JP6953323B2 - 充電可能電池状態検出装置および充電可能電池状態検出方法 - Google Patents

充電可能電池状態検出装置および充電可能電池状態検出方法 Download PDF

Info

Publication number
JP6953323B2
JP6953323B2 JP2018016813A JP2018016813A JP6953323B2 JP 6953323 B2 JP6953323 B2 JP 6953323B2 JP 2018016813 A JP2018016813 A JP 2018016813A JP 2018016813 A JP2018016813 A JP 2018016813A JP 6953323 B2 JP6953323 B2 JP 6953323B2
Authority
JP
Japan
Prior art keywords
rechargeable battery
current
function
value
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018016813A
Other languages
English (en)
Other versions
JP2019132780A (ja
Inventor
岩根 典靖
典靖 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Automotive Systems Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2018016813A priority Critical patent/JP6953323B2/ja
Publication of JP2019132780A publication Critical patent/JP2019132780A/ja
Application granted granted Critical
Publication of JP6953323B2 publication Critical patent/JP6953323B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充電可能電池状態検出装置および充電可能電池状態検出方法に関するものである。
充電可能電池の状態を検出する技術としては、例えば、特許文献1に開示される技術がある。
特許文献1に開示された技術は、電池に所定の電流値で略矩形波のパルス放電を行わせる放電手段と、電池をパルス放電させたときの応答電圧をサンプリングしてこれを直交する矩形波成分に展開する矩形波展開手段と、矩形波展開手段で算出した係数と電流値から擬似インピーダンスを算出する擬似インピーダンス算出手段と、擬似インピーダンスを用いて電池の劣化状態を判定する劣化判定手段を有している。
特開2006−284537号公報
ところで、特許文献1に開示された技術では、疑似インピーダンスを用いて電池の劣化判定をするが、疑似インピーダンスを構成する内部抵抗は、電池に流れる電流によってその値が変化する。このため、車載の電池等のように流れる電流が車両の要求に支配され、絶えず変動するような場合には、一定の電流を流す構成を採用するか、あるいは、流れている電流値を観測し、電流値が内部抵抗を求める条件を満たしているか否かを判断し、条件を満たしたときのみ内部抵抗の算出を行うようにする必要がある。
一定の電流を流す構成を採用するためには、放電機構および充電機構等を追加する必要があり大きなコストアップ要因となる。また、電流値が内部抵抗を求める条件を満たしているか否かを判断する場合は、内部抵抗を求められるタイミングが車両等の電流を流す側の状況に支配されるため、十分な頻度で内部抵抗を求めることを確実に保証することが困難という問題がある。
また、条件を満たしたときのみ内部抵抗の算出を行う場合、予測したい要求電流と同様の電流が流れたタイミングで内部抵抗を求めれば、求めた内部抵抗から正確に応答電圧を推定することができる。しかしながら、多くの場合、要求電流は過酷な条件を想定して設定されるため、要求電流が流れる頻度は極めてまれであることから、十分な頻度で内部抵抗を求めることを確実に保証することが困難という問題がある。
本発明は、以上のような状況に鑑みてなされたものであり、十分な頻度で充電可能電池の状態を検出することが可能な充電可能電池状態検出装置および充電可能電池状態検出方法を提供することを目的としている。
上記課題を解決するために、本発明は、充電可能電池の状態を検出する充電可能電池状態検出装置において、前記充電可能電池が放電状態であるか否かを判定する判定手段と、前記判定手段によって放電中であると判定された場合には、前記充電可能電池に流れる電流および端子電圧の値を複数回測定する測定手段と、前記測定手段によって測定された電流および端子電圧の値から、それぞれの測定タイミングにおける前記充電可能電池の内部抵抗の値を算出する算出手段と、前記算出手段によって算出されたそれぞれの測定タイミングにおける前記内部抵抗の値を、電流を入力変数とする関数としてフィッティングし、前記内部抵抗を、電流を入力変数とする前記関数として特定する特定手段と、前記特定手段によって特定された前記関数に基づいて前記充電可能電池の状態を検出する検出手段と、を有することを特徴とする。
このような構成によれば、十分な頻度で充電可能電池の状態を検出することが可能となる。
また、本発明は、前記特定手段が用いる前記関数は、少なくとも1つの指数関数項を有することを特徴とする。
このような構成によれば、内部抵抗の値を、電流を入力変数とする関数として精度よくフィッティングすることができる。
また、本発明は、前記特定手段は、最小二乗法、カルマンフィルタ、または、ニューラルネットワークを用いた演算処理によって前記関数をフィッティングすることを特徴とする。
このような構成によれば、関数の係数を精度よく求めることが可能になる。
また、本発明は、前記特定手段は、前記充電可能電池の周辺温度または電解液温度、SOC、および、放電開始からの経過時間の少なくとも1つに基づいて、前記関数の係数の少なくとも1つを補正することを特徴とする。
このような構成によれば、充電可能電池のおかれている状況等によらず、充電可能電池の状態を精度よく検出することができる。
また、本発明は、前記検出手段は、前記関数に基づいて前記充電可能電池に所定の電流が流れたときの応答電圧としてのSOFを求めることを特徴とする。
このような構成によれば、十分な頻度で充電可能電池のSOFを求めることができる。
また、本発明は、前記検出手段は、前記関数に基づいて前記充電可能電池の劣化度としてのSOHを求めることを特徴とする。
このような構成によれば、十分な頻度で充電可能電池のSOHを求めることができる。
また、本発明は、充電可能電池の状態を検出する充電可能電池状態検出方法において、前記充電可能電池が放電状態であるか否かを判定する判定ステップと、前記判定ステップにおいて放電中であると判定された場合には、前記充電可能電池に流れる電流および端子電圧の値を複数回測定する測定ステップと、前記測定ステップにおいて測定された前記電流および前記端子電圧の値から、それぞれの測定タイミングにおける前記充電可能電池の内部抵抗の値を算出する算出ステップと、前記算出ステップにおいて算出されたそれぞれの測定タイミングにおける前記内部抵抗の値を、前記電流を入力変数とする関数としてフィッティングし、前記内部抵抗を、前記電流を入力変数とする前記関数として特定する特定ステップと、前記特定ステップにおいて特定された前記関数に基づいて前記充電可能電池の状態を検出する検出ステップと、を有することを特徴とする。
このような方法によれば、十分な頻度で充電可能電池の状態を検出することが可能となる。
本発明によれば、十分な頻度で充電可能電池の状態を検出することが可能な充電可能電池状態検出装置および充電可能電池状態検出方法を提供することが可能となる。
本発明の実施形態に係る充電可能電池状態検出装置の構成例を示す図である。 図1の制御部の詳細な構成例を示すブロック図である。 スタータモータによるクランキング時に充電可能電池に流れる電流と端子電圧の時間的変化を示す図である。 図3に示す電圧および電流から求めた内部抵抗の時間的変化を示す図である。 充電可能電池の電気的な等価回路モデルを示す図である。 図4に示す測定結果を、横軸を電流として並べ換えて表示した図である。 フィッティングされた関数による推定値と実測値との関係を示す図である。 内部抵抗とSOFの関係を示す図である。 本発明の実施形態において実行される処理の一例を説明するためのフローチャートである。 図9に示すフローチャートの変形実施形態の一例を説明するためのフローチャートである。
次に、本発明の実施形態について説明する。
(A)本発明の実施形態の構成の説明
図1は、本発明の実施形態に係る充電可能電池状態検出装置を有する車両の電源系統を示す図である。この図において、充電可能電池状態検出装置1は、制御部10、電圧センサ11、電流センサ12、および、温度センサ13を主要な構成要素としており、充電可能電池14の内部における異常の発生を検出する。なお、制御部10、電圧センサ11、電流センサ12、および、温度センサ13を別々の構成とするのではなく、これらの一部または全てをまとめた構成としてもよい。
ここで、制御部10は、電圧センサ11、電流センサ12、および、温度センサ13からの出力を参照し、充電可能電池14の状態を検出するとともに、オルタネータ15の発電電圧を制御することで充電可能電池14の充電状態を制御する。電圧センサ11は、充電可能電池14の端子電圧を検出し、制御部10に通知する。電流センサ12は、充電可能電池14に流れる電流を検出し、制御部10に通知する。温度センサ13は、充電可能電池14の電解液または充電可能電池14の周囲の温度を検出し、制御部10に通知する。なお、制御部10がオルタネータ15の発電電圧を制御することで充電可能電池14の充電状態を制御するのではなく、例えば、図示しないECU(Electric Control Unit)が充電状態を制御するようにしてもよい。
充電可能電池14は、電解液を有する充電可能電池、例えば、鉛蓄電池、ニッケルカドミウム電池、または、ニッケル水素電池等によって構成され、オルタネータ15によって充電され、スタータモータ17を駆動してエンジンを始動するとともに、負荷18に電力を供給する。なお、充電可能電池14は、複数のセルを直列接続して構成されている。オルタネータ15は、エンジン16によって駆動され、交流電力を発生して整流回路によって直流電力に変換し、充電可能電池14を充電する。オルタネータ15は、制御部10によって制御され、発電電圧を調整することが可能とされている。
エンジン16は、例えば、ガソリンエンジンおよびディーゼルエンジン等のレシプロエンジンまたはロータリーエンジン等によって構成され、スタータモータ17によって始動され、トランスミッションを介して駆動輪を駆動し、車両に推進力を与えるとともに、オルタネータ15を駆動して電力を発生させる。スタータモータ17は、例えば、直流電動機によって構成され、充電可能電池14から供給される電力によって回転力を発生し、エンジン16を始動する。負荷18は、例えば、電動ステアリングモータ、デフォッガ、シートヒータ、イグニッションコイル、カーオーディオ、および、カーナビゲーション等によって構成され、充電可能電池14から供給される電力によって動作する。なお、図1の例では、エンジン16のみが駆動力を出力する構成としたが、例えば、エンジン16をアシストする電動モータを具備したハイブリッド車であってもよい。ハイブリッド車の場合、充電可能電池14は、リチウム電池等によって構成される高圧システム(電動モータを駆動するシステム)を起動し、高圧システムがエンジン16を始動する。
図2は、図1に示す制御部10の詳細な構成例を示す図である。この図に示すように、制御部10は、CPU(Central Processing Unit)10a、ROM(Read Only Memory)10b、RAM(Random Access Memory)10c、通信部10d、I/F(Interface)10e、および、バス10fを有している。ここで、CPU10aは、ROM10bに格納されているプログラム10baに基づいて各部を制御する。ROM10bは、半導体メモリ等によって構成され、プログラム10ba等を格納している。RAM10cは、半導体メモリ等によって構成され、プログラム10baを実行する際に生成されるデータや、後述するテーブル等のデータ10caを格納する。通信部10dは、上位の装置であるECU(Electronic Control Unit)等との間で通信を行い、検出した情報または制御情報を上位装置に通知する。I/F10eは、電圧センサ11、電流センサ12、および、温度センサ13から供給される信号をデジタル信号に変換して取り込むとともに、オルタネータ15、および、スタータモータ17等に駆動電流を供給してこれらを制御する。バス10fは、CPU10a、ROM10b、RAM10c、通信部10d、および、I/F10eを相互に接続し、これらの間で情報の授受を可能とするための信号線群である。
(B)本発明の実施形態の動作の説明
つぎに、本発明の実施形態の動作について説明する。なお、以下では、本発明の実施形態の動作原理について説明した後、詳細な動作について説明する。
まず、本発明の実施形態の動作原理について説明する。図3は、スタータモータ17によってエンジン16を始動する際に、充電可能電池14からスタータモータ17に流れる電流と、充電可能電池14の端子電圧の時間的変化を示す図である。図3において、塗りつぶされた四角形は充電可能電池14の端子電圧の時間的変化を示し、中抜きの四角形は充電可能電池14に流れる電流の時間的変化を示している。なお、図3では、充電可能電池14を充電する場合を正とし、放電する場合を負としている。図3に示すように時刻0において、スタータモータ17への通電が開始されると、400Aを超える突入電流が流れるとともに充電可能電池14の端子電圧が低下する。そして、エンジン16をクランキング(エンジン16のクランクシャフトを回転させること)すると、エンジン16のピストンが上死点に達するタイミングで大きな電流が流れる。また、エンジン16の回転数が上昇するにつれて電流が減少し、端子電圧も増加する。
図4は、図3における内部抵抗の時間的変化を示す図である。なお、この図4において、塗りつぶされた四角形は導電抵抗・液抵抗Rohmと反応抵抗Rctの双方を含む内部抵抗R(=Rohm+Rct)の時間的変化を示し、中抜きの四角形は反応抵抗Rctだけの内部抵抗の時間的変化を示している。
図5は充電可能電池14の電気的等価回路モデルの一例を示している。図5に示す等価回路モデルでは、並列接続された反応抵抗Rct1および電気二重層容量C1と、同様に並列接続された反応抵抗Rct2および電気二重層容量C2と、導電抵抗・液抵抗Rohmとが直列接続されて構成されている。導電抵抗・液抵抗Rohmは電流依存性を有しない抵抗であり、反応抵抗Rct1,Rct2は電流依存性を有する抵抗である。以下では、直列接続された反応抵抗Rct1,Rct2を反応抵抗Rct(=Rct1+Rct2)と表す。
なお、内部抵抗Rは、測定された端子電圧をVとし、測定された電流をIとし、開回路電圧をOCV(Open Circuit Voltage)とするとき、R=(V−OCV)/Iによって求めることができる。また、導電抵抗・液抵抗Rohmは、充電可能電池14を、例えば、100Hz以下の周期を有する矩形波によるパルス放電させ、放電前の電圧V1と放電後の電圧V2の差(V1−V2)を電流Iで除して得られる値を導電抵抗・液抵抗Rohmとすることができる。もちろん、これ以外の方法で求めるようにしてもよい。なお、図4では、中抜きの四角形で示す反応抵抗Rctだけのグラフは、塗りつぶされた四角形は導電抵抗・液抵抗Rohmと反応抵抗Rctの双方を含む内部抵抗のグラフを下方向に平行移動したものとなっている。
図6は、図4に示す測定結果を、横軸を電流値とし、縦軸を抵抗値として並べ換えた図である。図6の例では、放電電流の減少に応じて内部抵抗の値が増加している。また、中抜きの四角形で示す反応抵抗Rctのグラフは、塗りつぶされた四角形で示す導電抵抗・液抵抗Rohmと反応抵抗Rctの双方を含む内部抵抗のグラフを下方向に平行移動したものとなっている。
本実施形態では、図6に示す、反応抵抗Rctのグラフを構成する各測定点の電流Iおよび反応抵抗Rctを以下の式(1)を用いてフィッティングを行い、係数a,t,yを求める。
Rct(I)=a×exp(I/t)+y ・・・(1)
以上の式(1)を求めることにより、電流依存性を有する反応抵抗Rctと電流の関係を求めることができる。図7は、式(1)による推定値(実線)と、実測値(四角形)との関係を示す図である。図7に示すように、推定値と実測値はよく一致していることから、式(1)を用いた推定が妥当であることが理解できる。
以上の式(1)を求めることで、任意の電流値における反応抵抗Rctを求めることができる。反応抵抗Rctを用いることで、例えば、図8に示すように、内部抵抗Rとの間で高い相関関係を有するSOF(State of Function)を任意の電流値において求めることができる。なお、図8は、横軸が内部抵抗を示し、縦軸がSOFを示す。また、実線は推定値を示し、丸は実測値を示す。
また、任意の時点における所定の電流値に対する反応抵抗Rctの値を、所定の電流値における内部抵抗の初期値Rct0(例えば、充電可能電池14の新品時または交換時等の内部抵抗の値)で除算して百分率で表す(=Rct/Rct0×100)ことで、SOH(State of Health)を求めることができる。
なお、前述した例では、SOFとSOHは、反応抵抗Rctのみから求めるようにしたが、Rct+Rohmから求めるようにしてもよい。また、過充電または過放電がなされたり、短周期で充放電が繰り返されたりした場合には、充電可能電池14のセル間で劣化のばらつきが生じる。このため、充電可能電池14の使用状態の履歴を記憶し、充電可能電池14のセル間の劣化のばらつきを誘発するような使用履歴を有する場合には、前述した式によって求めたSOHを補正するようにしてもよい。なお、補正式としては、下の式(2)を用いることができる。ここで、g()は、1以下の値を有する関数であり、セル間の劣化のばらつきが少ない場合には1に近い値となり、セル間の劣化のばらつきが大きくなるにつれて値が小さくなる関数である。つまり、充電可能電池14が新品時にはg()=1であり、また、劣化が進行した場合であっても充電可能電池14のばらつきがない場合にはg()=1となる。一方、充電可能電池14の劣化にばらつきがある場合には、g()は、例えば、「最も劣化したセルの容量/全セルの容量の平均値」に近い値となる。
SOH=f(Rohm,Rct1,Rct2,C1,C2)×g(使用履歴に応じた1または複数の変数) ・・・(2)
本実施形態では、式(1)を用いることで、任意の電流値における内部抵抗の値を求めることができることから、一定の電流を流す構成を追加する必要がないため、装置のコストが上昇することを防止できる。また、所定の電流になることを待って測定をする必要がないので、所望のタイミングで内部抵抗を求め、SOHおよびSOF等の状態を求めることができる。
つぎに、図9を参照して、本発明の実施形態において実行される処理の一例について説明する。図9に示すフローチャートの処理が開始されると、以下のステップが実行される。
ステップS10では、CPU10aは、充電可能電池14の導電抵抗・液抵抗Rohmを求める。具体的には、例えば、CPU10aは、図示しない放電回路を制御し、100Hz以下の繰り返し周波数により、充電可能電池14を、矩形波形状を有するパルス波による放電をさせ、放電前の電圧V1と放電後の電圧V2の差(V1−V2)を電流Iで除して得られる値を導電抵抗・液抵抗Rohmとすることができる。もちろん、これ以外の方法で求めるようにしてもよい。
ステップS11では、CPU10aは、電流センサ12の出力を参照し、充電可能電池14が放電状態であるか否かを判定し、放電状態と判定した場合(ステップS11:Y)にはステップS12に進み、それ以外の場合(ステップS11:N)には処理を終了する。例えば、スタータモータ17によってエンジン16を始動する場合には、Yと判定してステップS12に進む。なお、スタータモータ17以外の負荷(例えば、ステアリングモータ等)に対して電流を供給する場合に、以下のステップを実行するようにしてもよい。ある程度の電流が供給される負荷であれば、測定対象とすることができる。
ステップS12では、CPU10aは、電圧センサ11の出力を参照し、充電可能電池14の端子電圧Vを求める。
ステップS13では、CPU10aは、電流センサ12の出力を参照し、充電可能電池14に流れる電流Iを求める。
ステップS14では、CPU10aは、OCVを取得する。例えば、充電可能電池14が安定時(例えば、車両が停車され、エンジン16が停止されてから所定の時間(例えば、数時間〜十数時間)が経過したとき)に電圧センサ11の出力を参照して取得してRAM10cに格納してあるOCVを取得する。
ステップS15では、CPU10aは、ステップS12で測定した端子電圧V、ステップS13で測定した電流I、ステップS14で取得したOCVに基づき、R=(V−OCV)/Iによって、内部抵抗Rを求める。
ステップS16では、CPU10aは、ステップS15で求めた内部抵抗Rから、ステップS10で求めた導電抵抗・液抵抗Rohmを減算して得た値を、反応抵抗Rctの値とする。
ステップS17では、CPU10aは、ステップS16で求めた反応抵抗Rctと、ステップS13において測定した電流Iの値をRAM10cに格納する。
ステップS18では、CPU10aは、例えば、電流センサ12の出力を参照し、放電が終了したか否かを判定し、終了したと判定した場合(ステップS18:Y)にはステップS19に進み、それ以外の場合(ステップS18:N)にはステップS12に戻って前述の場合と同様の処理を繰り返す。なお、放電の終了ではなく、所定の時間が経過した場合にステップS19に進むようにしたり、電流値が所定の閾値以下になった場合にステップS19に進むようにしたりしてもよい。
ステップS19では、CPU10aは、ステップS12〜ステップS18の処理によって、RAM10cに格納されたRct,Iの値を用いて、前述した式(1)をフィッティングする処理を実行する。なお、式(1)の係数a,t,yを求める方法としては、最小二乗法、カルマンフィルタ、および、ニューラルネットワーク等の演算方法があり、これらの演算方法を適宜用いることによって最適な係数を決定することができる。
ステップS20では、CPU10aは、ステップS19で求めた式(1)の係数a,t,yの値を、温度センサ13の出力を参照して補正する。具体的には、例えば、CPU10aは、温度センサ13によって検出された充電可能電池14の外部温度と、充電可能電池14の熱等価回路モデルに基づいて、充電可能電池14の電解液の温度を推定する。CPU10aは、ROM10bに格納されている、その時点の係数a,t,yの値を基準温度(例えば、25℃)における係数a,t,yの値に変換するための変換式を用いて、基準温度における係数a,t,yの値を得る。なお、変換式ではなく、テーブルを用いるようにしてもよい。
ステップS21では、CPU10aは、ステップS20で温度による補正を行った係数a,t,yを、その時点のSOCに基づいて補正する。具体的には、例えば、CPU10aは、OCVとSOCの関係に基づいて求めたSOCに対して、充電可能電池14に流入出する電流値を累積加算することでその時点におけるSOCを求める。CPU10aは、ROM10bに格納されている、その時点の係数a,t,yの値を基準SOC(例えば、100%)における係数a,t,yの値に変換するための変換式を用いて、基準SOCにおける係数a,t,yの値を得る。なお、変換式ではなく、テーブルを用いるようにしてもよい。
ステップS22では、CPU10aは、ステップS21でSOCによる補正を行った係数a,t,yの値を、放電開始からの時間に基づいて補正する。具体的には、例えば、CPU10aは、放電開始から終了までの時間を計測し、ROM10bに格納されている、その時点の係数a,t,yの値を放電開始からの基準時間(例えば、1秒)における係数a,t,yの値に変換するための変換式を用いて、基準SOCにおける係数a,t,yの値を得る。なお、変換式ではなく、テーブルを用いるようにしてもよい。
ステップS23では、CPU10aは、ステップS20〜ステップS22で係数が補正されたRct(I)を用いてSOFを求める。より詳細には、Rct(I)を用いて、所定の電流Iにおける反応抵抗Rctの値を求め、RctとSOFの関係から、所定の電流IにおけるSOFを求めることができる。なお、Rctに対してRohmを加算して得た値を用いてSOFを求めるようにしてもよい。
ステップS24では、CPU10aは、ステップS20〜ステップS22で係数が補正されたRct(I)を用いてSOHを求める。より詳細には、Rct(I)を用いて、所定の電流値における反応抵抗Rctの値を求め、所定の電流値における反応抵抗の初期値Rct0で除算して百分率で表す(=Rct/Rct0×100)ことで、SOHを求めることができる。なお、Rctに対してRohmを加算して得た値を用いてSOHを求めるようにしてもよい。
以上の処理によれば、前述した動作を実現することができる。
(C)変形実施形態の説明
以上の実施形態は一例であって、本発明が上述したような場合のみに限定されるものでないことはいうまでもない。例えば、以上の実施形態では、式(1)を用いて電流と反応抵抗の関係を求めるようにしたが、これ以外の式を用いるようにしてもよい。例えば、式(1)では、指数関数項は1項だけであるが2項以上を有するようにしてもよい。また、不定元をIとする多項式(Rct(I)=a+aI+a+・・・a)(n≧1)を用いてフィッティングを行うようにしてもよい。
また、以上の実施形態では、図9に示すフローチャートのステップS20〜ステップS22の処理により、式(1)の係数a,t,yの値を温度、SOC、放電開始からの経過時間に応じて補正するようにした。これ以外にも、例えば、図10のステップS30〜ステップS32に示すように、反応抵抗Rctの値を、温度、SOC、放電開始からの経過時間に応じて補正するようにしてもよい。なお、図10では、図9と比較してステップS20〜22が除外され、ステップS30〜ステップS32が追加されている。これら以外の処理は、図9と同様である。
より詳細には、図10に示すフローチャートでは、ステップS30〜ステップS32において以下の処理が実行される。
ステップS30では、CPU10aは、ステップS16で求めた反応抵抗Rctの値を、温度センサ13の出力を参照して補正する。具体的には、例えば、CPU10aは、温度センサ13によって検出された充電可能電池14の外部温度と、充電可能電池14の熱等価回路モデルに基づいて、充電可能電池14の電解液の温度を推定する。CPU10aは、ROM10bに格納されている、その時点の反応抵抗Rctの値を基準温度(例えば、25℃)における反応抵抗Rctの値に変換するための変換式を用いて、基準温度における反応抵抗Rctの値を得る。なお、変換式ではなく、テーブルを用いるようにしてもよい。
ステップS31では、CPU10aは、ステップS30で温度による補正を行った反応抵抗Rctの値を、その時点のSOCに基づいて補正する。具体的には、例えば、CPU10aは、OCVとSOCの関係に基づいて求めたSOCに対して、充電可能電池14に流入出する電流値を累積加算することでその時点におけるSOCを求める。CPU10aは、ROM10bに格納されている、その時点の反応抵抗Rctの値を基準SOC(例えば、100%)における反応抵抗Rctの値に変換するための変換式を用いて、基準SOCにおける反応抵抗Rctの値を得る。なお、変換式ではなく、テーブルを用いるようにしてもよい。
ステップS32では、CPU10aは、ステップS31でSOCによる補正を行った反応抵抗Rctの値を、放電開始からの時間に基づいて補正する。具体的には、例えば、CPU10aは、放電開始からの時間を計測し、ROM10bに格納されている、その時点の反応抵抗Rctの値を放電開始からの基準時間(例えば、1秒)における反応抵抗Rctの値に変換するための変換式を用いて、基準SOCにおける反応抵抗Rctの値を得る。なお、変換式ではなく、テーブルを用いるようにしてもよい。
図10に示すフローチャートによっても、温度、SOC、放電開始からの経過時間によって式(1)に対する誤差の影響を少なくすることができる。
また、以上の実施形態では、スタータモータ17に電流が流れる場合を例に挙げて説明したが、スタータモータ17以外の負荷(例えば、ステアリングモータ)等に電流が流れる場合に測定を行うようにしてもよい。
また、図9および図10の処理では、温度、SOC、および、放電開始からの経過時間の全てに対して補正を行うようにしたが、これらの少なくとも1つに対して補正を行うようにしてもよい。
また、以上の実施形態では、充電可能電池14が安定している場合に開回路電圧を測定するようにしたが、推定値に基づいて求めるようにしてもよい。例えば、開回路電圧の時間的な変動を近似できる電圧特性式を用いることで、充電可能電池14の安定時の開回路電圧を推定することができる。電圧特性式として、高次(例えば、4次以上)の指数減衰関数を含む近似式を用いることで、開回路電圧の時間変動を高精度に推定することができる。
また、図9および図10に示すフローチャートは一例であって、本発明がこれらのフローチャートの処理のみに限定されるものではない。例えば、図9および図10に示すフローチャートでは、ステップS10において、Rohmを求めるようにしているが、ステップS16の処理よりも前であれば、ステップS11よりも後に配置されてもよい。また、ステップS14のOCVを取得する処理についても、ステップS15の処理よりも前であれば、ステップS13よりも前に配置されてもよい。
また、図5に示す電気的等価回路モデルは一例であって、このモデルに限られない。例えば、RC並列回路は1つや3つ以上であってもよく、少なくとも1つ以上のRC並列回路を有する等価回路モデルとしてもよい。
1 充電可能電池状態検出装置
10 制御部
10a CPU
10b ROM
10c RAM
10d 通信部
10e I/F
11 電圧センサ
12 電流センサ
13 温度センサ
14 充電可能電池
15 オルタネータ
16 エンジン
17 スタータモータ
18 負荷

Claims (7)

  1. 充電可能電池の状態を検出する充電可能電池状態検出装置において、
    前記充電可能電池が放電状態であるか否かを判定する判定手段と、
    前記判定手段によって放電中であると判定された場合には、前記充電可能電池に流れる電流および端子電圧の値を複数回測定する測定手段と、
    前記測定手段によって測定された電流および端子電圧の値から、それぞれの測定タイミングにおける前記充電可能電池の内部抵抗の値を算出する算出手段と、
    前記算出手段によって算出されたそれぞれの測定タイミングにおける前記内部抵抗の値を、電流を入力変数とする関数としてフィッティングし、前記内部抵抗を、電流を入力変数とする前記関数として特定する特定手段と、
    前記特定手段によって特定された前記関数に基づいて前記充電可能電池の状態を検出する検出手段と、
    を有することを特徴とする充電可能電池状態検出装置。
  2. 前記特定手段が用いる前記関数は、少なくとも1つの指数関数項を有することを特徴とする請求項1に記載の充電可能電池状態検出装置。
  3. 前記特定手段は、最小二乗法、カルマンフィルタ、または、ニューラルネットワークを用いた演算処理によって前記関数をフィッティングすることを特徴とする請求項1または2に記載の充電可能電池状態検出装置。
  4. 前記特定手段は、前記充電可能電池の周辺温度または電解液温度、SOC、および、放電開始からの経過時間の少なくとも1つに基づいて、前記関数の係数の少なくとも1つを補正することを特徴とする請求項1乃至3のいずれか1項に記載の充電可能電池状態検出装置。
  5. 前記検出手段は、前記関数に基づいて前記充電可能電池に所定の電流が流れたときの応答電圧としてのSOFを求めることを特徴とする請求項1乃至4のいずれか1項に記載の充電可能電池状態検出装置。
  6. 前記検出手段は、前記関数に基づいて前記充電可能電池の劣化度としてのSOHを求めることを特徴とする請求項1乃至4のいずれか1項に記載の充電可能電池状態検出装置。
  7. 充電可能電池の状態を検出する充電可能電池状態検出方法において、
    前記充電可能電池が放電状態であるか否かを判定する判定ステップと、
    前記判定ステップにおいて放電中であると判定された場合には、前記充電可能電池に流れる電流および端子電圧の値を複数回測定する測定ステップと、
    前記測定ステップにおいて測定された前記電流および前記端子電圧の値から、それぞれの測定タイミングにおける前記充電可能電池の内部抵抗の値を算出する算出ステップと、
    前記算出ステップにおいて算出されたそれぞれの測定タイミングにおける前記内部抵抗の値を、前記電流を入力変数とする関数としてフィッティングし、前記内部抵抗を、前記電流を入力変数とする前記関数として特定する特定ステップと、
    前記特定ステップにおいて特定された前記関数に基づいて前記充電可能電池の状態を検出する検出ステップと、
    を有することを特徴とする充電可能電池状態検出方法。
JP2018016813A 2018-02-01 2018-02-01 充電可能電池状態検出装置および充電可能電池状態検出方法 Active JP6953323B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018016813A JP6953323B2 (ja) 2018-02-01 2018-02-01 充電可能電池状態検出装置および充電可能電池状態検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018016813A JP6953323B2 (ja) 2018-02-01 2018-02-01 充電可能電池状態検出装置および充電可能電池状態検出方法

Publications (2)

Publication Number Publication Date
JP2019132780A JP2019132780A (ja) 2019-08-08
JP6953323B2 true JP6953323B2 (ja) 2021-10-27

Family

ID=67546084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018016813A Active JP6953323B2 (ja) 2018-02-01 2018-02-01 充電可能電池状態検出装置および充電可能電池状態検出方法

Country Status (1)

Country Link
JP (1) JP6953323B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426968B (zh) * 2020-05-28 2022-05-03 山东交通学院 一种电动汽车动力电池sop的估算方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495141B2 (ja) * 2006-12-25 2010-06-30 古河電気工業株式会社 バッテリ状態判定方法、バッテリ状態判定装置及びバッテリ電源システム
CN105026944B (zh) * 2013-03-07 2019-08-27 古河电气工业株式会社 二次电池状态检测装置及二次电池状态检测方法
JP6330605B2 (ja) * 2014-09-25 2018-05-30 富士通株式会社 推定プログラム、推定方法および推定装置
JP6701936B2 (ja) * 2016-05-10 2020-05-27 日立化成株式会社 電池状態検出装置、車両、プログラムおよび電池状態検出方法
CN106199434B (zh) * 2016-06-23 2019-12-10 矽力杰半导体技术(杭州)有限公司 电池及电池组的状态检测方法及装置

Also Published As

Publication number Publication date
JP2019132780A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
CN107076802B (zh) 二次电池状态检测装置以及二次电池状态检测方法
US10393820B2 (en) Secondary battery state detecting device and secondary battery state detecting method
CN108885242B (zh) 二次电池劣化估计装置和二次电池劣化估计方法
JP5653881B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP6440377B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP6575308B2 (ja) 内部抵抗算出装置、コンピュータプログラム及び内部抵抗算出方法
JP7145865B2 (ja) 充電可能電池短絡予測装置および充電可能電池短絡予測方法
US10393814B2 (en) Secondary battery state detection device and secondary battery state detection method
JP6200359B2 (ja) 二次電池内部温度推定装置および二次電池内部温度推定方法
JP5684172B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP5598869B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
CN109073708B (zh) 二次电池劣化估计装置和二次电池劣化估计方法
JP6498920B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP6452403B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP2022044621A (ja) 充電可能電池減液検出装置および充電可能電池減液検出方法
JP6826935B2 (ja) 二次電池内部温度推定装置および二次電池内部温度推定方法
JP5554310B2 (ja) 内部抵抗測定装置および内部抵抗測定方法
JP2015169450A (ja) 二次電池状態検出装置および二次電池状態検出方法
JP6953323B2 (ja) 充電可能電池状態検出装置および充電可能電池状態検出方法
JP7327955B2 (ja) 鉛蓄電池状態検出装置および鉛蓄電池状態検出方法
JP6979896B2 (ja) 充電可能電池状態検出装置および充電可能電池状態検出方法
JPH1138107A (ja) 二次電池の残存容量推定方法
JP6655453B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP7233270B2 (ja) 充電可能電池温度推定装置および充電可能電池温度推定方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210929

R151 Written notification of patent or utility model registration

Ref document number: 6953323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151