JP2015188301A - Dc/dcコンバータ - Google Patents

Dc/dcコンバータ Download PDF

Info

Publication number
JP2015188301A
JP2015188301A JP2014252297A JP2014252297A JP2015188301A JP 2015188301 A JP2015188301 A JP 2015188301A JP 2014252297 A JP2014252297 A JP 2014252297A JP 2014252297 A JP2014252297 A JP 2014252297A JP 2015188301 A JP2015188301 A JP 2015188301A
Authority
JP
Japan
Prior art keywords
circuit
output
voltage
signal
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014252297A
Other languages
English (en)
Other versions
JP6321533B2 (ja
Inventor
美臣 椎名
Yoshiomi Shiina
美臣 椎名
宇野 正幸
Masayuki Uno
正幸 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2014252297A priority Critical patent/JP6321533B2/ja
Priority to TW104106944A priority patent/TWI545880B/zh
Priority to KR1020150032563A priority patent/KR102267648B1/ko
Priority to US14/643,846 priority patent/US9479054B2/en
Priority to CN201510104911.3A priority patent/CN104917377B/zh
Publication of JP2015188301A publication Critical patent/JP2015188301A/ja
Application granted granted Critical
Publication of JP6321533B2 publication Critical patent/JP6321533B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】軽負荷時の逆流電流発生時に、出力トランジスタをオフし続けた状態から、通常動作へすぐに復帰できるDC/DCコンバータを提供する。
【解決手段】リップル生成回路と平滑回路とオンタイム信号を出力するタイマー回路とを備えたオンタイマー回路に、逆流電流が発生する兆候を検出する論理回路と、論理回路の検出信号によってリップル生成回路の出力電圧を維持または所定の電圧に制御するスイッチ回路を備えた。
【選択図】図1

Description

本発明は、直流電圧を変換するDC/DCコンバータに関し、タイマー回路を備えたDC/DCコンバータに関する。
従来のDC/DCコンバータについて説明する。図11は、従来のDC/DCコンバータを示す回路図である。
従来のDC/DCコンバータは、コンパレータ504と、RS−FF回路113と、駆動回路110と、参照電圧生成回路503と、タイマー回路501と、出力トランジスタであるNMOSトランジスタ108と、NMOSトランジスタ109と、コンデンサ107と、コイル106と、抵抗103、104、502と、グラウンド端子100と、出力端子102と、電源端子101を備えている。
コンパレータ504の反転入力端子には出力端子102の出力電圧Voutが分圧された分圧電圧VFBが入力され、非反転入力端子には電源電圧と出力電圧Voutに依存させたリップル電圧と所定の傾斜に変化するスロープ電圧を付加した参照電圧が入力され、比較結果に応じた信号を出力する。分圧電圧VFBが参照電圧より高い時にはLoの信号を、分圧電圧VFBが参照電圧より低い時にはHighの信号をRS−FF回路113のセット端子に出力する。RS−FF回路113のリセット端子にはタイマー回路501から出力される信号が供給され、コンパレータ504の出力信号とタイマー回路501の出力信号に応じてRS−FF回路113のQ端子から出力信号が出力される。駆動回路110はRS−FF回路113の信号を受けてNMOSトランジスタ108、109のオンオフを制御し、出力端子102から出力電圧Voutを発生させる(例えば、特許文献1図1参照)。
特開2011−182533号公報
しかしながら、従来のDC/DCコンバータは、軽負荷時に出力電圧が上昇したときに、出力電圧を下げるために出力トランジスタをオフする制御を続けると、出力電圧が下がり通常動作に復帰する時にタイマー回路が所定のオン時間を得られず通常動作に復帰するのに時間がかかるという課題があった。また、通常の連続モード制御の時に比べて軽負荷時に大きなリップルが発生するという課題があった。
本発明は、上記課題に鑑みてなされ、軽負荷時に出力電圧が上昇して、出力トランジスタをオフさせる制御を続けても、通常動作へすぐに復帰できるDC/DCコンバータを提供する。
従来の課題を解決するため、本発明のDC/DCコンバータは以下のような構成とした。
リップル生成回路と平滑回路とオンタイム信号を出力するタイマー回路とを備えたオンタイマー回路に、逆流電流が発生する兆候を検出する論理回路と、論理回路の検出信号によってリップル生成回路の出力電圧を維持、または所定の電圧に制御するスイッチ回路を備えた。
本発明のDC/DCコンバータは、休止状態中にリップル生成回路の出力電圧を維持、または所定の電圧に制御することで、休止状態から通常動作に円滑に復帰することできる、と言う効果がある。
本実施形態のDC/DCコンバータの一例を示す回路図である。 本実施形態のDC/DCコンバータのオンタイマー回路の一例を示す回路図である。 本実施形態のDC/DCコンバータのコンパレータの構成例を示す回路図である。 本実施形態のDC/DCコンバータの動作を示すタイミングチャートである。 本実施形態のDC/DCコンバータの他の例を示す回路図である。 本実施形態のDC/DCコンバータのオンタイマー回路の他の例を示す回路図である。 本実施形態のDC/DCコンバータのオンタイマー回路の他の例を示す回路図である。 図7のオンタイマー回路のアナログスイッチ回路の一例を示す回路図である。 本実施形態のDC/DCコンバータの軽負荷時の動作を示すタイミングチャートである。 本実施形態のDC/DCコンバータの他の例を示す回路図である。 従来のDC/DCコンバータの構成を示す回路図である。
以下、本発明の実施形態について図面を参照して説明する。
図1は、本実施形態のDC/DCコンバータの一例を示す回路図である。
本実施形態のDC/DCコンバータは、コンパレータ112と、RS−FF回路113と、擬似リップル回路114と、駆動回路110と、基準電圧回路105と、オンタイマー回路111と、出力トランジスタであるNMOSトランジスタ108、109と、逆流電流検出回路161と、コイル106と、コンデンサ107と、抵抗103、104と、グラウンド端子100と、電源端子101と、出力端子102を備えている。
図2は、オンタイマー回路111の一例を示す回路図である。オンタイマー回路111は、リップル生成回路230と、平均化回路240と、タイマー回路250と、OR回路261と、NMOSトランジスタ262と、入力端子121、125と、出力端子124、126を備えている。リップル生成回路230は、スイッチ回路208と、定電流回路201と、コンデンサ209と、抵抗210で構成する。平均化回路240は、抵抗211と、コンデンサ212で構成する。タイマー回路250は、定電流回路202と、インバータ213と、NMOSトランジスタ214と、コンデンサ215と、コンパレータ216で構成する。
図3にコンパレータ112の回路図を示す。コンパレータ112は、定電流回路312、313、314、315と、インバータ316、317と、PMOSトランジスタ306、307、308、309、310、311と、第一の非反転入力端子301と、第一の反転入力端子302と、第二の非反転入力端子303と、第二の反転入力端子304と、出力端子305を備えている。
次に、本実施形態のDC/DCコンバータの接続について説明する。
コンパレータ112は、第一の反転入力端子は擬似リップル回路114の出力端子122に接続され、第一の非反転入力端子は擬似リップル回路114の出力端子123に接続され、第二の反転入力端子は抵抗103と抵抗104の接続点に接続され、第二の非反転入力端子は基準電圧回路105の正極に接続され、出力端子はRS−FF回路113のセット端子に接続される。抵抗103のもう一方の端子は出力端子102に接続され、抵抗104のもう一方の端子はグラウンド端子100に接続される。基準電圧回路105の負極はグラウンド端子100に接続される。RS−FF回路113は、リセット端子はオンタイマー回路111の出力端子124に接続され、出力端子は駆動回路110の第一の入力端子およびオンタイマー回路111の入力端子121に接続される。NMOSトランジスタ108は、ゲートは駆動回路110の第一の出力端子に接続され、ドレインは電源端子101に接続され、ソースはコイル106の一方の端子及びNMOSトランジスタ109のドレインに接続される。NMOSトランジスタ109は、ゲートは駆動回路110の第二の出力端子およびオンタイマー回路111の入力端子125に接続され、ソースはグラウンド端子100に接続される。コンデンサ107は、一方の端子は出力端子102とコイル106のもう一方の端子に接続され、もう一方の端子はグラウンド端子100に接続される。逆流電流検出回路161は、入力端子はNMOSトランジスタ109のドレインに接続され、出力端子は駆動回路110の第二の入力端子に接続される。
オンタイマー回路111の接続について説明する。定電流回路201は、一方の端子は電源端子101に接続され、もう一方の端子はスイッチ回路208に接続される。コンデンサ209は、一方の端子はスイッチ回路208のもう一方の端子とノードAに接続され、もう一方の端子はグラウンド端子100に接続される。抵抗210は、一方の端子はノードAに接続される。抵抗211は、一方の端子はノードAに接続され、もう一方の端子は出力端子126とノードBに接続される。NMOSトランジスタ262は、ゲートはOR回路261の出力端子に接続され、ドレインは抵抗210のもう一方の端子に接続され、ソースはグラウンド端子100に接続される。OR回路261の第一の入力端子は入力端子121に接続され、第二の入力端子は入力端子125に接続される。コンデンサ212は、一方の端子はノードBに接続され、もう一方の端子はグラウンド端子100に接続される。インバータ213は、入力端子は入力端子121とスイッチ回路208の制御端子に接続され、出力端子はNMOSトランジスタ214のゲートに接続される。NMOSトランジスタ214は、ドレインはコンデンサ215の一方の端子と定電流回路202の一方の端子に接続され、ソースはグラウンド端子100に接続される。コンデンサ215のもう一方の端子はグラウンド端子100に接続される。定電流回路202のもう一方の端子は電源端子101に接続される。コンパレータ216は、非反転入力端子はコンデンサ215の一方の端子に接続され、反転入力端子はノードBに接続され、出力端子は出力端子124に接続される。
コンパレータ112の接続について説明する。定電流回路312は、一方の端子は電源端子101に接続され、もう一方の端子はPMOSトランジスタ306のソースとPMOSトランジスタ307のソースに接続される。PMOSトランジスタ306は、ゲートは第一の非反転入力端子301に接続され、ドレインは定電流回路314とPMOSトランジスタ310のゲート及びドレインの接続点に接続される。PMOSトランジスタ307は、ゲートは第一の反転入力端子302に接続され、ドレインはインバータ316の入力端子に接続される。定電流回路313は、一方の端子は電源端子101に接続され、もう一方の端子はPMOSトランジスタ308のソースとPMOSトランジスタ309のソースに接続される。PMOSトランジスタ308は、ゲートは第二の非反転入力端子303に接続され、ドレインは定電流回路314とPMOSトランジスタ310のゲート及びドレインの接続点に接続される。PMOSトランジスタ309は、ゲートは第二の反転入力端子304に接続され、ドレインはインバータ316の入力端子に接続される。PMOSトランジスタ310のソースは電源端子101に接続され、定電流回路314のもう一方の端子はグラウンド端子100に接続される。PMOSトランジスタ311は、ゲートはPMOSトランジスタ310のゲートに接続され、ドレインはインバータ316の入力端子に接続され、ソースは電源端子101に接続される。定電流回路315は、一方の端子はインバータ316の入力端子に接続され、もう一方の端子はグラウンド端子100に接続される。インバータ317は、入力端子はインバータ316の出力端子に接続され、出力端子は出力端子305に接続される。
次に、本実施形態のDC/DCコンバータの動作について説明する。
電源端子101に電源電圧VDDが入力されると、DC/DCコンバータは出力端子102から出力電圧Voutを出力する。抵抗103と104は、出力電圧Voutを分圧し、分圧電圧VFBを出力する。コンパレータ112は図3に示すような4端子入力の構成をしており、第二の非反転入力端子に入力される基準電圧回路105の基準電圧Vrefと、第二の反転入力端子に入力される分圧電圧VFBと、第一の反転入力端子に入力される擬似リップル回路114の出力端子122から出力される電圧と、第一の非反転入力端子に入力される擬似リップル回路114の出力端子123から出力される電圧とを比較し、コンパレータ112の出力端子から信号VSを出力する。オンタイマー回路111の出力端子124から出力される出力信号をオンタイム信号VR、RS−FF回路113のQ端子から出力される出力信号を信号VQ、駆動回路110の第二の出力端子から出力される出力信号を信号VLとする。
図4は各ノードの電圧の時間変化を示したタイミングチャートである。電圧VFBが基準電圧Vrefを下回ると信号VSがHighとなり、RS−FF回路113のQ端子の信号VQをHighにさせる。そして、信号VQが駆動回路110に入力され信号VQに応じてNMOSトランジスタ108をオン、NMOSトランジスタ109をオフさせ、分圧電圧VFB(出力電圧Vout)を上昇させる。オンタイマー回路111の出力端子124から信号が出力されオンタイム信号VRがHighになると、RS−FF回路113によって信号VQはLoとなり、NMOSトランジスタ108をオフ、NMOSトランジスタ109をオンさせ、分圧電圧VFB(出力電圧Vout)を低下させる。信号VQがHighの時間をTon、信号VQがHighとなってから再びHighになるまでの時間をTSとし、この時間を1周期としてこの周期に従って制御を行うことで出力トランジスタとして動作するNMOSトランジスタ108とNMOSトランジスタ109を制御し、出力端子102から出力電圧Voutを発生させる。
コンパレータ112は、擬似リップル回路114の出力端子122から出力される電圧をコンパレータ112の第一の反転入力端子に入力することで、第二の反転入力端子に入力される分圧電圧VFBとコンパレータ112内で加算され、分圧電圧VFBがリップル成分を含む電圧となる。そして、擬似リップル回路114の出力端子123から出力される電圧をコンパレータ112の第一の非反転入力端子に入力することで、第二の非反転入力端子に入力される基準電圧Vrefとコンパレータ112内で加算され、この加算された二つの信号を比較することでコンパレータ112から信号VSが出力される。
オンタイマー回路111の定電流回路201に流れる電流を電流I3、定電流回路202に流れる電流を電流I4、抵抗210に流れる電流をI2とする。電流I2は、抵抗210の抵抗値をR2、ノードAの電圧をVcref0とすると、I2=Vcref0/R2と表される。スイッチ回路208は、信号VQによって制御される。信号VQがHighの時は、スイッチ回路208がオンし、電流I3でコンデンサ209の充電と電流I2での放電がされる。また、信号VQがLoの時は、スイッチ回路208はオフし、コンデンサ209の電荷が電流I2で放電される。信号VQと信号VLは逆相の信号である。従って、信号VQがHighのとき信号VLはLo、信号VLがHighのとき信号VQはLoとなり、OR回路261は通常の動作では常にHighを出力し、NMOSトランジスタ262をオンさせる。充電の電荷量をQ1、放電の電荷量をQ2とするとQ1=I3×Ton、Q2=I2×TSと表される。Q1=Q2となるためI3×Ton=I2×TSとなり、Ton/TS=I2/I3=Vout/VDDとなる。よって、Vout=VDD×I2/I3となる。
I2=Vcref0/R2のためVout=VDD×Vcref0/R2/I3となりVcref0=Vout/VDD×R2×I3となる。こうして、電圧Vcref0は、出力電圧Voutに比例した電圧であるといえ、この電圧には出力電圧Voutのリップル成分が含まれている。平均化回路240の出力電圧、即ちノードBの電圧Vcrefは、抵抗211とコンデンサ212で電圧Vcref0を平均化しリップル成分を除去している。このため、電圧Vcrefは、出力電圧Voutに比例し、かつリップル成分を除去した電圧であり、Vcref=Vout/VDD×R2×I3となる。
NMOSトランジスタ214は、信号VQが反転した信号でオンオフ制御される。コンパレータ216の非反転入力端子の電圧をVcapとすると、NMOSトランジスタ214がオフのとき電流I4によってコンデンサ215が充電され、電圧Vcapは上昇する。コンパレータ216は、電圧Vcapが電圧Vcrefより低い時に、出力端子124にLoのオンタイム信号VRを出力し、電圧Vcapが電圧Vcrefより高い時に、出力端子124にHighのオンタイム信号VRを出力する。そして、RS−FF回路113により信号VQがLoとなり、NMOSトランジスタ214がオンするので、コンデンサ215の電荷が放電され、電圧Vcapは低下する。
コンデンサ215の容量値をC2とすると、オン時間TonはTon=C2/I4×Vcref=C2×I3/I4×R2×Vout/VDDとなり、オン時間TonはVout/VDDで表されるduty制御を行う。
逆流電流検出回路161は、軽負荷の状態になってコイル106に逆流電流が発生すると、NMOSトランジスタ109のドレイン電圧によってコイル106の逆流電流を検出して、駆動回路110の第二の入力端子に検出信号を出力する。駆動回路110は、検出信号を受けると、NMOSトランジスタ108、109をオフするように制御する。この状態を休止状態という。休止状態の時、信号VQと信号VLはLoとなり、スイッチ回路208とNMOSトランジスタ262をオフさせる。こうして、定電流回路201からコンデンサ209への充電、コンデンサ209から抵抗210への放電がとまり、休止状態中電圧Vcref0は電圧を維持し、所望の電圧から外れることがなくなる。休止状態から復帰すると電圧Vcref0と電圧Vcrefは休止状態前の状態を維持しているため、コンパレータ216はスムーズに出力端子124から信号を出力してスイッチング動作を再開することができる。このように、休止状態中コンデンサ209の放電や充電を止め電圧Vcref0の電圧を維持することで、休止状態から復帰した後スムーズにタイマー回路250が動作し、スムーズにスイッチング動作を再開させることができる。
なお、逆流電流検出回路161は、NMOSトランジスタ109のドレイン電圧によってコイル106の逆流電流を検出する構成としたが、コイル106の電流がゼロのなったことを検出しても良い。また、信号VQはRS−FF回路113のQ端子の信号を用いたが、NMOSトランジスタ108のゲートに入力される信号に同期した信号であれば他のノードから用いても良い。また、休止状態中のコンデンサ209の放電を止める素子としてNMOSトランジスタ262を用いたが、この構成に限らずスイッチ回路などを用いても良い。
以上説明したように、本実施形態のDC/DCコンバータは、休止状態中リップル生成回路の出力電圧を維持することで、休止状態から復帰する時タイマー回路をスムーズに動作させ、スムーズにスイッチング動作を再開させることができる。
図5は、本実施形態のDC/DCコンバータの他の例を示す回路図である。図1との違いは、オンタイマー回路111の入力端子125へ入力する信号を、逆流電流検出回路161の検出信号とした点である。その他の回路構成及び接続は、図1の回路と同様である。図6は、本実施形態のDC/DCコンバータのオンタイマー回路の他の例を示す回路図である。図2との違いは、OR回路261をRS−FF回路701に変更した点である。RS−FF回路701のリセット端子は入力端子125に接続され、セット端子は入力端子121に接続され、出力端子はNMOSトランジスタ262のゲートに接続される。その他の回路構成及び接続は、図2の回路と同様である。
図5のDC/DCコンバータの動作について説明する。電源端子101に電源電圧VDDが入力され、出力端子102の出力電圧Voutが一定になるよう制御される動作は第一の実施形態と同様である。
逆流電流検出回路161は、軽負荷の状態になってコイル106に逆流電流が発生すると、NMOSトランジスタ109のドレイン電圧によってコイル106の逆流電流を検出して、駆動回路110の第二の入力端子に検出信号を出力する。駆動回路110は、この信号を受けてNMOSトランジスタ108、109をオフするように制御する。この状態を休止状態という。休止状態の時、信号VQはLoとなりスイッチ回路208をオフさせ、RS−FF回路701のセット端子にLoが入力される。逆流電流検出回路161の出力はHighのため、RS−FF回路701の出力端子にはLoが出力されNMOSトランジスタ262をオフさせる。こうして、定電流回路201からコンデンサ209への充電、コンデンサ209から抵抗210への放電が止まり、休止状態中電圧Vcref0は電圧を維持し所望の電圧から外れることがなくなる。休止状態から復帰すると電圧Vcref0と電圧Vcrefは休止状態前の状態を維持しているため、コンパレータ216はスムーズに出力端子124から信号を出力してスイッチング動作を再開することができる。このように、休止状態中コンデンサ209の放電や充電を止め電圧Vcref0の電圧を維持することで休止状態から復帰した後スムーズにタイマー回路250が動作し、スムーズにスイッチング動作を再開させることができる。
なお、逆流電流検出回路161は、NMOSトランジスタ109のドレイン電圧によってコイル106の逆流電流を検出する構成としたが、コイル106の電流がゼロのなったことを検出しても良い。また、信号VQはRS−FF回路113のQ端子の信号を用いたが、NMOSトランジスタ108のゲートに入力される信号に同期した信号であれば他のノードから用いても良い。また、NMOSトランジスタ262をオフさせる回路としてRS−FF回路を用いたが、この構成に限らずNMOSトランジスタ262をオフできる回路であればどのような回路でも良い。また、休止状態中のコンデンサ209の放電を止める素子としてNMOSトランジスタ262を用いたが、この構成に限らずスイッチ回路などを用いても良い。
以上説明したように、図5のDC/DCコンバータは、休止状態中リップル生成回路の出力電圧を維持することで、休止状態から復帰する時タイマー回路をスムーズに動作させ、スムーズにスイッチング動作を再開させることができる。
図5のDC/DCコンバータは、オンタイマー回路111の入力端子125へ入力する信号を、逆流電流検出回路161の検出信号とした。このように構成すると、NMOSトランジスタ109の代わりにダイオードを用いたDC/DCコンバータにおいても、同様な効果を得ることが出来る。この場合、逆流電流検出回路161は、コイル106に電流が流れなくなったことを検出するように構成する。
図7は、本実施形態のDC/DCコンバータのオンタイマー回路の他の例を示す回路図である。図2との違いは、NMOSトランジスタ262をアナログスイッチ回路800に変更した点である。
図8は、アナログスイッチ回路800の一例を示す回路図である。アナログスイッチ回路800は、スイッチ回路811、812と、インバータ813と、定電圧回路814と、入力端子802、803と、出力端子801で構成される。
アナログスイッチ回路800は、入力端子802はOR回路261の出力端子に接続され、入力端子803はグラウンド端子100に接続され、出力端子801は抵抗210に接続される。インバータ813は、入力端子は入力端子802とスイッチ回路811の制御端子に接続され、出力端子はスイッチ回路812の制御端子に接続される。スイッチ回路811は、一方の端子は定電圧回路814の正極に接続され、もう一方の端子は出力端子801に接続される。スイッチ回路812は、一方の端子は入力端子803に接続され、もう一方の端子は出力端子801に接続される。定電圧回路814の負極はグラウンド端子100に接続される。
他は回路構成及び接続関係は図2と同様である。
図7のオンタイマー回路を備えた本実施形態のDC/DCコンバータの動作について説明する。電源端子101に電源電圧VDDが入力され、出力端子102の出力電圧Voutが一定になるよう制御される動作は図1の回路と同様である。
図9は、軽負荷で動作する時の各ノードの変化を示したタイミングチャートである。ILはコイル電流を示す。図9は、最初の1周期(TS1)に図2と図6のオンタイマー回路のタイミングチャートを示し、次の1周期(TS2)に図7のオンタイマー回路のタイミングチャートを示している。
軽負荷時の動作では、連続モードで動作している通常状態よりもリップルが大きくなるが(TS1)、図7のような回路構成とすることでリップルを小さくすることが出来る(TS2)。
軽負荷の状態で出力電圧Voutが低下し分圧電圧VFBが基準電圧Vrefを下回ると、コンパレータ112はHighの信号を出力して駆動回路110を介してNMOSトランジスタ108をオン、NMOSトランジスタ109をオフさせ出力電圧Voutを上昇させる。出力電圧Voutの上昇に伴い分圧電圧VFBも上昇し、一定時間後オンタイマー回路111のタイマー回路250の出力端子からHighの信号が出力されて、駆動回路110を介してNMOSトランジスタ108をオフ、NMOSトランジスタ109をオンさせる。
NMOSトランジスタ108をオフ後、コイル106に蓄えられたエネルギーによりコイル電流ILが出力端子102に流れ出力電圧Voutをさらに上昇させる。そして、コイル106のエネルギーが減少しコイル電流ILがゼロになった時、逆流電流検出回路161はNMOSトランジスタ109のドレイン電圧によって逆流電流を検出して、検出信号を出力する。検出信号が入力されると、駆動回路110は、NMOSトランジスタ109をオフする。
その後、出力電圧Voutは徐々に低下し分圧電圧VFBが基準電圧Vrefを下回ると、コンパレータ112がHighの信号を出力して駆動回路110を介してNMOSトランジスタ108をオン、NMOSトランジスタ109をオフさせ、出力電圧Voutを上昇させる。このような動作を繰り返して出力電圧Voutを一定に制御する。
逆流電流検出回路161が逆流電流を検出して駆動回路110に信号を出力し、NMOSトランジスタ108、109がオフするように制御する状態を休止状態という。休止状態の時、信号VQはLoとなりスイッチ回路208、812をオフ、スイッチ回路811をオンさせ、電圧Vcref0を定電圧回路814の出力する電圧V1にする。軽負荷の状態での制御はNMOSトランジスタ108をオフしてから、コイル電流ILがゼロになるまで出力電圧Voutが上昇し続けるため、連続モードで制御する通常状態と比べてリップルが大きくなる。これを改善するため休止状態の時、定電圧回路814にて電圧Vcref0および電圧Vcrefを電圧V1に下げている。分圧電圧VFBが基準電圧Vrefを下回るとコンパレータ112がHighの信号を出力して駆動回路110を介してNMOSトランジスタ108をオン、NMOSトランジスタ109をオフさせコイル電流ILを上昇させる。逆流電流検出回路161は、コイル電流ILの逆流が解除されたことを検出して、スイッチ回路208、812をオン、スイッチ回路811をオフして、電圧Vcref0を電圧V1から上昇させる。電圧Vcrefは平滑回路240によってすぐには電圧が上昇せず電圧V1を維持し、オン時間Tonを短縮する制御がされる。オン時間Tonが短いためコイル電流ILの上昇と出力電圧の上昇幅が減り、リップル電圧の上昇を抑えることができる。また、電圧Vcrefは休止状態前の状態に近い状態を維持しているため、コンパレータ216はスムーズに出力端子124から信号を出力してスイッチング動作を再開することができる。
なお、リップル電圧の大きさは電圧V1を調節することで小さく制御することは可能だが、小さくしすぎるとコンパレータ216がスムーズに出力端子124から信号を出力することが困難になる。このため、リップルが小さくかつスムーズに動作するように最適値に調節する必要がある。また、信号VQはRS−FF回路113のQ端子の信号を用いたが、NMOSトランジスタ108のゲートに入力される信号に同期した信号であれば他のノードから用いても良い。また、アナログスイッチ回路800を制御する回路としてOR回路を用いたが、この構成に限らずアナログスイッチ回路800を制御できる回路であればどのような回路でも良い。
以上説明したように、図7のオンタイマー回路を備えた本実施形態のDC/DCコンバータは、休止状態中リップル生成回路の出力電圧を所定の電圧に制御することで、休止状態から復帰する時タイマー回路をスムーズに動作させ、スムーズにスイッチング動作を再開させることができる。また、軽負荷時のリップル電圧を小さくすることができる。
図10は、本実施形態のDC/DCコンバータの他の例を示す回路図である。図1の実施形態のDC/DCコンバータとの違いは、オンタイマー回路111の出力端子125から電圧Vcrefを出力し、コンパレータ112の第二の反転入力端子に入力し、出力電圧Voutを分圧する抵抗103、104を削除した点である。
図10のDC/DCコンバータの動作について説明する。
電源端子101に電源電圧VDDが入力されると、DC/DCコンバータは出力端子102から出力電圧Voutを出力する。コンパレータ112は、図3に示すような4端子入力の構成をしており、第二の非反転入力端子に入力される基準電圧回路105の基準電圧Vrefと、第二の反転入力端子に入力されるオンタイマー回路111から出力される電圧Vcrefと、第一の反転入力端子に入力される擬似リップル回路114の出力端子122から出力される電圧と、第一の非反転入力端子に入力される擬似リップル回路114の出力端子123から出力される電圧とを比較し、コンパレータ112の出力端子から信号VSを出力する。オンタイマー回路111は、入力端子121に信号VQが入力し、入力端子125に信号VLが入力し、出力端子124からオンタイム信号VRを出力し、出力端子126から電圧Vcrefを出力する。RS−FF回路113は、R端子にオンタイム信号VRが入力し、S端子に信号VSが入力し、Q端子から信号VQを出力する。駆動回路110は、第二の出力端子から信号VLを出力する。
本実施形態のオンタイマー回路111は、平均化回路240は出力電圧Voutを直接用いずに出力電圧Voutに比例する平均化された電圧Vcrefを生成する。平均化回路240の出力電圧Vcref=Vout/VDD×R2×I1であり、I1=VDD×Kのため、Vcref=Vout/VDD×R2×VDD×Kとなり、Vcref=Vout×R2×Kとなる。従って、Vcrefと出力電圧Voutは比例関係となり、Vout=Vcref×R2×Kとなるので、Vcrefを制御することで所望の出力電圧Voutが得られる。
平均化回路240の出力電圧Vcrefが基準電圧Vrefを下回ると信号VSがHighレベルとなり、RS−FF回路113のQ端子の信号VQをHighレベルにさせる。そして、信号VQが駆動回路110に入力され信号VQに応じてNMOSトランジスタ108をオン、NMOSトランジスタ109をオフさせ、出力電圧Voutを上昇させる。オンタイマー回路111の出力端子124から信号が出力されオンタイム信号VRがHighレベルになると、RS−FF回路113によって信号VQはLoレベルとなり、NMOSトランジスタ108をオフ、NMOSトランジスタ109をオンさせ、出力電圧Voutを低下させる。信号VQがHighレベルの時間をTon、信号VQがHighレベルとなってから再びHighレベルになるまでの時間をTSとし、この時間を1周期としてこの周期に従って制御を行うことで出力トランジスタとして動作するNMOSトランジスタ108とNMOSトランジスタ109を制御し、出力端子102から出力電圧Voutを発生させる。
以上説明したように、本実施形態のDC/DCコンバータは、出力電圧Voutを直接用いずにタイマー回路を動作できるため、出力電圧Voutのノイズの影響などでオン時間のずれや誤動作することを防止でき、安定した制御をすることができる。また、オンタイム信号はduty制御が可能なため、入出力条件が変わっても、一定の動作周波数でDC/DCコンバータが動作することができる。
なお、本実施形態のDC/DCコンバータ及びオンタイマー回路は、本実施形態で説明した組合せに限定されるものではない。即ち、図2、図5、図10DC/DCコンバータと、図2、図6、図7のオンタイマー回路はどのように組み合わせても同様の効果が得られる。
また、本実施形態のDC/DCコンバータの制御は、出力電圧Voutを一定にするため、電源電圧VDDとdutyとの関係がVout=VDD×dutyとなっており、このような制御がなされるDC/DCコンバータであれば、本実施形態及び構成のオンタイマー回路により出力電圧Voutの制御ができる。たとえば、フォワード方式のDC/DCコンバータである。
フォワード方式のDC/DCコンバータの制御は、出力電圧Vout、電源電圧VDD、負荷となるコイルの1次側巻き線をNp、負荷となるコイルの1次側巻き線をNsとすると、Vout=VDD×duty×Ns/Npで制御がなされ、Ns/Npは固定定数であるので、本実施形態及び構成のDC/DCコンバータと同じdutyによって出力電圧Voutが制御される。特に、Ns=Npの場合には本実施形態及び構成のDC/DCコンバータと同じになる。
一般的なフォワード方式のDC/DCコンバータの構成は、グラウンド端子にスイッチ素子が接続され、前記スイッチ素子がオンオフ動作をすることで、前記スイッチ素子により負荷となるコイルに流れる電流が制御されることにより、出力電圧Voutが制御される。前記スイッチ素子をオンオフする制御端子には駆動回路が接続される。本実施形態及び構成のRS−FF回路の出力信号VQを、前記駆動回路に入力することで、出力電圧Voutを発生させることができる。
以上説明したように、本実施形態及び構成のオンタイマー回路は、本実施形態及び構成のDC/DCコンバータに使用されると限定されるものではなく、他の構成のDC/DCコンバータに使用することができる。
また、本発明のDC/DCコンバータは、擬似リップル回路114を備える構成として説明したが、コンパレータ112の第一の反転入力端子にリップル生成回路230の電圧Vcref0を入力し、第一の非反転入力端子に平均化回路240の電圧Vcrefを入力する構成としても良い。DC/DCコンバータをこのように構成すると、擬似リップル回路114を設けなくても、同様な効果を得ることが出来る。
100 グラウンド端子
101 電源端子
102 出力端子
105 基準電圧回路
106 コイル
110 駆動回路
111 オンタイマー回路
112、216 コンパレータ
113、701 RS−FF回路
114 擬似リップル回路
161 逆流電流検出回路
208、811、812 スイッチ回路
201、202、312、313、314、315 定電流回路
230 リップル生成回路
240 平滑回路
250 タイマー回路
800 アナログスイッチ回路
814 定電圧回路

Claims (5)

  1. DC/DCコンバータの出力電圧に応じた擬似リップル成分と、前記出力電圧に応じた電圧と、基準電圧と、を比較した結果の信号を出力するコンパレータと、
    出力トランジスタのゲートに入力される信号と同期した制御信号が入力され、オンタイム信号を出力するオンタイマー回路と、
    前記オンタイマー回路のオンタイム信号と前記コンパレータの出力信号が入力されるフリップフロップ回路と、
    前記フリップフロップ回路の出力信号が入力され、前記出力トランジスタを制御する駆動回路と、
    出力端子から電流が逆流する兆候を検出し、前記駆動回路に検出信号を出力する逆流電流検出回路と、
    を備えたDC/DCコンバータであって、
    前記オンタイマー回路は、
    前記制御信号によってリップル成分を生成し出力するリップル生成回路と、
    前記リップル成分を平均化した電圧を出力する平均化回路と、
    前記平均化回路の出力する電圧と前記制御信号とによって前記オンタイム信号を生成し出力するタイマー回路と、
    前記制御信号が入力される論理回路と、
    前記論理回路の出力信号が入力され、前記出力電流が逆流する兆候を検出した時に前記リップル生成回路の出力電圧を維持するように制御する、前記リップル生成回路の出力端子とグラウンド端子の間に設けられたスイッチ回路と、
    を備えたことを特徴とするDC/DCコンバータ。
  2. 前記出力トランジスタは、第一の出力トランジスタと第二の出力トランジスタであって、
    前記論理回路に入力される制御信号は、第一の出力トランジスタのゲートに入力される信号と同期した第一の制御信号と、第二の出力トランジスタのゲートに入力される信号と同期した第二の制御信号である、
    ことを特徴とする請求項1に記載のDC/DCコンバータ。
  3. 前記論理回路に入力される制御信号は、前記出力トランジスタのゲートに入力される信号と同期した第一の制御信号と、前記逆流電流検出回路の出力する検出信号に同期した第二の制御信号である、
    ことを特徴とする請求項1に記載のDC/DCコンバータ。
  4. 前記スイッチ回路は、
    所定の電圧を出力する定電圧回路と、
    一方の端子が前記定電圧回路に接続され、他方の端子が前記リップル生成回路の出力端子に接続され、前記論理回路の出力信号で制御される第一のスイッチと、
    一方の端子がグラウンド端子に接続され、他方の端子が前記リップル生成回路の出力端子に接続され、前記論理回路の出力信号の反転した信号で制御される第二のスイッチと、
    を備え、前記出力端子から電流が逆流する兆候を検出した時、前記第一のスイッチがオンして前記リップル生成回路の出力端子の電圧を前記所定の電圧に制御する、
    ことを特徴とする請求項1から3のいずれかに記載のDC/DCコンバータ。
  5. 前記コンパレータに入力される前記出力電圧に応じた電圧は、前記平均化回路の出力電圧である、
    ことを特徴とする請求項1から4のいずれかに記載のDC/DCコンバータ。
JP2014252297A 2014-03-11 2014-12-12 Dc/dcコンバータ Active JP6321533B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014252297A JP6321533B2 (ja) 2014-03-11 2014-12-12 Dc/dcコンバータ
TW104106944A TWI545880B (zh) 2014-03-11 2015-03-05 Dc/dc轉換器
KR1020150032563A KR102267648B1 (ko) 2014-03-11 2015-03-09 Dc/dc 컨버터
US14/643,846 US9479054B2 (en) 2014-03-11 2015-03-10 Buck converter with reverse current detection and pseudo ripple generation
CN201510104911.3A CN104917377B (zh) 2014-03-11 2015-03-10 Dc/dc转换器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014047940 2014-03-11
JP2014047940 2014-03-11
JP2014252297A JP6321533B2 (ja) 2014-03-11 2014-12-12 Dc/dcコンバータ

Publications (2)

Publication Number Publication Date
JP2015188301A true JP2015188301A (ja) 2015-10-29
JP6321533B2 JP6321533B2 (ja) 2018-05-09

Family

ID=54070062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252297A Active JP6321533B2 (ja) 2014-03-11 2014-12-12 Dc/dcコンバータ

Country Status (5)

Country Link
US (1) US9479054B2 (ja)
JP (1) JP6321533B2 (ja)
KR (1) KR102267648B1 (ja)
CN (1) CN104917377B (ja)
TW (1) TWI545880B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169333A (ja) * 2016-03-15 2017-09-21 エスアイアイ・セミコンダクタ株式会社 スイッチングレギュレータ
JP2017200385A (ja) * 2016-04-28 2017-11-02 エスアイアイ・セミコンダクタ株式会社 Dcdcコンバータ
WO2023067992A1 (ja) * 2021-10-21 2023-04-27 株式会社デンソー スイッチング電源装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6619662B2 (ja) * 2016-02-05 2019-12-11 エイブリック株式会社 スイッチングレギュレータ
KR20180093451A (ko) 2017-02-13 2018-08-22 삼성전자주식회사 전력 소모를 감소한 역전압 모니터링 회로 및 이를 포함하는 반도체 장치
US10790746B2 (en) * 2017-08-04 2020-09-29 Dialog Semiconductor (Uk) Limited Power dissipation regulated buck architecture
CN108494024B (zh) * 2018-01-22 2020-07-07 许继电源有限公司 一种充电机暂停功率输出控制方法及充电机
FR3083932B1 (fr) * 2018-07-10 2020-06-12 Continental Automotive France Procede de controle d'un convertisseur de tension continu-continu
JP2022138742A (ja) * 2021-03-11 2022-09-26 エイブリック株式会社 スイッチングレギュレータ制御回路及びdc/dcコンバータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134097A (ja) * 1998-10-22 2000-05-12 Haruo Kobayashi トラックホールド回路及びトラックホールド回路用バッファ回路
JP2012235564A (ja) * 2011-04-28 2012-11-29 Mitsumi Electric Co Ltd スイッチング電源装置
JP2013243875A (ja) * 2012-05-22 2013-12-05 Rohm Co Ltd スイッチング電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028770A (ja) * 2005-07-14 2007-02-01 Sanyo Electric Co Ltd スイッチング制御回路
CN101997342A (zh) * 2009-08-19 2011-03-30 郑国书 快速充电装置及其方法
JP2011182533A (ja) 2010-02-26 2011-09-15 Fujitsu Semiconductor Ltd 電源装置、制御回路及び電源装置の制御方法
JP5806481B2 (ja) * 2011-02-23 2015-11-10 スパンション エルエルシー 制御回路、電子機器及び電源の制御方法
JP5768475B2 (ja) * 2011-04-28 2015-08-26 ミツミ電機株式会社 スイッチング電源装置
US8823352B2 (en) * 2011-07-11 2014-09-02 Linear Technology Corporation Switching power supply having separate AC and DC current sensing paths
JP6093144B2 (ja) * 2012-05-14 2017-03-08 ローム株式会社 スイッチング電源装置
JP5814876B2 (ja) * 2012-07-27 2015-11-17 株式会社東芝 同期整流型電源回路とその調整方法
JP5881664B2 (ja) * 2013-10-31 2016-03-09 サイプレス セミコンダクター コーポレーション 電源装置、制御回路、電源装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134097A (ja) * 1998-10-22 2000-05-12 Haruo Kobayashi トラックホールド回路及びトラックホールド回路用バッファ回路
JP2012235564A (ja) * 2011-04-28 2012-11-29 Mitsumi Electric Co Ltd スイッチング電源装置
JP2013243875A (ja) * 2012-05-22 2013-12-05 Rohm Co Ltd スイッチング電源装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169333A (ja) * 2016-03-15 2017-09-21 エスアイアイ・セミコンダクタ株式会社 スイッチングレギュレータ
KR20170107400A (ko) * 2016-03-15 2017-09-25 에스아이아이 세미컨덕터 가부시키가이샤 스위칭 레귤레이터
KR102267091B1 (ko) 2016-03-15 2021-06-18 에이블릭 가부시키가이샤 스위칭 레귤레이터
JP2017200385A (ja) * 2016-04-28 2017-11-02 エスアイアイ・セミコンダクタ株式会社 Dcdcコンバータ
WO2023067992A1 (ja) * 2021-10-21 2023-04-27 株式会社デンソー スイッチング電源装置

Also Published As

Publication number Publication date
JP6321533B2 (ja) 2018-05-09
CN104917377B (zh) 2018-12-28
US9479054B2 (en) 2016-10-25
CN104917377A (zh) 2015-09-16
US20150263623A1 (en) 2015-09-17
TWI545880B (zh) 2016-08-11
KR102267648B1 (ko) 2021-06-21
KR20150106356A (ko) 2015-09-21
TW201541834A (zh) 2015-11-01

Similar Documents

Publication Publication Date Title
JP6321533B2 (ja) Dc/dcコンバータ
US8928302B2 (en) Step-up/down type power supply circuit
JP6376961B2 (ja) Dc/dcコンバータ
JP6393169B2 (ja) Dc−dcコンバータ
JP2007259599A (ja) スイッチングレギュレータ
JP2011152023A (ja) スイッチングレギュレータ
US9559579B2 (en) Circuit and power supply circuit with output that transitions between capacitor stored voltage and predetermined voltage
JP2010178438A (ja) スイッチング電源制御回路
JP2020065402A (ja) スイッチングレギュレータ
US9374007B2 (en) DC/DC converter
JP2017200384A (ja) Dcdcコンバータ
US10135332B2 (en) DC-DC converter
JP2005354860A (ja) 昇降圧型dc−dcコンバータの制御装置
JP2012060715A (ja) 集積回路
JP2011176990A (ja) スイッチング電源回路
JP5515390B2 (ja) スイッチング電源装置
JP2007151322A (ja) 電源回路およびdc−dcコンバータ
TWI766061B (zh) 開關調節器
JP2014112996A (ja) 軽負荷検出回路、スイッチングレギュレータとその制御方法
JP2006325281A (ja) スイッチング電源回路とスイッチング電源制御方法
JP2008187789A (ja) Dc/dcコンバータ
JP2014072953A (ja) 電源の制御回路、電源装置及び電源の制御方法
JP6695176B2 (ja) スイッチングレギュレータ
JP2017041923A (ja) スイッチング電源回路
JP2006352398A (ja) 遅延回路

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171004

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

R150 Certificate of patent or registration of utility model

Ref document number: 6321533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250