バイアス源MN20は、MN10と同様に高速にオフされ、差動入力トランジスタMN2とMN3に流れるバイアス電流は、減少してIbnのみとなる。これに伴い出力段のゲート電圧Vponは、急峻に降下しMP10を高速でオンする。これにより、図7に示されるように、Voutは破線で示される変動バイアス源を付加しない比較例よりも急峻に立上り、図8に示される遠端での電圧Vout_Farも同様に、破線で示される変動バイアス源を付加しない比較例よりも急峻に立上る。
時刻t2において入力電圧Vinの立下りに伴って出力電圧Voutが立下る場合、出力段のゲート電圧VponとVnonは、MP10をオフしMN10をオンする。出力端子Soutに接続される負荷(図3参照)から放電するために、出力電流Ioutnが流れる。出力段のゲート電圧Vnonは、差動段の変動バイアス源MN20にも入力されているので、MN10と同様にMN20もオンしてIndが流れ、差動入力トランジスタMN2とMN3に流れるバイアス電流を、IbnからIbn+Indに増加させる。これに伴って中間段のカレント部であるMP4とMP5は高速化し、Vpon電位を急峻に上昇させ出力トランジスタMP10を高速にオフする。一方、差動段の変動バイアス源MP20は、MP10と同様に高速にオフされ、差動入力トランジスタMP2とMP3に流れるバイアス電流は、減少してIbpのみとなる。これに伴い出力段のゲート電圧Vnonは、急峻に上昇しMN10を高速でオンする。これにより、図7に示されるように、Voutは破線で示される変動バイアス源を付加しない比較例よりも急峻に立下り、図8に示される遠端での電圧Vout_Farも同様に、破線で示される変動バイアス源を付加しない比較例よりも急峻に立下る。
MP20とMN20のサイズは上述のようにMP10とMN10の1/Nとされ、Vout電圧が安定したときはMP20とMN20の電流値が微小になるように、Nの値が設定される。
図7と図8は、表示パネルを例にとった場合の波形であるが、図7は負荷が軽い場合の例、図8は負荷が重い場合の例として一般化される。
以上述べたように、本発明の差動増幅器(ソースアンプ)4では、高速駆動時にスルーレートを向上するためにバイアスを増加させる制御を、差動増幅器(ソースアンプ)4の内部信号をフィードバックさせる自己制御によって実現することができる。また、高速駆動時の充放電電流に応じたバイアス制御を行うため、高速駆動時でもソース出力に応じたバイアス調整を行うことができる。即ち、出力電圧Voutの変動が大きく、充放電電流であるIoutpまたはIoutnのピークが大きくかつ充放電時間が長い場合には、それに応じて変動バイアス電流IpdとIndの値も大きくかつ付加される時間も長くなる。逆に、出力電圧Voutの変動が小さい場合には、充放電電流であるIoutpまたはIoutnのピークは小さくかつ充放電時間も短いので、それに応じて変動バイアス電流IpdとIndの値も小さくかつ付加される時間も短くなる。このように、一時的にスルーレートを向上することができる差動増幅回路(ソースアンプ)4において、スルーレートを向上させるタイミングを、入力される差動信号Vinの遷移に応じて適切に制御することができる。さらに、出力トランジスタMP10とMN10が負荷を充放電する充放電電流と同じタイミング且つ概ね比例する大きさで、差動対トランジスタMP2とMP3,MN2とMN3のバイアス電流を増加させる(Ibp+Ipd,Ibn+Ind)ことができ、スルーレートを向上させるタイミングだけでなくその大きさを、出力電圧(Vout)の遷移に応じて適切に制御することができる。
図5に示される差動増幅回路(ソースアンプ)4は、差動段が高電位側電源(例えば電源VDD)のバイアス電流源MP1とMP20と、低電位側電源(例えば接地GND)のバイアス電流源MN1とMN20の両方を備える回路であるが、一方のみを備える差動段を有する差動増幅回路も同様の作用効果を奏する。
図9は、本発明に係る差動増幅回路の第1の変形例を示す回路図である。図5に示される差動増幅回路(ソースアンプ)4と比較して、差動段のNチャネルMOSトランジスタMN1,MN2,MN3,MN20が省略され、VinはMP3のゲート端子に入力され、VoutはMP2のゲート端子にフィードバックされている。他の回路は図5と同様であるので、説明を省略する。
図9に示される差動増幅器4の動作は、入力電圧Vinの立上りに伴って出力電圧Voutが立上る場合には、図6〜8を引用して説明した、図5の差動増幅回路(ソースアンプ)4の時刻t1における立上りの動作と同様に、差動入力トランジスタMP2とMP3に流れる電流をIbpからIbp+Ipdに増加させる。これに伴って中間段のカレント部であるMN4とMN5は高速化し、Vnon電位を急峻に降下させ出力トランジスタMN10を高速にオフする。出力段のゲート電圧Vponは比較例と同様に降下しMP10をオンする。これにより、図7と図8に示される出力電圧Voutと遠端での電圧Vout_Farは、破線で示される変動バイアス源を付加しない比較例よりも急峻に立上る。一方、時刻t2における立下り時には、スルーレートを向上することはできず、図7と図8に示される出力電圧Voutと遠端での電圧Vout_Farは、破線で示される変動バイアス源を付加しない比較例と同様の波形となる。
図10は、本発明に係る差動増幅回路の第2の変形例を示す回路図である。図5に示される差動増幅回路(ソースアンプ)4と比較して、差動段のPチャネルMOSトランジスタMP1,MP2,MP3,MP20が省略され、VinはMN3のゲート端子に入力され、VoutはMN2のゲート端子にフィードバックされている。他の回路は図5と同様であるので、説明を省略する。
図10に示される差動増幅器4の動作は、入力電圧Vinの立下りに伴って出力電圧Voutが立下る場合には、図6〜8を引用して説明した、図5の差動増幅回路(ソースアンプ)4の時刻t2における立下りの動作と同様に、差動入力トランジスタMN2とMN3に流れる電流をIbnからIbn+Indに増加させる。これに伴って中間段のカレント部であるMP4とMP5は高速化し、Vpon電位を急峻に降下させ出力トランジスタMP10を高速にオフする。出力段のゲート電圧Vnonは比較例と同様に降下しMN10をオンする。これにより、図7と図8に示される出力電圧Voutと遠端での電圧Vout_Farは、破線で示される変動バイアス源を付加しない比較例よりも急峻に立下る。一方、時刻t1における立上り時には、スルーレートを向上することはできず、図7と図8に示される出力電圧Voutと遠端での電圧Vout_Farは、破線で示されるI変動バイアス源を付加しない比較例と同様の波形となる。
図9と図10には、本発明に係る差動増幅回路の変形例として、理解を助けるために、図5に示される回路からの変更量が少ない回路を示したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能である。
〔実施形態2〕
図11は、実施形態2の差動増幅回路によるソースアンプ4の構成例を示す回路図である。図5に示される実施形態1の差動増幅回路(ソースアンプ)4の構成例との違いは、変動バイアス源として機能するMP20とMN20に直列にスイッチSW1とSW2がそれぞれ挿入されている点である。即ち、MP20と高電位側電源(例えばVDD)との間にスイッチSW1が挿入され、MN20と低電位側電源(例えばGND)との間にスイッチSW2が挿入される。他の構成については、図5と同様であるので説明を省略する。
図12は、図11に示される差動増幅回路(ソースアンプ)4の動作例を示すタイミングチャートである。横軸は時間であり、縦軸方向に上から、外部制御信号であるソース高速駆動タイミング信号と出力電圧Voutとが模式的に示される。MP20とMN20のゲート端子に、それぞれVponとVnonがフィードバックされており、変動バイアス源は実施形態1と同様に自己制御である。SW1とSW2にはソース高速駆動タイミング信号が入力されており、出力Voutが遷移する、時刻t1〜t2の高速駆動期間にはSW1とSW2はオンされ、出力トランジスタMP10とMN10の充放電動作と同期して、バイアス電流を増やしスルーレートを向上させる。Voutのレベルが安定する時刻t2以降(安定駆動期間)にオフされる。これにより、変動バイアス源の微小電流も完全にオフすることができ、安定駆動時の消費電流は、変動バイアス源を付加しない比較例の差動増幅回路と同じレベルに抑えることができる。この差動増幅回路4が表示駆動回路1における多数のソースアンプ4_1〜4_nに適用される場合には、1個のソースアンプ4あたりの変動バイアス源の微小電流が小さいとしても、ソースアンプの数nが1000個以上の多数に及ぶ場合に、安定駆動時の消費電流の抑制効果は大きい。また、表示駆動回路1に適用される場合には、ソース高速駆動タイミング信号は、例えば、表示タイミングを示すストローブ信号や水平同期信号Hsyncから生成することができる。
〔実施形態3〕
図13は、実施形態3の差動増幅回路によるソースアンプ4の構成例を示す回路図である。差動段において変動バイアス源として機能するMP20とMN20に直列にスイッチSW1とSW2がそれぞれ挿入されている点は、図11に示される実施形態2の差動増幅回路(ソースアンプ)4と同様である。実施形態3では、スイッチSW1とSW2を制御するソース高速駆動タイミング信号Vpsw_bとVnsw_bが、差動増幅回路(ソースアンプ)4の外部から供給される代わりに、VponとVnonに基づいて内部で生成される。他の回路は、図11に示される実施形態2の差動増幅回路(ソースアンプ)4と同様であるので、説明を省略する。
図14は、実施形態3の差動増幅回路における制御信号Vpsw_bとVnsw_bを内部生成する回路の回路図である。出力段に並列してコンパレータが設けられる。コンパレータは、2個のPチャネルMOSトランジスタMP11とMP12と、2個のNチャネルMOSトランジスタMN11とMN12と、2個のインバータINVpとINVnとを含んで構成される。MP11とMP12は、出力段のMP10と同様にVponがゲート端子に入力され、ソース端子が高電位側電源(例えばVDD)に接続される。MN11とMN12は、出力段のMN10と同様にVnonがゲート端子に入力され、ソース端子が低電位側電源(例えばGND)に接続される。MP11とMN11のドレインが互いに接続されてVpswを出力し、インバータINVpによって反転されて、SW2を制御するVpsw_bを出力する。MP12とMN12のドレインが互いに接続されてVnswを出力し、インバータINVnによって反転されて、SW1を制御するVnsw_bを出力する。MP11とMP12のサイズ(ゲート幅/ゲート長)は、MP10のサイズ(ゲート幅/ゲート長)N×Wp/Lpに対して、それぞれ(Wp+αp)/LpとWp/Lpとされる。MN11とMN12のサイズ(ゲート幅/ゲート長)は、MN10のサイズ(ゲート幅/ゲート長)N×Wn/Lnに対して、それぞれWn/Lnと(Wn+αn)/Lnとされる。MP11とMN11によるコンパレータと、MP12とMN12によるコンパレータは、MP10とMN10による出力段に対して、それぞれ逆方向にオフセットが持っており、安定駆動時にVpsw=High、Vnsw=Lowとなる。
図15は、図14に示される差動増幅回路(ソースアンプ)4の動作例を示すタイミングチャートである。横軸は時間であり、縦軸方向に上からVout,Vpsw,Vnsw,Vpsw_b,Vnsw_bの波形が示される。SW1はPチャネルMOSトランジスタで構成され、Vsnw_b=Lowのときにオンになり、SW2はNチャネルMOSトランジスタで構成され、Vpnw_b=Highのときにオンになるものとして描かれている。Voutの立上りでは、MP12とMN12によるコンパレータが動作してSW2をオンさせ、Voutの立下りでは、MP11とMN11によるコンパレータが動作してSW1をオンさせる自己制御を行う。Vpsw,Vnsw,Vpsw_b,Vnsw_bは、Voutとは異なり、表示パネル2のソース配線のような重い負荷が接続されていないので、高速に動作する。
MP12とMN12によるコンパレータは、上述のオフセットを持っているので、時刻t0〜t1のVoutが比較的低い電圧で安定している期間には、Vnsw=Lowを出力しており、Voutが上昇を始めてオフセットで規定される所定の電圧以上に上昇した時点(時刻t1)でVnsw=Highを出力し、その反転信号であるVnsw_bはLowに立下ってSW1をオンする。その後、Voutが安定する電圧よりもオフセットで規定される所定の電圧だけ低い電圧に到達したことを検出した時点(時刻t2)でVnsw=Lowを出力し、その反転信号であるVnsw_bはHighに立上ってSW1をオフする。この間、MP11とMN11によるコンパレータは、時刻t0〜t1の安定駆動期間に既にVpsw=Highを出力しているので、Voutの立上りに応答する動作はしない。MP11とMN11によるコンパレータは、上述のオフセットを持っているので、時刻t0〜t3のVoutが立上り比較的高い電圧で安定している期間には、Vpsw=Highを出力しており、Voutが下降を始めてオフセットで規定される所定の電圧まで下がった時点(時刻t3)でVpsw=Lowを出力し、その反転信号であるVpsw_bはHighに立上ってSW2をオンする。その後、Voutが安定する電圧よりもオフセットで規定される所定の電圧だけ高い電圧に到達したことを検出した時点(時刻t4)でVpsw=Highを出力し、その反転信号であるVpsw_bはLowに立下ってSW2をオフする。この間、MP12とMN12によるコンパレータは、時刻t2〜t3の安定駆動期間に既にVnsw=Lowを出力しているので、Voutの立下りに応答する動作はしない。
これにより、出力端子からの出力電圧Voutが遷移するタイミングと安定するタイミングとを、差動増幅回路の内部信号から生成し、適切なタイミングで、変動バイアス源であるMP20とMN20を動作させまた遮断することができる。
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、主に液晶表示パネルを駆動するソースアンプに適用した場合について説明したが、他の負荷を駆動する回路に適用することができるように変更することもできる。
1 表示駆動回路(表示ドライバIC)
2 表示パネル
3 ホストプロセッサ
4 差動増幅回路(ソースアンプ)
5 階調レベル選択回路
6 ラインラッチ
7 フレームメモリ
8 制御部
9 ホストインターフェース
11 電源回路
12 ゲート制御信号駆動回路
13 階調レベル生成回路
14ソースアンプバイアス制御回路
15 ゲートインパネル(GIP)
16 表示セル
30 電流源
100 電子機器
MP1〜MP12、MP20 PチャネルMOSFET
MN0〜MN12、MN20 NチャネルMOSFET
Tr トランスファゲート
Cx 画素容量
Cn,Cp フィードバック容量
C 容量
R、Rb 抵抗
INV インバータ

Claims (15)

  1. 差動入力信号が供給される差動対トランジスタと、前記差動対トランジスタに直列接続される電流源と、前記差動入力信号に基づいて出力端子を駆動する出力トランジスタとを備え、前記出力トランジスタが前記出力端子の電圧レベルを遷移させるタイミングに基づいて前記電流源の電流値の絶対値を増加させる、差動増幅回路。
  2. 請求項1において、前記出力トランジスタは第1MOSトランジスタであり、前記電流源は定電流源と第2MOSトランジスタとを並列接続して構成され、前記第1MOSトランジスタのゲート端子に入力される信号で前記第2MOSトランジスタのゲート端子を制御することにより、前記電流源の電流値の絶対値を増加させる、差動増幅回路。
  3. 請求項1において、前記出力トランジスタは第1MOSトランジスタであり、前記電流源は、定電流源と、前記定電流源と並列接続され互いに直列接続されるスイッチと第2MOSトランジスタとで構成され、前記第1MOSトランジスタのゲート端子に入力される信号で前記第2MOSトランジスタのゲート端子を制御することにより、前記電流源の電流値の絶対値を増加させる、差動増幅回路。
  4. 請求項3において、前記第1MOSトランジスタのゲート端子に入力される信号に基づいて、前記スイッチを遮断する、差動増幅回路。
  5. 請求項1に記載される差動増幅回路によって構成されるボルテージフォロワアンプを、接続される表示パネルのソース電極を駆動するソースアンプとして含む、表示駆動回路。
  6. 請求項5において、単一の半導体基板上に形成される、表示駆動回路。
  7. 差動入力信号が供給される差動対トランジスタと、前記差動対トランジスタに直列接続される電流源と、出力端子を駆動する出力トランジスタとを備え、
    前記出力トランジスタは、高電位側電源と前記出力端子との間に接続される第1PチャネルMOSトランジスタと低電位側電源と前記出力端子との間に接続される第1NチャネルMOSトランジスタとによって構成され、
    前記差動対トランジスタは、前記差動入力信号の一方がそれぞれゲート端子に入力される第3PチャネルMOSトランジスタと第3NチャネルMOSトランジスタと、前記差動入力信号の他方がそれぞれゲート端子に入力される第4PチャネルMOSトランジスタと第4NチャネルMOSトランジスタとによって構成され、
    前記電流源は、前記高電位側電源から正の電流を供給する高電位側定電流源と第2PチャネルMOSトランジスタとが並列接続され、前記低電位側電源から負の電流を供給する低電位側定電流源と第2NチャネルMOSトランジスタとが並列接続されて構成され、前記高電位側電源から前記正の電流を前記第3PチャネルMOSトランジスタと前記第4PチャネルMOSトランジスタのソース端子に供給し、前記負電位側電源から前記負の電流を前記第3PチャネルMOSトランジスタと前記第4PチャネルMOSトランジスタのソース端子に供給し、
    前記第1PチャネルMOSトランジスタのゲート端子に入力される信号で前記第2PチャネルMOSトランジスタのゲート端子を制御することにより、前記高電位側電源から供給される前記正の電流を増加させ、前記第1NチャネルMOSトランジスタのゲート端子に入力される信号で前記第2NチャネルMOSトランジスタのゲート端子を制御することにより、前記低電位側電源から供給される前記負の電流の絶対値を増加させる、差動増幅回路。
  8. 請求項7において、前記第1PチャネルMOSトランジスタと前記第2PチャネルMOSトランジスタの相互コンダクタンスの比率と、前記第1NチャネルMOSトランジスタと前記第2NチャネルMOSトランジスタの相互コンダクタンスの比率とが等しくされる、差動増幅回路。
  9. 請求項8において、前記第1PチャネルMOSトランジスタと前記第2PチャネルMOSトランジスタのゲート長と、前記第1NチャネルMOSトランジスタと前記第2NチャネルMOSトランジスタのゲート長とはそれぞれ等しく、前記第1PチャネルMOSトランジスタと前記第2PチャネルMOSトランジスタのゲート幅の比率と、前記第1NチャネルMOSトランジスタと前記第2NチャネルMOSトランジスタのゲート幅の比率は、それぞれ前記相互コンダクタンスの比率と等しくされる、差動増幅回路。
  10. 請求項7において、前記第2PチャネルMOSトランジスタに直列に挿入される第1スイッチと、前記第2NチャネルMOSトランジスタに直列に挿入される第2スイッチとをさらに備える、差動増幅回路。
  11. 請求項10において、前記第1PチャネルMOSトランジスタと前記第1NチャネルMOSトランジスタのそれぞれのゲート端子に入力される信号に基づいて、前記1スイッチと前記2スイッチを遮断する制御を行う、差動増幅回路。
  12. 請求項10において、前記出力端子からの出力が立上る遷移期間に前記第2スイッチをオンし、前記出力端子からの出力が立下る遷移期間に前記第1スイッチをオンする、スイッチ制御回路をさらに備える、差動増幅回路。
  13. 請求項12において、前記スイッチ制御回路は、前記高電位側電源と立下り検出ノードとの間に接続される第5PチャネルMOSトランジスタと、前記低電位側電源と前記立下り検出ノードとの間に接続される第5NチャネルMOSトランジスタと、前記高電位側電源と立上り検出ノードとの間に接続される第6PチャネルMOSトランジスタと、前記低電位側電源と前記立上り検出ノードとの間に接続される第6NチャネルMOSトランジスタとを含み、
    前記第5PチャネルMOSトランジスタと前記第5NチャネルMOSトランジスタの相互コンダクタンスの比率は、前記第1PチャネルMOSトランジスタと前記第1NチャネルMOSトランジスタの相互コンダクタンスの比率よりも大きく、
    前記第6PチャネルMOSトランジスタと前記第6NチャネルMOSトランジスタの相互コンダクタンスの比率は、前記第1PチャネルMOSトランジスタと前記第1NチャネルMOSトランジスタの相互コンダクタンスの比率よりも小さい、差動増幅回路。
  14. 請求項7に記載される差動増幅回路によって構成されるボルテージフォロワアンプを、接続される表示パネルのソース電極を駆動するソースアンプとして含む、表示駆動回路。
  15. 請求項14において、単一の半導体基板上に形成される、表示駆動回路。
JP2014090365A 2014-04-24 2014-04-24 差動増幅回路及び表示駆動回路 Pending JP2015211266A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014090365A JP2015211266A (ja) 2014-04-24 2014-04-24 差動増幅回路及び表示駆動回路
US14/690,816 US9692374B2 (en) 2014-04-24 2015-04-20 Differential amplifier circuit and display drive circuit
CN201510195716.6A CN105007051A (zh) 2014-04-24 2015-04-23 差动放大电路以及显示驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014090365A JP2015211266A (ja) 2014-04-24 2014-04-24 差動増幅回路及び表示駆動回路

Publications (1)

Publication Number Publication Date
JP2015211266A true JP2015211266A (ja) 2015-11-24

Family

ID=54335335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014090365A Pending JP2015211266A (ja) 2014-04-24 2014-04-24 差動増幅回路及び表示駆動回路

Country Status (3)

Country Link
US (1) US9692374B2 (ja)
JP (1) JP2015211266A (ja)
CN (1) CN105007051A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500642A (ja) * 2015-12-28 2019-01-10 武漢華星光電技術有限公司 液晶パネルの駆動方法
CN109817172A (zh) * 2017-11-21 2019-05-28 拉碧斯半导体株式会社 显示驱动器及半导体装置
WO2020229920A1 (ja) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の動作方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719269B2 (ja) * 2010-11-29 2015-05-13 ルネサスエレクトロニクス株式会社 演算増幅回路、液晶パネル駆動装置
TWI705666B (zh) * 2015-06-15 2020-09-21 日商新力股份有限公司 傳送裝置、接收裝置、通信系統
JP6755652B2 (ja) * 2015-11-20 2020-09-16 ラピスセミコンダクタ株式会社 表示ドライバ
US9887673B2 (en) * 2016-03-11 2018-02-06 Intel Corporation Ultra compact multi-band transmitter with robust AM-PM distortion self-suppression techniques
JP2017167284A (ja) 2016-03-15 2017-09-21 シナプティクス・ジャパン合同会社 表示ドライバ及び表示装置
JP2018025664A (ja) * 2016-08-10 2018-02-15 セイコーエプソン株式会社 表示ドライバー、電気光学装置及び電子機器
CN108155881B (zh) * 2016-12-05 2021-10-29 华大半导体有限公司 轨到轨输入运放器
US10931240B2 (en) 2019-01-11 2021-02-23 Analog Devices International Unlimited Company Amplifier with reduced power consumption and improved slew rate
CN112102771B (zh) * 2019-06-17 2022-02-25 京东方科技集团股份有限公司 像素电路、驱动方法和显示装置
KR20220050534A (ko) * 2020-10-16 2022-04-25 매그나칩 반도체 유한회사 증폭기 회로의 슬루율 개선 방법 및 이를 사용하는 디스플레이 장치
US11726512B2 (en) * 2021-07-07 2023-08-15 Synaptics Incorporated Low power consumption regulator circuitry
CN113672026B (zh) * 2021-08-17 2022-11-29 晟合微电子(肇庆)有限公司 Mipi的偏置电路、mipi模块及显示设备
TWI764813B (zh) * 2021-08-18 2022-05-11 立積電子股份有限公司 驅動電路
CN114360469B (zh) * 2022-03-18 2022-07-15 深圳通锐微电子技术有限公司 一种驱动放大电路、方法、芯片、驱动装置及显示设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669074B1 (ko) * 2005-11-15 2007-01-16 (주)알파칩스 클램핑 회로를 이용한 차동증폭기
JP4330644B2 (ja) * 2006-09-29 2009-09-16 三洋電機株式会社 差動増幅器およびそれを用いたスイッチドキャパシタ回路
JP4954924B2 (ja) * 2008-03-11 2012-06-20 ルネサスエレクトロニクス株式会社 差動増幅器及びそれを用いた表示装置の駆動回路
JP2010226592A (ja) * 2009-03-25 2010-10-07 Renesas Electronics Corp 演算増幅器
JP2011124782A (ja) 2009-12-10 2011-06-23 Renesas Electronics Corp 差動増幅器およびその制御方法
TWI405406B (zh) * 2010-08-20 2013-08-11 Ili Technology Corp Differential amplifier circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500642A (ja) * 2015-12-28 2019-01-10 武漢華星光電技術有限公司 液晶パネルの駆動方法
CN109817172A (zh) * 2017-11-21 2019-05-28 拉碧斯半导体株式会社 显示驱动器及半导体装置
JP2019095545A (ja) * 2017-11-21 2019-06-20 ラピスセミコンダクタ株式会社 表示ドライバ及び半導体装置
JP2022174190A (ja) * 2017-11-21 2022-11-22 ラピスセミコンダクタ株式会社 表示ドライバ及び半導体装置
WO2020229920A1 (ja) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の動作方法
US11727873B2 (en) 2019-05-10 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for operating semiconductor device
JP7472117B2 (ja) 2019-05-10 2024-04-22 株式会社半導体エネルギー研究所 半導体装置、撮像装置、ヘッドマウントディスプレイ

Also Published As

Publication number Publication date
US20150310822A1 (en) 2015-10-29
US9692374B2 (en) 2017-06-27
CN105007051A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
JP2015211266A (ja) 差動増幅回路及び表示駆動回路
US8466909B2 (en) Output buffer having high slew rate, method of controlling output buffer, and display driving device including output buffer
US8963640B2 (en) Amplifier for output buffer and signal processing apparatus using the same
US6392485B1 (en) High slew rate differential amplifier circuit
US7903078B2 (en) Data driver and display device
KR100682431B1 (ko) 소스 드라이버, 전기 광학 장치 및 구동 방법
KR101147354B1 (ko) 출력 버퍼용 슬루율 부스트 회로 및 이를 구비한 출력 버퍼
US9979363B2 (en) Source driver including output buffer, display driving circuit, and operating method of source driver
JP5328461B2 (ja) 演算増幅器
JP4564285B2 (ja) 半導体集積回路
US20060028274A1 (en) Differential amplifier, and data driver of display device using the same
JP5442558B2 (ja) 出力回路及びデータドライバ及び表示装置
JP4082398B2 (ja) ソースドライバ、電気光学装置、電子機器及び駆動方法
US20100013558A1 (en) Driving Circuit Capable of Enhancing Response Speed and Related Method
JP2012119745A (ja) 差動増幅器及びデータドライバ
JP5001805B2 (ja) 増幅回路
JP2005341018A (ja) 駆動回路、動作状態検出回路及び表示装置
TWI714401B (zh) 觸控顯示裝置、共同驅動電路及驅動方法
KR20100060611A (ko) 소스 드라이버 집적회로용 출력버퍼에 채용하기 적합한 출력구동 회로
JP2005175811A (ja) 演算増幅器及びこれを用いた駆動回路
JP2015203831A (ja) 表示駆動回路及び表示ドライバic
JP2012109848A (ja) 差動増幅回路および液晶表示装置
JP2017021230A (ja) 半導体装置及び電子機器
JP4386116B2 (ja) インピーダンス変換回路、ソースドライバ、電気光学装置及び電子機器
Mishra et al. Low offset and high slew rate buffer amplifier for LCD application