JP2015167155A - プラズマ処理装置のクリーニング方法 - Google Patents

プラズマ処理装置のクリーニング方法 Download PDF

Info

Publication number
JP2015167155A
JP2015167155A JP2014040524A JP2014040524A JP2015167155A JP 2015167155 A JP2015167155 A JP 2015167155A JP 2014040524 A JP2014040524 A JP 2014040524A JP 2014040524 A JP2014040524 A JP 2014040524A JP 2015167155 A JP2015167155 A JP 2015167155A
Authority
JP
Japan
Prior art keywords
deposit
plasma
cleaning method
gas
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014040524A
Other languages
English (en)
Other versions
JP6285213B2 (ja
Inventor
宏樹 岸
Hiroki Kishi
宏樹 岸
橋本 充
Mitsuru Hashimoto
充 橋本
恵一 霜田
Keiichi Shimoda
恵一 霜田
栄一 西村
Eiichi Nishimura
栄一 西村
清水 昭貴
Akitaka Shimizu
昭貴 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2014040524A priority Critical patent/JP6285213B2/ja
Priority to US14/635,978 priority patent/US10053773B2/en
Priority to KR1020150029010A priority patent/KR102326635B1/ko
Priority to EP15157130.4A priority patent/EP2916344B1/en
Publication of JP2015167155A publication Critical patent/JP2015167155A/ja
Application granted granted Critical
Publication of JP6285213B2 publication Critical patent/JP6285213B2/ja
Priority to US16/043,375 priority patent/US10975468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube

Abstract

【課題】容量結合型の平行平板プラズマ処理装置において発生するイオン化傾向の小さい金属を含む堆積物を除去する技術を提供する。
【解決手段】上部電極上に形成された堆積物を除去するための方法である。堆積物は、プラズマ処理装置の処理容器内において下部構造の下部電極と上部電極の間で発生させたプラズマを用いて金属を含有する金属層をエッチングすることによって、発生する。この方法MT1は、上部電極上に形成された第1の堆積物にイオンを衝突させる工程ST12と、前記工程によって発生し下部構造上に形成された第2の堆積物を除去する工程ST13と、を各々含む複数のサイクルを実行する。
【選択図】図1

Description

本発明の実施形態は、プラズマ処理装置のクリーニング方法に関するものである。
電子デバイスの製造においては、被処理体の被エッチング層にプラズマエッチングが適用されることがある。プラズマエッチングに用いられるプラズマ処理装置としては、容量結合型の平行平板プラズマ処理装置が知られている。平行平板プラズマ処理装置は、処理容器、上部電極、及び、下部電極を有する下部構造を備えている。下部構造上には処理容器内の処理空間に面するように被処理体が載置される。このプラズマ処理装置では、処理容器内に処理ガスが供給され、上部電極又は下部電極に高周波電力が与えられる。これにより、処理ガスのプラズマが処理空間において生成され、当該処理ガスのプラズマによって、処理空間に面して下部構造上に載置された被処理体の被エッチング層がエッチングされる。
プラズマエッチングでは、被エッチング層のエッチングによって生じるエッチング反応生成物が堆積物として、処理容器内の空間を画成する面上に形成される。かかる堆積物は、プラズマ処理装置の状態を変化させ得る。したがって、プラズマ処理装置では、堆積物を除去するためのクリーニングを行う必要がある。
プラズマ処理装置内に発生した堆積物を除去するためのクリーニング方法としては、堆積物に化学反応を生じさせることにより当該堆積物を気体の反応生成物に変化させ、当該反応生成物を排気する方法が一般的である。このような化学反応を用いたクリーニング方法の一種としては、堆積物、例えば、プラズマ重合物に酸化反応と還元反応を繰り返し生じさせることによって発生させた反応生成物を排気する方法がある。プラズマ重合物に酸化反応と還元反応を生じさせることにより当該プラズマ重合物を除去する方法については、例えば、特開平9−129623号公報に記載されている。
また、プラズマエッチングの処理対象である被エッチング層は、一般的には半導体から構成された層であるが、近年になって、金属を含有する層にプラズマエッチングが適用されるようになっている。金属を含有する層、即ち金属層としては、Cu層、PtMn層といった層が例示される。PtMn層は、例えば、MTJ(Magnetic Tunnel Junction)構造を有するMRAM(Magnetic Random Access Memory)素子の一部として用いられている。
特開平9−129623号公報
金属層、例えば、MRAM素子中のPtMn層にプラズマエッチングを適用すると、プラズマ処理装置内の処理容器内の空間に接する面(以下、「内面」という)には、金属を含有するエッチング反応生成物が堆積物として形成される。かかる堆積物が内面に付着すると、処理容器内の空間に存在するプラズマ状態が変化する。これにより、プラズマエッチングのエッチングレートが変化する。例えば、平行平板プラズマ処理装置では、被処理体の近傍に発生するシース電界により、エッチング反応生成物に含まれる重量の大きな金属が上部電極に向かう。かかる金属が上部電極に付着して堆積物を形成する。上部電極上に形成された堆積物は、容量成分を発生させ、インピーダンスを変化させることがある。これにより、エッチングレートが低下することがある。また、堆積物にエッチャントが消費されることによって、被エッチング層へのエッチャントの供給が不足し、その結果、エッチングレートが低下し得る。
このように、エッチング反応生成物に由来する金属を含有する堆積物(以下、「金属堆積物」という)は、処理容器内の空間に存在するプラズマの状態を変化させるので、除去される必要がある。しかしながら、堆積物に含まれる金属に化学反応を生じさせて気体の反応生成物を生成し、当該気体の反応生成物を排気することは一般的に難しい。即ち、堆積物に含まれる金属は、化学反応を生じさせた後においても固体である場合が多く、一般的なクリーニング方法では金属堆積物を除去することができない。
また、酸化反応及び還元反応を用いるクリーニング方法では、イオン化傾向の大きい金属、即ち、イオン化し易い金属、例えば、K、Ca,Na等の金属しか除去することができない。これは、当該方法が、酸化反応及び還元反応を用いて、堆積物の結合力を弱めて除去する方法であるからである。したがって、当該方法では、化学的に安定した金属、即ち、イオン化傾向の小さい金属を含有する堆積物を除去することは難しく、或いは、その除去に長い時間を要する。
また、平行平板型のプラズマ処理装置は、プラズマが発生する空間(以下、「プラズマ空間」という)を上部電極と下部電極との間に挟む構造を有しているので、上部電極上に形成された金属堆積物を当該上部電極から取り去ることができても、金属堆積物中の金属が下部電極に再付着する。これは、堆積物を構成する重量の大きな金属がプラズマ空間と電極の間に発生するシース電界により加速されて、上部電極に対向する下部電極に向けて加速運動を行うこととなり、結果的に、プラズマ空間から抜け出すことができないため、当該金属が下部構造又は当該下部構造上に載置された被処理体上に再付着し易いからである。
したがって、容量結合型の平行平板プラズマ処理装置において発生するイオン化傾向の小さい金属を含む堆積物を除去することを可能とする技術が必要となっている。
一側面においては、クリーニング方法が提供される。このクリーニング方法は、上部電極上に形成された堆積物を除去するための方法である。この堆積物は、プラズマ処理装置の処理容器内において下部構造の下部電極と上部電極の間で発生させたプラズマを用いて金属を含有する金属層をエッチングすることによって、発生する。この方法は、(a)上部電極上に形成された第1の堆積物にイオンを衝突させる工程(以下、「工程(a)」という)と、(b)イオンを衝突させる前記工程によって発生し下部構造上に形成された第2の堆積物を除去する工程(以下、「工程(b)」という)と、を各々含む複数のサイクルを実行する。
この方法では、上部電極上に形成された第1の堆積物が、工程(a)のイオンスパッタリングによって少なくとも部分的に削られる。この工程(a)において第1の堆積物が削られることによって発生する金属を含む副生成物は、部分的に処理容器内から除去され、また、部分的に下部構造に付着する。下部構造に付着した副生成物は第2の堆積物を下部構造上に形成する。次いで、本方法では、工程(b)によって第2の堆積物が少なくとも部分的に取り去られる。かかる工程(a)及び工程(b)を含むサイクルを繰り返すことによって、上部電極上に形成された堆積物を除去することが可能となる。
一形態の工程(a)では、処理容器内において少なくとも希ガスを含むガスのプラズマを発生させて該プラズマ中のイオンを第1の堆積物に衝突させてもよい。即ち、工程(a)では、希ガス原子のイオンを用いたイオンスパッタリングが行われてもよい。
また、一形態の工程(a)では、更に水素を含むガスのプラズマが生成されてもよい。この形態によれば、第1の堆積物の表面を改質することができ、より効果的に堆積物を除去することが可能となる。
一形態において、上部電極は、プラズマが生成される空間に接する酸化シリコン製の部位を有していてもよく、この形態では、第2の堆積物は、金属及び酸化シリコンを含有し得る。この形態の工程(b)は、(b1)第2の堆積物に含まれる酸化シリコンを除去する工程(以下、「工程(b1)」という)と、(b2)第2の堆積物に含まれる金属にイオンを衝突させる工程と、を含んでいてもよく、前記複数のサイクルの各々は、工程(b)によって上部電極上に形成された第3の堆積物を除去する工程(以下、「工程(c)」という)を更に含んでいてもよい。
上部電極が酸化シリコン製の部位を有している場合には、工程(a)のイオンスパッタリングによって、金属を含有する堆積物に加えて当該部位も削られる。したがって、第2の堆積物は、下部構造の近くにおいて主として金属を含み、下部構造から離れるに従ってシリコンの含有量が増える構造を有する堆積物となる。例えば、第2の堆積物は、金属膜と酸化シリコン膜とが重なった多層膜となる。この形態の方法では、まず、工程(b1)において酸化シリコンを除去し、次いで、工程(b2)においてイオンスパッタリングによって金属を削り取る。これにより、下部構造上に形成された第2の堆積物を少なくとも部分的に除去することができる。また、下部構造はシリコンを含む部材から構成されていることがあり、また、クリーニングの実施時には下部構造上にダミーのシリコンウエハが載置されることがある。したがって、工程(b)を行うことにより、上部電極上には、シリコン及び金属を含有する第3の堆積物が形成される。この形態の方法では、工程(c)を行うことにより、当該第3の堆積物を除去することができる。
一形態の工程(b1)では、処理容器内においてフッ素を含有するガスのプラズマが生成されてもよい。また、一形態の工程(b2)では、処理容器内において少なくとも希ガスのプラズマを発生させて該プラズマ中のイオンを第2の堆積物中の金属に衝突させてもよい。また、一形態の工程(c)では、処理容器内においてフッ素を含有するガスのプラズマが生成されてもよい。
一形態において、金属層は、Pt、Ru、Au、Rh、Pd、Os、及びIrのうち少なくとも一種を含み得る。これら金属は、比較的小さいイオン化傾向を有し、即ち、酸化し難く、また、化学反応によって気体に変化させ難い金属である。上述したクリーニング方法は、これら金属のうち少なくとも一種を含有する金属層のプラズマエッチングの後に利用することができる。例えば、金属層は、例えば、PtMnから構成されていてもよい。
一形態において、金属層は、水素、希ガス、及び炭化水素を含むガスのプラズマによってエッチングされてもよく、この形態のクリーニング方法は、処理容器内において酸素を含有するガスのプラズマを生成する工程(以下、「工程(d)」という)を更に含んでいてもよい。炭化水素を含むガスのプラズマを発生させるとプラズマ処理装置の内面には、炭素を含有する堆積物が発生し得る。この形態の方法によれば、炭素を含有する堆積物も除去することができる。なお、金属層がイオン化傾向が小さい金属から構成されている場合には、工程(d)は、複数のサイクルの実行の前に、又は、複数のサイクルの実行の後に、行うことが可能である。
一形態においては、金属層は、Cu、Co、Fe、Mgのうち少なくとも一種を含んでいてもよい。これら金属は、比較的大きいイオン化傾向を有し、即ち、比較的酸化され易いが、当該金属は、化学反応によって気体に変化させることが困難な金属である。かかる金属を含む金属層のエッチング後にも、上述したクリーニング方法を利用することができる。但し、酸素を含むガスのプラズマは、これら金属を酸化させて除去し難い形態に変化させるので、金属層が、Cu、Co、Fe、Mgといった比較的大きいイオン化傾向を有する金属を含有する場合には、工程(d)は、複数のサイクルの実行後に行われる。
また、一形態において、上部電極は、プラズマが生成される空間に接するシリコン製の部位を有していてもよい。この形態の工程(b)では、処理容器内においてフッ素及び水素を含有するガスのプラズマが生成され得る。また、この形態において、金属層は、金属層は、Cuを含み得る。
一形態において、Cuを含む金属層は、水素、希ガス、及び炭化水素を含むガスのプラズマによってエッチングされてもよい。この形態において、クリーニング方法は、処理容器内において酸素を含有するガスのプラズマを生成する工程を更に含んでいてもよく、当該工程は、複数のサイクルの実行後に行われる。この形態によれば、Cuを含む堆積物を、Cuを酸化させずに除去した後に、炭素を含む堆積物を除去することが可能となる。
以上説明したように、容量結合型の平行平板プラズマ処理装置において発生する金属堆積物を除去することが可能となる。
一実施形態に係るクリーニング方法を示す流れ図である。 被処理体の一例を示す断面図である。 容量結合型の平行平板プラズマ処理装置の一実施形態を示す図である。 クリーニング方法MT1の各工程後のプラズマ処理装置10の状態を示す拡大断面図である。 クリーニング方法MT1の各工程後のプラズマ処理装置10の状態を示す拡大断面図である。 クリーニング方法MT1の各工程後のプラズマ処理装置10の状態を示す拡大断面図である。 クリーニング方法MT1の各工程後のプラズマ処理装置10の状態を示す拡大断面図である。 クリーニング方法MT1の各工程後のプラズマ処理装置10の状態を示す拡大断面図である。 クリーニング方法MT1の各工程後のプラズマ処理装置10の状態を示す拡大断面図である。 実験例1及び実験例2の結果を示す図である。 実験例3及び実験例4の結果を示す図である。 別の実施形態に係るクリーニング方法を示す流れ図である。 容量結合型の平行平板プラズマ処理装置の別の実施形態を示す図である。 クリーニング方法MT2の各工程後のプラズマ処理装置10Aの状態を示す拡大断面図である。 クリーニング方法MT2の各工程後のプラズマ処理装置10Aの状態を示す拡大断面図である。 クリーニング方法MT2の各工程後のプラズマ処理装置10Aの状態を示す拡大断面図である。 クリーニング方法MT2の実施中の第1の堆積物の膜厚及び第2の堆積物の膜厚を示すタイミングチャートである。 実験例において観察した発光強度の経時変化を示すグラフである。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
図1は、一実施形態に係るクリーニング方法を示す流れ図である。図1に示すクリーニング方法MT1は、容量結合型の平行平板プラズマ処理装置をクリーニングする方法である。また、クリーニング方法MT1は、被処理体(以下、「ウエハ」という)Wの金属層をエッチングすることによってプラズマ処理装置の処理容器内の内面に付着する金属堆積物を除去する方法である。
図1に示すクリーニング方法MT1は、小さいイオン化傾向を有し、且つ、エッチングによって固体の反応生成物となる金属を含有するウエハWの金属層をエッチングした場合に発生する金属堆積物を除去するために、当該金属層のエッチング後にプラズマ処理装置の内面をクリーニングする方法として利用され得る。このような金属は、例えば、Pt、Ru、Au、Rh、Pd、Os、及びIr等の、所謂白金族元素である。金属層の一例は、MTJ(Magnetic Tunnel Junction)構造を有するMRAM(Magnetoresistive Ramdom Access memory)素子の一部となる金属層であり、例えば、PtMn層である。
図2は、被処理体の一例を示す断面図である。図2に示す被処理体は、MTJ構造を有するMRAM素子の製造途中の生産物の断面を示している。図2に示すウエハWは、下地層100、金属層102、MTJ構造104、及び、上層106を有している。下地層100は、一例においては下部電極となる層である。金属層102は、一例においては、ピン止め層となる層であり、PtMnから構成されている。また、上層106は、一例においては、Taを含んでいる。MTJ構造104は、強磁性体材料といった金属を含有する多層膜から構成される。MTJ構造104は、例えば、第1磁性層と第2磁性層との間に絶縁層を有するように構成される。このウエハWの金属層102は、上層106及びMTJ構造104からなる積層構造をマスクとして用いることにより、エッチングされ得る。この金属層102は、平行平板型のプラズマ処理装置において、例えば、水素、希ガス、及び炭化水素を含むガスのプラズマを発生させることにより、エッチングされる。一例においては、金属層102のエッチングは、Hガス、Arガス、及びCHガスのプラズマを発生させることにより、エッチングされる。
図3は、容量結合型の平行平板プラズマ処理装置の一実施形態を示す図である。図3に示すプラズマ処理装置10は、処理容器12を備えている。処理容器12は、略円筒形状を有している。処理容器12の内壁面は、陽極酸化処理されたアルミニウムから構成されている。この処理容器12は保安接地されている。
処理容器12の底部上には、下部構造LSが設けられている。下部構造LSは、支持部14、載置台18、スペーサ16、環状部材20、及び、フォーカスリングFRを含んでいる。支持部14は、処理容器12の底部上に設けられている。支持部14は、石英といった絶縁材料から構成され得る。支持部14は、処理容器12内において、当該処理容器12の底部から鉛直方向に延在している。支持部14は、載置台18を支持している。
載置台18は、下部電極LE及び静電チャックESCを含んでいる。下部電極LEは、例えばアルミニウムといった金属から構成されており、略円盤形状を有している。静電チャックESCは、下部電極LE上に設けられている。静電チャックESCは、導電膜である電極を一対の絶縁層又は絶縁シート間に配置した構造を有している。静電チャックESCの電極には、スイッチSWを介して直流電源22が電気的に接続されている。静電チャックESCは、直流電源22からの直流電圧により生じたクーロン力等の静電力により、ウエハWを吸着保持することができる。
下部電極LEの周縁部上には、スペーサ16が設けられている。スペーサ16は、略環状の板形状を有しており、石英といった絶縁体から構成されている。また、スペーサ16の周縁部上には、環状部材20が設けられている。環状部材20は、略環状の板形状を有しており、石英といった絶縁体から構成されている。また、スペーサ16上、且つ、環状部材20とウエハWの間には、フォーカスリングFRが設けられている。即ち、フォーカスリングFRは、ウエハWのエッジを囲むように配置されている。フォーカスリングFRは、エッチングの面内均一性を向上させるために設けられている。フォーカスリングFRは、エッチング対象の膜の材料によって適宜選択される材料から構成されており、例えば、石英から構成され得る。
下部電極LEの内部には、冷媒用の流路24が設けられている。流路24には、外部に設けられたチラーユニットから配管26aを介して冷媒が供給される。流路24を流れる冷媒は、配管26bを介してチラーユニットに戻される。プラズマ処理装置10では、冷媒の温度を制御することにより、載置台18上に載置されたウエハWの温度が制御される。
また、プラズマ処理装置10には、ガス供給ライン28が設けられている。ガス供給ライン28は、伝熱ガス供給機構からの伝熱ガス、例えばHeガスを、静電チャックESCの上面とウエハWの裏面との間に供給する。
載置台18の上方には、上部電極30が設けられている。上部電極30は、載置台18の上方において、当該載置台18と対向配置されている。上部電極30と下部電極LEとは、互いに略平行に設けられている。これら上部電極30と載置台18との間には、ウエハWにプラズマ処理を行うための空間Sが画成されている。
上部電極30は、絶縁性遮蔽部材32を介して、処理容器12の上部に支持されている。上部電極30は、表層部34及び電極本体36を含み得る。表層部34は、空間Sに面しており、複数のガス吐出孔34aを画成している。この表層部34は、本実施形態では、酸化シリコンから構成されている。
電極本体36は、表層部34を支持しており、例えばアルミニウムといった導電性材料から構成されている。この電極本体36は、水冷構造を有し得る。電極本体36の内部には、ガス拡散室36aが設けられている。このガス拡散室36aからは、ガス吐出孔34aに連通する複数のガス通流孔36bが下方に延びている。また、電極本体36には、ガス拡散室36aに処理ガスを導くガス導入口36cが形成されており、このガス導入口36cには、ガス供給管38が接続されている。ガス供給管38には、バルブ群42及び流量制御器群44を介して、ガスソース群40が接続されている。
ガスソース群40、バルブ群42、及び流量制御器群44を含むガス供給部GSは、金属層のエッチング用のガス、希ガス、酸素ガス(Oガス)、及び、フッ素を含有するガスを選択的に供給することができる。金属層のエッチング用のガスは、水素、希ガス、及び炭化水素を含み、一例においては、Hガス、Arガス、及び、CHガスを含み得る。また、希ガスは、Arガスであり得る。また、フッ素を含有するガスは、NFガスであり得る。なお、フッ素を含有するガスは、NFガスに加えて、Arガスを更に含み得る。
プラズマ処理装置10は、接地導体12aを更に備え得る。接地導体12aは、略円筒状をなしており、処理容器12の側壁から上部電極30の高さ方向の位置よりも上方に延びるように設けられている。
また、プラズマ処理装置10では、処理容器12の内壁に沿って遮蔽部46が着脱自在に設けられている。遮蔽部46は、支持部14の外周にも設けられている。遮蔽部46は、アルミニウム在にY等のセラミックスを被覆することにより構成され得る。
支持部14と処理容器12の内壁との間には、排気プレート48が設けられている。排気プレート48は、例えば、アルミニウム材にY等のセラミックスを被覆することにより構成され得る。この排気プレート48の下方には、排気口12eが設けられている。排気口12eには、排気管52を介して排気装置50が接続されている。排気装置50は、ターボ分子ポンプなどの真空ポンプを有しており、処理容器12内の空間Sを所望の真空度まで減圧することができる。また、処理容器12の側壁にはウエハWの搬入出口12gが設けられており、この搬入出口12gはゲートバルブ54により開閉可能となっている。
また、プラズマ処理装置10は、高周波電源HFG、整合器MU1、高周波電源LFG、整合器MU2、及び、電源制御部PCを更に備え得る。高周波電源HFGは、プラズマ生成用の第1の高周波電力を発生する。第1の高周波電力の周波数は、例えば、27MHz〜100MHzの範囲内の周波数であり、一例においては、60MHzの周波数である。この高周波電源HFGは、整合器MU1を介して、上部電極30に接続されている。
高周波電源LFGは、イオン引き込み用の第2の高周波電力、即ち、高周波バイアス電力を発生する。第2の高周波電力の周波数は、400kHz〜13.56MHzの範囲内の周波数であり、一例においては、400kHzである。高周波電源LFGは、整合器MU2を介して下部電極LEに接続されている。
高周波電源HFG、整合器MU1、高周波電源LFG、及び整合器MU2は、電源制御部PCに接続されている。電源制御部PCは、第1の高周波電力及び第2の高周波電力それぞれの大きさ及び周波数、並びに、整合器MU1及び整合器MU2にインピーダンスマッチング動作を制御する。
また、プラズマ処理装置10は、制御部Cntを更に備え得る。この制御部Cntは、プロセッサ、記憶部、入力装置、表示装置等を備えるコンピュータであり、プラズマ処理装置10の各部、例えば電源系やガス供給系、駆動系、及び電源システムPS等を、制御する。この制御部Cntでは、入力装置を用いて、オペレータがプラズマ処理装置10を管理するためにコマンドの入力操作等を行うことができ、また、表示装置により、プラズマ処理装置10の稼働状況を可視化して表示することができる。さらに、制御部Cntの記憶部には、プラズマ処理装置10で実行される各種処理をプロセッサにより制御するための制御プログラムや、処理条件に応じてプラズマ処理装置10の各構成部に処理を実行させるためのプログラム、即ち、処理レシピが格納される。
以下、再び図1を参照して、クリーニング方法MT1について説明する。クリーニング方法MT1に関する以下の説明は、金属層であるPtMn層をプラズマ処理装置10を用いてエッチングした後に、当該プラズマ処理装置10の内面のクリーニングのためにクリーニング方法MT1を適用する例に関している。また、以下の説明においては、図4〜図9を適宜参照する。図4〜図9は、クリーニング方法MT1の各工程後のプラズマ処理装置10の状態を示す拡大断面図である。
クリーニング方法MT1の実施前には、プラズマ処理装置10において金属層のエッチングが行われる。金属層のエッチングでは、水素、希ガス、及び炭化水素を含むガス、例えば、Hガス、Arガス、及び、CHガスのプラズマが処理容器12内において生成される。このプラズマ中のイオンが金属層に衝突することによって、金属層のエッチングが行われる。なお、CHガスは主として、保護膜の形成のために用いられる。保護膜は、金属層のエッチングによって形成される形状の垂直性を確保するために、当該形状の側面上に形成される。
上述の金属層のエッチングにより、金属層中の金属、本例ではPtMnが、金属層から削り取られる。削り取られた金属は、ウエハWの近傍に発生するシース電界により当該金属に運動エネルギーが与えられる結果、上部電極30に向けて移動する。これにより、上部電極30の表層部34の表面に金属層中の金属が付着し、上部電極30の表層部34上に第1の堆積物(金属堆積物)DP1が形成される。なお、図4においては、第1の堆積物DP1は、一様な厚みを有するように描かれているが、第1の堆積物DP1の厚みは位置によって異なり、表層部34が部分的に空間Sに対して露出していることもある。
また、図4に示すように、処理容器12の側壁に対面する下部構造LSの面上、及び、遮蔽部46の表面上には炭素を含有する堆積物DPCが形成される。この堆積物DPCは、上述のCHガスに起因するものである。クリーニング方法MT1では、第1の堆積物DP1及び堆積物DPCが除去される。そのため、クリーニング方法MT1では、まず、ウエハWが搬出され、図4に示すように、ダミーウエハDWが載置台18上に載置される。ダミーウエハDWは、シリコン基板であり得る。
そして、クリーニング方法MT1では、工程ST11が行われる。工程ST11では、処理容器12内において酸素を含有するガスのプラズマが生成される。この工程ST11により、図5に示すように、炭素を含有する堆積物DPCが除去される。なお、金属層が、イオン化傾向の大きい金属、即ち比較的反応し易い金属から構成されている場合には、この工程ST11は、後述する複数のサイクルC1の実行後に行われてもよい。イオン化傾向の大きい金属としては、例えば、Cu、Co、Fe、及びMgのうち少なくとも一種を含む金属が例示される。
次いで、クリーニング方法MT1では、複数のサイクルC1が繰り返して行われる。各サイクルC1は、工程ST12、工程ST13、及び工程ST14を含む。工程ST12では、第1の堆積物DP1に対するイオンスパッタリングが行われる。この工程ST12では、処理容器12内において希ガスのプラズマが生成される。希ガスとしては、Arガスが例示される。また、工程ST12では、希ガス原子のイオンを上部電極30に向けて加速するよう、上部電極に供給する第1の高周波電力、及び、下部電極LEに与える第2の高周波電力、即ち高周波バイアス電力が設定される。具体的には、工程ST12では、第1の高周波電力が第2の高周波電力よりも大きくなるように設定される。一実施形態においては、工程ST12では、希ガスのプラズマに加えて、水素及び/又はヘリウムを含むガス、例えばHガス及び/又はHeガスのプラズマが生成されてもよい。かかるガスのプラズマによれば、堆積物の結合距離よりも十分に小さい元素を堆積物の結合中に取り込むことができ、第1の堆積物DP1の結合状態を変化させることができ、その結果、第1の堆積物DP1の表面状態を改質することができる。これにより、第1の堆積物DP1がより除去し易い状態となる。
工程ST12では、希ガス原子のイオンが第1の堆積物DP1に衝突する。これにより、第1の堆積物DP1を構成する金属、本例ではPtMnが当該第1の堆積物DP1から削り取られる。また、工程ST12では、表層部34を構成する酸化シリコンも削られる。第1の堆積物DP1から削り取られた金属、及び、表層部34から削り取られた酸化シリコンは、下部構造LSの表面に付着する。これにより、図6に示すように、下部構造LS上に第2の堆積物DP2が形成される。
第2の堆積物DP2は、下部構造LSに近い位置ほど金属を多く含有し、下部構造LSから離れるほど酸化シリコンを多く含有する。例えば、図6に示すように、第2の堆積物DP2は、第1層LY1及び第2層LY2を含む多層膜となる。第1層LY1は、下部構造LS上に堆積した層であり、主として金属、本例ではPtMnを含む。また、第2層LY2は、第1層LY1上に形成されており、主として酸化シリコンを含む。なお、第2の堆積物DP2は、図6に示すように二つの層に分離された多層膜でないこともあり、例えば、金属と酸化シリコンが混合した状態を有する膜となることもあり、また、金属と酸化シリコンの含有量が膜厚方向において変化する膜となることもある。また、第1の堆積物DP1は上部電極30の表層部34の中心部に多く堆積する。これは、上部電極30の表層部34の中心部に近づくほどエッチング反応生成物がエッチング中に排気され難いからである。また、上部電極30の表層部34の中心部よりも外側の外周部では、エッチング反応生成物が、排気されるエッチング反応生成物と第1の堆積物DP1を形成するエッチング反応生成物とに分かれるので、上部電極30の表層部34の外周部では第1の堆積物DP1が薄くなるからである。
次いで、クリーニング方法MT1では、工程ST13が行われる。工程ST13では、第2の堆積物DP2が除去される。具体的には、クリーニング方法MT1の工程ST13は、工程ST131及び工程ST132を含んでいる。
工程ST131では、第2の堆積物DP2中の酸化シリコンを除去するための処理が行われる。具体的には、処理容器12内でフッ素を含有するガスのプラズマが生成される。フッ素を含有するガスは、例えば、NFガスを含む。また、このガスは、更に、Arガスといった希ガスを含んでいてもよい。この工程ST131により、図7に示すように、第2の堆積物DP2中の酸化シリコンが除去される。なお、図7では、酸化シリコンを主として含む第2層LY2が除去され、金属を主として含む第1層LY1が残された状態が示されている。
次いで、工程ST132では、第2の堆積物DP2中の金属、本例ではPtMnを除去するための処理が行われる。この工程ST132では、第2の堆積物DP2中の金属に対するイオンスパッタリングが行われる。この工程ST132では、処理容器12内において希ガスのプラズマが生成される。希ガスとしては、Arガスが例示される。また、工程ST132では、希ガス原子のイオンを下部構造LSに向けて加速するよう、上部電極に供給する第1の高周波電力、及び、下部電極LEに与える第2の高周波電力、即ち高周波バイアス電力が設定される。具体的には、工程ST132では、第2の高周波電力が第1の高周波電力よりも大きくなるように設定される。これにより、希ガス原子のイオンが下部構造LSに向けて加速される。
工程ST132では、希ガス原子のイオンが第2の堆積物DP2に衝突する。これにより、図8に示すように、第2の堆積物DP2を構成する金属、本例ではPtMnが当該第2の堆積物DP2から削り取られ、下部構造LS上の第2の堆積物DP2が少なくとも部分的に除去される。
工程ST13では、上述したように、第2の堆積物DP2中の金属及び酸化シリコンが削り取られる。さらに、工程ST13では、ダミーウエハDW中のシリコンも削られることがある。第2の堆積物DP2又はダミーウエハDWから削り取られた物質は、ガス排気方向へ移動してプラズマ空間を抜け出た場合に排気される。しかし、プラズマ空間の境界より遠い場所に存在する物質、例えばダミーウエハDWから削り取られた物質は、プラズマ空間を抜ける前に上部電極30に向けて加速され得る。したがって、工程ST13において削り取られた物質の一部は、上部電極30の表面に再付着する。即ち、工程ST13の実行後には、図8に示すように、金属、酸化シリコン、及びシリコンが、上部電極30の表層部34の表面、又は、先の工程ST11の実行後に残された第1の堆積物DP1の表面に付着する。これにより、第3の堆積物DP3が形成される。
クリーニング方法MT1では、次いで、第3の堆積物DP3を除去する工程ST14が行われる。この工程ST14では、処理容器12内においてフッ素を含有するガスのプラズマが生成される。フッ素を含有するガスは、例えば、NFガスを含む。また、このガスは、更に、Arガスといった希ガスを含んでいてもよい。この工程ST14により、図9に示すように、第3の堆積物DP3が除去される。
クリーニング方法MT1では、次いで、工程ST15において終了条件が満たされるか否かが判定される。この終了条件は、サイクルC1の繰り返しの終了を判定するための条件であり、例えば、サイクルC1が所定回数実行されたことが終了条件となる。或いは、終点検出技術によってサイクルC1の終了が判定されてもよい。
工程ST15において終了条件が満たされていないと判定されると、再びサイクルC1が実行される。一方、工程ST15において終了条件が満たされるものと判定されると、クリーニング方法MT1の全工程が終了する。このクリーニング方法MT1によれば、サイクルC1を複数回繰り返すことにより、金属を含有し、上部電極30に形成された第1の堆積物DP1を徐々にプラズマ空間から抜け出させることで、第1の堆積物DP1を処理容器12内から除去することが可能となる。即ち、クリーニング方法MT1によれば、第1の堆積物DP1に対するイオンスパッタリングと、当該イオンスパッタリングによって生じる第2の堆積物DP2との除去とを繰り返すことにより、第1の堆積物DP1を処理容器12内から除去することが可能となる。
以下、クリーニング方法MT1の評価のためにプラズマ処理装置10を用いて行った実験例について説明する。
(実験例1及び実験例2)
実験例1及び実験例2において、プラズマ処理装置10を用い、上部電極30の表面にシリコン製のチップ、即ち小片を貼り付けた状態で、PtMn層のエッチングを行った。PtMn層のエッチングでは、プラズマ処理装置10の処理容器12内において、Hガス、Arガス、及び、CHガスのプラズマを生成した。その後、実験例1においては、クリーニング方法MT1を実行した。実験例1におけるクリーニング方法MT1の各工程の条件は以下の通りであり、実験例1ではサイクルC1を5回実行した。一方、実験例2では、PtMn層のエッチング後、クリーニング方法MT1を実施しなかった。
<工程ST11>
処理容器内圧力:30mTorr(4Pa)
ガス:500sccm
第1の高周波電力:1000W
第2の高周波電力:500W
処理時間:45秒
<工程ST12>
処理容器内圧力:15mTorr(2Pa)
Arガス:300sccm
第1の高周波電力:1000W
第2の高周波電力:200W
処理時間:12秒
<工程ST131>
処理容器内圧力:15mTorr(2Pa)
NFガス:120sccm
Arガス:100sccm
第1の高周波電力:1000W
第2の高周波電力:200W
処理時間:7秒
<工程ST132>
処理容器内圧力:15mTorr(2Pa)
Arガス:300sccm
第1の高周波電力:600W
第2の高周波電力:1000W
処理時間:15秒
<工程ST14>
処理容器内圧力:15mTorr(2Pa)
NFガス:120sccm
Arガス:100sccm
第1の高周波電力:600W
第2の高周波電力:100W
処理時間:6秒
実験例1及び実験例2のそれぞれにおいて、処理後のチップの組成をXPSによって確認した。図10は、実験例1及び実験例2の結果を示す図である。図10の(a)には、実験例1のチップの組成を示すグラフが示されており、図10の(b)には、実験例2のチップの組成を示すグラフが示されている。図10に示すグラフにおいて、横軸は、チップ又は堆積物の表面からの深さ(単位:nm)を示している。横軸の深さは、SiO熱酸化膜の深さに換算した深さである。また、図10に示すグラフにおいて、縦軸は原子濃度(at%)を示している。図10の(b)に示すように、実験例2の処理後のチップに関しては、深さ方向において浅い領域にPt及びMnが多く検出されている。即ち、PtMn層のエッチングにより、上部電極30の表面には、PtMnを含む第1の堆積物が形成されることが確認された。また、図10の(a)に示すように、PtMn層のエッチング後にクリーニング方法MT1を実施すると、Pt及びMnがチップの表面から略除去されていることが確認された。具体的には、実験例1の処理後のチップの組成と実験例2の処理後のチップの組成を比較すると、クリーニング方法MT1を実施することで、Pt及びMnの双方が約90%除去されることが確認された。
(実験例3及び実験例4)
実験例3では、PtMn層のエッチング後に、クリーニング方法MT1を実施し、下記のチャンバーコンディションチェック条件(CCC条件)のエッチングを行った。実験例4では、PtMn層のエッチング後に、クリーニング方法MT1を実施せず、実験例3と同様のCCC条件のエッチングを行った。なお、クリーニング方法MT1の各工程の条件は、実験例1と同様である。
<CCC条件>
処理容器内圧力:15mTorr(2Pa)
ガス:300sccm
ガス:100sccm
第1の高周波電力:600W
第2の高周波電力:100W
処理時間:60秒
エッチング対象:フォトレジスト膜(ArFレジスト膜を有するウエハ)
そして、実験例3及び実験例4の双方のCCC条件のエッチングレートを求めた。なお、CCC条件のエッチングは、化学反応でエッチング可能な金属膜(フッ素を含むガスのプラズマでエッチング可能な金属膜、例えばTa膜等)の処理条件のエッチングと同様に、金属堆積物(イオン化傾向の小さい金属、例えばPt等)による容量成分の発生とエッチャント消費に伴いエッチングレートの低下を示し、また、金属堆積物の除去によりエッチングレートの回復を示す。したがって、CCC条件のエッチングは、金属膜(例えば、Ta膜)のエッチングと相関を有する。よって、実験例3及び実験例4では、PtMn層のエッチング後のクリーニング方法MT1の実施の有無を異ならせてCCC条件のエッチングを行うことにより、クリーニング方法MT1の実施によるエッチングレートの回復効果を確認した。
図11に、実験例3及び実験例4の双方において求めたCCC条件のエッチングレートを示す。図11に示すグラフにおいて、横軸はPtMn層を有するウエハの直径上での位置を示しており、ウエハの中心位置は「0」である。また、図11に示すグラフにおいて、縦軸はエッチングレートを示している。また、図11に示すグラフでは、PtMn層のエッチングレートを行う前のCCC条件のエッチングレートが基準として示されており、基準のエッチングレートは「1」に規格化されている。また、図11に示すグラフでは、基準のエッチングレートよって規格化された実験例3及び実験例4のエッチングレートが示されている。図11に示すように、PtMn層のエッチング後にクリーニング方法MT1を実行しなかった場合、即ち、実験例4では、CCC条件のエッチングレートが大きく低下していた。一方、PtMn層のエッチング後にクリーニング方法MT1を実施した場合、即ち、実験例3では、CCC条件のエッチングレートが、基準のエッチングレートと略同等のエッチングレートであった。したがって、クリーニング方法MT1によれば、PtMn層のエッチングによって生じる堆積物を除去して、プラズマ処理装置10のコンディションを回復させることが可能であることが確認された。
以下、別の実施形態について説明する。図12は、別の実施形態に係るクリーニング方法を示す流れ図である。図12に示すクリーニング方法MT2では、サイクルC2の繰り返しにより、上部電極上に形成された堆積物を除去する。
図13は、容量結合型の平行平板プラズマ処理装置の別の実施形態を示す図である。クリーニング方法MT2は、図13に示すプラズマ処理装置10Aのクリーニングに適用することが可能である。プラズマ処理装置10Aは、上部電極30が表層部34に代えて表層部34Aを有する点において、プラズマ処理装置10と異なっている。具体的には、表層部34Aは、シリコンから構成されている。
また、プラズマ処理装置10Aは、上部電極30に直流電源60が接続されている点において、プラズマ処理装置10と異なっている。直流電源60は、負の直流電圧を上部電極30に印加する。直流電源60は、電源制御部PCに接続されており、直流電源60が直流電圧を上部電極30に印加するタイミング、及び当該直流電圧の絶対値は電源制御部PCにより制御される。
以下、再び図12を参照して、クリーニング方法MT2について説明する。クリーニング方法MT2に関する以下の説明は、金属層であるCu層をプラズマ処理装置10Aを用いてエッチングした後に、当該プラズマ処理装置10Aのクリーニングのためにクリーニング方法MT2を適用する例に関している。また、以下の説明においては、図14〜図16を適宜参照する。図14〜図16は、クリーニング方法MT2の各工程後のプラズマ処理装置10Aの状態を示す拡大断面図である。
クリーニング方法MT2の適用前には、プラズマ処理装置10AにおいてウエハWの金属層のエッチングが行われる。金属層のエッチングでは、水素、希ガス、及び炭化水素を含むガスのプラズマ、例えば、Hガス、Arガス、及び、CHガスのプラズマが処理容器12内において生成される。このプラズマ中のイオンが金属層に衝突することによって、金属層のエッチングが行われる。
図14に示すように、金属層のエッチングにより、金属層中の金属、本例ではCuが、金属層から削り取られる。削り取られた金属は、上部電極30と下部電極LEとの間に形成されたシース電界により、上部電極30に向けて移動する。これにより、上部電極30の表層部34Aの表面に金属層中の金属が付着し、上部電極30の表層部34A上に第1の堆積物DP11が形成される。また、図14に示すように、下部構造LSの処理容器12の側壁側の面上、及び、遮蔽部46の表面上には炭素を含有する堆積物DPCが形成される。クリーニング方法MT2では、第1の堆積物DP11及び堆積物DPCが除去される。そのため、クリーニング方法MT2では、ウエハWが搬出され、図14に示すように、ダミーウエハDWが載置台18上に載置される。ダミーウエハDWは、シリコン基板であり得る。
次いで、クリーニング方法MT2では、複数のサイクルC2が繰り返して実行される。各サイクルC2は、工程ST21及び工程ST22を含む。工程ST21では、第1の堆積物DP11に対するイオンスパッタリングが行われる。工程ST21のイオンスパッタリングは、クリーニング方法MT1の工程ST12のイオンスパッタリングと同様である。具体的には、工程ST21では、処理容器12内において希ガスのプラズマが生成される。希ガスとしては、Arガスが例示される。また、工程ST21では、希ガス原子のイオンを上部電極30に向けて加速するよう、上部電極に供給する第1の高周波電力、及び、下部電極LEに与える第2の高周波電力、即ち高周波バイアス電力が設定される。また、一実施形態においては、工程ST21では、希ガスのプラズマに加えて、水素を含むガス、例えばHガスのプラズマが生成されてもよい。また、一実施形態においては、工程ST21において、直流電源60によって負の直流電圧が上部電極30に印加されてもよい。負の直流電圧を上部電極30に印加すると、上部電極30に向かうイオンの速度を高めることができ、第1の堆積物DP11の除去に要する時間を短縮することができる。
工程ST21では、希ガス原子のイオンが第1の堆積物DP11に衝突する。これにより、第1の堆積物DP11を構成する金属、本例ではCuが当該第1の堆積物DP11から削り取られる。一実施形態においては、1回のサイクル中の工程ST21では、第1の堆積物DP11の総厚に対して一部の厚みに相当する部分が当該第1の堆積物DP11の表面から削り取られる。削り取られた金属は、下部構造LSの表面に付着する。これにより、図15に示すように、下部構造LS上に第2の堆積物DP12が形成される。
次いで、クリーニング方法MT2では、工程ST22が行われる。工程ST22では、第2の堆積物DP12が除去される。具体的には、処理容器12内でフッ素を含有するガスのプラズマが生成される。フッ素を含有するガスは、例えば、NFガスを含む。また、このガスは、更に、Hガスを含んでいてもよい。この工程ST22により、図16に示すように、第2の堆積物DP2が除去される。
クリーニング方法MT2では、かかる工程ST21及び工程ST22を含むサイクルC2を複数回繰り返すことにより、第1の堆積物DP11を除去することができる。図17は、クリーニング方法MT2の実施中の第1の堆積物DP11の膜厚及び第2の堆積物DP12の膜厚を示すタイミングチャートである。図17の(a)及び(b)に示すタイミングチャートにおいて縦軸は、第1の堆積物DP11の膜厚又は第2の堆積物DP12の膜厚を示している。
図17の(a)は、金属層のエッチングに起因して上部電極30の表層部34Aに付着した第1の堆積物DP11を工程ST21により全て除去した後に、工程ST22により下部構造上に形成された第2の堆積物DP12を除去する場合を示している。図17の(a)に示すように、1回のサイクルC2中の工程ST21において初期の第1の堆積物DP11を完全に除去すると、工程ST21において表層部34Aが露出する。表層部34Aが露出すると、工程ST21又は後続の工程ST22において、表層部34Aが損傷する。即ち、上部電極30の表層部34Aがエッチングされる。図17の(a)では、第1の堆積物DP11の膜厚が負の値となっていることが、表層部34Aが損傷していること、即ちエッチングされていることを示している。また、1回のサイクルC2中の工程ST21において第1の堆積物DP11を完全に除去すると、第2の堆積物DP12の膜厚が大きくなり、当該第2の堆積物DP12の除去ができないか、或いは、その除去に相当の時間を要することとなる。
一方、クリーニング方法MT2では、図17の(b)に示すように、1回のサイクルC2では、初期の第1の堆積物DP11の総厚に対して一部の厚みに相当する部分が当該第1の堆積物DP11の表面から削り取られる。これにより、表層部34Aの損傷を抑制することができ、且つ、1回のサイクルC2において第2の堆積物DP12の除去に要する時間を短縮することができる。なお、1回のサイクルC2において第1の堆積物DP11を削る量は、工程ST21の処理時間を調整することにより、調整することができる。
再び図12を参照すると、クリーニング方法MT2では、工程ST23において、終了条件が満たされるか否かが判定される。この終了条件は、サイクルC2の繰り返しの終了を判定するための条件であり、例えば、サイクルC2が所定回数実行されたことが終了条件となる。或いは、終点検出技術によってサイクルC2の終了が判定されてもよい。
工程ST23において終了条件が満たされていないと判定されると、再びサイクルC2が実行される。一方、工程ST23において終了条件が満たされるものと判定されると、工程ST24が行われる。
工程ST24では、処理容器12内において酸素を含有するガスのプラズマが生成される。この工程ST24により、炭素を含有する堆積物DPCが除去される。工程ST24が終了すると、クリーニング方法MT2の全工程が終了する。
このクリーニング方法MT2では、サイクルC2を複数回繰り返すことにより、金属を含有し、上部電極30に形成された第1の堆積物DP11を処理容器12内から除去することが可能となる。また、酸素を含有するガスのプラズマを生成する工程ST24が複数のサイクルC2の実行後に、行われる。したがって、第1の堆積物DP11に含まれる金属が大きいイオン化傾向を有する金属、即ち、酸化し易い金属であっても、当該金属を酸化させる前に第1の堆積物DP11を除去することが可能となる。なお、クリーニング方法MT2によって除去し得る金属、即ち、大きいイオン化傾向を有する金属としては、例えば、Cuが例示される。また、当該金属としては、Co、Fe、及びMgが例示される。
以下、クリーニング方法MT2の評価のためにプラズマ処理装置10Aを用いて行った実験について説明する。この実験例では、プラズマ処理装置10Aの処理容器12内においてHガス、Arガス、及び、CHガスのプラズマを生成し、Cu層のエッチングを行った。その後、クリーニング方法MT2のサイクルC2を複数回実行した。サイクルC2の各工程の条件は以下の通りであった。なお、工程ST21及び工程ST22の双方において、同じ大きさの第1の高周波電力、及び同じ大きさの第2の高周波電力を用いた。これは、工程ST21の第2の高周波電力よりも大きい第2の高周波電力を工程ST22において用いることで下部構造の部品の消耗が過度に発生することを防止するためであった。また、工程ST22では、フッ素を含むガスに水素を含むガスを混合させた。これは、フッ素を含むガスにより第2の堆積物DP12よりもシリコンから構成された部材が優先的にエッチングされることを防止し、第2の堆積物DP12を効率的に除去するためであった。
<工程ST21>
処理容器内圧力:10mTorr(1.333Pa)
Arガス:125sccm
ガス:125sccm
第1の高周波電力:1500W
第2の高周波電力:400W
処理時間:10秒
<工程ST22>
処理容器内圧力:30mTorr(4Pa)
NFガス:200sccm
ガス:100sccm
第1の高周波電力:1500W
第2の高周波電力:400W
処理時間:5秒
そして、複数回のサイクルC2の実行中に処理容器12内の波長252nmの発光の強度を観察した。波長252nmは、Siの発光波長である。図18は、観察した発光強度の経時変化を示すグラフである。図18のグラフには、30秒の移動平均により平滑化した発光強度の経時変化が示されており、横軸は時間を示しており、縦軸は発光強度を示している。この実験例により、図18に示すように、複数回のサイクルC2を実行することで、Siの発光強度が序々に増加していることが確認された。即ち、実験例により、第1の堆積物DP11が序々に除去され、最終的には表層部34Aが露出することが確認された。よって、クリーニング方法MT2の複数のサイクルC2を実行することにより、金属を含有する第1の堆積物DP11を除去することが可能であることが確認された。
10,10A…プラズマ処理装置、12…処理容器、LS…下部構造、18…載置台、LE…下部電極、ESC…静電チャック、30…上部電極、34,34A…表層部、HFG…高周波電源、LFG…高周波電源、60…直流電源、DP1,DP11…第1の堆積物、DP2,DP12…第2の堆積物、DP3…第3の堆積物、DW…ダミーウエハ。

Claims (15)

  1. プラズマ処理装置の処理容器内において下部構造の下部電極と上部電極の間で発生させたプラズマを用いて金属を含有する金属層をエッチングすることによって前記上部電極上に形成された堆積物を除去するためのクリーニング方法であって、
    前記上部電極上に形成された第1の堆積物にイオンを衝突させる工程と、
    前記イオンを衝突させる工程によって発生し前記下部構造上に形成された第2の堆積物を除去する工程と、
    を各々含む複数のサイクルを実行する、クリーニング方法。
  2. 前記第1の堆積物にイオンを衝突させる工程では、前記処理容器内において少なくとも希ガスを含むガスのプラズマを発生させて該プラズマ中のイオンを前記第1の堆積物に衝突させる、請求項1に記載のクリーニング方法。
  3. 前記第1の堆積物にイオンを衝突させる工程では、更に水素を含む前記ガスのプラズマが生成される、請求項2に記載のクリーニング方法。
  4. 前記上部電極は、前記プラズマが生成される空間に接する酸化シリコン製の部位を有しており、
    前記第2の堆積物は、金属及び酸化シリコンを含有し、
    前記第2の堆積物を除去する前記工程は、
    前記第2の堆積物に含まれる酸化シリコンを除去する工程と、
    前記第2の堆積物に含まれる金属にイオンを衝突させる工程と、
    を含み、
    前記複数のサイクルの各々は、前記第2の堆積物を除去する工程によって発生し前記上部電極上に形成された第3の堆積物を除去する工程を更に含む、
    請求項1〜3の何れか一項に記載のクリーニング方法。
  5. 前記酸化シリコンを除去する前記工程では、前記処理容器内においてフッ素を含有するガスのプラズマが生成される、請求項4に記載のクリーニング方法。
  6. 前記金属にイオンを衝突させる前記工程では、前記処理容器内において少なくとも希ガスのプラズマを発生させて該プラズマ中のイオンを前記第2の堆積物中の金属に衝突させる、請求項4又は5に記載のクリーニング方法。
  7. 前記第3の堆積物を除去する前記工程では、前記処理容器内においてフッ素を含有するガスのプラズマが生成される、請求項4〜6の何れか一項に記載のクリーニング方法。
  8. 前記金属層は、Pt、Ru、Au、Rh、Pd、Os、及びIrのうち少なくとも一種を含有する、請求項4〜7の何れか一項に記載のクリーニング方法。
  9. 前記金属層は、PtMnを含有する、請求項8に記載のクリーニング方法。
  10. 前記金属層は、水素、希ガス、及び炭化水素を含むガスのプラズマによってエッチングされ、
    前記処理容器内において酸素を含有するガスのプラズマを生成する工程を更に含む、
    請求項8又は9に記載のクリーニング方法。
  11. 前記金属層は、Cu、Co、Fe、及びMgのうち少なくとも一種を含有する、請求項4〜7の何れか一項に記載のクリーニング方法。
  12. 前記金属層は、水素、希ガス、及び炭化水素を含むガスのプラズマによってエッチングされ、
    前記処理容器内において酸素を含有するガスのプラズマを生成する工程を更に含み、
    前記酸素を含有するガスのプラズマを生成する工程は、前記複数のサイクルの実行後に行われる、
    請求項11に記載のクリーニング方法。
  13. 前記上部電極は、前記プラズマが生成される空間に接するシリコン製の部位を有しており、
    前記第2の堆積物を除去する工程では、前記処理容器内においてフッ素及び水素を含有するガスのプラズマが生成される、請求項1〜3の何れか一項に記載のクリーニング方法。
  14. 前記金属層は、Cuを含有する請求項13に記載のクリーニング方法。
  15. 前記金属層は、水素、希ガス、及び炭化水素を含むガスのプラズマによってエッチングされ、
    前記処理容器内において酸素を含有するガスのプラズマを生成する工程を更に含み、
    前記酸素を含有するガスのプラズマを生成する前記工程は、前記複数のサイクルの実行後に行われる、請求項14に記載のクリーニング方法。
JP2014040524A 2014-03-03 2014-03-03 プラズマ処理装置のクリーニング方法 Active JP6285213B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014040524A JP6285213B2 (ja) 2014-03-03 2014-03-03 プラズマ処理装置のクリーニング方法
US14/635,978 US10053773B2 (en) 2014-03-03 2015-03-02 Method of cleaning plasma processing apparatus
KR1020150029010A KR102326635B1 (ko) 2014-03-03 2015-03-02 플라즈마 처리 장치의 클리닝 방법
EP15157130.4A EP2916344B1 (en) 2014-03-03 2015-03-02 Method of cleaning a plasma processing apparatus
US16/043,375 US10975468B2 (en) 2014-03-03 2018-07-24 Method of cleaning plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040524A JP6285213B2 (ja) 2014-03-03 2014-03-03 プラズマ処理装置のクリーニング方法

Publications (2)

Publication Number Publication Date
JP2015167155A true JP2015167155A (ja) 2015-09-24
JP6285213B2 JP6285213B2 (ja) 2018-02-28

Family

ID=52686100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040524A Active JP6285213B2 (ja) 2014-03-03 2014-03-03 プラズマ処理装置のクリーニング方法

Country Status (4)

Country Link
US (2) US10053773B2 (ja)
EP (1) EP2916344B1 (ja)
JP (1) JP6285213B2 (ja)
KR (1) KR102326635B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213193A1 (ja) * 2016-06-10 2017-12-14 東京エレクトロン株式会社 銅層をエッチングする方法
JP2017224797A (ja) * 2016-06-10 2017-12-21 東京エレクトロン株式会社 銅層をエッチングする方法
JP2019502269A (ja) * 2016-01-13 2019-01-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated エッチングハードウェアに対する水素プラズマベース洗浄処理

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285213B2 (ja) * 2014-03-03 2018-02-28 東京エレクトロン株式会社 プラズマ処理装置のクリーニング方法
US9595448B2 (en) * 2015-06-29 2017-03-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method for cleaning plasma processing chamber and substrate
JP6779165B2 (ja) * 2017-03-29 2020-11-04 東京エレクトロン株式会社 金属汚染防止方法及び成膜装置
US10784091B2 (en) * 2017-09-29 2020-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Process and related device for removing by-product on semiconductor processing chamber sidewalls
US11932938B2 (en) 2019-08-01 2024-03-19 Applied Materials, Inc. Corrosion resistant film on a chamber component and methods of depositing thereof
US20230064100A1 (en) * 2021-09-01 2023-03-02 Applied Materials, Inc. Process and apparatus to remove metal-containing films from a chamber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822980A (ja) * 1994-07-06 1996-01-23 Nissin Electric Co Ltd プラズマ処理装置
JPH10233388A (ja) * 1997-02-20 1998-09-02 Hitachi Ltd プラズマクリーニング方法
US20040103914A1 (en) * 2002-12-02 2004-06-03 Au Optronics Corp. Method for cleaning a plasma chamber
JP2006237432A (ja) * 2005-02-28 2006-09-07 Hitachi High-Technologies Corp エッチング装置のクリーニング方法
JP2010050310A (ja) * 2008-08-22 2010-03-04 Fujitsu Microelectronics Ltd 半導体装置の製造方法
JP2011054825A (ja) * 2009-09-03 2011-03-17 Tokyo Electron Ltd チャンバ内クリーニング方法
JP2013089857A (ja) * 2011-10-20 2013-05-13 Tokyo Electron Ltd 金属膜のドライエッチング方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158644A (en) * 1986-12-19 1992-10-27 Applied Materials, Inc. Reactor chamber self-cleaning process
JPH02149668A (ja) * 1988-11-30 1990-06-08 Sumitomo Heavy Ind Ltd 薄膜作成装置
KR100293830B1 (ko) * 1992-06-22 2001-09-17 리차드 에이치. 로브그렌 플라즈마 처리 쳄버내의 잔류물 제거를 위한 플라즈마 정결방법
JPH09129623A (ja) 1996-11-05 1997-05-16 Hitachi Ltd プラズマエッチング方法
US6553332B2 (en) * 1999-12-22 2003-04-22 Texas Instruments Incorporated Method for evaluating process chambers used for semiconductor manufacturing
TW457546B (en) 2000-10-16 2001-10-01 Lam Res Co Ltd Method of cleaning metal etching reaction chamber
US6545245B2 (en) 2001-05-02 2003-04-08 United Microelectronics Corp. Method for dry cleaning metal etching chamber
KR100785443B1 (ko) * 2006-08-11 2007-12-13 삼성전자주식회사 반도체 제조용 챔버의 세정 장치 및 세정 방법
US8784676B2 (en) 2012-02-03 2014-07-22 Lam Research Corporation Waferless auto conditioning
JP6285213B2 (ja) * 2014-03-03 2018-02-28 東京エレクトロン株式会社 プラズマ処理装置のクリーニング方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822980A (ja) * 1994-07-06 1996-01-23 Nissin Electric Co Ltd プラズマ処理装置
JPH10233388A (ja) * 1997-02-20 1998-09-02 Hitachi Ltd プラズマクリーニング方法
US20040103914A1 (en) * 2002-12-02 2004-06-03 Au Optronics Corp. Method for cleaning a plasma chamber
JP2006237432A (ja) * 2005-02-28 2006-09-07 Hitachi High-Technologies Corp エッチング装置のクリーニング方法
JP2010050310A (ja) * 2008-08-22 2010-03-04 Fujitsu Microelectronics Ltd 半導体装置の製造方法
JP2011054825A (ja) * 2009-09-03 2011-03-17 Tokyo Electron Ltd チャンバ内クリーニング方法
JP2013089857A (ja) * 2011-10-20 2013-05-13 Tokyo Electron Ltd 金属膜のドライエッチング方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019502269A (ja) * 2016-01-13 2019-01-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated エッチングハードウェアに対する水素プラズマベース洗浄処理
WO2017213193A1 (ja) * 2016-06-10 2017-12-14 東京エレクトロン株式会社 銅層をエッチングする方法
JP2017224797A (ja) * 2016-06-10 2017-12-21 東京エレクトロン株式会社 銅層をエッチングする方法

Also Published As

Publication number Publication date
US20150247235A1 (en) 2015-09-03
EP2916344A1 (en) 2015-09-09
US10975468B2 (en) 2021-04-13
US20180327901A1 (en) 2018-11-15
EP2916344B1 (en) 2019-06-12
JP6285213B2 (ja) 2018-02-28
KR102326635B1 (ko) 2021-11-15
US10053773B2 (en) 2018-08-21
KR20150103636A (ko) 2015-09-11

Similar Documents

Publication Publication Date Title
JP6285213B2 (ja) プラズマ処理装置のクリーニング方法
TWI529800B (zh) 高深寬比之介電層蝕刻方法與裝置
JP6315809B2 (ja) エッチング方法
JP6529357B2 (ja) エッチング方法
JP6438831B2 (ja) 有機膜をエッチングする方法
JP2010140944A (ja) プラズマエッチング装置及びプラズマクリーニング方法
JP2010062363A (ja) プラズマ処理方法およびレジストパターンの改質方法
JP5982223B2 (ja) プラズマ処理方法、及びプラズマ処理装置
JP6550278B2 (ja) エッチング方法
KR102496968B1 (ko) 에칭 방법
JP2012142495A (ja) プラズマエッチング方法及びプラズマエッチング装置
JP5064319B2 (ja) プラズマエッチング方法、制御プログラム及びコンピュータ記憶媒体
JP6504827B2 (ja) エッチング方法
JP4722725B2 (ja) 処理方法およびプラズマエッチング方法
JP6329839B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2020061534A (ja) プラズマ処理方法及びプラズマ処理装置
JP2019186501A (ja) エッチングする方法及びプラズマ処理装置
JP2007266466A (ja) プラズマエッチング方法、プラズマエッチング装置、コンピュータ記憶媒体及び処理レシピが記憶された記憶媒体
JP2019117876A (ja) エッチング方法
KR102612169B1 (ko) 다층막을 에칭하는 방법
JP2007116031A (ja) 半導体装置の製造方法、半導体装置の製造装置、制御プログラム及びコンピュータ記憶媒体
JP2006165246A (ja) プラズマエッチング方法
WO2020031731A1 (ja) プラズマ処理方法及びプラズマ処理装置
JP6745199B2 (ja) 銅層をエッチングする方法
TWI740961B (zh) 蝕刻銅層之方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180201

R150 Certificate of patent or registration of utility model

Ref document number: 6285213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250