WO2015141580A1 - 二次電池内部温度推定装置および二次電池内部温度推定方法 - Google Patents

二次電池内部温度推定装置および二次電池内部温度推定方法 Download PDF

Info

Publication number
WO2015141580A1
WO2015141580A1 PCT/JP2015/057483 JP2015057483W WO2015141580A1 WO 2015141580 A1 WO2015141580 A1 WO 2015141580A1 JP 2015057483 W JP2015057483 W JP 2015057483W WO 2015141580 A1 WO2015141580 A1 WO 2015141580A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
internal temperature
relational expression
equivalent circuit
estimating
Prior art date
Application number
PCT/JP2015/057483
Other languages
English (en)
French (fr)
Inventor
泰司 光山
岩根 典靖
直也 高嶋
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to EP15765576.2A priority Critical patent/EP3107146B1/en
Priority to CN201580013438.6A priority patent/CN106104907B/zh
Publication of WO2015141580A1 publication Critical patent/WO2015141580A1/ja
Priority to US15/268,512 priority patent/US10396407B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • G01K2007/422Dummy objects used for estimating temperature of real objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery internal temperature estimation device and a secondary battery internal temperature estimation method.
  • secondary batteries such as lead-acid batteries have different characteristics depending on the internal temperature, which is the temperature of the electrolyte, electrode plate, etc. Therefore, in order to accurately detect the state of the secondary battery, the internal temperature must be accurately set. Need to ask. In particular, in the case of an in-vehicle secondary battery, the internal temperature changes greatly due to the heat generated by the engine or the like. Therefore, in order to accurately detect the state, detection of the internal temperature is indispensable.
  • Patent Document 1 Conventionally, as a technique for obtaining the internal temperature of the secondary battery, for example, there are techniques disclosed in Patent Document 1 and Patent Document 2.
  • Patent Documents 1 and 2 it is assumed that the secondary battery for which the internal temperature is estimated is the same type of secondary battery. When the secondary battery is replaced, there is a problem that the internal temperature cannot be accurately estimated. In addition, although the temperature characteristics of the secondary battery change due to deterioration or the like, Patent Documents 1 and 2 do not take into account the deterioration of the secondary battery or the like, and therefore it is impossible to accurately estimate the temperature depending on the deterioration state. There is a point.
  • An object of the present invention is to provide a secondary battery internal temperature estimation device and a secondary battery internal temperature estimation method capable of accurately estimating the internal temperature regardless of the type and deterioration state of the secondary battery.
  • the present invention provides a secondary battery internal temperature estimation device for estimating an internal temperature of a secondary battery, based on a relational expression indicating a relation between an external temperature and an internal temperature of the secondary battery, Based on the estimating means for estimating the internal temperature of the secondary battery, the calculating means for calculating the element value of the equivalent circuit of the secondary battery, and the element value of the equivalent circuit calculated by the calculating means, the relationship Obtaining means for obtaining a coefficient of the equation; and applying means for applying the coefficient obtained by the obtaining means to the relational expression, wherein the estimating means applies the coefficient by the applying means.
  • the internal temperature of the secondary battery is estimated based on the relational expression. According to such a configuration, it is possible to accurately estimate the internal temperature regardless of the type and deterioration state of the secondary battery.
  • the equivalent circuit of the secondary battery has a solution resistance, a reaction resistance, and an electric double layer capacity
  • the obtaining means has any one or a plurality of element values. Based on this, the coefficient of the relational expression is obtained. According to such a configuration, the internal temperature can be accurately obtained by using an equivalent circuit having a plurality of elements.
  • the present invention is characterized in that the obtaining means obtains a coefficient of the relational expression with reference to a dischargeable capacity in a fully charged state of the secondary battery. According to such a configuration, the internal temperature can be obtained more accurately by referring to the dischargeable capacity.
  • the present invention is characterized by comprising correction means for correcting the element value calculated by the calculation means to a value at a reference charging state and at a reference temperature. According to such a configuration, by correcting to the reference state, the element value can be obtained more accurately and the internal temperature can be obtained more accurately.
  • the present invention is characterized in that the estimation means estimates an internal temperature of the secondary battery by using a transfer function of a first-order lag system as the relational expression. According to such a configuration, the internal temperature can be accurately obtained using a simple equation.
  • the present invention is characterized in that the obtaining means finds an integral gain of the transfer function of the first-order lag system based on an element value of the equivalent circuit. According to such a configuration, it is possible to reduce processing by reducing the number of coefficients to be calculated.
  • the present invention is characterized in that the calculating means calculates an element value of the equivalent circuit based on a voltage and a current during discharging of the secondary battery. According to such a configuration, the element value can be easily and accurately obtained based on the voltage and current during discharge.
  • the present invention provides a secondary battery internal temperature estimation method for estimating an internal temperature of a secondary battery, based on a relational expression indicating a relation between an external temperature and an internal temperature of the secondary battery.
  • An estimation step for estimating temperature, a calculation step for calculating an element value of an equivalent circuit of the secondary battery, and a coefficient of the relational expression are obtained based on the element value of the equivalent circuit obtained in the calculation step.
  • a applying step for applying the coefficient obtained in the seeking step to the relational expression wherein the estimating step is applied to the relational expression to which the coefficient is applied in the applying step. Based on this, an internal temperature of the secondary battery is estimated. According to such a method, it is possible to accurately estimate the internal temperature regardless of the type and the deterioration state of the secondary battery.
  • FIG. 1 It is a figure which shows the structural example of the secondary battery internal temperature estimation apparatus which concerns on embodiment of this invention. It is a block diagram which shows the detailed structural example of the control part of FIG. It is a figure which shows an example of the equivalent circuit of a secondary battery. It is a figure which shows an example of the thermal model of a secondary battery. It is a figure which shows the relationship between an estimation result and a measured value. It is a flowchart for demonstrating the detail of the process performed in embodiment of this invention.
  • FIG. 1 is a diagram showing a power supply system of a vehicle having a secondary battery internal temperature estimation device according to the first embodiment of the present invention.
  • the secondary battery internal temperature estimation device 1 includes a control unit 10, a voltage sensor 11, a current sensor 12, a temperature sensor 13, and a discharge circuit 15 as main components, and the external temperature of the secondary battery 14.
  • the control unit 10 refers to outputs from the voltage sensor 11, the current sensor 12, and the temperature sensor 13, obtains an element value of an equivalent circuit of the secondary battery 14, and estimates a temperature based on the element value.
  • the internal temperature is estimated by substituting the external temperature detected by the temperature sensor 13 into this formula.
  • the voltage sensor 11 detects the terminal voltage of the secondary battery 14 and notifies the control unit 10 of it.
  • the current sensor 12 detects the current flowing through the secondary battery 14 and notifies the control unit 10 of the current.
  • the temperature sensor 13 detects the secondary battery 14 itself or the surrounding external temperature, and notifies the control unit 10 of it.
  • the discharge circuit 15 includes, for example, a semiconductor switch and a resistance element connected in series, and discharges the secondary battery 14 when the control unit 10 performs on / off control of the semiconductor switch.
  • the external temperature indicates the temperature of the environment where the secondary battery 14 is disposed
  • the internal temperature is the internal temperature of the secondary battery 14 formed of an electrolyte or an electrode plate. Indicates temperature.
  • the secondary battery 14 is composed of, for example, a lead storage battery, a nickel cadmium battery, a nickel hydrogen battery, or a lithium ion battery, and is charged by the alternator 16 to drive the starter motor 18 to start the engine and load 19 To supply power.
  • the alternator 16 is driven by the engine 17 to generate AC power, convert it into DC power by a rectifier circuit, and charge the secondary battery 14.
  • the engine 17 is composed of, for example, a reciprocating engine such as a gasoline engine and a diesel engine, a rotary engine, or the like.
  • the engine 17 is started by a starter motor 18 and drives driving wheels via a transmission to give propulsive force to the vehicle. Drive to generate power.
  • the starter motor 18 is constituted by, for example, a DC motor, and generates a rotational force by the electric power supplied from the secondary battery 14 to start the engine 17.
  • the load 19 is configured by, for example, an electric steering motor, a defogger, an ignition coil, a car audio, a car navigation, and the like, and operates with electric power from the secondary battery 14.
  • FIG. 2 is a diagram showing a detailed configuration example of the control unit 10 shown in FIG.
  • the control unit 10 includes a CPU (Central Processing Unit) 10a, a ROM (Read Only Memory) 10b, a RAM (Random Access Memory) 10c, a communication unit 10d, and an I / F (Interface) 10e.
  • the CPU 10a controls each unit based on the program 10ba stored in the ROM 10b.
  • the ROM 10b is configured by a semiconductor memory or the like, and stores a program 10ba or the like.
  • the RAM 10c is configured by a semiconductor memory or the like, and stores data generated when the program ba is executed, and a parameter 10ca such as a table or a mathematical expression described later.
  • the communication unit 10d communicates with an upper device such as an ECU (Electronic Control Unit) and notifies the detected information to the upper device.
  • the I / F 10e converts the signal supplied from the voltage sensor 11, the current sensor 12, and the temperature sensor 13 into a digital signal and takes it in, and supplies a driving current to the discharge circuit 15 to control it.
  • the CPU 10a controls the discharge circuit 15 to discharge the secondary battery 14 with a predetermined current (for example, several amperes to several tens of amperes).
  • a predetermined current for example, several amperes to several tens of amperes.
  • This discharge is performed by, for example, a rectangular wave or a step wave.
  • the discharge time can be set, for example, from several tens of milliseconds to several seconds.
  • the CPU 10a samples the outputs of the voltage sensor 11 and the current sensor 12 at a predetermined cycle (for example, a cycle of several milliseconds to several tens of milliseconds), and V (t), I (T) is stored in the RAM 10c as the parameter 10ca.
  • a predetermined cycle for example, a cycle of several milliseconds to several tens of milliseconds
  • V (t) is stored in the RAM 10c as the parameter 10ca.
  • t indicates time, which is set to “0” at the timing when sampling is started, and thereafter is incremented according to sampling.
  • the CPU 10a substitutes the obtained V (t) and I (t) into the following formula (1) to obtain the impedance Z (t) of the secondary battery 14, and stores it in the RAM 10c as the parameter 10ca.
  • the CPU 10a obtains Rohm, Rct, and C, which are element values of the equivalent circuit, by the least square method or the like using Z (t) obtained by measurement based on the following equation (2).
  • the CPU 10a corrects the obtained Rohm, Rct, C to Rohm, Rct, C in the reference state.
  • the reference state means a state where the SOC of the secondary battery 14 is 100% and the internal temperature Ti is 25 ° C.
  • each element value is corrected so as to be in the reference state.
  • the CPU 10a substitutes Rohm, Rct, C corrected to the reference state into the following equation (3), and calculates the integral gain K2.
  • the coefficients A1 to A3 are coefficients for associating the element value of the equivalent circuit of the secondary battery 14 and the integral gain K2, and these values are the type of the secondary battery 14 and the vehicle model to be used. It does not change depending on the usage environment. Such coefficients A1 to A3 may be measured in advance and stored in the ROM 10b.
  • FIG. 4 shows a thermal model of the secondary battery 14.
  • the relationship between the external temperature Te of the secondary battery 14 and the internal temperature Ti of the secondary battery 14 is shown.
  • the secondary battery 14 is modeled as a first-order lag system, and the transfer function T (S) between the external temperature Te and the internal temperature Ti is expressed by the following formula (4).
  • the coefficient K1 is a coefficient that is not easily influenced by the type and environment of the secondary battery 14, and a value obtained in advance for an arbitrary secondary battery 14 can be used as the coefficient K1.
  • the CPU 10a applies the integral gain K2 obtained by Expression (3) to the above thermal model.
  • the internal temperature Ti of the secondary battery 14 can be estimated from the external temperature Te of the secondary battery 14 detected by the temperature sensor 13.
  • SOF State of Function
  • FIG. 5 shows a comparison result between the integral gain K2 estimated by the above embodiment and the integral gain K2 obtained by actual measurement.
  • the horizontal axis indicates the integral gain estimated by the embodiment of the present invention
  • the vertical axis indicates the actual measurement result. From FIG. 5, the integral gain estimated according to the present embodiment matches the actual measurement value with high accuracy, and the determination coefficient R 2 is 0.9028, and the actual measurement value and the estimation value have high accuracy. It shows that they match.
  • FIG. 6 is a flowchart for explaining an example of processing executed in FIG. This flowchart is executed, for example, when a new secondary battery 14 is mounted on a vehicle (for example, when the control unit 10 is powered on).
  • the flowchart shown in FIG. 6 is started, the following steps are executed.
  • step S10 the CPU 10a measures the voltage Vb and current Ib of the secondary battery 14 in a stable state and before discharging.
  • a stable state for example, when the vehicle is stopped and the current flowing through the load 19 is smaller than a predetermined threshold (for example, several amperes), it can be determined that the vehicle is stable.
  • step S11 the CPU 10a controls the discharge circuit 15 to discharge the secondary battery 14 in a rectangular pulse shape.
  • the width of the rectangular pulse can be in the range of several milliseconds to several seconds, for example.
  • the discharge may be terminated when a predetermined number of samplings are completed or when an element value of an equivalent circuit is obtained.
  • step S12 the CPU 10a measures the voltage and current of the secondary battery 14 with reference to the outputs of the voltage sensor 11 and the current sensor 12, and sets these as V (t) and I (t) as parameters 10ca in the RAM 10c. Store.
  • step S13 the CPU 10a calculates Z (t) by substituting the V (t) and I (t) measured in step S12 into the above-described equation (1), and the obtained value is stored in the RAM 10c as the parameter 10ca. Store.
  • step S14 the CPU 10a determines whether or not to end the discharge. If it is determined that the discharge is to be ended (step S14: Yes), the process proceeds to step S15, and otherwise (step S14: No). Returning to step S12, the same processing as described above is repeated. For example, when a predetermined time elapses, a predetermined number of times of measurement is performed, or when the voltage or current is stable (for example, when transitioning from a transient state to a steady state), it is determined as Yes. The process proceeds to step S15.
  • step S15 the CPU 10a acquires the value of Z (t) stored in the RAM 10c in step S13, and applies it to the equation (2) to determine the values of Rohm, Rct, ⁇ by, for example, the least square method. Thereby, the values of Rohm, Rct, and ⁇ most suitable for the change in Z (t) when the secondary battery 14 is discharged by the rectangular pulse can be obtained.
  • step S17 the CPU 10a corrects the element values Rohm, Rct, and C of the equivalent circuit obtained in steps S15 and S16 to values in the reference state.
  • the reference state for example, a state in which the internal temperature of the secondary battery 14 is 25 ° C. and the SOC of the secondary battery 14 is 100% can be used.
  • a correction method for example, a data table or a correction formula is stored in the ROM 10b in advance, and correction can be performed based on the data table or the correction formula.
  • step S18 the CPU 10a substitutes the values of the coefficients A1 to A3 stored in the ROM 10b and the values of the element values Rohm, Rct, C corrected in step S17 into the above-described equation (3) for integration.
  • the value of gain K2 is obtained. Note that the values of the coefficients A1 to A3 are not affected by the type and usage environment of the secondary battery 14, and therefore, for example, values obtained by measurement in advance can be stored in the ROM 10b and used. .
  • step S19 the CPU 10a applies the integral gain K2 obtained in step S18 to the thermal model shown in FIG.
  • the proportional gain K1 does not depend on the type of the secondary battery 14, the usage environment, or the like, and thus, for example, a value obtained by measurement in advance can be stored in the ROM 10b.
  • step S20 the CPU 10a refers to the output of the temperature sensor 13 and acquires the external temperature Te of the secondary battery 14.
  • step S21 the CPU 10a substitutes the external temperature Te measured in step S20 for the thermal model shown in FIG. 4, and estimates the internal temperature Ti of the secondary battery 14. It should be noted that it is desirable to repeatedly execute the processing of step S20 and step S21 for a certain time according to the time constant of the transfer function. That is, when the external temperature Te changes, the internal temperature Ti also changes with a delay, so measurement of a certain time is desired.
  • step S22 the CPU 10a obtains a temperature dependent value such as SOF based on the internal temperature Ti of the secondary battery 14 obtained in step S21. Note that other values may be obtained.
  • the integral gain K2 of the thermal model of the secondary battery 14 can be obtained using the element values of the equivalent circuit of the secondary battery 14. Further, since the internal temperature of the secondary battery 14 can be accurately obtained by using such an integral gain K2, the state value (for example, SOF) of the secondary battery 14 having temperature dependency is accurately obtained. be able to.
  • the internal temperature Ti can be accurately obtained regardless of the size, initial capacity, type, etc. of the secondary battery 14.
  • the equation (3) for obtaining the integral gain K2 includes only the element value of the equivalent circuit.
  • the initial full charge capacity SOH_ini that can be obtained from the element value is used. It may be. More specifically, the initial full charge capacity SOH_ini can be obtained by the following equation (7).
  • f1 (Rohm), f2 (Rct), and f4 (C) indicate predetermined functions having Rohm, Rct, and C as variables.
  • the integral gain K2 can be obtained by using the following equation (8) including SOH_ini obtained by the above equation (7).
  • the process shown in FIG. 6 is executed when the secondary battery 14 is newly installed has been described as an example.
  • the process may be executed at a predetermined cycle, or The process shown in FIG. 6 may be executed again when the error of the value obtained by the internal temperature Ti increases.
  • the temperature characteristics change for example, the specific heat decreases due to the increase in lead sulfate).
  • a thermal model reflecting the deterioration state can be constructed. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】二次電池の種類や劣化状態によらず、正確な内部温度を推定すること。 【解決手段】二次電池14の内部温度を推定する二次電池内部温度推定装置1において、二次電池の外部温度と内部温度の関係を示す関係式に基づいて、二次電池の内部温度を推定する推定手段(制御部10)と、二次電池の等価回路の素子値を算出する算出手段(制御部10)と、算出手段によって算出された等価回路の素子値に基づいて、関係式の係数を求出する求出手段(制御部10)と、求出手段によって得られた係数を関係式に適用する適用手段(制御部10)と、を有し、推定手段は、適用手段によって係数が適用された関係式に基づいて、二次電池の内部温度を推定する、ことを特徴とする。

Description

二次電池内部温度推定装置および二次電池内部温度推定方法
 本発明は、二次電池内部温度推定装置および二次電池内部温度推定方法に関するものである。
 例えば、鉛蓄電池等の二次電池は、電解液や極板等の温度である内部温度によって、特性が異なることから、二次電池の状態を正確に検出するためには、内部温度を正確に求める必要がある。特に、車載の二次電池の場合には、エンジン等が発生する熱によって内部温度が大幅に変化することから、状態を正確に検出するためには、内部温度の検出が不可欠である。
 従来において、二次電池の内部温度を求める技術としては、例えば、特許文献1および特許文献2に開示されている技術がある。
特開2001-076769号公報 特開2008-249459号公報
 ところで、特許文献1,2に開示された技術では、内部温度を推定する対象となる二次電池は、同じ種類の二次電池であることが前提であるため、例えば、ユーザが異なる種類の二次電池に交換した場合には、内部温度の推定が正確にできないという問題点がある。また、二次電池は、劣化等によって温度特性が変化するが、特許文献1,2では、二次電池の劣化等は考慮していないため、劣化状態によっては正確な温度の推定ができないという問題点がある。
 本発明は、二次電池の種類や劣化状態によらず、正確な内部温度の推定が可能な二次電池内部温度推定装置および二次電池内部温度推定方法を提供することを目的としている。
 上記課題を解決するために、本発明は、二次電池の内部温度を推定する二次電池内部温度推定装置において、前記二次電池の外部温度と内部温度の関係を示す関係式に基づいて、前記二次電池の内部温度を推定する推定手段と、前記二次電池の等価回路の素子値を算出する算出手段と、前記算出手段によって算出された前記等価回路の素子値に基づいて、前記関係式の係数を求出する求出手段と、前記求出手段によって得られた前記係数を前記関係式に適用する適用手段と、を有し、前記推定手段は、前記適用手段によって前記係数が適用された前記関係式に基づいて、前記二次電池の内部温度を推定する、ことを特徴とする。
 このような構成によれば、二次電池の種類や劣化状態によらず、正確な内部温度の推定が可能となる。
 また、本発明は、前記二次電池の前記等価回路は、溶液抵抗、反応抵抗、および、電気二重層容量を有し、前記求出手段は、これらのいずれか1つまたは複数の素子値に基づいて、前記関係式の係数を求出する、ことを特徴とする。
 このような構成によれば、複数の素子を有する等価回路を用いることで、内部温度を正確に求めることができる。
 また、本発明は、前記求出手段は、前記二次電池の満充電状態における放電可能な容量も参照して、前記関係式の係数を求出することを特徴とする。
 このような構成によれば、放電可能な容量も参照することで、内部温度をより正確に求めることができる。
 また、本発明は、前記算出手段によって算出された前記素子値を、基準となる充電状態、かつ、基準となる温度における値に補正する補正手段を有することを特徴とする。
 このような構成によれば、基準状態に補正することで、素子値をより一層正確に求め、内部温度をさらに正確に求めることができる。
 また、本発明は、前記推定手段は、一次遅れ系の伝達関数を前記関係式として用いることで、前記二次電池の内部温度を推定することを特徴とする。
 このような構成によれば、簡単な式を用いて、内部温度を正確に求めることができる。
 また、本発明は、前記求出手段は、前記一次遅れ系の伝達関数の積分ゲインを、前記等価回路の素子値に基づいて求出することを特徴とする。
 このような構成によれば、算出する係数の数を少なくすることで、処理を少なくすることができる。
 また、本発明は、前記算出手段は、前記二次電池の放電中の電圧および電流に基づいて、前記等価回路の素子値を算出することを特徴とする。
 このような構成によれば、放電中の電圧および電流に基づいて、素子値を簡易かつ正確に求めることができる。
 また、本発明は、二次電池の内部温度を推定する二次電池内部温度推定方法において、前記二次電池の外部温度と内部温度の関係を示す関係式に基づいて、前記二次電池の内部温度を推定する推定ステップと、前記二次電池の等価回路の素子値を算出する算出ステップと、前記算出ステップにおいて得られた前記等価回路の素子値に基づいて、前記関係式の係数を求出する求出ステップと、前記求出ステップにおいて得られた前記係数を前記関係式に適用する適用ステップと、を有し、前記推定ステップは、前記適用ステップにおいて前記係数が適用された前記関係式に基づいて、前記二次電池の内部温度を推定する、ことを特徴とする。
 このような方法によれば、二次電池の種類や劣化状態によらず、正確な内部温度の推定が可能となる。
 本発明によれば、二次電池の種類や劣化状態によらず、正確な内部温度の推定が可能な二次電池内部温度推定装置および二次電池内部温度推定方法を提供することが可能となる。
本発明の実施形態に係る二次電池内部温度推定装置の構成例を示す図である。 図1の制御部の詳細な構成例を示すブロック図である。 二次電池の等価回路の一例を示す図である。 二次電池の熱モデルの一例を示す図である。 推定結果と実測値の関係を示す図である。 本発明の実施形態において実行される処理の詳細を説明するためフローチャートである。
 次に、本発明の実施形態について説明する。
(A)第1実施形態の構成の説明
 図1は、本発明の第1実施形態に係る二次電池内部温度推定装置を有する車両の電源系統を示す図である。この図において、二次電池内部温度推定装置1は、制御部10、電圧センサ11、電流センサ12、温度センサ13、および、放電回路15を主要な構成要素としており、二次電池14の外部温度から内部温度を推定する。ここで、制御部10は、電圧センサ11、電流センサ12、および、温度センサ13からの出力を参照し、二次電池14の等価回路の素子値を求め、この素子値に基づいて温度を推定する式の係数を求め、この式に温度センサ13によって検出された外部温度を代入することで、内部温度を推定する。電圧センサ11は、二次電池14の端子電圧を検出し、制御部10に通知する。電流センサ12は、二次電池14に流れる電流を検出し、制御部10に通知する。温度センサ13は、二次電池14自体または周囲の外部温度を検出し、制御部10に通知する。放電回路15は、例えば、直列接続された半導体スイッチと抵抗素子等によって構成され、制御部10によって半導体スイッチがオン/オフ制御されることにより二次電池14を放電させる。なお、本明細書中において、外部温度とは、二次電池14の配置されている環境の温度を示し、また、内部温度とは電解液や極板で形成される二次電池14の内部の温度を示す。
 二次電池14は、例えば、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、または、リチウムイオン電池等によって構成され、オルタネータ16によって充電され、スタータモータ18を駆動してエンジンを始動するとともに、負荷19に電力を供給する。オルタネータ16は、エンジン17によって駆動され、交流電力を発生して整流回路によって直流電力に変換し、二次電池14を充電する。
 エンジン17は、例えば、ガソリンエンジンおよびディーゼルエンジン等のレシプロエンジンまたはロータリーエンジン等によって構成され、スタータモータ18によって始動され、トランスミッションを介して駆動輪を駆動し車両に推進力を与えるとともに、オルタネータ16を駆動して電力を発生させる。スタータモータ18は、例えば、直流電動機によって構成され、二次電池14から供給される電力によって回転力を発生し、エンジン17を始動する。負荷19は、例えば、電動ステアリングモータ、デフォッガ、イグニッションコイル、カーオーディオ、および、カーナビゲーション等によって構成され、二次電池14からの電力によって動作する。
 図2は、図1に示す制御部10の詳細な構成例を示す図である。この図に示すように、制御部10は、CPU(Central Processing Unit)10a、ROM(Read Only Memory)10b、RAM(Random Access Memory)10c、通信部10d、I/F(Interface)10eを有している。ここで、CPU10aは、ROM10bに格納されているプログラム10baに基づいて各部を制御する。ROM10bは、半導体メモリ等によって構成され、プログラム10ba等を格納している。RAM10cは、半導体メモリ等によって構成され、プログラムbaを実行する際に生成されるデータや、後述するテーブルまたは数式等のパラメータ10caを格納する。通信部10dは、上位の装置であるECU(Electronic Control Unit)等との間で通信を行い、検出した情報を上位装置に通知する。I/F10eは、電圧センサ11、電流センサ12、および、温度センサ13から供給される信号をデジタル信号に変換して取り込むとともに、放電回路15に駆動電流を供給してこれを制御する。
(B)実施形態の動作の説明
 つぎに、本発明の実施形態の動作について説明する。本発明の実施形態では、例えば、車両が停止している際のように、二次電池14への入出力電流が小さいタイミングにおいて、制御部10のCPU10aは、電圧センサ11および電流センサ12の出力を参照し、二次電池14の電圧Vbおよび電流Ibを測定し、RAM10cにパラメータ10caとして格納する。
 つぎに、CPU10aは、放電回路15を制御し、二次電池14を所定の電流(例えば、数アンペア~数十アンペア)で放電させる。なお、この放電は、例えば、矩形波またはステップ波により実行する。また、放電時間としては、例えば、数十ミリ秒から数秒に設定することができる。
 CPU10aは、放電回路15による放電が開始されると、所定の周期(例えば、数ミリ秒~数十ミリ秒周期)で電圧センサ11および電流センサ12の出力をサンプリングし、V(t),I(t)として、RAM10cにパラメータ10caとして格納する。なお、tは時間を示し、サンプリングが開始されるタイミングで「0」とされ、それ以降はサンプリングに応じてインクリメントされる。CPU10aは、得られたV(t),I(t)を以下の式(1)に代入して、二次電池14のインピーダンスZ(t)を求め、RAM10cにパラメータ10caとして格納する。
 Z(t)=(Vb-V(t))/(Ib-I(t)) ・・・(1)
 また、CPU10aは、以下の式(2)に基づいて、測定によって得たZ(t)を用いて、等価回路の素子値であるRohm,Rct,Cを最小二乗法等によって求める。
 Z(t)=Rohm+Rct×(1-exp(-t/τ)) ・・・(2)
 ここで、τ=C×Rctである。
 つぎに、CPU10aは、得られたRohm,Rct,Cを、基準状態におけるRohm,Rct,Cに補正する。ここで、基準状態とは、二次電池14のSOCが100%であり、また、内部温度Tiが25℃の状態をいう。SOCと温度が基準状態から外れている場合には、基準状態になるように各素子値を補正する。
 つづいて、CPU10aは、基準状態に補正されたRohm,Rct,Cを、以下の式(3)に代入し、積分ゲインK2を算出する。
 K2=A1×Rohm+A2×Rct+A3×C ・・・(3)
 ここで、係数A1~A3は、二次電池14の等価回路の素子値と、積分ゲインK2とを関連付けするための係数であり、これらの値は、二次電池14の種類や、使用する車種や、使用環境等によって変化しない。このような係数A1~A3は、予め実測して、ROM10bに格納しておけばよい。
 つぎに、CPU10aは、式(3)で求めた積分ゲインK2を図4に示す二次電池14の熱モデルに適用する。ここで、図4は、二次電池14の熱モデルを示している。この例では、二次電池14の外部温度Teと、二次電池14の内部温度Tiの関係を示している。このモデルでは、二次電池14は、一次遅れ系としてモデリングされており、外部温度Teと内部温度Tiの間の伝達関数T(S)は、以下の式(4)で表される。なお、係数K1は、二次電池14の種類や環境等には影響を受けにくい係数であり、この係数K1については、予め任意の二次電池14で求めた値を用いることができる。
 T(S)=Ti/Te=(K1+K2/S)/(1+K1+K2/S) ・・・(4)
 CPU10aは、以上のような熱モデルに対して、式(3)で求めた積分ゲインK2を適用する。このような熱モデルを使用することで、温度センサ13によって検出される二次電池14の外部温度Teから、二次電池14の内部温度Tiを推定することができる。このようにして求めた内部温度Tiを用いることで、温度依存性を有する各種の値、例えば、等価回路の素子値やSOF(State of Function)を正確に求めることができるので、二次電池14の状態を高精度に検出することができる。
 図5は、以上の本実施形態によって推定した積分ゲインK2と、実測によって得た積分ゲインK2の比較結果を示している。この図の横軸は本発明の実施形態によって推定した積分ゲインを示し、縦軸は実測結果を示している。この図5から、本実施形態によって推定された積分ゲインは、実測値と高い精度で一致しており、また、決定係数Rは、0.9028であり、実測値と推定値が高い精度で一致することを示している。
 つぎに、図6を参照して、本発明の実施形態の詳細な動作について説明する。図6は、図1において実行される処理の一例を説明するためのフローチャートである。このフローチャートは、例えば、新たな二次電池14が車両に搭載された際(例えば、制御部10がパワーオンリセットされた際)に実行される。図6に示すフローチャートが開始されると、以下のステップが実行される。
 ステップS10では、CPU10aは、安定した状態であって、かつ、放電を実行する前の二次電池14の電圧Vbおよび電流Ibを測定する。なお、安定した状態としては、例えば、車両が停車中であって、負荷19に流れる電流が所定の閾値(例えば、数アンペア)よりも小さい場合に、安定していると判定することができる。
 ステップS11では、CPU10aは、放電回路15を制御し、二次電池14を矩形パルス状に放電させる。なお、矩形パルスの幅としては、例えば、数ミリ秒~数秒の範囲とすることができる。予め定められた矩形パルスの幅を使用するのではなく、所定回数のサンプリングが終了した場合、または、等価回路の素子値が求まった場合に、放電を終了するようにしてもよい。
 ステップS12では、CPU10aは、電圧センサ11および電流センサ12の出力を参照して二次電池14の電圧および電流を測定し、これらをV(t)およびI(t)として、RAM10cにパラメータ10caとして格納する。
 ステップS13では、CPU10aは、ステップS12で測定したV(t)およびI(t)を前述した式(1)に代入してZ(t)を計算し、得られた値をRAM10cにパラメータ10caとして格納する。
 ステップS14では、CPU10aは、放電を終了するか否かを判定し、放電を終了すると判定した場合(ステップS14:Yes)にはステップS15に進み、それ以外の場合(ステップS14:No)にはステップS12に戻って前述の場合と同様の処理を繰り返す。例えば、所定の時間が経過するか、または、所定の回数測定を実行するか、または、電圧または電流が安定した場合(例えば、過渡状態から定常状態に移行した場合)には、Yesと判定してステップS15に進む。
 ステップS15では、CPU10aは、ステップS13においてRAM10cに格納したZ(t)の値を取得し、式(2)に適用してRohm,Rct,τの値を、例えば、最小二乗法等によって求める。これにより、二次電池14を矩形パルスによって放電させた場合におけるZ(t)の変化に最も適合するRohm,Rct,τの値を得ることができる。
 ステップS16では、CPU10aは、C=τ/Rctに対して、ステップS15で求めたτと、Rctを代入して電気二重層容量Cの値を得る。
 ステップS17では、CPU10aは、ステップS15およびステップS16で求めた等価回路の素子値Rohm,Rct,Cの値を基準状態における値に補正する。基準状態としては、例えば、二次電池14の内部温度が25℃であり、また、二次電池14のSOCが100%である状態を用いることができる。補正する方法としては、例えば、データテーブルまたは補正式をROM10bに予め格納しておき、このデータテーブルまたは補正式に基づいて補正を行うことができる。なお、温度に関する補正を実行する際の補正誤差を小さくするためには、例えば、車両の停止時間が長い(例えば、12時間以上の)場合の温度センサ13の出力値を使用することが望ましい。あるいは、初期値によって推定された内部温度Tiの推定値を用いるようにしてもよい。
 ステップS18では、CPU10aは、ROM10bに格納されている係数A1~A3の値と、ステップS17で補正がされた素子値Rohm,Rct,Cの値を、前述した式(3)に代入し、積分ゲインK2の値を得る。なお、係数A1~A3の値は、二次電池14の種類および使用環境等に左右されないので、例えば、事前に測定によって得た値をROM10bに格納しておき、この値を利用することができる。
 ステップS19では、CPU10aは、ステップS18で求めた積分ゲインK2を、図4に示す熱モデルに適用する。なお、比例ゲインK1については、二次電池14の種類および使用環境等に左右されないので、例えば、事前に測定によって得た値をROM10bに格納しておくことができる。
 ステップS20では、CPU10aは、温度センサ13の出力を参照し、二次電池14の外部温度Teを取得する。
 ステップS21では、CPU10aは、図4に示す熱モデルに対して、ステップS20で測定した外部温度Teを代入し、二次電池14の内部温度Tiを推定する。なお、ステップS20とステップS21の処理は、伝達関数の時定数に応じた一定の時間は、繰り返し実行することが望ましい。すなわち、外部温度Teが変化する場合には、それに遅れて内部温度Tiも変化するので、一定の時間の測定が望まれる。
 ステップS22では、CPU10aは、ステップS21において求めた二次電池14の内部温度Tiに基づいて、温度依存性があるSOF等の値を求める。なお、これ以外の値を求めるようにしてもよい。
 以上に説明したように、図6に示すフローチャートによれば、二次電池14の等価回路の素子値を用いて、二次電池14の熱モデルの積分ゲインK2を求めることができる。また、このような積分ゲインK2を用いることで、二次電池14の内部温度を正確に求めることができるので、温度依存性がある二次電池14の状態値(例えば、SOF)を正確に求めることができる。
 また、二次電池14の等価回路から積分ゲインK2を求めることで、例えば、二次電池14のサイズ、初期容量、または、種類等によらず、内部温度Tiを正確に求めることができる。
(C)変形実施形態の説明
 以上の実施形態は一例であって、本発明が上述したような場合のみに限定されるものでないことはいうまでもない。例えば、以上の各実施形態では、図3に示す等価回路を用いるようにしたが、これ以外の等価回路を用いるようにしてもよい。具体的には、反応抵抗と電気二重層容量を2つ以上有する等価回路を用いるようにしてもよい。なお、反応抵抗と電気二重層容量を2つ有する等価回路を用いる場合、2つの反応抵抗をRtc1,Rct2とし、電気二重層容量をC1,C2とする場合、前述した式(2)の代わりに、以下の式(5)を用いることができる。
 Z(t)=Rohm+Rct1×(1-exp(-t/τ1))+Rct2×(1-exp(-t/τ2)) ・・・(5)
 なお、τ1およびτ2は以下のように定義する。
τ1=C1×Rct1
τ2=C2×Rct2
 また、前述した式(3)の代わりに、以下の式(6)を用いることができる。
 K2=A1×Rohm+A2×Rct1+A3×C1+A4×Rct2+A5×C2 ・・・(6)
 また、以上の実施形態では、積分ゲインK2を求める式(3)には、等価回路の素子値のみを含むようにしたが、例えば、素子値から求めることができる初期満充電容量SOH_iniを用いるようにしてもよい。より詳細には、初期満充電容量SOH_iniは、以下の式(7)によって求めることができる。ここで、f1(Rohm),f2(Rct),f4(C)は、Rohm,Rct,Cを変数とする所定の関数を示している。
 SOH_ini=B1×f1(Rohm)+B2×f2(Rct)+B3×f3(C) ・・・(7)
 以上の式(7)によって求めた、SOH_iniを含む以下の式(8)を用いることで、積分ゲインK2を得ることができる。
 K2=A0×SOH_ini+A1×Rohm+A2×Rct+A3×C1 ・・・(8)
 なお、前述した式(6)の右辺に対して、A0×SOH_iniを加えた式を用いるようにしてもよい。
 また、以上の実施形態では、等価回路を構成する溶液抵抗Rohm、反応抵抗Rct、および、電気二重層容量Cの全てを用いるようにしたが、これらのいずれか1つを用いるようにしたり、あるいは、任意の2つの組み合わせを用いるようにしたりしてもよい。
 また、以上の実施形態では、二次電池14が新たに取り付けられた場合に、図6に示す処理を実行する場合を例に挙げて説明したが、例えば、所定の周期で実行したり、あるいは、内部温度Tiによって求める値の誤差が増加したりした場合に、図6に示す処理を再度実行するようにしてもよい。例えば、二次電池14は、劣化によって極板の科学的な特性が変化(例えば、サルフェーションによって硫酸鉛が増加)することから、温度特性が変化する(例えば、硫酸鉛の増加によって比熱が低下する)。このため、劣化に応じて変化する特性を再現するために、例えば、1ヶ月単位で、図6に示す処理を実行するようにすることで、劣化状態を反映した熱モデルを構築することができる。
 1 二次電池内部温度推定装置
 10 制御部(推定手段、算出手段、求出手段、適用手段、補正手段)
 10a CPU
 10b ROM
 10c RAM
 10d 表示部
 10e I/F
 11 電圧センサ
 12 電流センサ
 13 温度センサ
 14 二次電池
 15 放電回路
 16 オルタネータ
 17 エンジン
 18 スタータモータ
 19 負荷

Claims (8)

  1.  二次電池の内部温度を推定する二次電池内部温度推定装置において、
     前記二次電池の外部温度と内部温度の関係を示す関係式に基づいて、前記二次電池の内部温度を推定する推定手段と、
     前記二次電池の等価回路の素子値を算出する算出手段と、
     前記算出手段によって算出された前記等価回路の素子値に基づいて、前記関係式の係数を求出する求出手段と、
     前記求出手段によって得られた前記係数を前記関係式に適用する適用手段と、を有し、
     前記推定手段は、前記適用手段によって前記係数が適用された前記関係式に基づいて、前記二次電池の内部温度を推定する、
     ことを特徴とする二次電池内部温度推定装置。
  2.  前記二次電池の前記等価回路は、溶液抵抗、反応抵抗、および、電気二重層容量を有し、
     前記求出手段は、これらのいずれか1つまたは複数の素子値に基づいて、前記関係式の係数を求出する、
     ことを特徴とする請求項1に記載の二次電池内部温度推定装置。
  3.  前記求出手段は、前記二次電池の満充電状態における放電可能な容量も参照して、前記関係式の係数を求出する、
     ことを特徴とする請求項1または2に記載の二次電池内部温度推定装置。
  4.  前記算出手段によって算出された前記素子値を、基準となる充電状態、かつ、基準となる温度における値に補正する補正手段を有することを特徴とする請求項1乃至3のいずれか1項に記載の二次電池内部温度推定装置。
  5.  前記推定手段は、一次遅れ系の伝達関数を前記関係式として用いることで、前記二次電池の内部温度を推定することを特徴とする請求項1乃至4のいずれか1項に記載の二次電池内部温度推定装置。
  6.  前記求出手段は、前記一次遅れ系の伝達関数の積分ゲインを、前記等価回路の素子値に基づいて求出することを特徴とする請求項5に記載の二次電池内部温度推定装置。
  7.  前記算出手段は、前記二次電池の放電中の電圧および電流に基づいて、前記等価回路の素子値を算出することを特徴とする請求項1乃至6のいずれか1項に記載の二次電池内部温度推定装置。
  8.  二次電池の内部温度を推定する二次電池内部温度推定方法において、
     前記二次電池の外部温度と内部温度の関係を示す関係式に基づいて、前記二次電池の内部温度を推定する推定ステップと、
     前記二次電池の等価回路の素子値を算出する算出ステップと、
     前記算出ステップにおいて得られた前記等価回路の素子値に基づいて、前記関係式の係数を求出する求出ステップと、
     前記求出ステップにおいて得られた前記係数を前記関係式に適用する適用ステップと、を有し、
     前記推定ステップは、前記適用ステップにおいて前記係数が適用された前記関係式に基づいて、前記二次電池の内部温度を推定する、
     ことを特徴とする二次電池内部温度推定方法。
PCT/JP2015/057483 2014-03-20 2015-03-13 二次電池内部温度推定装置および二次電池内部温度推定方法 WO2015141580A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15765576.2A EP3107146B1 (en) 2014-03-20 2015-03-13 Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
CN201580013438.6A CN106104907B (zh) 2014-03-20 2015-03-13 二次电池内部温度推定装置以及二次电池内部温度推定方法
US15/268,512 US10396407B2 (en) 2014-03-20 2016-09-16 Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014059252A JP6200359B2 (ja) 2014-03-20 2014-03-20 二次電池内部温度推定装置および二次電池内部温度推定方法
JP2014-059252 2014-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/268,512 Continuation US10396407B2 (en) 2014-03-20 2016-09-16 Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method

Publications (1)

Publication Number Publication Date
WO2015141580A1 true WO2015141580A1 (ja) 2015-09-24

Family

ID=54144549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057483 WO2015141580A1 (ja) 2014-03-20 2015-03-13 二次電池内部温度推定装置および二次電池内部温度推定方法

Country Status (5)

Country Link
US (1) US10396407B2 (ja)
EP (1) EP3107146B1 (ja)
JP (1) JP6200359B2 (ja)
CN (1) CN106104907B (ja)
WO (1) WO2015141580A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014185163A1 (ja) * 2013-05-16 2017-02-23 日本電気株式会社 電池状態推定装置、電池状態管理システム、電池、電池状態推定方法、及び、プログラム
JP6928228B2 (ja) * 2016-11-25 2021-09-01 ミツミ電機株式会社 電池監視回路
JP6826935B2 (ja) * 2017-03-30 2021-02-10 古河電気工業株式会社 二次電池内部温度推定装置および二次電池内部温度推定方法
DE102017209182A1 (de) * 2017-05-31 2018-12-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Bestimmen einer Betriebstemperatur, Betriebsverfahren für eine Batteriezelle, Steuereinheit für eine Batteriezelle und Arbeitsvorrichtung
KR102188723B1 (ko) * 2017-11-07 2020-12-08 주식회사 엘지화학 배터리 온도 추정 장치 및 방법
CN111433969B (zh) * 2017-12-27 2023-09-15 古河电气工业株式会社 可充电电池温度估计装置及可充电电池温度估计方法
CN109520638A (zh) * 2018-10-15 2019-03-26 武汉科技大学 圆柱形电池内部平均温度实时确定方法及系统
JP7233270B2 (ja) * 2019-03-22 2023-03-06 古河電気工業株式会社 充電可能電池温度推定装置および充電可能電池温度推定方法
CN112578298B (zh) * 2019-09-29 2022-03-15 比亚迪股份有限公司 电池温度估算方法、装置、电子设备及存储介质
CN112964991B (zh) * 2019-11-28 2022-07-15 比亚迪股份有限公司 电池内部温度信息处理方法、计算机设备和存储介质
DE102020003887B3 (de) * 2020-06-29 2021-10-21 Daimler Ag Verfahren zum Bestimmen der jeweiligen Temperatur mehrerer Batteriezellen einer Fahrzeugbatterie durch Extrapolation einer gemessenen Temperatur; Steuereinrichtung sowie Fahrzeugbatterie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192811A (ja) * 2011-03-16 2012-10-11 Furukawa Electric Co Ltd:The 二次電池温度推定装置および二次電池温度推定方法
JP2014070982A (ja) * 2012-09-28 2014-04-21 Fujitsu Semiconductor Ltd 二次電池の状態評価装置、二次電池の状態評価方法、及び、二次電池の状態評価プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4383596B2 (ja) 1999-09-06 2009-12-16 トヨタ自動車株式会社 電池の内部温度検出装置
JP4327692B2 (ja) * 2004-09-30 2009-09-09 トヨタ自動車株式会社 二次電池の充放電制御装置
JP5008863B2 (ja) * 2005-11-30 2012-08-22 プライムアースEvエナジー株式会社 二次電池用の制御装置、二次電池の温度推定方法を用いた二次電池の劣化判定方法
JP2008249459A (ja) 2007-03-30 2008-10-16 Mazda Motor Corp バッテリの温度推定装置
JP2010135075A (ja) * 2008-12-02 2010-06-17 Calsonic Kansei Corp 組電池の温度推定方法及び装置
US9327611B2 (en) * 2009-07-08 2016-05-03 Toyota Jidosha Kabushiki Kaisha Temperature elevating apparatus of secondary battery and vehicle equipped with same
WO2011045853A1 (ja) * 2009-10-14 2011-04-21 株式会社 日立製作所 電池制御装置およびモーター駆動システム
US9678164B2 (en) * 2010-03-23 2017-06-13 Furukawa Electric Co., Ltd. Battery internal state estimating apparatus and battery internal state estimating method
CN103080712B (zh) * 2011-08-01 2015-01-14 阿尔卑斯绿色器件株式会社 蓄电装置温度测定方法
JP2013118724A (ja) * 2011-12-01 2013-06-13 Toyota Motor Corp 制御装置および制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192811A (ja) * 2011-03-16 2012-10-11 Furukawa Electric Co Ltd:The 二次電池温度推定装置および二次電池温度推定方法
JP2014070982A (ja) * 2012-09-28 2014-04-21 Fujitsu Semiconductor Ltd 二次電池の状態評価装置、二次電池の状態評価方法、及び、二次電池の状態評価プログラム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. DI FILIPPI ET AL.: "Model-Based Life Estimation of Li-ion Batteries in PHEVs Using Large Scale Vehicle Simulations: An Introductory Study", VEHICLE POWER AND PROPULSION CONFERENCE, 2010 IEEE, September 2010 (2010-09-01), pages 1 - 6, XP031929156 *
E. PRADA ET AL.: "Simplified Electrochemical and Thermal Model of LiFeP04-Graphite Li-ion Batteries for Fast Charge Applications", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 14 August 2012 (2012-08-14), pages A1508 - A1519, XP031929156 *
G. PILATOWICZ ET AL.: "Simulation of SLI Lead- Acid Batteries for SoC, Aging and Cranking Capability Prediction in Automotive Applications", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 159, no. 9, 14 August 2012 (2012-08-14), pages A1410 - A1419, XP055225159 *
See also references of EP3107146A4 *

Also Published As

Publication number Publication date
JP6200359B2 (ja) 2017-09-20
CN106104907A (zh) 2016-11-09
CN106104907B (zh) 2019-06-04
US20170012327A1 (en) 2017-01-12
US10396407B2 (en) 2019-08-27
JP2015185284A (ja) 2015-10-22
EP3107146A1 (en) 2016-12-21
EP3107146A4 (en) 2017-11-01
EP3107146B1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6200359B2 (ja) 二次電池内部温度推定装置および二次電池内部温度推定方法
US11163010B2 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
JP6119402B2 (ja) 内部抵抗推定装置及び内部抵抗推定方法
JP6490414B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
US20180001782A1 (en) Method and device for detecting soc of battery
US10393814B2 (en) Secondary battery state detection device and secondary battery state detection method
JP6440377B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP5653881B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
US20180246174A1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2019070621A (ja) 二次電池システム
JP6958965B2 (ja) バッテリーsoc推定装置及び方法
JP6498920B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP6452403B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP2017032294A (ja) 二次電池の充電率推定方法、充電率推定装置、及び健全度推定装置
JP6350174B2 (ja) 電池システム用制御装置および電池システムの制御方法
JP2012192811A (ja) 二次電池温度推定装置および二次電池温度推定方法
JP2009126278A (ja) 車載二次電池の内部状態検出装置
JP6672976B2 (ja) 充電量算出装置、コンピュータプログラム及び充電量算出方法
JP2019138673A (ja) 充電可能電池状態検出装置および充電可能電池状態検出方法
JP2014059251A (ja) 内部抵抗推定装置及び内部抵抗推定方法
JP7254482B2 (ja) 充電可能電池状態検出装置および充電可能電池状態検出方法
JP6953323B2 (ja) 充電可能電池状態検出装置および充電可能電池状態検出方法
JP2006023286A (ja) 二次電池の入出力可能電力推定装置
JP6472163B2 (ja) 充電率推定装置及び充電率推定方法
JP2021150220A (ja) バッテリ状態を推定する方法、装置、プログラムおよび記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765576

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015765576

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015765576

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE