JP2015099632A - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
JP2015099632A
JP2015099632A JP2012050001A JP2012050001A JP2015099632A JP 2015099632 A JP2015099632 A JP 2015099632A JP 2012050001 A JP2012050001 A JP 2012050001A JP 2012050001 A JP2012050001 A JP 2012050001A JP 2015099632 A JP2015099632 A JP 2015099632A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode layer
solid
conductive material
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012050001A
Other languages
English (en)
Inventor
剛司 林
Goji Hayashi
剛司 林
彰佑 伊藤
Akihiro Ito
彰佑 伊藤
充 吉岡
Mitsuru Yoshioka
充 吉岡
倍太 尾内
Yasuhiro Onouchi
倍太 尾内
武郎 石倉
Takero Ishikura
武郎 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012050001A priority Critical patent/JP2015099632A/ja
Priority to PCT/JP2013/056375 priority patent/WO2013133394A1/ja
Publication of JP2015099632A publication Critical patent/JP2015099632A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】少なくとも焼成により固体電解質層に接合された負極層を備え、その負極層が固体電解質を含まないで構成された全固体電池を提供する。【解決手段】全固体電池積層体10は、負極層12と、焼成により負極層12に接合された固体電解質層13とを備える。負極層12が、リチウムイオンを吸蔵および放出することが可能なイオン伝導材料と、電子伝導材料とからなる。負極層12において、イオン伝導材料による三次元ネットワークが形成されている。【選択図】図1

Description

本発明は、全固体電池に関する。
近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。
しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。
そこで、電池の安全性を高めるための一つの対策として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。このような全固体電池を焼成により製造する場合、一般的には正極層および負極層のそれぞれの電極層が電極活物質に加えて固体電解質を含むように構成される。
ところで、特開2007−5279号公報(以下、特許文献1という)には、不燃性の固体電解質を用いてすべての構成要素を固体で構成した全固体リチウム二次電池が提案されている。この全固体リチウム二次電池の実施形態として、固体電解質に、一般式Li1+XIII XTiIV 2-X(PO43(式中、MIIIは、Al、Y、Ga、InおよびLaからなる群より選ばれた少なくとも1種の金属イオンであり、Xは0≦X≦0.6を満たす)で表わされる化合物を用い、活物質に、一般式LiMPO4(式中、Mは、Mn、Fe、CoおよびNiからなる群より選ばれた少なくとも1種である)で表わされる化合物を用いた電池が開示されている。
また、特許文献1には、全固体電池の製造方法として、リン酸化合物を含む活物質と固体電解質とを、それぞれ、バインダおよび可塑剤を含む溶液中に分散させて、スラリーを作製し、これらのスラリーを成形して得られた活物質グリーンシートと固体電解質グリーンシートとを積層し、バインダおよび可塑剤を熱分解させて除去した後、焼成することによって、全固体電池の積層体を製造することが記載されている。
特開平5‐299101号公報(以下、特許文献2という)には、一般式Li1+(4n)xxTi2x(PO43(式中、Mは1価または2価の陽イオン、Mが1価の陽イオンのときn=1、Mが2価の陽イオンのときn=2、xは0.1〜0.5である)で表される粒状電解質が焼結されてなるリチウムイオン導電性の固体電解質と、この固体電解質を使用してなるリチウム電池が開示されている。なお、特許文献2には、実施例として固体電解質を含まない正極材料を用いて、たとえば、正極活物質としての二酸化マンガンと、導電剤としてのアセチレンブラックと、結着剤としてのフッ素樹脂との混合物を用いて、リチウム電池を作製したことが記載されている。
特開2007‐5279号公報 特開平5‐299101号公報
しかしながら、特許文献1には、焼成により全固体電池の積層体を製造することが記載されているが、上記の積層体をX線回折法により分析したときに、活物質層の構成成分および固体電解質層の構成成分以外の成分が検出されないことが言及されているだけで、電極層が固体電解質を含むのかどうかについては明らかにされていない。
また、特許文献2には、焼成物としての固体電解質層を用いたリチウム電池を作製したことが記載されているが、焼成により全固体電池の積層体を製造しておらず、正極材料が、固体電解質を含まないとしても、イオン伝導、電子伝導に寄与しない結着剤を含んでいる。このため、正極活物質同士の接触抵抗と、正極層と固体電解質層の接触抵抗が大きくなるので、内部抵抗が大きな電池になる。
そこで、本発明の目的は、少なくとも焼成により固体電解質層に接合された負極層を備え、その負極層が固体電解質を含まないで構成された全固体電池を提供することである。
本発明に従った全固体電池は、負極層と、焼成により負極層に接合された固体電解質層とを備える。負極層が、リチウムイオンを吸蔵および放出することが可能なイオン伝導材料と、電子伝導材料とからなる。負極層において、イオン伝導材料による三次元ネットワークが形成されている。三次元ネットワークは網目構造であることが好ましい。
本発明の全固体電池において、イオン伝導材料がニオブ酸化物を含み、電子伝導材料が炭素を含むことが好ましい。
また、本発明の全固体電池において、負極層の内部抵抗が1×104Ωcm2以下であることが好ましい。
さらに、本発明の全固体電池において、負極層が、イオン伝導材料を80質量%以上95質量%以下、電子伝導材料を5質量%以上20質量%以下、含むことが好ましい。
なお、イオン伝導材料が、Li32(PO43(化学式中、MはVおよびFeからなる群より選ばれた1種以上の元素を含む)で表わされるナシコン型構造を有するリチウム含有リン酸化合物、または、MOx(化学式中、MはTi、Si、Sn、Cr、Fe、および、Moからなる群より選ばれた1種以上を含む)で表わされる組成を有する酸化物を含んでもよい。
本発明によれば、イオン伝導材料と電子伝導材料とから負極層が構成されているので、リチウムイオンの吸蔵と放出に寄与する活物質の構成比率を最大限に高めることができ、電池容量を高めることができる。また、負極層においてイオン伝導材料による三次元ネットワークが形成されているので、十分なイオン伝導パスを確保することができる。
本発明の実施形態として全固体電池積層体の断面構造を模式的に示す断面図である。 本発明の一つの実施形態として全固体電池積層体を模式的に示す斜視図である。 本発明のもう一つの実施形態として全固体電池積層体を模式的に示す斜視図である。 実施例2、5および比較例1の全固体電池における放電挙動を示す図である。 実施例2の全固体電池のインピーダンスの測定結果を示す図である。
図1に示すように、本発明の全固体電池積層体10は、正極層11と固体電解質層13と負極層12とを備え、これらの層は焼成により接合されている。図2に示すように本発明の一つの実施形態として全固体電池積層体10は直方体形状に形成され、矩形の平面を有する複数の平板状層からなる積層体で構成される。また、図3に示すように本発明のもう一つの実施形態として全固体電池積層体10は円柱形状に形成され、複数の円板状層からなる積層体で構成される。なお、正極層11は固体電解質と正極活物質とを含み、固体電解質層13は固体電解質を含む。正極層11は、電子伝導材料として、炭素、金属、酸化物等を含んでもよい。
上記のように構成された全固体電池積層体10において、負極層12が、リチウムイオンを吸蔵および放出することが可能なイオン伝導材料と、電子伝導材料とから構成される。負極層12において、イオン伝導材料による三次元ネットワークが形成されている。
イオン伝導材料と電子伝導材料とから負極層12が構成されているので、リチウムイオンの吸蔵と放出に寄与する負極活物質の構成比率を最大限に高めることができ、電池容量を高めることができる。また、負極層12においてイオン伝導材料による三次元ネットワークが形成されているので、十分なイオン伝導パスを確保することができる。三次元ネットワークは一部の隣接するイオン伝導材料粒子が連続的に連結することによって形成される。具体的には、隣接するイオン伝導材料粒子が連続的に連結し網目構造を形成している。なお、還元分解される固体電解質が負極層12に含まれていないので、固体電解質の還元電位よりも低い電位の負極活物質を用いることができる。さらに、固体電解質が負極層12に含まれていないので、電子伝導経路から孤立したイオン伝導材料が存在しない。すなわち、固体電解質に覆われたイオン伝導材料が存在しない。そのため、イオン伝導材料の電極反応の効率を高めることが可能となる。
本発明の全固体電池積層体10において、イオン伝導材料がニオブ酸化物、たとえば、Nb25を含み、電子伝導材料が炭素を含むことが好ましい。イオン伝導材料がニオブ酸化物を含むことにより、イオン伝導材料による三次元ネットワークを容易に形成することができる。
また、本発明の全固体電池積層体10において、負極層12の内部抵抗が1×104Ωcm2以下であることが好ましい。この場合、負極層12においてイオン伝導材料による三次元ネットワークが形成されるとともに、内部抵抗が低いので、負極活物質の利用率が低下するのを抑制することができる。
さらに、本発明の全固体電池積層体10において、負極層12が、イオン伝導材料を80質量%以上95質量%以下、電子伝導材料を5質量%以上20質量%以下、含むことが好ましい。このように負極層12においてイオン伝導材料と電子伝導材料の構成比率を限定することにより、良好なイオン伝導パスと電子伝導パスをともに確保することができ、負極層12の内部抵抗をより低くすることができる。
なお、負極活物質が、Li32(PO43(化学式中、MはVおよびFeからなる群より選ばれた1種以上の元素を含む)で表わされるナシコン型構造を有するリチウム含有リン酸化合物、または、MOx(化学式中、MはTi、Si、Sn、Cr、Fe、および、Moからなる群より選ばれた1種以上を含む)で表わされる組成を有する酸化物を含んでもよい。上記の負極活物質に用いられるナシコン型構造を有するリチウム含有リン酸化合物、または酸化物としては、結晶相を含むもの、熱処理により結晶相を析出するガラス、または、熱処理により結晶相を合成できる前駆体を用いてもよい。
上記の固体電解質層13に含められる固体電解質、または、正極層11に含められる固体電解質としては、ナシコン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素を含む)で表わされ、たとえば、Li1.5Al0.5Ti1.5(PO43等である。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等の、ナシコン型構造を有するリチウム含有リン酸化合物の異なる組成を有する2つ以上の化合物を混合した混合物を用いてもよい。
また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含むもの、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。
なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素を混ぜたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造を有する化合物、Li、La、Zrを有するガーネット型構造を有する化合物、等を挙げることができる。
正極活物質としては、Li32(PO43等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54、Li4Ti512等のスピネル型構造を有するリチウム含有化合物を用いることができる。
本発明の全固体電池積層体10においては、固体電解質層13が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含む場合、正極層11が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。
上述のように構成された全固体電池積層体10を製造するために、本発明では、まず、正極層11および負極層12の未焼成体である未焼成電極層と、固体電解質層13の未焼成体である未焼成固体電解質層とを作製する(未焼成層作製工程)。特に本発明では、上記のイオン伝導材料(負極活物質)と電子伝導材料(導電剤)とを含む混合物から、負極層12の未焼成体である未焼成負極層を作製する。その後、作製された未焼成電極層と未焼成固体電解質層とを積層して積層体を形成する(積層体形成工程)。そして、得られた積層体を焼成する(焼成工程)。焼成により、正極層11と負極層12と固体電解質層13とが接合される。最後に、焼成した積層体を、たとえばコインセル内に封止する。封止方法は特に限定されない。たとえば、焼成後の積層体を樹脂で封止してもよい。また、Al23等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップして、この絶縁ペーストを熱処理することにより封止してもよい。
なお、正極層11と負極層12から効率的に電流を引き出すため、正極層11と負極層12の上に炭素層、金属層、酸化物層等の集電体層を形成してもよい。集電体層の形成方法は、たとえば、スパッタリング法が挙げられる。また、金属ペーストを塗布またはディップして、この金属ペーストを熱処理してもよい。
積層体形成工程では、正極層11、固体電解質層13、および、負極層12の未焼成体を積層して単電池構造の未焼成積層体を形成することが好ましい。さらに、積層体形成工程において、集電体の未焼成体を介在させて、上記の単電池構造の積層体を複数個、積層して積層体を形成してもよい。この場合、単電池構造の積層体を複数個、電気的に直列、または並列に積層してもよい。
上記の未焼成電極層と未焼成固体電解質層を形成する方法は特に限定されないが、グリーンシートを形成するためにドクターブレード法、ダイコーター、コンマコーター等、または、印刷層を形成するためにスクリーン印刷等を使用することができる。上記の未焼成電極層と未焼成固体電解質層を積層する方法は特に限定されないが、熱間等方圧プレス(HIP)、冷間等方圧プレス(CIP)、静水圧プレス(WIP)等を使用して未焼成電極層と未焼成固体電解質層を積層することができる。
グリーンシートまたは印刷層を形成するためのスラリーは、有機材料を溶剤に溶解した有機ビヒクルと、(正極活物質および固体電解質、負極活物質および導電剤、固体電解質、または、集電体材料)とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。グリーンシートまたは印刷層を成形するためのスラリーに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、アクリル樹脂、ウレタン樹脂などを用いることができる。
スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。
焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。焼成温度は400℃以上1000℃以下であることが好ましい。
次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
以下、負極層を形成するための材料の組成を変化させた負極シートを用いて作製した全固体電池の実施例1〜5と比較例1〜2について説明する。
まず、全固体電池を作製するために、以下のようにして、負極シートと固体電解質シートを作製した。
<負極シート、固体電解質シートの作製>
バインダとしてのポリビニルアルコールをトルエンとエタノールの混合溶媒に溶解させて、バインダ溶液を作製した。このバインダ溶液と、イオン伝導材料(負極活物質)の一例としてニオブ酸化物であるNb25の結晶粉末とを混合することにより、負極活物質スラリーを作製した。Nb25とポリビニルアルコールの調合比は重量部で70:30とした。
上記のバインダ溶液と、固体電解質としてのナシコン型のリチウム含有リン酸化合物の一例であるLi1.5Al0.5Ge1.5(PO43(以下、LAGPという)のガラス粉末とを混合することにより、固体電解質スラリーを作製した。LAGPとポリビニルアルコールの調合比は重量部で70:30とした。
上記のバインダ溶液と、電子伝導材料(導電剤)の一例として炭素粉末とを混合することにより、導電剤スラリーを作製した。炭素粉末とポリビニルアルコールの調合比は重量部で70:30とした。
上記で得られた負極活物質スラリーと導電剤スラリーと固体電解質スラリーとをNb25と炭素とLAGPとの調合比が重量部で表1に示す比率になるように混合することにより、実施例1〜5と比較例1〜2の負極スラリーを作製した。
得られた実施例1〜5と比較例1〜2の負極スラリー、および、固体電解質スラリーのそれぞれを、ドクターブレード法により50μmの厚みに成形することにより、実施例1〜5と比較例1〜2の負極シートおよび固体電解質シートの成形体(グリーンシート)を作製した。
以上のようにして得られた負極シートおよび固体電解質シートの成形体(グリーンシート)を用いて、実施例1〜5と比較例1〜2の全固体電池を作製した。
<全固体電池の作製>
直径が12mmの円形状にカットされた固体電解質シートの片面上に、直径が12mmの円形状にカットされた実施例1〜5と比較例1〜2の負極シートのそれぞれを積層して、80℃の温度で1トンの圧力を加えて熱圧着することにより、成形体としての負極−電解質積層体を作製した。
成形体としての負極−電解質積層体を2枚のアルミナ製のセラミックス板で挟んだ状態で酸素ガス雰囲気中にて500℃の温度で2時間焼成すること(焼成工程1)により、ポリビニルアルコールの除去を行った後、窒素ガス雰囲気中にて900℃の温度で2時間焼成すること(焼成工程2)により、負極層と固体電解質層を接合した。このようにして焼成体としての負極‐電解質積層体を作製した。
焼成体としての負極‐電解質積層体を100℃の温度で乾燥することにより、水分を除去した後、正極としての金属リチウム板の上にポリメタクリル酸メチル樹脂(PMMA)ゲル電解質を塗布し、この塗布面に電解質側の面が接触するように、焼成体としての負極‐電解質積層体と金属リチウム板とを積層し、2032型のコインセルで封止して、実施例1〜5と比較例1〜2の全固体電池を作製した。
<全固体電池の評価>
得られた全固体電池の特性を以下のようにして評価した。
実施例1〜5と比較例1〜2の全固体電池のそれぞれについて、1.2〜3Vの電圧範囲、20μA/cm2の電流密度で定電流定電圧の充放電を行い、放電容量を測定した。実施例2、5および比較例1の全固体電池における放電挙動を図4に示す。放電容量の測定結果を表1に示す。
なお、上記の電池の評価では、負極層を構成する負極活物質へのリチウム挿入によって電位が下降することを充電、負極活物質からのリチウム脱離によって電位が上昇することを放電と定義する。
また、負極層の内部抵抗を以下の方法で測定した。内部抵抗の測定結果を表1に示す。
内部抵抗は、20μA/cm2の電流密度で10秒間印加後の電圧Vと開回路電圧(OCV)の差VIRと印加電流Iから、内部抵抗=VIR/Iの計算式により算出した。また、図5に示すように、実施例2の全固体電池のインピーダンス測定から、表1で算出した内部抵抗が妥当であることを確認した。なお、実施例2の全固体電池のインピーダンス測定は、インピーダンス測定装置としてSolartron社製の型番1255Bを用いて、周波数範囲0.1〜1MHz、振幅±100mVの測定条件で行った。
Figure 2015099632
表1に示す結果から、負極層が固体電解質を含む比較例1〜2の全固体電池に比べて、負極層が固体電解質を含まず、イオン伝導材料(負極活物質)と電子伝導材料(導電剤)とからなる実施例1〜4の全固体電池では、負極層の内部抵抗の値が低く、放電容量が大きいことがわかる。また、実施例5の全固体電池では、比較例1と比べて負極層の内部抵抗は高くなるが、その放電容量は大きく、活物質の利用率が高いことがわかる。このことから、電子伝導経路から孤立したイオン伝導材料が存在しないことにより、イオン伝導材料の電極反応の効率を高めることができる。
今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
リチウムイオンの吸蔵と放出に寄与する活物質の構成比率を最大限に高めることができ、電池容量を高めることができるので、本発明は全固体電池の製造に特に有用である。
10:全固体電池積層体、11:正極層、12:負極層、13:固体電解質層。

Claims (6)

  1. 負極層と、
    焼成により前記負極層に接合された固体電解質層と、を備え、
    前記負極層が、リチウムイオンを吸蔵および放出することが可能なイオン伝導材料と、電子伝導材料とからなり、
    前記負極層において、前記イオン伝導材料による三次元ネットワークが形成されている、全固体電池。
  2. 前記イオン伝導材料がニオブ酸化物を含み、前記電子伝導材料が炭素を含む、請求項1に記載の全固体電池。
  3. 前記負極層の内部抵抗が1×104Ωcm2以下である、請求項1または請求項2に記載の全固体電池。
  4. 前記負極層が、前記イオン伝導材料を80質量%以上95質量%以下、前記電子伝導材料を5質量%以上20質量%以下、含む、請求項1から請求項3までのいずれか1項に記載の全固体電池。
  5. 前記三次元ネットワークが網目構造である、請求項1から請求項4までのいずれか1項に記載の全固体電池。
  6. 前記イオン伝導材料が、Li32(PO43(化学式中、MはVおよびFeからなる群より選ばれた1種以上の元素を含む)で表わされるナシコン型構造を有するリチウム含有リン酸化合物、または、MOx(化学式中、MはTi、Si、Sn、Cr、Fe、および、Moからなる群より選ばれた1種以上を含む)で表わされる組成を有する酸化物を含む、請求項1から請求項5までのいずれか1項に記載の全固体電池。
JP2012050001A 2012-03-07 2012-03-07 全固体電池 Pending JP2015099632A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012050001A JP2015099632A (ja) 2012-03-07 2012-03-07 全固体電池
PCT/JP2013/056375 WO2013133394A1 (ja) 2012-03-07 2013-03-07 全固体電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050001A JP2015099632A (ja) 2012-03-07 2012-03-07 全固体電池

Publications (1)

Publication Number Publication Date
JP2015099632A true JP2015099632A (ja) 2015-05-28

Family

ID=49116862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050001A Pending JP2015099632A (ja) 2012-03-07 2012-03-07 全固体電池

Country Status (2)

Country Link
JP (1) JP2015099632A (ja)
WO (1) WO2013133394A1 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165843B2 (ja) * 2004-12-13 2013-03-21 パナソニック株式会社 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池
JP5078120B2 (ja) * 2006-02-24 2012-11-21 日本碍子株式会社 全固体電池
US9236594B2 (en) * 2007-02-16 2016-01-12 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
US20100216032A1 (en) * 2007-05-11 2010-08-26 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP5288816B2 (ja) * 2008-01-31 2013-09-11 株式会社オハラ 固体電池
JP4930733B2 (ja) * 2009-04-24 2012-05-16 大日本印刷株式会社 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池
JP2011165410A (ja) * 2010-02-05 2011-08-25 Ohara Inc 全固体リチウムイオン二次電池及びその製造方法
JPWO2011132627A1 (ja) * 2010-04-23 2013-07-18 株式会社村田製作所 全固体二次電池およびその製造方法
KR20130066661A (ko) * 2010-07-12 2013-06-20 가부시키가이샤 무라타 세이사쿠쇼 전고체 전지

Also Published As

Publication number Publication date
WO2013133394A1 (ja) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2012008422A1 (ja) 全固体電池
JP5910737B2 (ja) 全固体電池
US9368828B2 (en) All-solid battery and manufacturing method therefor
JP5644857B2 (ja) 積層型固体電池
WO2013137224A1 (ja) 全固体電池およびその製造方法
US20140120421A1 (en) All-solid battery and manufacturing method therefor
JP6262129B2 (ja) 全固体電池およびその製造方法
WO2011132627A1 (ja) 全固体二次電池およびその製造方法
JP5811191B2 (ja) 全固体電池およびその製造方法
JP5516749B2 (ja) 全固体電池およびその製造方法
JP5804208B2 (ja) 全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法
JP6197495B2 (ja) 全固体電池
WO2013100002A1 (ja) 全固体電池およびその製造方法
WO2011111555A1 (ja) 全固体二次電池およびその製造方法
JP5556969B2 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
WO2012060402A1 (ja) 全固体電池およびその製造方法
WO2012060349A1 (ja) 全固体電池
JP5935892B2 (ja) 全固体電池
JP6213340B2 (ja) 固体電解質及び全固体電池
JP6003982B2 (ja) 全固体電池
WO2013035526A1 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
WO2013133394A1 (ja) 全固体電池