JP2015185284A - 二次電池内部温度推定装置および二次電池内部温度推定方法 - Google Patents

二次電池内部温度推定装置および二次電池内部温度推定方法 Download PDF

Info

Publication number
JP2015185284A
JP2015185284A JP2014059252A JP2014059252A JP2015185284A JP 2015185284 A JP2015185284 A JP 2015185284A JP 2014059252 A JP2014059252 A JP 2014059252A JP 2014059252 A JP2014059252 A JP 2014059252A JP 2015185284 A JP2015185284 A JP 2015185284A
Authority
JP
Japan
Prior art keywords
secondary battery
internal temperature
relational expression
estimating
equivalent circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014059252A
Other languages
English (en)
Other versions
JP6200359B2 (ja
Inventor
泰司 光山
Taiji Mitsuyama
泰司 光山
岩根 典靖
Noriyasu Iwane
典靖 岩根
直也 高嶋
Naoya Takashima
直也 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2014059252A priority Critical patent/JP6200359B2/ja
Priority to PCT/JP2015/057483 priority patent/WO2015141580A1/ja
Priority to EP15765576.2A priority patent/EP3107146B1/en
Priority to CN201580013438.6A priority patent/CN106104907B/zh
Publication of JP2015185284A publication Critical patent/JP2015185284A/ja
Priority to US15/268,512 priority patent/US10396407B2/en
Application granted granted Critical
Publication of JP6200359B2 publication Critical patent/JP6200359B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • G01K2007/422Dummy objects used for estimating temperature of real objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】二次電池の種類や劣化状態によらず、正確な内部温度を推定すること。
【解決手段】二次電池14の内部温度を推定する二次電池内部温度推定装置1において、二次電池の外部温度と内部温度の関係を示す関係式に基づいて、二次電池の内部温度を推定する推定手段(制御部10)と、二次電池の等価回路の素子値を算出する算出手段(制御部10)と、算出手段によって算出された等価回路の素子値に基づいて、関係式の係数を求出する求出手段(制御部10)と、求出手段によって得られた係数を関係式に適用する適用手段(制御部10)と、を有し、推定手段は、適用手段によって係数が適用された関係式に基づいて、二次電池の内部温度を推定する、ことを特徴とする。
【選択図】図1

Description

本発明は、二次電池内部温度推定装置および二次電池内部温度推定方法に関するものである。
例えば、鉛蓄電池等の二次電池は、電解液や極板等の温度である内部温度によって、特性が異なることから、二次電池の状態を正確に検出するためには、内部温度を正確に求める必要がある。特に、車載の二次電池の場合には、エンジン等が発生する熱によって内部温度が大幅に変化することから、状態を正確に検出するためには、内部温度の検出が不可欠である。
従来において、二次電池の内部温度を求める技術としては、例えば、特許文献1および特許文献2に開示されている技術がある。
特開2001−076769号公報 特開2008−249459号公報
ところで、特許文献1,2に開示された技術では、内部温度を推定する対象となる二次電池は、同じ種類の二次電池であることが前提であるため、例えば、ユーザが異なる種類の二次電池に交換した場合には、内部温度の推定が正確にできないという問題点がある。また、二次電池は、劣化等によって温度特性が変化するが、特許文献1,2では、二次電池の劣化等は考慮していないため、劣化状態によっては正確な温度の推定ができないという問題点がある。
本発明は、二次電池の種類や劣化状態によらず、正確な内部温度の推定が可能な二次電池内部温度推定装置および二次電池内部温度推定方法を提供することを目的としている。
上記課題を解決するために、本発明は、二次電池の内部温度を推定する二次電池内部温度推定装置において、前記二次電池の外部温度と内部温度の関係を示す関係式に基づいて、前記二次電池の内部温度を推定する推定手段と、前記二次電池の等価回路の素子値を算出する算出手段と、前記算出手段によって算出された前記等価回路の素子値に基づいて、前記関係式の係数を求出する求出手段と、前記求出手段によって得られた前記係数を前記関係式に適用する適用手段と、を有し、前記推定手段は、前記適用手段によって前記係数が適用された前記関係式に基づいて、前記二次電池の内部温度を推定する、ことを特徴とする。
このような構成によれば、二次電池の種類や劣化状態によらず、正確な内部温度の推定が可能となる。
また、本発明は、前記二次電池の前記等価回路は、溶液抵抗、反応抵抗、および、電気二重層容量を有し、前記求出手段は、これらのいずれか1つまたは複数の素子値に基づいて、前記関係式の係数を求出する、ことを特徴とする。
このような構成によれば、複数の素子を有する等価回路を用いることで、内部温度を正確に求めることができる。
また、本発明は、前記求出手段は、前記二次電池の満充電状態における放電可能な容量も参照して、前記関係式の係数を求出することを特徴とする。
このような構成によれば、放電可能な容量も参照することで、内部温度をより正確に求めることができる。
また、本発明は、前記算出手段によって算出された前記素子値を、基準となる充電状態、かつ、基準となる温度における値に補正する補正手段を有することを特徴とする。
このような構成によれば、基準状態に補正することで、素子値をより一層正確に求め、内部温度をさらに正確に求めることができる。
また、本発明は、前記推定手段は、一次遅れ系の伝達関数を前記関係式として用いることで、前記二次電池の内部温度を推定することを特徴とする。
このような構成によれば、簡単な式を用いて、内部温度を正確に求めることができる。
また、本発明は、前記求出手段は、前記一次遅れ系の伝達関数の積分ゲインを、前記等価回路の素子値に基づいて求出することを特徴とする。
このような構成によれば、算出する係数の数を少なくすることで、処理を少なくすることができる。
また、本発明は、前記算出手段は、前記二次電池の放電中の電圧および電流に基づいて、前記等価回路の素子値を算出することを特徴とする。
このような構成によれば、放電中の電圧および電流に基づいて、素子値を簡易かつ正確に求めることができる。
また、本発明は、二次電池の内部温度を推定する二次電池内部温度推定方法において、前記二次電池の外部温度と内部温度の関係を示す関係式に基づいて、前記二次電池の内部温度を推定する推定ステップと、前記二次電池の等価回路の素子値を算出する算出ステップと、前記算出ステップにおいて得られた前記等価回路の素子値に基づいて、前記関係式の係数を求出する求出ステップと、前記求出ステップにおいて得られた前記係数を前記関係式に適用する適用ステップと、を有し、前記推定ステップは、前記適用ステップにおいて前記係数が適用された前記関係式に基づいて、前記二次電池の内部温度を推定する、ことを特徴とする。
このような方法によれば、二次電池の種類や劣化状態によらず、正確な内部温度の推定が可能となる。
本発明によれば、二次電池の種類や劣化状態によらず、正確な内部温度の推定が可能な二次電池内部温度推定装置および二次電池内部温度推定方法を提供することが可能となる。
本発明の実施形態に係る二次電池内部温度推定装置の構成例を示す図である。 図1の制御部の詳細な構成例を示すブロック図である。 二次電池の等価回路の一例を示す図である。 二次電池の熱モデルの一例を示す図である。 推定結果と実測値の関係を示す図である。 本発明の実施形態において実行される処理の詳細を説明するためフローチャートである。
次に、本発明の実施形態について説明する。
(A)第1実施形態の構成の説明
図1は、本発明の第1実施形態に係る二次電池内部温度推定装置を有する車両の電源系統を示す図である。この図において、二次電池内部温度推定装置1は、制御部10、電圧センサ11、電流センサ12、温度センサ13、および、放電回路15を主要な構成要素としており、二次電池14の外部温度から内部温度を推定する。ここで、制御部10は、電圧センサ11、電流センサ12、および、温度センサ13からの出力を参照し、二次電池14の等価回路の素子値を求め、この素子値に基づいて温度を推定する式の係数を求め、この式に温度センサ13によって検出された外部温度を代入することで、内部温度を推定する。電圧センサ11は、二次電池14の端子電圧を検出し、制御部10に通知する。電流センサ12は、二次電池14に流れる電流を検出し、制御部10に通知する。温度センサ13は、二次電池14自体または周囲の外部温度を検出し、制御部10に通知する。放電回路15は、例えば、直列接続された半導体スイッチと抵抗素子等によって構成され、制御部10によって半導体スイッチがオン/オフ制御されることにより二次電池14を放電させる。なお、本明細書中において、外部温度とは、二次電池14の配置されている環境の温度を示し、また、内部温度とは電解液や極板で形成される二次電池14の内部の温度を示す。
二次電池14は、例えば、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、または、リチウムイオン電池等によって構成され、オルタネータ16によって充電され、スタータモータ18を駆動してエンジンを始動するとともに、負荷19に電力を供給する。オルタネータ16は、エンジン17によって駆動され、交流電力を発生して整流回路によって直流電力に変換し、二次電池14を充電する。
エンジン17は、例えば、ガソリンエンジンおよびディーゼルエンジン等のレシプロエンジンまたはロータリーエンジン等によって構成され、スタータモータ18によって始動され、トランスミッションを介して駆動輪を駆動し車両に推進力を与えるとともに、オルタネータ16を駆動して電力を発生させる。スタータモータ18は、例えば、直流電動機によって構成され、二次電池14から供給される電力によって回転力を発生し、エンジン17を始動する。負荷19は、例えば、電動ステアリングモータ、デフォッガ、イグニッションコイル、カーオーディオ、および、カーナビゲーション等によって構成され、二次電池14からの電力によって動作する。
図2は、図1に示す制御部10の詳細な構成例を示す図である。この図に示すように、制御部10は、CPU(Central Processing Unit)10a、ROM(Read Only Memory)10b、RAM(Random Access Memory)10c、通信部10d、I/F(Interface)10eを有している。ここで、CPU10aは、ROM10bに格納されているプログラム10baに基づいて各部を制御する。ROM10bは、半導体メモリ等によって構成され、プログラム10ba等を格納している。RAM10cは、半導体メモリ等によって構成され、プログラムbaを実行する際に生成されるデータや、後述するテーブルまたは数式等のパラメータ10caを格納する。通信部10dは、上位の装置であるECU(Electronic Control Unit)等との間で通信を行い、検出した情報を上位装置に通知する。I/F10eは、電圧センサ11、電流センサ12、および、温度センサ13から供給される信号をデジタル信号に変換して取り込むとともに、放電回路15に駆動電流を供給してこれを制御する。
(B)実施形態の動作の説明
つぎに、本発明の実施形態の動作について説明する。本発明の実施形態では、例えば、車両が停止している際のように、二次電池14への入出力電流が小さいタイミングにおいて、制御部10のCPU10aは、電圧センサ11および電流センサ12の出力を参照し、二次電池14の電圧Vbおよび電流Ibを測定し、RAM10cにパラメータ10caとして格納する。
つぎに、CPU10aは、放電回路15を制御し、二次電池14を所定の電流(例えば、数アンペア〜数十アンペア)で放電させる。なお、この放電は、例えば、矩形波またはステップ波により実行する。また、放電時間としては、例えば、数十ミリ秒から数秒に設定することができる。
CPU10aは、放電回路15による放電が開始されると、所定の周期(例えば、数ミリ秒〜数十ミリ秒周期)で電圧センサ11および電流センサ12の出力をサンプリングし、V(t),I(t)として、RAM10cにパラメータ10caとして格納する。なお、tは時間を示し、サンプリングが開始されるタイミングで「0」とされ、それ以降はサンプリングに応じてインクリメントされる。CPU10aは、得られたV(t),I(t)を以下の式(1)に代入して、二次電池14のインピーダンスZ(t)を求め、RAM10cにパラメータ10caとして格納する。
Z(t)=(Vb−V(t))/(Ib−I(t)) ・・・(1)
また、CPU10aは、以下の式(2)に基づいて、測定によって得たZ(t)を用いて、等価回路の素子値であるRohm,Rct,Cを最小二乗法等によって求める。
Z(t)=Rohm+Rct×(1−exp(−t/τ)) ・・・(2)
ここで、τ=C×Rctである。
つぎに、CPU10aは、得られたRohm,Rct,Cを、基準状態におけるRohm,Rct,Cに補正する。ここで、基準状態とは、二次電池14のSOCが100%であり、また、内部温度Tiが25℃の状態をいう。SOCと温度が基準状態から外れている場合には、基準状態になるように各素子値を補正する。
つづいて、CPU10aは、基準状態に補正されたRohm,Rct,Cを、以下の式(3)に代入し、積分ゲインK2を算出する。
K2=A1×Rohm+A2×Rct+A3×C ・・・(3)
ここで、係数A1〜A3は、二次電池14の等価回路の素子値と、積分ゲインK2とを関連付けするための係数であり、これらの値は、二次電池14の種類や、使用する車種や、使用環境等によって変化しない。このような係数A1〜A3は、予め実測して、ROM10bに格納しておけばよい。
つぎに、CPU10aは、式(3)で求めた積分ゲインK2を図4に示す二次電池14の熱モデルに適用する。ここで、図4は、二次電池14の熱モデルを示している。この例では、二次電池14の外部温度Teと、二次電池14の内部温度Tiの関係を示している。このモデルでは、二次電池14は、一次遅れ系としてモデリングされており、外部温度Teと内部温度Tiの間の伝達関数T(S)は、以下の式(4)で表される。なお、係数K1は、二次電池14の種類や環境等には影響を受けにくい係数であり、この係数K1については、予め任意の二次電池14で求めた値を用いることができる。
T(S)=Ti/Te=(K1+K2/S)/(1+K1+K2/S) ・・・(4)
CPU10aは、以上のような熱モデルに対して、式(3)で求めた積分ゲインK2を適用する。このような熱モデルを使用することで、温度センサ13によって検出される二次電池14の外部温度Teから、二次電池14の内部温度Tiを推定することができる。このようにして求めた内部温度Tiを用いることで、温度依存性を有する各種の値、例えば、等価回路の素子値やSOF(State of Function)を正確に求めることができるので、二次電池14の状態を高精度に検出することができる。
図5は、以上の本実施形態によって推定した積分ゲインK2と、実測によって得た積分ゲインK2の比較結果を示している。この図の横軸は本発明の実施形態によって推定した積分ゲインを示し、縦軸は実測結果を示している。この図5から、本実施形態によって推定された積分ゲインは、実測値と高い精度で一致しており、また、決定係数Rは、0.9028であり、実測値と推定値が高い精度で一致することを示している。
つぎに、図6を参照して、本発明の実施形態の詳細な動作について説明する。図6は、図1において実行される処理の一例を説明するためのフローチャートである。このフローチャートは、例えば、新たな二次電池14が車両に搭載された際(例えば、制御部10がパワーオンリセットされた際)に実行される。図6に示すフローチャートが開始されると、以下のステップが実行される。
ステップS10では、CPU10aは、安定した状態であって、かつ、放電を実行する前の二次電池14の電圧Vbおよび電流Ibを測定する。なお、安定した状態としては、例えば、車両が停車中であって、負荷19に流れる電流が所定の閾値(例えば、数アンペア)よりも小さい場合に、安定していると判定することができる。
ステップS11では、CPU10aは、放電回路15を制御し、二次電池14を矩形パルス状に放電させる。なお、矩形パルスの幅としては、例えば、数ミリ秒〜数秒の範囲とすることができる。予め定められた矩形パルスの幅を使用するのではなく、所定回数のサンプリングが終了した場合、または、等価回路の素子値が求まった場合に、放電を終了するようにしてもよい。
ステップS12では、CPU10aは、電圧センサ11および電流センサ12の出力を参照して二次電池14の電圧および電流を測定し、これらをV(t)およびI(t)として、RAM10cにパラメータ10caとして格納する。
ステップS13では、CPU10aは、ステップS12で測定したV(t)およびI(t)を前述した式(1)に代入してZ(t)を計算し、得られた値をRAM10cにパラメータ10caとして格納する。
ステップS14では、CPU10aは、放電を終了するか否かを判定し、放電を終了すると判定した場合(ステップS14:Yes)にはステップS15に進み、それ以外の場合(ステップS14:No)にはステップS12に戻って前述の場合と同様の処理を繰り返す。例えば、所定の時間が経過するか、または、所定の回数測定を実行するか、または、電圧または電流が安定した場合(例えば、過渡状態から定常状態に移行した場合)には、Yesと判定してステップS15に進む。
ステップS15では、CPU10aは、ステップS13においてRAM10cに格納したZ(t)の値を取得し、式(2)に適用してRohm,Rct,τの値を、例えば、最小二乗法等によって求める。これにより、二次電池14を矩形パルスによって放電させた場合におけるZ(t)の変化に最も適合するRohm,Rct,τの値を得ることができる。
ステップS16では、CPU10aは、C=τ/Rctに対して、ステップS15で求めたτと、Rctを代入して電気二重層容量Cの値を得る。
ステップS17では、CPU10aは、ステップS15およびステップS16で求めた等価回路の素子値Rohm,Rct,Cの値を基準状態における値に補正する。基準状態としては、例えば、二次電池14の内部温度が25℃であり、また、二次電池14のSOCが100%である状態を用いることができる。補正する方法としては、例えば、データテーブルまたは補正式をROM10bに予め格納しておき、このデータテーブルまたは補正式に基づいて補正を行うことができる。なお、温度に関する補正を実行する際の補正誤差を小さくするためには、例えば、車両の停止時間が長い(例えば、12時間以上の)場合の温度センサ13の出力値を使用することが望ましい。あるいは、初期値によって推定された内部温度Tiの推定値を用いるようにしてもよい。
ステップS18では、CPU10aは、ROM10bに格納されている係数A1〜A3の値と、ステップS17で補正がされた素子値Rohm,Rct,Cの値を、前述した式(3)に代入し、積分ゲインK2の値を得る。なお、係数A1〜A3の値は、二次電池14の種類および使用環境等に左右されないので、例えば、事前に測定によって得た値をROM10bに格納しておき、この値を利用することができる。
ステップS19では、CPU10aは、ステップS18で求めた積分ゲインK2を、図4に示す熱モデルに適用する。なお、比例ゲインK1については、二次電池14の種類および使用環境等に左右されないので、例えば、事前に測定によって得た値をROM10bに格納しておくことができる。
ステップS20では、CPU10aは、温度センサ13の出力を参照し、二次電池14の外部温度Teを取得する。
ステップS21では、CPU10aは、図4に示す熱モデルに対して、ステップS20で測定した外部温度Teを代入し、二次電池14の内部温度Tiを推定する。なお、ステップS20とステップS21の処理は、伝達関数の時定数に応じた一定の時間は、繰り返し実行することが望ましい。すなわち、外部温度Teが変化する場合には、それに遅れて内部温度Tiも変化するので、一定の時間の測定が望まれる。
ステップS22では、CPU10aは、ステップS21において求めた二次電池14の内部温度Tiに基づいて、温度依存性があるSOF等の値を求める。なお、これ以外の値を求めるようにしてもよい。
以上に説明したように、図6に示すフローチャートによれば、二次電池14の等価回路の素子値を用いて、二次電池14の熱モデルの積分ゲインK2を求めることができる。また、このような積分ゲインK2を用いることで、二次電池14の内部温度を正確に求めることができるので、温度依存性がある二次電池14の状態値(例えば、SOF)を正確に求めることができる。
また、二次電池14の等価回路から積分ゲインK2を求めることで、例えば、二次電池14のサイズ、初期容量、または、種類等によらず、内部温度Tiを正確に求めることができる。
(C)変形実施形態の説明
以上の実施形態は一例であって、本発明が上述したような場合のみに限定されるものでないことはいうまでもない。例えば、以上の各実施形態では、図3に示す等価回路を用いるようにしたが、これ以外の等価回路を用いるようにしてもよい。具体的には、反応抵抗と電気二重層容量を2つ以上有する等価回路を用いるようにしてもよい。なお、反応抵抗と電気二重層容量を2つ有する等価回路を用いる場合、2つの反応抵抗をRtc1,Rct2とし、電気二重層容量をC1,C2とする場合、前述した式(2)の代わりに、以下の式(5)を用いることができる。
Z(t)=Rohm+Rct1×(1−exp(−t/τ1))+Rct2×(1−exp(−t/τ2)) ・・・(5)
なお、τ1およびτ2は以下のように定義する。
τ1=C1×Rct1
τ2=C2×Rct2
また、前述した式(3)の代わりに、以下の式(6)を用いることができる。
K2=A1×Rohm+A2×Rct1+A3×C1+A4×Rct2+A5×C2 ・・・(6)
また、以上の実施形態では、積分ゲインK2を求める式(3)には、等価回路の素子値のみを含むようにしたが、例えば、素子値から求めることができる初期満充電容量SOH_iniを用いるようにしてもよい。より詳細には、初期満充電容量SOH_iniは、以下の式(7)によって求めることができる。ここで、f1(Rohm),f2(Rct),f4(C)は、Rohm,Rct,Cを変数とする所定の関数を示している。
SOH_ini=B1×f1(Rohm)+B2×f2(Rct)+B3×f3(C) ・・・(7)
以上の式(7)によって求めた、SOH_iniを含む以下の式(8)を用いることで、積分ゲインK2を得ることができる。
K2=A0×SOH_ini+A1×Rohm+A2×Rct+A3×C1 ・・・(8)
なお、前述した式(6)の右辺に対して、A0×SOH_iniを加えた式を用いるようにしてもよい。
また、以上の実施形態では、等価回路を構成する溶液抵抗Rohm、反応抵抗Rct、および、電気二重層容量Cの全てを用いるようにしたが、これらのいずれか1つを用いるようにしたり、あるいは、任意の2つの組み合わせを用いるようにしたりしてもよい。
また、以上の実施形態では、二次電池14が新たに取り付けられた場合に、図6に示す処理を実行する場合を例に挙げて説明したが、例えば、所定の周期で実行したり、あるいは、内部温度Tiによって求める値の誤差が増加したりした場合に、図6に示す処理を再度実行するようにしてもよい。例えば、二次電池14は、劣化によって極板の科学的な特性が変化(例えば、サルフェーションによって硫酸鉛が増加)することから、温度特性が変化する(例えば、硫酸鉛の増加によって比熱が低下する)。このため、劣化に応じて変化する特性を再現するために、例えば、1ヶ月単位で、図6に示す処理を実行するようにすることで、劣化状態を反映した熱モデルを構築することができる。
1 二次電池内部温度推定装置
10 制御部(推定手段、算出手段、求出手段、適用手段、補正手段)
10a CPU
10b ROM
10c RAM
10d 表示部
10e I/F
11 電圧センサ
12 電流センサ
13 温度センサ
14 二次電池
15 放電回路
16 オルタネータ
17 エンジン
18 スタータモータ
19 負荷

Claims (8)

  1. 二次電池の内部温度を推定する二次電池内部温度推定装置において、
    前記二次電池の外部温度と内部温度の関係を示す関係式に基づいて、前記二次電池の内部温度を推定する推定手段と、
    前記二次電池の等価回路の素子値を算出する算出手段と、
    前記算出手段によって算出された前記等価回路の素子値に基づいて、前記関係式の係数を求出する求出手段と、
    前記求出手段によって得られた前記係数を前記関係式に適用する適用手段と、を有し、
    前記推定手段は、前記適用手段によって前記係数が適用された前記関係式に基づいて、前記二次電池の内部温度を推定する、
    ことを特徴とする二次電池内部温度推定装置。
  2. 前記二次電池の前記等価回路は、溶液抵抗、反応抵抗、および、電気二重層容量を有し、
    前記求出手段は、これらのいずれか1つまたは複数の素子値に基づいて、前記関係式の係数を求出する、
    ことを特徴とする請求項1に記載の二次電池内部温度推定装置。
  3. 前記求出手段は、前記二次電池の満充電状態における放電可能な容量も参照して、前記関係式の係数を求出する、
    ことを特徴とする請求項1または2に記載の二次電池内部温度推定装置。
  4. 前記算出手段によって算出された前記素子値を、基準となる充電状態、かつ、基準となる温度における値に補正する補正手段を有することを特徴とする請求項1乃至3のいずれか1項に記載の二次電池内部温度推定装置。
  5. 前記推定手段は、一次遅れ系の伝達関数を前記関係式として用いることで、前記二次電池の内部温度を推定することを特徴とする請求項1乃至4のいずれか1項に記載の二次電池内部温度推定装置。
  6. 前記求出手段は、前記一次遅れ系の伝達関数の積分ゲインを、前記等価回路の素子値に基づいて求出することを特徴とする請求項5に記載の二次電池内部温度推定装置。
  7. 前記算出手段は、前記二次電池の放電中の電圧および電流に基づいて、前記等価回路の素子値を算出することを特徴とする請求項1乃至6のいずれか1項に記載の二次電池内部温度推定装置。
  8. 二次電池の内部温度を推定する二次電池内部温度推定方法において、
    前記二次電池の外部温度と内部温度の関係を示す関係式に基づいて、前記二次電池の内部温度を推定する推定ステップと、
    前記二次電池の等価回路の素子値を算出する算出ステップと、
    前記算出ステップにおいて得られた前記等価回路の素子値に基づいて、前記関係式の係数を求出する求出ステップと、
    前記求出ステップにおいて得られた前記係数を前記関係式に適用する適用ステップと、を有し、
    前記推定ステップは、前記適用ステップにおいて前記係数が適用された前記関係式に基づいて、前記二次電池の内部温度を推定する、
    ことを特徴とする二次電池内部温度推定方法。
JP2014059252A 2014-03-20 2014-03-20 二次電池内部温度推定装置および二次電池内部温度推定方法 Active JP6200359B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014059252A JP6200359B2 (ja) 2014-03-20 2014-03-20 二次電池内部温度推定装置および二次電池内部温度推定方法
PCT/JP2015/057483 WO2015141580A1 (ja) 2014-03-20 2015-03-13 二次電池内部温度推定装置および二次電池内部温度推定方法
EP15765576.2A EP3107146B1 (en) 2014-03-20 2015-03-13 Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
CN201580013438.6A CN106104907B (zh) 2014-03-20 2015-03-13 二次电池内部温度推定装置以及二次电池内部温度推定方法
US15/268,512 US10396407B2 (en) 2014-03-20 2016-09-16 Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059252A JP6200359B2 (ja) 2014-03-20 2014-03-20 二次電池内部温度推定装置および二次電池内部温度推定方法

Publications (2)

Publication Number Publication Date
JP2015185284A true JP2015185284A (ja) 2015-10-22
JP6200359B2 JP6200359B2 (ja) 2017-09-20

Family

ID=54144549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059252A Active JP6200359B2 (ja) 2014-03-20 2014-03-20 二次電池内部温度推定装置および二次電池内部温度推定方法

Country Status (5)

Country Link
US (1) US10396407B2 (ja)
EP (1) EP3107146B1 (ja)
JP (1) JP6200359B2 (ja)
CN (1) CN106104907B (ja)
WO (1) WO2015141580A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170263A (ja) * 2017-03-30 2018-11-01 古河電気工業株式会社 二次電池内部温度推定装置および二次電池内部温度推定方法
JP2020155394A (ja) * 2019-03-22 2020-09-24 古河電気工業株式会社 充電可能電池温度推定装置および充電可能電池温度推定方法
JP2022550125A (ja) * 2019-09-29 2022-11-30 ビーワイディー カンパニー リミテッド 電池温度推定方法、装置、電子機器、及び記憶媒体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073147B2 (en) * 2013-05-16 2018-09-11 Nec Corporation Battery state estimation device, battery state management system, battery, battery state estimation method, and non-transitory storage medium
JP6928228B2 (ja) * 2016-11-25 2021-09-01 ミツミ電機株式会社 電池監視回路
DE102017209182A1 (de) * 2017-05-31 2018-12-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Bestimmen einer Betriebstemperatur, Betriebsverfahren für eine Batteriezelle, Steuereinheit für eine Batteriezelle und Arbeitsvorrichtung
KR102188723B1 (ko) 2017-11-07 2020-12-08 주식회사 엘지화학 배터리 온도 추정 장치 및 방법
WO2019131740A1 (ja) * 2017-12-27 2019-07-04 古河電気工業株式会社 充電可能電池温度推定装置および充電可能電池温度推定方法
CN109520638A (zh) * 2018-10-15 2019-03-26 武汉科技大学 圆柱形电池内部平均温度实时确定方法及系统
CN112964991B (zh) * 2019-11-28 2022-07-15 比亚迪股份有限公司 电池内部温度信息处理方法、计算机设备和存储介质
DE102020003887B3 (de) * 2020-06-29 2021-10-21 Daimler Ag Verfahren zum Bestimmen der jeweiligen Temperatur mehrerer Batteriezellen einer Fahrzeugbatterie durch Extrapolation einer gemessenen Temperatur; Steuereinrichtung sowie Fahrzeugbatterie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192811A (ja) * 2011-03-16 2012-10-11 Furukawa Electric Co Ltd:The 二次電池温度推定装置および二次電池温度推定方法
JP2013118724A (ja) * 2011-12-01 2013-06-13 Toyota Motor Corp 制御装置および制御方法
JP2014070982A (ja) * 2012-09-28 2014-04-21 Fujitsu Semiconductor Ltd 二次電池の状態評価装置、二次電池の状態評価方法、及び、二次電池の状態評価プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4383596B2 (ja) 1999-09-06 2009-12-16 トヨタ自動車株式会社 電池の内部温度検出装置
JP4327692B2 (ja) * 2004-09-30 2009-09-09 トヨタ自動車株式会社 二次電池の充放電制御装置
JP5008863B2 (ja) * 2005-11-30 2012-08-22 プライムアースEvエナジー株式会社 二次電池用の制御装置、二次電池の温度推定方法を用いた二次電池の劣化判定方法
JP2008249459A (ja) 2007-03-30 2008-10-16 Mazda Motor Corp バッテリの温度推定装置
JP2010135075A (ja) * 2008-12-02 2010-06-17 Calsonic Kansei Corp 組電池の温度推定方法及び装置
EP2453514B1 (en) * 2009-07-08 2017-11-22 Toyota Jidosha Kabushiki Kaisha Secondary-battery temperature-raising apparatus and vehicle having same
US8947023B2 (en) * 2009-10-14 2015-02-03 Hitachi, Ltd. Battery control device and motor drive system
WO2011118080A1 (ja) * 2010-03-23 2011-09-29 古河電気工業株式会社 電池内部状態推定装置および電池内部状態推定方法
EP2741060B1 (en) * 2011-08-01 2016-11-02 Alps Green Devices Co., Ltd. Battery device temperature measurement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192811A (ja) * 2011-03-16 2012-10-11 Furukawa Electric Co Ltd:The 二次電池温度推定装置および二次電池温度推定方法
JP2013118724A (ja) * 2011-12-01 2013-06-13 Toyota Motor Corp 制御装置および制御方法
JP2014070982A (ja) * 2012-09-28 2014-04-21 Fujitsu Semiconductor Ltd 二次電池の状態評価装置、二次電池の状態評価方法、及び、二次電池の状態評価プログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. DI FILIPPI ET AL.: "Model-Based Life Estimation of Li-ion Batteries in PHEVs Using Large Scale Vehicle Simulations: An I", VEHICLE POWER AND PROPULSION CONFERENCE, 2010 IEEE, JPN6015016419, September 2010 (2010-09-01), US, pages 1 - 6, XP031929156, ISSN: 0003568284, DOI: 10.1109/VPPC.2010.5729020 *
E. PRADA ET AL.: "Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-ion Batteries for Fast Charge Ap", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 159(9), JPN7015001089, 14 August 2012 (2012-08-14), US, pages 1508 - 1519, XP055225157, ISSN: 0003568285, DOI: 10.1149/2.064209jes] *
G. PILATOWICZ ET AL.: "Simulation of SLI Lead-Acid Batteries for SoC, Aging and Cranking Capability Prediction in Automotiv", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, JPN7017001748, 14 August 2012 (2012-08-14), US, pages 1410 - 1419, XP055225159, ISSN: 0003568286, DOI: 10.1149/2.019209jes] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170263A (ja) * 2017-03-30 2018-11-01 古河電気工業株式会社 二次電池内部温度推定装置および二次電池内部温度推定方法
JP2020155394A (ja) * 2019-03-22 2020-09-24 古河電気工業株式会社 充電可能電池温度推定装置および充電可能電池温度推定方法
JP7233270B2 (ja) 2019-03-22 2023-03-06 古河電気工業株式会社 充電可能電池温度推定装置および充電可能電池温度推定方法
JP2022550125A (ja) * 2019-09-29 2022-11-30 ビーワイディー カンパニー リミテッド 電池温度推定方法、装置、電子機器、及び記憶媒体
JP7379679B2 (ja) 2019-09-29 2023-11-14 ビーワイディー カンパニー リミテッド 電池温度推定方法、装置、電子機器、及び記憶媒体

Also Published As

Publication number Publication date
EP3107146A4 (en) 2017-11-01
WO2015141580A1 (ja) 2015-09-24
US20170012327A1 (en) 2017-01-12
JP6200359B2 (ja) 2017-09-20
CN106104907B (zh) 2019-06-04
EP3107146A1 (en) 2016-12-21
EP3107146B1 (en) 2019-01-23
CN106104907A (zh) 2016-11-09
US10396407B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
JP6200359B2 (ja) 二次電池内部温度推定装置および二次電池内部温度推定方法
JP6119402B2 (ja) 内部抵抗推定装置及び内部抵抗推定方法
JP6490414B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
US11163010B2 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
JPWO2019026143A1 (ja) 充電時間演算方法及び充電制御装置
JP6440377B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP6499075B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP5653881B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP2015153750A (ja) バッテリ内部抵抗推算方法及びその装置
JP6958965B2 (ja) バッテリーsoc推定装置及び方法
JP6498920B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP6452403B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP5379820B2 (ja) 二次電池温度推定装置および二次電池温度推定方法
JP2017032294A (ja) 二次電池の充電率推定方法、充電率推定装置、及び健全度推定装置
JP6350174B2 (ja) 電池システム用制御装置および電池システムの制御方法
CN111624491A (zh) 一种确定电池剩余电量的方法、装置及电池管理系统
JP2009126278A (ja) 車載二次電池の内部状態検出装置
JP2019138673A (ja) 充電可能電池状態検出装置および充電可能電池状態検出方法
JP6672976B2 (ja) 充電量算出装置、コンピュータプログラム及び充電量算出方法
JP2014059251A (ja) 内部抵抗推定装置及び内部抵抗推定方法
JP6953323B2 (ja) 充電可能電池状態検出装置および充電可能電池状態検出方法
JP7254482B2 (ja) 充電可能電池状態検出装置および充電可能電池状態検出方法
JP7233270B2 (ja) 充電可能電池温度推定装置および充電可能電池温度推定方法
JP2021150220A (ja) バッテリ状態を推定する方法、装置、プログラムおよび記録媒体
JP6472163B2 (ja) 充電率推定装置及び充電率推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170825

R151 Written notification of patent or utility model registration

Ref document number: 6200359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350