JP2015096646A - レーザー焼結用粉末、構造物の製造方法および構造物の製造装置 - Google Patents

レーザー焼結用粉末、構造物の製造方法および構造物の製造装置 Download PDF

Info

Publication number
JP2015096646A
JP2015096646A JP2014167738A JP2014167738A JP2015096646A JP 2015096646 A JP2015096646 A JP 2015096646A JP 2014167738 A JP2014167738 A JP 2014167738A JP 2014167738 A JP2014167738 A JP 2014167738A JP 2015096646 A JP2015096646 A JP 2015096646A
Authority
JP
Japan
Prior art keywords
powder
laser sintering
metal particles
powder layer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014167738A
Other languages
English (en)
Other versions
JP6379850B2 (ja
Inventor
中村 英文
Hidefumi Nakamura
英文 中村
前田 優
Masaru Maeda
優 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014167738A priority Critical patent/JP6379850B2/ja
Priority to US14/511,444 priority patent/US20150104346A1/en
Priority to CN201410535636.6A priority patent/CN104550900B/zh
Publication of JP2015096646A publication Critical patent/JP2015096646A/ja
Application granted granted Critical
Publication of JP6379850B2 publication Critical patent/JP6379850B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/16Formation of a green body by embedding the binder within the powder bed
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • B22F12/47Radiation means with translatory movement parallel to the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/52Hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】金属粉末にレーザー光を照射して形成する構造物の製造において表面に光沢を有する構造物を製造可能なレーザー焼結用粉末、構造物の製造方法および構造物の製造装置を提供すること。【解決手段】レーザー光4を照射して焼結されるレーザー焼結用粉末1であって、複数の金属粒子2と、複数の金属粒子2を連結するバインダー3と、を有し、バインダー3はレーザー光4を照射されて昇華する。金属粒子2の平均粒径は5μm以上10μm以下であり、レーザー焼結用粉末1の平均粒径は30μm以上50μm以下である。また、レーザー焼結用粉末1を用いて粉末層を形成した後、レーザー光4を照射する前あるいは照射した後に、この粉末層を厚さ方向に加圧するようにしてもよい。【選択図】図2

Description

本発明は、レーザー焼結用粉末、構造物の製造方法および構造物の製造装置に関するものである。
金属粉末にレーザー光を照射して構造物を形成する製造が行われている。この方法はコンピューターを用いてレーザー光を制御することにより構造物を形成するので多品種少量生産に適している。そして、この製造方法が特許文献1に開示されている。それによると、まず、平板上に金属粉末を敷き詰める。次に、金属粉末層の表面に沿って均し板を移動し金属粉末を均して所定の厚みに整える。続いて、保護ガスを金属粉末層の上に流して保護ガスの雰囲気を形成する。次に、レーザー光をビーム状にして走査し所定の画像を描画する。レーザー光が照射された場所では金属粉末が焼結して結合する。
金属粉末を敷き詰める工程、金属粉末を均す工程、金属粉末にレーザー光を照射して描画する工程を繰り返す。これにより、各層で焼結された金属粉末が結合して3次元形状の構造物が形成される。
特表2001− 504897号公報
金属粉末は細かいと気中に舞い上がり易くなる。従って、レーザー焼結に利用可能な金属粉末の平均粒径は30μm以上であった。そして、金属粉末が複数重なるとき、表面の金属粉末にはレーザー光が照射されて加熱され易く、影となる金属粉末は加熱され難くなる。この為、構造物は積層された方向で、完全に焼結された層と不完全に焼結された層とが積層された状態となる。完全に焼結された層と不完全に焼結された層とが交互に配置されるとき、表面の外観は光沢のない外観となる。従って、表面の研磨が必要となる。レーザー焼結による構造物は微細な形状を形成できるが、微細な形状は研磨工具や研磨布が届かない面があり光沢面にすることが難しかった。そこで、金属粉末にレーザー光を照射して形成する構造物の製造において表面に光沢を有する構造物を製造可能なレーザー焼結用粉末、構造物の製造方法および構造物の製造装置が望まれていた。
本発明は、上述の課題を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
[適用例1]
本適用例にかかるレーザー焼結用粉末は、レーザー光を照射して焼結されるレーザー焼結用粉末であって、
複数の金属粒子と、
前記複数の金属粒子を互いに結合するバインダーと、を有し、
前記バインダーは、前記レーザー光により分解されて気体化する材料を含むことを特徴とする。
本適用例によれば、レーザー焼結用粉末は複数の金属粒子がバインダーにより結合されている。金属粒子の大きさはレーザー焼結用粉末より小さくなっている。レーザー焼結用粉末は所定の厚みに配置される。そして、レーザー焼結用粉末にレーザー光が照射されるときバインダーが分解され気体化してレーザー焼結用粉末では複数の金属粒子が分離する。レーザー光に照射された金属粒子は加熱される。このとき、レーザー焼結用粉末の浅い場所には大きなエネルギーが加えられ、深い場所には小さなエネルギーが加えられる。金属粒子が大きいときに比べて小さいときには金属粒子の熱容量を小さくすることができるので、金属粒子の温度を容易に高くすることができる。従って、深い場所に位置する金属粒子の温度を高くすることができる為、焼結された金属は深い場所でも確実に焼結することができる。
レーザー焼結ではレーザー焼結用粉末を所定の厚みに配置する工程とレーザー光による描画とが繰り返して行われる。従来のように金属粒子の径が大きくレーザー光による金属粒子の加熱が深さ方向で差があるときには、焼結が完全に行われた層と不完全に焼結された層とが積層された層となる。本適用例のレーザー焼結用粉末ではレーザー光による金属粒子の加熱が深さ方向で差が生じることが抑制される。従って、レーザー焼結用粉末にレーザー光を照射して形成した構造物は金属粒子が積層された面において凹凸の少ない構造物にすることができる。その結果、レーザー焼結した構造物を表面に光沢を有する構造物にすることができる。
[適用例2]
上記適用例にかかるレーザー焼結用粉末において、前記金属粒子の平均粒径は5μm以上10μm以下であり、前記レーザー焼結用粉末の平均粒径は30μm以上50μm以下であることを特徴とする。
本適用例によれば、レーザー焼結用粉末の平均粒径は30μm以上50μm以下である。レーザー焼結用粉末を所定の厚みに配置してレーザー光にて描画するとき、平均粒径が30μm以上50μm以下のレーザー焼結用粉末は舞い上がり難い粉末である。従って、レーザー焼結用粉末が静的に安定した状態でレーザー焼結用粉末にレーザー光を照射することができる。また、金属粒子の平均粒径は5μm以上10μm以下である為、金属粒子の熱容量を小さくして加熱時の温度を上昇し易くすることができる。その結果、精度良い厚みに金属を品質良く焼結することができる為、品質良く構造物を形成することができる。
[適用例3]
上記適用例にかかるレーザー焼結用粉末において、前記レーザー焼結用粉末の平均粒径が、前記金属粒子の平均粒径の3倍以上10倍以下であることを特徴とする。
本適用例によれば、レーザー焼結用粉末と金属粒子との粒径のバランスが最適化されるため、レーザー焼結用粉末の流動性と金属粒子の焼結性とを両立させることができる。また、レーザー焼結用粉末を用いて形成された粉末層を厚さ方向に加圧した際、レーザー焼結用粉末が適度に崩れやすくなり、かつ、金属粒子がより高密度に再配置され易くなるため、金属粒子が焼結する際の体積収縮をより軽減することができる。
[適用例4]
上記適用例にかかるレーザー焼結用粉末において、前記金属粒子は、鉄、ニッケルおよびコバルトのうちのいずれかを主成分としてアトマイズ法によって製造されることを特徴とする。
本適用例によれば、金属粒子の主成分は、主に鉄、ニッケルおよびコバルトのうちのいずれかであることから、レーザー焼結用粉末を焼結した金属は、鉄、鉄合金、ニッケル、ニッケル合金、コバルトおよびコバルト合金のうちのいずれかにすることができる。
[適用例5]
上記適用例にかかるレーザー焼結用粉末において、前記金属粒子は、鉄を主成分としてニッケル、クロム、モリブデンおよびカーボンのうちの少なくとも1つを含むことを特徴とする。
本適用例によれば、金属粒子の主成分は鉄であり、さらに、ニッケル、クロム、モリブデンおよびカーボンのうちの少なくとも1つを含むことから、レーザー焼結用粉末を焼結した金属は耐食性や機械的剛性を有する金属にすることができる。
[適用例6]
上記適用例にかかるレーザー焼結用粉末において、前記バインダーは、PVAであることを特徴とする。
本適用例によれば、バインダーはPVAである。PVAは金属粒子を連結できる為、金属粒子を連結してレーザー焼結用粉末にすることができる。PVAはレーザーの照射により昇華させることができる為、レーザー焼結用粉末を焼結した金属にはバインダーを含まないようにすることができる。
[適用例7]
上記適用例にかかるレーザー焼結用粉末は、レーザー光を照射して焼結されるレーザー焼結用粉末であって、
アトマイズ法により製造された複数の金属粒子がスプレードライ法により造粒されてなる造粒粒子を有し、
前記造粒粒子は、内部に空孔を有していることを特徴とする。
本適用例によれば、レーザー焼結用粉末が内部に空孔を有する造粒粒子を含む。このような造粒粒子は、内部に空孔を有さない粒子に比べて、外殻部分の緻密化が相対的に進んでおり、機械的強度が相対的に大きい。このため、このような造粒粒子は、流動性に優れたものとなる。また、レーザー焼結用粉末を用いて形成された粉末層を厚さ方向に加圧した際、崩れやすいので、粉末層が圧縮されやすいものとなる。このため、レーザー焼結用粉末は、流動性と易圧縮性とを両立させたものとなる。
[適用例8]
本適用例にかかる構造物の製造方法は、複数の金属粒子がバインダーにより結合されているレーザー焼結用粉末からなる粉末層を形成する粉末層形成工程と、
前記粉末層にレーザー光を射出し所定のパターンを描画して前記バインダーを気体化させて前記金属粒子を焼結させるレーザー焼結工程と、
を有し、
描画された前記粉末層に重ねて前記粉末層を形成する前記粉末層形成工程と前記レーザー焼結工程とを繰り返すことにより、前記金属粒子が焼結された構造物を形成することを特徴とする。
本適用例によれば、レーザー焼結用粉末からなる粉末層が形成される。そして、粉末層にレーザー光が射出され、所定のパターンが描画される。レーザー光が照射された場所ではバインダーが気体化され、金属粒子が焼結される。本適用例のレーザー焼結用粉末では金属粒子の平均粒径がレーザー焼結用粉末の平均粒径より細かくなっている。金属粒子は細かくなる程熱容量が小さくなる為、金属粒子は焼結し易くなっている。従って、粉末層の深い場所に位置する金属粒子の温度を高くすることができる為、焼結された金属は深い場所でも確実に焼結することができる。その結果、本適用例の方法で形成した構造物は金属粒子が積層された面において凹凸の少ない構造物にすることができる。その結果、レーザー焼結した構造物を表面に光沢を有する構造物にすることができる。
[適用例9]
上記適用例にかかる構造物の製造方法において、前記レーザー光により照射される前記金属粒子は、溶融しない温度に加熱されて焼結されることを特徴とする。
本適用例によれば、金属粒子は焼結される温度に加熱される。金属が溶融するまで加熱されるときは溶融した金属が重力や表面張力の作用する方向へ流動する。従って、金属が溶融するまで加熱されるときに比べて焼結される温度に加熱されるときは精度良く描画された形状に金属を形成することができる。
[適用例10]
上記適用例にかかる構造物の製造方法において、さらに、前記粉末層を厚さ方向に加圧する粉末層加圧工程を有することを特徴とする。
本適用例によれば、粉末層が厚さ方向に潰されて圧密化が図られるため、金属粒子が焼結しても、焼結層と粉末層との間における厚さの差を十分に小さくすることができ、その上に新たな粉末層を形成するとき、下地の状況によらず均一な厚さの粉末層を形成することができる。よって、金属粒子の焼結に伴って粉末層の体積が大きく収縮する場合であっても、製造される構造物の形状が設計値から大きくずれてしまうのを抑制することができ、構造物の寸法精度をより高めることができる。
[適用例11]
上記適用例にかかる構造物の製造装置は、複数の金属粒子がバインダーにより結合されているレーザー焼結用粉末を用いて粉末層を形成する粉末層形成手段と、
前記粉末層に向けてレーザー光を射出するレーザー光源と、を有することを特徴とする
本適用例によれば、レーザー焼結用粉末からなる粉末層が形成される。そして、粉末層にレーザー光が射出され、所定のパターンが描画される。レーザー光が照射された場所ではバインダーが気体化され、金属粒子が焼結される。本適用例のレーザー焼結用粉末では金属粒子の平均粒径がレーザー焼結用粉末の平均粒径より細かくなっている。金属粒子は細かくなる程熱容量が小さくなる為、金属粒子は焼結し易くなっている。従って、粉末層の深い場所に位置する金属粒子の温度を高くすることができる為、焼結された金属は深い場所でも確実に焼結することができる。その結果、本適用例の方法で形成した構造物は金属粒子が積層された面において凹凸の少ない構造物にすることができる。その結果、レーザー焼結した構造物を表面に光沢を有する構造物にすることができる。
[適用例12]
上記適用例にかかる構造物の製造装置において、さらに、前記粉末層を厚さ方向に加圧する加圧手段を有することを特徴とする。
本適用例によれば、粉末層が厚さ方向に潰されて圧密化が図られるため、金属粒子が焼結しても、焼結層と粉末層との間における厚さの差を十分に小さくすることができ、その上に新たな粉末層を形成するとき、下地の状況によらず均一な厚さの粉末層を形成することができる。よって、金属粒子の焼結に伴って粉末層の体積が大きく収縮する場合であっても、製造される構造物の形状が設計値から大きくずれてしまうのを抑制することができ、構造物の寸法精度をより高めることができる。
[適用例13]
上記適用例にかかる構造物の製造装置において、前記加圧手段は、前記粉末層に接触可能なローラーを含むことを特徴とする。
本適用例によれば、ローラーが粉末層を不用意に削るおそれが少ないので、粉末層を目的とする厚さに潰しやすい。また、構造が簡単でかつ小型であるため、構造物の製造装置の動作を阻害し難い。
レーザー焼結用粉末の構造を示す概略斜視図である。 レーザー焼結用粉末の焼結を説明するための模式図である。 レーザー焼結用粉末を製造するスプレードライ装置の構造を示す模式図である。 本発明の構造物の製造装置の第1実施形態を適用したレーザー焼結装置の構造を示す模式図である。 レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第1実施形態)を説明するための模式図である。 レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第1実施形態)を説明するための模式図である。 本発明の構造物の製造装置の第2実施形態および第3実施形態を適用したレーザー焼結装置の構造を示す模式図である。 レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第2実施形態)を説明するための模式図である。 レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第2実施形態)を説明するための模式図である。 レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第3実施形態)を説明するための模式図である。 レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第3実施形態)を説明するための模式図である。 鉄、ニッケルおよびクロムを含む金属粒子を焼結した実施例を示す図である。 鉄、ニッケルおよびクロムを含む金属粒子を焼結した実施例を示す図である。 鉄を主体とする各種類の金属粒子を焼結した実施例を示す図である。 鉄を主体とする各種類の金属粒子を焼結した実施例を示す図である。 鉄を主体とする各種類の金属粒子を焼結した実施例を示す図である。 コバルトを主体とする各種類の金属粒子を焼結した実施例を示す図である。 コバルトを主体とする各種類の金属粒子を焼結した実施例を示す図である。 ニッケルを主体とする各種類の金属粒子を焼結した実施例を示す図である。 ニッケルを主体とする各種類の金属粒子を焼結した実施例を示す図である。 SUS316Lの金属粒子を焼結した実施例を示す図である。 SUS316Lの金属粒子を用い、レーザー焼結工程(露光)よりも前に行われる粉末層加圧工程を付加して焼結した実施例を示す図である。 SUS316Lの金属粒子を用い、レーザー焼結工程(露光)よりも後に行われる粉末層加圧工程を付加して焼結した実施例を示す図である。 SUS316Lの金属粒子を用い、造粒方法としてスプレードライ法または転動造粒法を用いるとともに、粉末層加圧工程を付加して焼結した実施例を示す図である。
以下、本発明のレーザー焼結用粉末、構造物の製造方法および構造物の製造装置について、添付図面に示す好適実施形態に基づいて詳細に説明する。すなわち、本実施形態では、特徴的なレーザー焼結用粉末、レーザー焼結用粉末の製造、レーザー焼結用粉末を用いて構造物を製造する例、およびレーザー焼結用粉末を用いて構造物を製造する装置の例について、図1〜6にしたがって説明する。なお、各図面における各部材は、各図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて図示している。
[レーザー焼結用粉末]
まず、本発明のレーザー焼結用粉末の実施形態について、図1に従って説明する。図1は、レーザー焼結用粉末の構造を示す概略斜視図である。図1に示すようにレーザー焼結用粉末1は、複数の金属粒子2が連結されることによって構成されている。
金属粒子2の平均粒径(質量基準の累積粒度分布における50%累積時の粒径)は、特に限定されないが5μm以上10μm以下が好ましい。粒径が細かい程製造される構造物の表面粗さを細かくすることができる。なお、平均粒径が前記下限値を下回ると、金属粒子2の構成材料によっては、金属粒子2が空中を漂い易くなるので金属粒子2を扱い難くなるおそれがある。また、平均粒径が前記上限値を上回ると、金属粒子2の構成材料によっては、金属粒子2の焼結性が低下することがあり、構造物の製造に長時間を要するおそれがある。なお、金属粉末の平均粒径および造粒粉末の平均粒径は、例えば、動的光散乱法、レーザー回折法、遠心沈降法、FFF(Field Fow Fractionation)法、電気的検知体法等の各種粒径測定方法により測定することができる。
金属粒子2の構成材料は、金属材料であれば特に限定されないが、好ましくは、鉄、ニッケルおよびコバルトのうちのいずれかを主成分としアトマイズ法により製造された粉末を含んでいる。これにより、レーザー焼結用粉末1を焼結した金属を、鉄、鉄合金、ニッケル、ニッケル合金、コバルト、およびコバルト合金のうちのいずれかにすることができる。そして、金属粒子2が鉄を主成分とした粒子であるときは、金属粒子2は、ニッケル、クロム、モリブデンおよびカーボンのうちのいずれか1元素または複数の組み合わせを含んでいることが好ましい。また、金属粒子2がニッケルを主成分とした粒子であるときは、金属粒子2は、クロム、モリブデンおよびカーボンのうちのいずれか1元素または複数の組み合わせを含んでいることが好ましい。これにより、レーザー焼結用粉末1を焼結した金属を耐食性や機械的剛性を有する金属にすることができる。
また、アトマイズ法には、水アトマイズ法、ガスアトマイズ法、高速回転水流アトマイズ法等があるが、金属粒子2は、そのいずれで製造されたものであってもよい。
なお、金属粒子2の形状は、特に限定されず、真球、楕円球のような球状であっても、立方体、直方体のような多面体であってもよく、円柱、角柱のような柱状体であっても、円錐、角錐のような錐体であってもよく、その他の異形状であってもよい。
ただし、後に詳述するように、レーザー焼結用粉末1を用いて形成された粉末層を厚さ方向に加圧する工程を行う場合には、金属粒子2のアスペクト比が所定の範囲内にあることが好ましい。具体的には、金属粒子2の短径をS[μm]とし、長径をL[μm]としたとき、S/Lで定義されるアスペクト比の平均値は、0.3以上0.9以下であるのが好ましく、0.4以上0.8以下であるのがより好ましい。このようなアスペクト比の金属粒子2は、その形状が一定の異方性を有するものとなる。このため、金属粒子2同士がバインダー3を介して固着されているとき、金属粒子2同士が引っ掛かりやすくなり、固着状態を保持する性質が発現しやすくなる。そして、レーザー焼結用粉末1を用いて製造された粉末層を厚さ方向に加圧する工程を経たときには、金属粒子2同士の間に一定の摩擦抵抗を確保することができるので、加圧された粉末層が一気に崩れてしまうのを抑制することができる。したがって、加圧後の粉末層の保形性を確保することに寄与する。
なお、前記長径とは、金属粒子2の投影像においてとりうる最大長さであり、前記短径とは、その最大長さに直交する方向においてとりうる最大長さである。また、アスペクト比の平均値は、100個以上の金属粒子2について測定されたアスペクト比の値の平均値として求められる。
また、金属粒子2同士の間の摩擦抵抗という観点からすれば、金属粒子2を製造する際のアトマイズ法には、溶融金属を微粉化する媒体として液体を用いる水アトマイズ法または高速回転水流アトマイズ法が好ましく用いられる。これらのアトマイズ法は、いずれも溶融金属を微粉化する媒体として水を用いているため、溶融金属を微粉化するときの衝突エネルギーが大きく、また、微粉化した溶融金属が冷却する冷却速度も大きい。このため、ガスアトマイズ法のように、溶融金属を微粉化する媒体として気体を用いる方法に比べて、製造される金属粒子2の表面に微小な凹凸が形成され易く、その点において金属粒子2同士の摩擦抵抗を相対的に高めることができる。
金属粒子2の表面はバインダー3に覆われている。バインダー3により金属粒子2が固着されている。バインダー3の材質は加熱により昇華あるいは分解して気体化しやすい材料であればよく、各種の樹脂材料を用いることができる。例えば、バインダー3の材質には、PVA(ポリビニルアルコール)、PVP(ポリビニルピロリドン)等を用いることができる。本実施形態では例えば、バインダー3の材料にPVAを用いている。バインダー量は金属粒子の種類などによって適宜調節されるが、金属粒子100質量部に対して例えば0.1質量部以上5.0質量部以下の割合とされる。
なお、バインダー3には、加熱により昇華あるいは分解して気体化しやすい材料の他に、金属粒子2の焼結を阻害しない程度の少量であれば、気体化しない材料が含まれていてもよい。その場合、気体化しない材料は、バインダー3の10質量%以下であるのが好ましく、5質量%以下であるのがより好ましい。
また、バインダー3には、加熱により昇華あるいは分解して気体化しやすい材料であって、昇華温度あるいは分解温度が互いに異なる材料が複数種含まれていてもよい。このような複数種の材料が含まれていることにより、バインダー3が加熱されたとき、一定の時間差を伴って複数種の材料が順次、昇華あるいは分解することとなる。このため、バインダー3を加熱する過程において、バインダー3が気体化しないで存在している時間をより長く確保することができ、その分、金属粒子2同士を固着している時間を長く確保することができる。その結果、後述するようにレーザー焼結用粉末1を用いて粉末層を形成したとき、その保形性をより高くすることができ、最終的に製造される構造物の寸法精度をより高めることができる。
例えば、バインダー3中に、昇華温度あるいは分解温度が互いに異なる2種類の材料が含まれている場合には、昇華温度あるいは分解温度の温度差は3度以上100度以下であるのが好ましく、5度以上70度以下であるのがより好ましい。昇華温度あるいは分解温度の温度差を前記範囲内に設定することにより、粉末層の保形性を十分に高めることができる。
レーザー焼結用粉末1の平均粒径(質量基準の累積粒度分布における50%累積時の粒径)は、特に限定されないが30μm以上50μm以下が好ましい。さらには、30μm以上40μm以下が好ましい。レーザー焼結用粉末1の平均粒径が前記下限値より小さいときレーザー光を照射するときにレーザー焼結用粉末1が舞い上がるので構造物を形成し難くなる。レーザー焼結用粉末1の平均粒径が前記上限値より大きいとき、レーザー焼結用粉末1間の空洞が大きくなるので、構造物の中に気泡ができる可能性が高くなる。
一方、レーザー焼結用粉末1の平均粒径は、金属粒子2の平均粒径の3倍以上10倍以下であるのが好ましい。レーザー焼結用粉末1の平均粒径を前記範囲内に設定することにより、レーザー焼結用粉末1と金属粒子2との粒径のバランスが最適化されるため、レーザー焼結用粉末1の流動性と金属粒子2の焼結性とを両立させることができる。また、後に詳述するように、レーザー焼結用粉末1を用いて形成された粉末層を厚さ方向に加圧した際、レーザー焼結用粉末1が適度に崩れ易くなり、かつ、金属粒子2がより高密度に再配置され易くなる。したがって、金属粒子2が焼結する際の体積収縮をより軽減することができる。
図中ではレーザー焼結用粉末1をわかり易くするために3つのレーザー焼結用粉末1が離れて記載されている。レーザー焼結用粉末1を使用するときにはレーザー焼結用粉末1を多数重ねて敷き詰める。
図2は、レーザー焼結用粉末の焼結を説明するための模式図である。図2(a)に示すように、レーザー焼結用粉末1が多数重ねて敷き詰められる。図中では、レーザー焼結用粉末1が3層重ねられて配置されているが、積層されるレーザー焼結用粉末1の層の数は特に限定されない。焼結後の金属粒子2の配列を品質良く整えるにはレーザー焼結用粉末1を1層に配置するのが好ましい。
図2(b)に示すように、次に、レーザー焼結用粉末1にレーザー光4を照射する。レーザー光4によりバインダー3が加熱されて昇華する。バインダー3による金属粒子2の結合力が減少するので金属粒子2は移動し易くなる。図2(c)に示すように、金属粒子2は熱されてさらに流動性が高くなる。そして、レーザー焼結用粉末1の間の隙間を埋めるように金属粒子2が移動する。その結果、図2(d)に示すように金属粒子2が整列する。金属粒子2はそれぞれ隣り合う金属粒子2と接近し加熱されることにより金属結合する。レーザー光4の照射が止められると、金属粒子2の配列は冷却される。このとき、金属粒子2は金属結合しているので金属の塊となっている。そして、形成された構造物は、図2(e)に示すように金属粒子2が緻密に配列しているので、図中左右側の側面においても光沢のある表面にすることができる。
図3は、レーザー焼結用粉末を製造するスプレードライ装置の構造を示す模式図である。図3に示すように、スプレードライ装置5は第1容器6を備えている。第1容器6は天井6aに円板回転部7、原料滴下部8、熱風送風部9が設置されている。円板回転部7はモーター10を備え、モーター10の回転軸10aには円錐状の回転板11が設置されている。回転板11はモーター10により回転される。
原料滴下部8は第2容器12を備えている。第2容器12には金属粒子2、バインダー3、バインダー3を溶解する溶媒13が投入されている。溶媒13はバインダー3を溶解し粘性が低く乾燥し易い媒体であれば良く、特に限定されない。溶媒13には、例えば、水、メチルアルコール、エチルアルコール、MEK(メチルエチルケトン)等を用いることができる。本実施形態では、例えば、溶媒13に水が用いられている。金属粒子2の材料は構造物の組成にあわせて調整する。例えば、構造物の材質がステンレスSUS301のときには金属粒子2は鉄、クロムおよびニッケルを含む合金となる。
原料滴下部8は天井6a側にモーター14を備え、モーター14の回転軸14aには羽根車15が設置されている。羽根車15はモーター14により回転される。そして、羽根車15は金属粒子2、バインダー3および溶媒13を撹拌する機能を有している。羽根車15により溶媒13には金属粒子2が均等に分散しバインダー3が均等に溶解する。
第2容器12の図中下側には吐出口16が配置されている。吐出口16からは金属粒子2、バインダー3および溶媒13からなる液滴17が滴下される。吐出口16には電磁弁16aが設置され、電磁弁16aは液滴17の大きさや吐出頻度を調整可能になっている。
熱風送風部9は天井6a側にモーター18を備え、モーター18の回転軸18aには羽根車21が設置されている。羽根車21はモーター18により回転される。モーター18と羽根車21との間にはヒーター22が設置されている。ヒーター22はヒーター22の周辺を流動する気流を加熱する。これにより、熱風送風部9は熱風23を図中下側に向けて流動させる。
吐出口16から吐出される液滴17には重力が作用する。そして、吐出口16の重力加速度方向には回転する回転板11が位置している。液滴17は回転板11に当たり分裂されて微小液滴24となる。微小液滴24は空中を進行する。回転板11の周囲には熱風23が流動している。微小液滴24の溶媒13は熱風23により加熱されて空中に放出される。これにより、微小液滴24は乾燥されてレーザー焼結用粉末1になる。乾燥したレーザー焼結用粉末1は重力により図中下側に移動して蓄積される。以上の手順によりレーザー焼結用粉末1が製造される。
このようにして製造されたレーザー焼結用粉末1には、内部に空孔を有する粒子(造粒粒子)が多く含まれる。このような内部に空孔を有する粒子は、内部に空孔を有さない粒子に比べて、外殻部分の緻密化が相対的に進んでおり、機械的強度が相対的に大きい。このため、このような内部に空孔を有する粒子を含むレーザー焼結用粉末1は、流動性に優れたものとなる。また、内部に空孔を有していることから、後に詳述するように、レーザー焼結用粉末1を用いて形成された粉末層を厚さ方向に加圧した際に、粒子が潰れやすくなっており、粉末層が圧縮されやすい。このため、加圧工程において粉末層をより均一に加圧することができる。したがって、このような内部に空孔を有する粒子が含まれることにより、レーザー焼結用粉末1は、流動性と易圧縮性とを両立させるものとなる。
なお、アスペクト比が前述したような範囲内にある金属粒子2は、前述したように、金属粒子2同士の間で一定の摩擦抵抗が確保されるので、造粒される際に外殻部分を速やかに形成することができ、かつ、形成された外殻部分の緻密化が進み易い。このため、アスペクト比が前述したような範囲内にある金属粒子2は、内部に空孔を有する粒子の形成に際して有用である。
内部に含まれる空孔のサイズ等は、特に限定されないが、レーザー焼結用粉末1の1体積%以上50体積%以下程度であるのが好ましく、5体積%以上30体積%以下程度であるのがより好ましい。空孔のサイズをこのような範囲内に設定することで、レーザー焼結用粉末1は、流動性と易圧縮性とを特に両立させることができる。すなわち、空孔のサイズが前記下限値を下回ると、易圧縮性が低下するおそれがあり、空孔のサイズが前記上限値を上回ると、外殻部分の機械的強度が低下して流動性が低下するおそれがある。
なお、レーザー焼結用粉末1を製造する方法は、上述したスプレードライ法に限定されず、例えば、転動造粒法、流動造粒法、転動流動造粒法といった各種造粒方法であってもよい。ただ、スプレードライ法によれば、上述したような内部に空孔を有する粒子が多く含まれた(好ましくは個数比で30%以上)レーザー焼結用粉末1が得られる。
また、レーザー焼結用粉末1は、上述したようにして製造された造粒粉末に任意の粉末を混合した混合粉末であってもよい。任意の粉末は、金属粒子2の焼結を阻害しないものであれば、その構成材料や混合量は特に限定されない。
[構造物の製造装置]
次に、本発明の構造物の製造装置の第1実施形態を適用したレーザー焼結装置について説明する。
図4は、本発明の構造物の製造装置の第1実施形態を適用したレーザー焼結装置の構造を示す模式図である。レーザー焼結装置25はXYZステージ26を備えている。XYZステージ26は直交する3軸方向にテーブル27を移動させる装置である。具体的には、XYZステージ26は、XYステージ28と昇降装置29とを備えている。XYステージ28は、テーブル27を水平方向に移動させる。また、昇降装置29は、XYステージ28上に設けられており、テーブル27を昇降させる。XYステージ28は2軸の直動機構を備え、昇降装置29は1軸の直動機構を備えている。これにより、XYZステージ26はテーブル27を直交する3軸方向に移動させることが可能になっている。
テーブル27上には有底角筒状の容器30が設置され、容器30内にはレーザー焼結用粉末1が敷き詰められる。容器30の図中上側には容器30の内部にレーザー焼結用粉末1を供給する粉末供給装置31が設置されている。粉末供給装置31は図中左右に延在するレール32を備えている。そして、レール32に沿って移動する移動ステージ33が設置されている。移動ステージ33にはレーザー焼結用粉末1を収納するホッパー34が設置されている。ホッパー34の外観は三角柱状をしており容器30の底30aを向く側に排出口34aが設置されている。
排出口34aには電磁弁35が設置され、電磁弁35は排出口34aを開閉する。電磁弁35が排出口34aを開くとき、排出口34aから容器30の底30aに向けてレーザー焼結用粉末1が流動する。排出口34aには均し板36が設置されている。均し板36はスキージとも称される。電磁弁35が排出口34aを開いて、移動ステージ33がホッパー34および均し板36を移動する。これにより、底30aにレーザー焼結用粉末1が供給され、均し板36がレーザー焼結用粉末1の表面を平らに均すことができる。尚、均し板36に変えて円柱状のローラーが回転しながら移動する機構を設置しても良い。そして、ローラーを回転させることによりレーザー焼結用粉末1の表面を平らに均しても良い。以上のような移動ステージ33、ホッパー34および均し板36等により、レーザー焼結装置25の粉末層形成手段が構成される。
粉末供給装置31の図中上側にはレーザー照射部37が設置されている。レーザー照射部37はレーザー光源38を備えている。レーザー光源38は金属粒子2を焼結できる光強度のレーザー光4を射出可能であれば良く、炭酸ガスレーザー、アルゴンレーザー、YAG(Yttrium Aluminium Garnet)レーザー等のレーザー光源を用いることができる。本実施形態では、例えば、レーザー光源38に炭酸ガスレーザーを用いている。
レーザー光源38が射出するレーザー光4はスキャナー41に入射される。スキャナー41はミラー41aを備え、スキャナー41はミラー41aを搖動する。スキャナー41に入射されたレーザー光4はミラー41aに反射される。そして、ミラー41aが搖動するので、レーザー光4はスキャナー41によって走査される。
ミラー41aによって反射されたレーザー光4は集光レンズ42に入射される。集光レンズ42はシリンドリカルレンズであり、走査されるレーザー光4をレーザー焼結用粉末1の表面に集光させる。集光レンズ42は単レンズでも良く組合せレンズでも良い。
レーザー照射部37の図中右側には熱風送風部43が設置されている。熱風送風部43はヒーターを備え、気体を加熱する。そして、熱風送風部43はモーターおよび羽根車を備え、モーターは羽根車を回転させて送風する。熱風送風部43は容器30側に送風管44を備えている。送風管44には等間隔に噴出口44aが設けられている。熱風送風部43は送風管44に熱風23を送風する。そして、送風管44の噴出口44aから熱風23がレーザー焼結用粉末1に向けて送風される。
レーザー焼結装置25は制御部45を備えている。制御部45はXYZステージ26、移動ステージ33、電磁弁35、レーザー光源38および熱風送風部43と電気的あるいは光学的に接続されている。そして制御部45は各装置を制御し、レーザー焼結用粉末1から構造物を形成する。
レーザー焼結装置25はチャンバー46を備え、チャンバー46内にXYZステージ26、容器30、粉末供給装置31、レーザー照射部37および熱風送風部43が配置されている。チャンバー46の上には不活性ガス47を供給する不活性ガス供給部48が設置されている。そして、チャンバー46の内部は不活性ガス47により充填されている。不活性ガス47の種類は特に限定されないが、本実施形態では、例えば、不活性ガス47にアルゴンガスを用いている。すなわち、熱風送風部43から送風される熱風23は、加熱されたアルゴンガスからなる。また、不活性ガス47に窒素ガスを用いてもよい。これにより、金属粒子2が酸化することを防止することができる。
[構造物の製造方法]
≪第1実施形態≫
次に、本発明の構造物の製造方法の第1実施形態について説明する。
図5および図6は、それぞれ、レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第1実施形態)を説明するための模式図である。以下、図5および図6に基づいて、構造物を形成する方法を説明する。この方法では上述したレーザー焼結装置25を用いる。
図5(a)に示すように、レーザー焼結装置25のホッパー34にレーザー焼結用粉末1を設置する。このとき、電磁弁35が閉じられて排出口34aを閉鎖する。これにより、レーザー焼結用粉末1はホッパー34内に保持される。そして、容器30の底30aと均し板36との間隔をレーザー焼結用粉末1の平均粒径にする。次に、図5(b)に示すように、電磁弁35が開かれて排出口34aを開放する。これにより、排出口34aから容器30の底30aにレーザー焼結用粉末1が供給される。排出口34aが開放されたまま、移動ステージ33はホッパー34および均し板36を移動する。これにより、底30aにレーザー焼結用粉末1が供給される。そして、レーザー焼結用粉末1が容器30の底30aに順次敷き詰められるとともに、レーザー焼結用粉末1の表面が均される。これにより、レーザー焼結用粉末1の1層目の粉末層1aが形成される。すなわち、移動ステージ33、ホッパー34および均し板36等により構成される粉末層形成手段により、1層目の粉末層1aが形成される。1層目の粉末層1aの厚みはレーザー焼結用粉末1の平均粒径と異なっていてもよいが、好ましくは平均粒径と同じ長さに設定される。これにより、1層目の粉末層1aではレーザー焼結用粉末1が厚み方向に重ならないように敷き詰められる。次に、電磁弁35が閉じられて排出口34aを閉鎖することにより、排出口34aからレーザー焼結用粉末1が流出しないようにする。
次に、図5(c)に示すように、1層目の粉末層1a向けて熱風23が流動される。これにより、1層目の粉末層1aは加熱される。加熱される1層目の粉末層1aの温度は金属粒子2が焼結される温度より低い温度となっている。次に、1層目の粉末層1aに集光するようにレーザー光4が照射される。レーザー光がスキャナー41により走査されるとともに1層目の粉末層1aがXYステージ28により水平方向に移動される。これにより、1層目の粉末層1aには所定のパターンが描画される。
レーザー光により照射されるレーザー焼結用粉末1は溶融しない温度で焼結される。仮に、金属が溶融するまで加熱されるときは溶融した金属が重力や表面張力の作用する方向へ流動してしまう。従って、金属が溶融するまで加熱されるのではなく、焼結される温度に留めて加熱されることにより、精度良く描画された形状に金属の構造物を形成することができる。
その結果、図5(d)に示すように、レーザー光4が照射された場所の1層目の粉末層1aには、金属粒子2が焼結された焼結層1bが形成される。その後、昇降装置29により容器30を降下させる。そして、焼結層1bと均し板36との間隔をレーザー焼結用粉末1の平均粒径にする。
次に、図5(e)に示すように、移動ステージ33によりホッパー34および均し板36を図中左側へ移動する。ホッパー34内のレーザー焼結用粉末1が少なくなったときにはこのときに補充する。次に、図5(f)に示すように、電磁弁35が開けられて排出口34aを開放する。これにより、排出口34aから1層目の粉末層1aおよび焼結層1bの上に重なるようにレーザー焼結用粉末1が供給される。排出口34aが開放されたまま、移動ステージ33によりホッパー34および均し板36を移動する。これにより、底30aにレーザー焼結用粉末1が供給されてレーザー焼結用粉末1が容器30の底30aに順次敷き詰められるとともに、レーザー焼結用粉末1の表面が均される。これにより、1層目の粉末層1aおよび焼結層1bの上に重なるようにレーザー焼結用粉末1の2層目の粉末層1aが形成される。このときも、2層目の粉末層1aの厚みはレーザー焼結用粉末1の平均粒径と異なっていてもよいが、好ましくは平均粒径と同じ長さに設定される。これにより、2層目の粉末層1aではレーザー焼結用粉末1が厚み方向に重ならないように敷き詰められる。次に、電磁弁35が閉じられて排出口34aを閉鎖することにより、排出口34aからレーザー焼結用粉末1が流出しないようにする。
次に、図6(a)に示すように、2層目の粉末層1aに向けて熱風23が流動される。これにより、2層目の粉末層1aは加熱される。次に、最上段の(2層目の)粉末層1aに集光するようにレーザー光4が照射される。レーザー光4はスキャナー41により走査され、2層目の粉末層1aはXYステージ28により水平方向に移動する。これにより、2層目の粉末層1aには所定のパターンが描画される。その結果、図6(b)に示すように、レーザー光4が照射された場所の2層目の粉末層1aには金属粒子2が焼結された焼結層1bが形成される。焼結層1bは下に位置する焼結層1bと接続して形成される。そして、昇降装置29により容器30を降下させる。そして、焼結層1bと均し板36との間隔をレーザー焼結用粉末1の平均粒径と同じ長さに設定する。なお、このときも、焼結層1bと均し板36との間隔はレーザー焼結用粉末1の平均粒径と異なっていてもよい。
その後、描画されて形成された焼結層1bに重なるように粉末層1aを形成する工程と、粉末層1aに向けてレーザー光4を射出する工程と、を繰り返す。その結果、図6(c)に示すように、容器30には、所定のパターンに焼結された焼結層1bが多数積層された構造物49が形成される。そして、図6(d)に示すように、構造物49を容器30から取り出して構造物49に付着したレーザー焼結用粉末1を除去することにより、構造物49の製造が終了する。
上記の製造方法を用いて製造される構造物49は各種用途に用いることができる。例えば、人体の歯科矯正用に歯に充てられる金属片に用いることができる。この金属片は設置する歯の形状に合わせて設計されるので種類が多い部品となっている。このときにも、要求される形状に合わせて構造物49を製造することができる。
また、構造物49は、この他にも、自動車用部品、鉄道車両用部品、船舶用部品、航空機用部品のような輸送機器用部品、パソコン用部品、携帯電話端末用部品のような電子機器用部品、工作機械、半導体製造装置のような機械用部品等、あらゆる構造部品に適用可能である。
≪第2実施形態≫
次に、本発明の構造物の製造方法の第2実施形態について説明する。
以下、第2実施形態について説明するが、以下の説明では、第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。また、図において、前述した実施形態と同様の事項については、同一符号を付している。
図8および図9は、それぞれ、レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第2実施形態)を説明するための模式図である。以下、図8および図9に基づいて、構造物を形成する方法を説明する。この方法では、図7に示すレーザー焼結装置25(本発明の構造物の製造装置の第2実施形態)を用いる。
そこで、まず、図7に示すレーザー焼結装置25について説明する。なお、図7では、レーザー焼結装置25のうち、レール32付近の部位のみを抜き出して図示している。
図7に示すレーザー焼結装置25は、図4に示すレーザー焼結装置25に対し、粉末層1aを厚さ方向に加圧する加圧手段を追加した以外は同様である。
すなわち、図7に示すレーザー焼結装置25は、レール32に沿って移動する移動ステージ33に設置され、粉末層1aに接触して厚さ方向に加圧可能な加圧機構(加圧手段)39をさらに備えている。移動ステージ33がレール32に沿って移動するとき、加圧機構39もそれに伴って移動し得るようになっている。
加圧機構39は、粉末層1aの表面に平行な回転軸391と、その回転軸391周りに回転可能に設けられたローラー392と、回転軸391およびローラー392を図7の上下方向において移動可能な昇降装置393と、を備えている。ローラー392は、粉末層1aを不用意に削るおそれが少ないので、粉末層1aを目的とする厚さに潰しやすい。また、構造が簡単でかつ小型であるため、移動ステージ33に設置されたとしても、移動ステージ33の駆動を阻害し難い。
なお、ローラー392のうち、粉末層1aに接触する部分は、必要に応じて、粉末層1aとの付着を防止する材料で構成されていてもよい。さらに、粉末層1aに接触する部分は、必要に応じて、粉末層1aの付着を防止する材料表面処理が施されていたり、付着防止層が成膜されていたりしてもよい。
また、加圧機構39は、図示しない配線を介して制御部45と電気的あるいは光学的に接続されている。これにより、加圧機構39の動作を制御部45によって制御することが可能になっている。
なお、加圧機構39の構成は、上述したものに限定されず、例えばローラー392に代えて、粉末層1aを厚さ方向に圧縮する平板等、粉末層1aを厚さ方向に加圧し得る任意の手段を用いることができる。
次に、図8および図9に示す構造物の形成方法について説明する。
まず、図8(a)に示すように、レーザー焼結装置25のホッパー34にレーザー焼結用粉末1を設置する。次に、排出口34aから容器30の底30aにレーザー焼結用粉末1が供給される。移動ステージ33の移動とともに、供給されたレーザー焼結用粉末1の表面が均されるため、図8(b)に示すように厚さがほぼ一定な1層目の粉末層1aが形成される(粉末層形成工程)。
次に、表面が均された1層目の粉末層1aの表面を、加圧機構39により厚さ方向に加圧する(粉末層加圧工程)。これにより、1層目の粉末層1aは、図8(c)に示すように厚さ方向に潰されて体積が収縮し、圧密化が図られる。すなわち、ローラー392を回転させつつ、1層目の粉末層1aの表面に沿ってローラー392を移動させることにより、ローラー392によって1層目の粉末層1aが厚さ方向に潰される。このとき、容器30の底30aとローラー392との距離を昇降装置393によって適宜調整することにより、圧密化の程度を制御することができる。なお、圧密化の程度の目安として、例えば、金属粒子2が焼結して焼結層1bが形成された場合、その焼結層1bの厚さと同程度になるように1層目の粉末層1aを圧密化する例が挙げられる。
次に、図8(d)に示すように、1層目の粉末層1aに向けて熱風23が流動される。これにより、1層目の粉末層1aは加熱される。次に、1層目の粉末層1aに集光するようにレーザー光4が照射される(レーザー焼結工程)。これにより、1層目の粉末層1aには所定のパターンが描画される。その結果、図8(e)に示すように、レーザー光4が照射された場所の1層目の粉末層1aには、金属粒子2が焼結された焼結層1bが形成される。
次に、図8(f)に示すように、1層目の粉末層1aおよび焼結層1bの上に重なるようにレーザー焼結用粉末1の2層目の粉末層1aが形成される(粉末層形成工程)。
次に、表面が均された2層目の粉末層1aの表面を、加圧機構39により厚さ方向に加圧する(粉末層加圧工程)。これにより、2層目の粉末層1aは、図9(a)に示すように厚さ方向に潰されて体積が収縮し、圧密化が図られる。この場合も、圧密化の程度の目安として、金属粒子2が焼結して焼結層1bが形成されたとき、その焼結層1bの厚さと同程度になるように2層目の粉末層1aを圧密化する例が挙げられる。
次に、図9(b)に示すように、2層目の粉末層1aに向けて熱風23が流動される。これにより、2層目の粉末層1aは加熱される。次に、2層目の粉末層1aに集光するようにレーザー光4が照射される(レーザー焼結工程)。これにより、2層目の粉末層1aには所定のパターンが描画される。その結果、図9(c)に示すように、レーザー光4が照射された場所の2層目の粉末層1aには、金属粒子2が焼結された焼結層1bが形成される。
その後、描画されて形成された焼結層1bに重なるように粉末層1aを形成する工程と、粉末層1aを厚さ方向に加圧する工程と、粉末層1aに向けてレーザー光4を射出する工程と、をこの順で繰り返す。その結果、図9(d)に示すように、容器30には、所定のパターンに焼結された焼結層1bが多数積層された構造物49が形成される。そして、図9(e)に示すように、構造物49を容器30から取り出して構造物49に付着したレーザー焼結用粉末1を除去することにより、構造物49の製造が終了する。
以上のような形成方法で得られた構造物49は、各粉末層1aがそれぞれ加圧されるため、粉末層1aにレーザー光4が照射されて金属粒子2が焼結するとき、その焼結に伴う体積収縮が最小限に留められる。
具体的には、粉末層1aが加圧されていない状態で金属粒子2が焼結すると、レーザー焼結用粉末1の粒径や金属粒子2の粒径によっては、金属粒子2の焼結に伴ってその部分の粉末層1aの体積が相対的に大きく収縮する場合がある。このような大きな収縮が生じると、金属粒子2の焼結に伴って形成された焼結層1bと、それに隣り合う粉末層1aとの間には、体積の大きな差が生じ、焼結層1bと粉末層1aとで厚さが異なってくる。そうなると、粉末層1aを形成する工程とレーザー光4を射出する工程とを繰り返したとき、この厚さの差が累積することとなり、新たな粉末層1aを形成するとき、その下地の状況、すなわち下地が粉末層1aであるか、あるいは焼結層1bであるかによって、形成される新たな粉末層1aの厚さが異なってしまうおそれがある。その結果、新たな粉末層1aの厚さが不均一になり、目的とする形状の構造物49を製造することが難しくなる。また、金属粒子2の焼結に伴ってその部分の粉末層1aの体積が大きく収縮すると、それにより収縮していない粉末層1aの陰に隠れる部分ではレーザー光4の照射が困難になるおそれがある。
これに対し、本実施形態のように、粉末層1aを厚さ方向に加圧する工程を加えることにより、金属粒子2の焼結に伴う体積収縮の余地をあらかじめ潰しておくことができる。これにより、金属粒子2が焼結してもそれに伴う体積収縮を最小限に留めることができる。その結果、焼結層1bと粉末層1aとの間における厚さの差を十分に小さくすることができ、新たな粉末層1aを形成するとき、下地の状況によらず均一な厚さの粉末層1aを形成することができる。また、金属粒子2の焼結に伴う収縮を十分に小さくすることができるので、レーザー光4の照射が粉末層1aによって阻害されるのを防止することができる。
したがって、本実施形態によれば、金属粒子2の焼結に伴って粉末層1aの体積が大きく収縮する場合であっても、製造される構造物49の形状が設計値から大きくずれてしまうのを抑制することができ、構造物49の寸法精度をより高めることができる。
なお、以上のような第2実施形態においても、第1実施形態と同様の作用、効果が得られる。
≪第3実施形態≫
次に、本発明の構造物の製造方法の第3実施形態について説明する。
以下、第3実施形態について説明するが、以下の説明では、第2実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。また、図において、前述した実施形態と同様の事項については、同一符号を付している。
図10および図11は、それぞれ、レーザー焼結用粉末を用いて構造物を形成する方法(本発明の構造物の製造方法の第3実施形態)を説明するための模式図である。以下、図10および図11に基づいて、構造物を形成する方法を説明する。この方法でも、図7に示すレーザー焼結装置25を用いる。
第3実施形態は、粉末層1aを厚さ方向に加圧する工程のタイミングが異なる以外、第2実施形態と同様である。
具体的には、まず、図10(a)に示すように、レーザー焼結装置25のホッパー34にレーザー焼結用粉末1を設置する。次に、排出口34aから容器30の底30aにレーザー焼結用粉末1が供給される。移動ステージ33の移動とともに、供給されたレーザー焼結用粉末1の表面が均されるため、図10(b)に示すように厚さがほぼ一定な1層目の粉末層1aが形成される(粉末層形成工程)。
次に、図10(c)に示すように、1層目の粉末層1aに向けて熱風23が流動される。これにより、1層目の粉末層1aは加熱される。次に、1層目の粉末層1aに集光するようにレーザー光4が照射される(レーザー焼結工程)。これにより、1層目の粉末層1aには所定のパターンが描画される。その結果、図10(d)に示すように、レーザー光4が照射された場所の1層目の粉末層1aには、金属粒子2が焼結された焼結層1bが形成される。
次に、1層目の粉末層1aの表面を、加圧機構39により厚さ方向に加圧する(粉末層加圧工程)。これにより、1層目の粉末層1aは、図10(e)に示すように厚さ方向に潰されて体積が収縮し、圧密化が図られる。すなわち、ローラー392を回転させつつ、1層目の粉末層1aの表面に沿ってローラー392を移動させることにより、ローラー392によって1層目の粉末層1aが厚さ方向に潰される。このとき、ローラー392の移動経路に焼結層1bが存在している場合、容器30の底30aとローラー392との距離は、焼結層1bに依存し、それ以上狭めることができない。したがって、1層目の粉末層1aの厚さは、焼結層1bの厚さと同程度になるまで圧密化されることとなる。なお、ローラー392の移動経路に焼結層1bが存在していない場合でも、1層目の粉末層1aを圧密化するときは、焼結層1bの厚さと同程度になるようにするのが好ましい。これにより、1層目の粉末層1aおよび焼結層1bに重なるように2層目の粉末層1aを形成するとき、厚さの均一な粉末層1aを形成しやすくなる。
次に、図10(f)に示すように、1層目の粉末層1aおよび焼結層1bの上に重なるようにレーザー焼結用粉末1の2層目の粉末層1aが形成される(粉末層形成工程)。
次に、図11(a)に示すように、2層目の粉末層1aに向けて熱風23が流動される。これにより、2層目の粉末層1aは加熱される。次に、2層目の粉末層1aに集光するようにレーザー光4が照射される(レーザー焼結工程)。これにより、2層目の粉末層1aには所定のパターンが描画される。その結果、図11(b)に示すように、レーザー光4が照射された場所の2層目の粉末層1aには、金属粒子2が焼結された焼結層1bが形成される。
次に、2層目の粉末層1aの表面を、加圧機構39により厚さ方向に加圧する(粉末層加圧工程)。これにより、2層目の粉末層1aは、図11(c)に示すように厚さ方向に潰されて体積が収縮し、圧密化が図られる。この場合も、ローラー392の移動経路に焼結層1bが存在している場合には、2層目の粉末層1aの厚さは、焼結層1bの厚さと同程度になるまで圧密化されることとなる。
その後、描画されて形成された焼結層1bに重なるように粉末層1aを形成する工程と、粉末層1aに向けてレーザー光4を射出する工程と、粉末層1aを厚さ方向に加圧する工程と、をこの順で繰り返す。その結果、図11(d)に示すように、容器30には、所定のパターンに焼結された焼結層1bが多数積層された構造物49が形成される。そして、図11(e)に示すように、構造物49を容器30から取り出して構造物49に付着したレーザー焼結用粉末1を除去することにより、構造物49の製造が終了する。
以上のような形成方法で得られた構造物49は、粉末層1aにレーザー光4が照射されて焼結層1bを形成した後、各粉末層1aがそれぞれ加圧されるため、粉末層1aおよび焼結層1bの表面の高さを揃えやすい。このため、粉末層1aおよび焼結層1bの表面に新たな粉末層1aを形成するとき、均一な厚さの粉末層1aを形成することができる。その結果、目的とする形状の構造物49を製造することができる。
なお、以上のような第3実施形態においても、第1、第2実施形態と同様の作用、効果が得られる。
次に、本発明の具体的実施例について説明する。
図12および図13は、SUS301の金属粒子を焼結した実施例を示す図である。図12において、金属粒子2は、鉄、ニッケルおよびクロムを含む合金の粒子を形成して用いた。金属粒子2は水アトマイズ法により製造されている。そして、製造条件を変更することにより、平均粒径の異なる金属粒子2を得た。バインダーにはPVAを用い、溶媒にはイオン交換水を用いた。
金属粒子2、バインダーおよび溶媒の混合物を、図3に示したスプレードライ装置の第2容器内に投入した。そして、吐出口16からは金属粒子2、バインダーおよび溶媒からなる液滴を滴下し、液滴を回転板により分裂させて微小液滴とし、微小液滴は熱風により乾燥させてレーザー焼結用粉末1(造粒粉末)を得た。そして、液滴の大きさ、回転板の速度を変更することにより、各種類の平均粒径のレーザー焼結用粉末1を得た。
金属粒子2の平均粒径およびレーザー焼結用粉末1の平均粒径は、レーザー回折方式の粒度分布測定装置(マイクロトラック、日機装株式会社製、HRA9320−X100)により、質量基準の累積粒度分布における50%累積時の粒径を取得した。
図13において、例1〜例36に示すように、平均粒径が約3μm〜13μmの金属粒子2を用いて造粒し、平均粒径が25μm〜55μmのレーザー焼結用粉末1を形成した。例1では平均粒径が5.1μmの金属粒子2を用いて造粒し、平均粒径が30μmのレーザー焼結用粉末1を形成した。そして、レーザー焼結用粉末1を焼結して構造物49を形成した。
例1〜例15に示すように金属粒子2の平均粒径が5μm〜10μmであり、レーザー焼結用粉末1の平均粒径が30μm〜50μmのときには形成した構造物の表面は光沢があり良い結果が得られた。
例16〜例20に示すように、金属粒子2の平均粒径が5μm〜10μmであり、かつ、レーザー焼結用粉末1の平均粒径が50μmを超えるときには、形成した構造物の表面は光沢がなく悪い結果となった。例21〜例25に示すように、金属粒子2の平均粒径が5μm〜10μmであり、かつ、レーザー焼結用粉末1の平均粒径が30μm未満のときには、レーザー光4を照射するときに金属粒子2が移動して構造物は形状不良となった。従って、例21〜例25の条件では悪い結果となった。
例26〜例34に示すように、金属粒子2の平均粒径が10μmを超えており、かつ、レーザー焼結用粉末1の平均粒径が30μm〜50μmのときには、形成した構造物の表面は光沢がなく悪い結果となった。例35および例36に示すように、金属粒子2の平均粒径が5μm未満のとき、レーザー焼結用粉末1の粒径のバラツキが大きく正常なレーザー焼結用粉末1を造粒することができなかった。
図14〜図16は、鉄を主体とする各種類の金属粒子を焼結した実施例を示す図である。図14〜図16において、例37〜例48に示すように、金属粒子2の平均粒径が5μm〜10μmであり、かつ、レーザー焼結用粉末1の平均粒径が30μm〜50μmのときには、形成した構造物の表面は光沢があり良い結果が得られた。例49に示すように、金属粒子2の平均粒径が10μmを超えており、かつ、レーザー焼結用粉末1の平均粒径が50μmを超えるときには、形成した構造物の表面は光沢がなく悪い結果となった。同様に、例50に示すように、金属粒子2の平均粒径が5μm〜10μmであっても、レーザー焼結用粉末1の平均粒径が50μmを超えるときには、形成した構造物の表面は光沢がなく悪い結果となった。
図17および図18は、コバルトを主体とする各種類の金属粒子を焼結した実施例を示す図である。図17および図18において、例51〜例58に示すように、金属粒子2の平均粒径が5μm〜10μmであり、かつ、レーザー焼結用粉末1の平均粒径が30μm〜50μmのときには、形成した構造物の表面は光沢があり良い結果が得られた。
図19および図20は、ニッケルを主体とする各種類の金属粒子を焼結した実施例を示す図である。図19および図20において、例59〜例64に示すように、金属粒子2の平均粒径が5μm〜10μmであり、かつ、レーザー焼結用粉末1の平均粒径が30μm〜50μmのときには、形成した構造物の表面は光沢があり良い結果が得られた。
図21は、SUS316Lの金属粒子を焼結した実施例を示す図である。図21において、金属粒子2は、鉄、ニッケルおよびクロムを含む合金の粒子を形成して用いた。金属粒子2は水アトマイズ法またはガスアトマイズ法により製造されている。そして、製造条件を変更することにより、水アトマイズ法およびガスアトマイズ法のそれぞれで平均粒径の異なる金属粒子2を得た。バインダーにはPVPを用い、溶媒にはイオン交換水を用いた。
図21において、例65〜例70に示すように、レーザー焼結用粉末1の平均粒径が金属粒子2の平均粒径の3倍以上10倍以下であるときには、形成した構造物の表面は光沢があり良い結果が得られた。
また、水アトマイズ法により製造された金属粒子2を用いた場合は、ガスアトマイズ法により製造された金属粒子を用いた場合に比べて、形成した構造物の寸法精度が高い(設計値からのずれが小さい)ことが認められた。なお、この寸法精度は、構造物49の高さ(厚さ)の実測値と設計値とのずれの大きさを比較することにより評価した。
なお、例65〜例70において、金属粒子2のアスペクト比を比較したところ、水アトマイズ法により製造された金属粒子2のアスペクト比(短軸S/長軸L)の平均値は、0.54〜0.75程度であったのに対し、ガスアトマイズ法により製造された金属粒子2のアスペクト比の平均値は、0.86〜0.94とやや高かった。
図22は、SUS316Lの金属粒子を用い、レーザー焼結工程(露光)よりも前に行われる粉末層加圧工程を付加して焼結した実施例を示す図である。図22においても、金属粒子2は水アトマイズ法またはガスアトマイズ法により製造されている。そして、製造条件を変更することにより、水アトマイズ法およびガスアトマイズ法のそれぞれで平均粒径の異なる金属粒子2を得た。バインダーにはPVPを用い、溶媒にはイオン交換水を用いた。
図22において、例71〜例76に示すように、水アトマイズ法により製造された金属粒子2を用いた場合は、ガスアトマイズ法により製造された金属粒子を用いた場合に比べて、形成した構造物の寸法精度が高い(設計値からのずれが小さい)ことが認められた。
さらに、図21と図22とを比較することにより、レーザー焼結工程(露光)よりも前に粉末層加圧工程を設けることにより、粉末層加圧工程を設けない場合に比べて、製造される構造物49の寸法精度を高められることが認められた。
図23は、SUS316Lの金属粒子を用い、レーザー焼結工程(露光)よりも後に行われる粉末層加圧工程を付加して焼結した実施例を示す図である。図23においても、金属粒子2は水アトマイズ法またはガスアトマイズ法により製造されている。そして、製造条件を変更することにより、水アトマイズ法およびガスアトマイズ法のそれぞれで平均粒径の異なる金属粒子2を得た。バインダーにはPVPを用い、溶媒にはイオン交換水を用いた。
図23において、例77〜例82に示すように、水アトマイズ法により製造された金属粒子2を用いた場合は、ガスアトマイズ法により製造された金属粒子を用いた場合に比べて、形成した構造物の寸法精度が高い(設計値からのずれが小さい)ことが認められた。
さらに、図21と図23とを比較することにより、レーザー焼結工程(露光)の後に粉末層加圧工程を設けた場合でも、粉末層加圧工程を設けない場合に比べて、製造される構造物49の寸法精度を高められることが認められた。
図24は、SUS316Lの金属粒子を用い、造粒方法としてスプレードライ法または転動造粒法を用いるとともに、粉末層加圧工程を付加して焼結した実施例を示す図である。図24において、金属粒子2は水アトマイズ法により製造されている。そして、製造条件を変更することにより、平均粒径の異なる金属粒子2を得た。バインダーにはPVAを用い、溶媒にはイオン交換水を用いた。
図24において、例83〜例88に示すように、スプレードライ法により製造されたレーザー焼結用粉末1を用いた場合は、転動造粒法により製造されたレーザー焼結用粉末1を用いた場合に比べて、形成した構造物の寸法精度が高いことが認められた。
なお、例83〜例85で製造されたレーザー焼結用粉末1の断面を電子顕微鏡で観察したところ、個数比で50%以上の粒子の内部に空孔の存在が認められた。このうち、100個について空孔の体積比を算出したところ、5〜50体積%程度であった。
一方、例86〜例88で製造されたレーザー焼結用粉末1の断面を電子顕微鏡で観察したところ、内部に空孔の存在が認められた粒子はほとんどなかった(個数比で20%以下)。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、レーザー焼結用粉末1は複数の金属粒子2がバインダー3により結合されている。レーザー焼結用粉末1は所定の厚みに配置される。そして、レーザー焼結用粉末1にレーザー光4が照射されるとき、レーザー光4に照射された金属粒子2は加熱され、バインダー3は分解して気体化する。このとき、レーザー焼結用粉末1の浅い場所には大きなエネルギーが加えられ、深い場所には小さなエネルギーが加えられる。金属粒子2が小さいときには金属粒子2の熱容量を小さくすることができるので、金属粒子2の温度を容易に高くすることができる。従って、深い場所に位置する金属粒子2の温度を高くすることができる為、焼結された金属は深い場所でも確実に焼結することができる。
(2)本実施形態によれば、レーザー焼結用粉末1は所定の厚みに粉末層1aを配置する工程とレーザー光4により所定のパターンを描画する工程とが繰り返して行われる。レーザー光4による金属粒子2の加熱が深さ方向で差があるときには、焼結が完全に行われた層と不完全に焼結された層とが積層された層となる。本実施形態のレーザー焼結用粉末1では金属粒子2の粒径が小さいのでレーザー光4による金属粒子2の加熱が深さ方向で差が生じることが抑制される。その結果、レーザー焼結した構造物49は、図中左右側の側面においても光沢のある表面にすることができる。さらに、レーザー焼結用粉末1にレーザー光4を照射して形成した構造物49は、強度において深さ方向の異方性の少ないものとなる。さらに、レーザー焼結した構造物49を層間における剥離が生じ難い構造物49にすることができる。
(3)本実施形態によれば、レーザー焼結用粉末1の平均粒径は30μm以上50μm以下である。所定の厚みに配置してレーザー光4にて描画するとき、平均粒径が30μm以上50μm以下のレーザー焼結用粉末1は舞い上がり難い粉末である。従って、精度良い厚みに金属を焼結することができる為、精度良く構造物49を形成することができる。
(4)本実施形態によれば、金属粒子2の平均粒径は5μm以上10μm以下である為、金属粒子2の熱容量を小さくして加熱時の温度を上昇し易くすることができる。その結果、金属粒子2を品質良く焼結することができる為、品質良く構造物49を形成することができる。
(5)本実施形態によれば、金属粒子2は溶融せずに焼結される温度に加熱される。仮に、金属が溶融するまで加熱されるときは溶融した金属が重力の作用する方向へ流動してしまう。金属が溶融するまで加熱されるのではなく、焼結される温度に留めて加熱されることにより、精度良く描画された形状に金属を形成することができる。従って、構造物49の形状を精度良く形成することができる。
(6)本実施形態によれば、金属粒子2は厚み方向に整列して配置される。従って、構造物49の側面を表面粗さの小さい面にすることができる。
なお、本実施形態は上述した実施形態に限定されるものではなく、本発明の技術的思想内で当分野において通常の知識を有する者により種々の変更や改良を加えることも可能である。変形例を以下に述べる。
(変形例1)
前記実施形態では、粉末層1aにレーザー光4を照射して粉末層1aを焼結させている。さらに、焼結層1bを加熱しても良い。これにより、剥離強度の強い構造物49にすることができる。
(変形例2)
前記実施形態では、焼結層1bを積層して構造物49を形成している。さらに、構造物49に熱処理を加えても良い。構造物49の性能を改良することができる。他にも、後加工として表面処理を施しても良い。
(変形例3)
前記実施形態では、スキャナー41がレーザー光4を走査している。XYステージ28が容器30を走査しても良い。そして、スキャナー41を除外してミラー41aを固定しても良い。これにより、レーザー焼結装置25を製造し易くすることができる。
(変形例4)
前記実施形態では、レーザー焼結装置25に熱風送風部43が設置されている。レーザー焼結用粉末1に熱風23をあてなくてもレーザー光4により金属粒子2を焼結できるときには熱風送風部43は加熱手段を有さない送風部であってもよい。または熱風送風部43および送風管44を設置しなくても良い。これにより、レーザー焼結装置25の構成要素を減らして製造し易くすることができる。
(変形例5)
前記実施形態では、レーザー焼結工程の前または後に、粉末層加圧工程を行っているが、レーザー焼結工程の前と後の双方に、粉末層加圧工程を行うようにしてもよい。これにより、より一層、製造される構造物49の寸法精度を高めることができる。
1 レーザー焼結用粉末
1a 粉末層
1b 焼結層
2 金属粒子
3 バインダー
4 レーザー光
5 スプレードライ装置
6 第1容器
6a 天井
7 円板回転部
8 原料滴下部
9 熱風送風部
10 モーター
10a 回転軸
11 回転板
12 第2容器
13 溶媒
14 モーター
14a 回転軸
15 羽根車
16 吐出口
16a 電磁弁
17 液滴
18 モーター
18a 回転軸
21 羽根車
22 ヒーター
23 熱風
24 微小液滴
25 レーザー焼結装置
26 XYZステージ
27 テーブル
28 XYステージ
29 昇降装置
30 容器
30a 底
31 粉末供給装置
32 レール
33 移動ステージ
34 ホッパー
34a 排出口
35 電磁弁
36 板
37 レーザー照射部
38 レーザー光源
39 加圧機構
391 回転軸
392 ローラー
393 昇降装置
41 スキャナー
41a ミラー
42 集光レンズ
43 熱風送風部
44 送風管
44a 噴出口
45 制御部
46 チャンバー
47 不活性ガス
48 不活性ガス供給部
49 構造物

Claims (13)

  1. レーザー光を照射して焼結されるレーザー焼結用粉末であって、
    複数の金属粒子と、
    前記複数の金属粒子を互いに結合するバインダーと、を有し、
    前記バインダーは、前記レーザー光により分解されて気体化する材料を含むことを特徴とするレーザー焼結用粉末。
  2. 前記金属粒子の平均粒径は5μm以上10μm以下であり、前記レーザー焼結用粉末の平均粒径は30μm以上50μm以下である請求項1に記載のレーザー焼結用粉末。
  3. 前記レーザー焼結用粉末の平均粒径が、前記金属粒子の平均粒径の3倍以上10倍以下である請求項1または2に記載のレーザー焼結用粉末。
  4. 前記金属粒子は、鉄、ニッケルおよびコバルトのうちのいずれかを主成分としてアトマイズ法によって製造される請求項1ないし3のいずれか1項に記載のレーザー焼結用粉末。
  5. 前記金属粒子は、鉄を主成分としてニッケル、クロム、モリブデンおよびカーボンのうちの少なくとも1つを含む請求項4に記載のレーザー焼結用粉末。
  6. 前記バインダーは、PVAである請求項1ないし5のいずれか1項に記載のレーザー焼結用粉末。
  7. レーザー光を照射して焼結されるレーザー焼結用粉末であって、
    アトマイズ法により製造された複数の金属粒子がスプレードライ法により造粒されてなる造粒粒子を有し、
    前記造粒粒子は、内部に空孔を有していることを特徴とするレーザー焼結用粉末。
  8. 複数の金属粒子がバインダーにより結合されているレーザー焼結用粉末からなる粉末層を形成する粉末層形成工程と、
    前記粉末層にレーザー光を射出し所定のパターンを描画して前記バインダーを気体化させて前記金属粒子を焼結させるレーザー焼結工程と、
    を有し、
    描画された前記粉末層に重ねて前記粉末層を形成する前記粉末層形成工程と前記レーザー焼結工程とを繰り返すことにより、前記金属粒子が焼結された構造物を形成することを特徴とする構造物の製造方法。
  9. 前記レーザー光により照射される前記金属粒子は、溶融しない温度に加熱されて焼結される請求項8に記載の構造物の製造方法。
  10. さらに、前記粉末層を厚さ方向に加圧する粉末層加圧工程を有する請求項8または9に記載の構造物の製造方法。
  11. 複数の金属粒子がバインダーにより結合されているレーザー焼結用粉末を用いて粉末層を形成する粉末層形成手段と、
    前記粉末層に向けてレーザー光を射出するレーザー光源と、を有することを特徴とする構造物の製造装置。
  12. さらに、前記粉末層を厚さ方向に加圧する加圧手段を有する請求項11に記載の構造物の製造装置。
  13. 前記加圧手段は、前記粉末層に接触可能なローラーを含む請求項12に記載の構造物の製造装置。
JP2014167738A 2013-10-11 2014-08-20 レーザー焼結用粉末および構造物の製造方法 Active JP6379850B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014167738A JP6379850B2 (ja) 2013-10-11 2014-08-20 レーザー焼結用粉末および構造物の製造方法
US14/511,444 US20150104346A1 (en) 2013-10-11 2014-10-10 Laser sintering powder, method for producing structure, apparatus for producing structure
CN201410535636.6A CN104550900B (zh) 2013-10-11 2014-10-11 激光烧结用粉末、结构物的制造方法及结构物的制造装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013213468 2013-10-11
JP2013213468 2013-10-11
JP2014167738A JP6379850B2 (ja) 2013-10-11 2014-08-20 レーザー焼結用粉末および構造物の製造方法

Publications (2)

Publication Number Publication Date
JP2015096646A true JP2015096646A (ja) 2015-05-21
JP6379850B2 JP6379850B2 (ja) 2018-08-29

Family

ID=52809839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167738A Active JP6379850B2 (ja) 2013-10-11 2014-08-20 レーザー焼結用粉末および構造物の製造方法

Country Status (3)

Country Link
US (1) US20150104346A1 (ja)
JP (1) JP6379850B2 (ja)
CN (1) CN104550900B (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194678A1 (ja) * 2014-06-20 2015-12-23 株式会社フジミインコーポレーテッド 粉末積層造形に用いる粉末材料およびそれを用いた粉末積層造形法
WO2016147448A1 (ja) * 2015-03-18 2016-09-22 株式会社東芝 三次元造形方法
JP2016216801A (ja) * 2015-05-26 2016-12-22 セイコーエプソン株式会社 3次元形成装置および3次元形成方法
US20170120331A1 (en) 2015-10-29 2017-05-04 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
JP6132962B1 (ja) * 2016-06-01 2017-05-24 株式会社ソディック 積層造形装置および積層造形装置の材料粉体の再利用方法
WO2017104234A1 (ja) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
JP2018090841A (ja) * 2016-11-30 2018-06-14 セイコーエプソン株式会社 エネルギー線焼結用粉末、エネルギー線焼結用粉末の製造方法および焼結体の製造方法
EP3335819A1 (en) 2016-12-16 2018-06-20 Canon Kabushiki Kaisha Additive manufacturing apparatus and method of producing three-dimensionally shaped object
WO2018159134A1 (ja) * 2017-02-28 2018-09-07 セイコーエプソン株式会社 三次元造形物製造用組成物、三次元造形物の製造方法および三次元造形物製造装置
WO2018159133A1 (ja) * 2017-02-28 2018-09-07 セイコーエプソン株式会社 三次元造形物製造用組成物、三次元造形物の製造方法および三次元造形物製造装置
JP2018158470A (ja) * 2017-03-22 2018-10-11 日本電気株式会社 積層造形装置及び積層造形方法
JP2018197000A (ja) * 2016-07-22 2018-12-13 株式会社リコー 立体造形用樹脂粉末、立体造形物の製造装置、及び立体造形物の製造方法
JP2019536890A (ja) * 2016-11-21 2019-12-19 エルジー・ケム・リミテッド 3dプリンティング用組成物
US10894289B2 (en) 2015-11-06 2021-01-19 Seiko Epson Corporation Manufacturing method for three-dimensional structure and manufacturing apparatus therefor
US10926526B2 (en) 2015-11-12 2021-02-23 Seiko Epson Corporation Method of manufacturing three-dimensionally formed object
US11192185B2 (en) 2016-12-16 2021-12-07 Canon Kabushiki Kaisha Method of producing product
US11235391B2 (en) 2018-10-22 2022-02-01 Seiko Epson Corporation Device for manufacturing three-dimensional shaped object and method for manufacturing three-dimensional shaped object
JP7472467B2 (ja) 2019-11-08 2024-04-23 セイコーエプソン株式会社 三次元造形物製造用粉末、三次元造形物製造用組成物および三次元造形物の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536199B2 (ja) * 2015-06-16 2019-07-03 セイコーエプソン株式会社 3次元形成装置
GB2569054B (en) * 2015-07-03 2020-04-15 Barclay Burt Maximilian A three dimensional printing apparatus, a material dispensing unit therefor and a method
JP2017025386A (ja) * 2015-07-24 2017-02-02 セイコーエプソン株式会社 3次元成形物および3次元成形方法
JP6661920B2 (ja) * 2015-08-26 2020-03-11 セイコーエプソン株式会社 3次元形成装置
JP2017114011A (ja) * 2015-12-24 2017-06-29 株式会社ブリヂストン 立体形状物の造形装置及び製造方法
US11072088B2 (en) * 2016-01-29 2021-07-27 Hewlett-Packard Development Company, L.P. Three-dimensional printer
US10661503B2 (en) 2016-04-13 2020-05-26 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
JP6264622B2 (ja) * 2016-04-18 2018-01-24 株式会社ソディック 積層造形装置
WO2018073816A1 (pt) * 2016-10-21 2018-04-26 Adira - Metal Forming Solutions, S.A. Sistema de impressão tridimensional
JP6907657B2 (ja) * 2017-03-31 2021-07-21 セイコーエプソン株式会社 三次元造形物の製造方法
TWI615448B (zh) * 2017-05-25 2018-02-21 Donbon Paints Industrial Co Ltd 雷射燒結成型用金屬膠體之製備方法
DE102018105669A1 (de) * 2018-03-12 2019-09-12 Hochschule Aalen Verfahren zur Herstellung einer Elektrode für eine Batterie
DE102018221393A1 (de) * 2018-12-11 2020-06-18 Rhenoflex Gmbh Pulverauftragvorrichtung sowie Verfahren zur Herstellung von Versteifungselementen aus pulverförmigem Material
DE102019200741A1 (de) * 2019-01-22 2020-07-23 Rhenoflex Gmbh Vorrichtung zur Herstellung von Versteifungselementen aus pulverförmigem Material
US20220226900A1 (en) * 2019-05-23 2022-07-21 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Laminated body molding method and laminated body molding apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277877A (ja) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd 金属光造形用金属粉末とその製造方法及び金属光造形による三次元形状造形物の製造方法並びに金属光造形物
JP2005154847A (ja) * 2003-11-26 2005-06-16 Seiko Epson Corp 焼結用原料粉末又は焼結用造粒粉末およびそれらの焼結体
JP2006200030A (ja) * 2005-01-24 2006-08-03 Aisan Ind Co Ltd 立体造形物の製造方法及び製造装置
JP2008291318A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2011179077A (ja) * 2010-03-02 2011-09-15 Seiko Epson Corp 造粒粉末、焼結体および金属製フィルター

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69429326T2 (de) * 1993-12-27 2002-05-16 Sumitomo Spec Metals Verfahren zum Granulieren von Pulver
WO1995030503A1 (en) * 1994-05-06 1995-11-16 Dtm Corporation Binder compositions for selective laser sintering processes
US6325965B1 (en) * 1998-11-02 2001-12-04 Sumitomo Special Metals Co., Ltd. Forming method and forming apparatus
US6068813A (en) * 1999-05-26 2000-05-30 Hoeganaes Corporation Method of making powder metallurgical compositions
DE102004008054B8 (de) * 2003-02-25 2007-02-08 Matsushita Electric Works, Ltd., Kadoma Metallpulver-Zusammensetzung zur Verwendung beim selektiven Lasersintern
US20050019120A1 (en) * 2003-07-25 2005-01-27 Penn Troy Manufacturing, Inc. Worm gear having thread pitch and method for making same
US20050191200A1 (en) * 2004-02-27 2005-09-01 Guido Canzona Method and composition for metal free form fabrication
US20060285989A1 (en) * 2005-06-20 2006-12-21 Hoeganaes Corporation Corrosion resistant metallurgical powder compositions, methods, and compacted articles
JP2010222684A (ja) * 2009-03-25 2010-10-07 Seiko Epson Corp 金属ガラス物品の製造方法
US8117000B2 (en) * 2009-07-23 2012-02-14 International Business Machines Corporation Measuring quantum states of superconducting resonators
JP5399954B2 (ja) * 2009-09-07 2014-01-29 株式会社フジミインコーポレーテッド 溶射用粉末
JP5544945B2 (ja) * 2010-03-11 2014-07-09 セイコーエプソン株式会社 造粒粉末および造粒粉末の製造方法
JP2012016775A (ja) * 2010-07-07 2012-01-26 Makita Corp オイルパルス回転工具
JP2012052167A (ja) * 2010-08-31 2012-03-15 Toyota Motor Corp 焼結用鉄基混合粉末及び鉄基焼結合金
CN102029389B (zh) * 2010-11-25 2012-05-23 西安交通大学 基于负压的激光烧结快速成型制造多孔组织的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277877A (ja) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd 金属光造形用金属粉末とその製造方法及び金属光造形による三次元形状造形物の製造方法並びに金属光造形物
JP2005154847A (ja) * 2003-11-26 2005-06-16 Seiko Epson Corp 焼結用原料粉末又は焼結用造粒粉末およびそれらの焼結体
JP2006200030A (ja) * 2005-01-24 2006-08-03 Aisan Ind Co Ltd 立体造形物の製造方法及び製造装置
JP2008291318A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2011179077A (ja) * 2010-03-02 2011-09-15 Seiko Epson Corp 造粒粉末、焼結体および金属製フィルター

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194678A1 (ja) * 2014-06-20 2015-12-23 株式会社フジミインコーポレーテッド 粉末積層造形に用いる粉末材料およびそれを用いた粉末積層造形法
WO2016147448A1 (ja) * 2015-03-18 2016-09-22 株式会社東芝 三次元造形方法
JP2016175202A (ja) * 2015-03-18 2016-10-06 株式会社東芝 三次元造形方法
JP2016216801A (ja) * 2015-05-26 2016-12-22 セイコーエプソン株式会社 3次元形成装置および3次元形成方法
US20170120331A1 (en) 2015-10-29 2017-05-04 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
US11185922B2 (en) 2015-10-29 2021-11-30 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
US10894289B2 (en) 2015-11-06 2021-01-19 Seiko Epson Corporation Manufacturing method for three-dimensional structure and manufacturing apparatus therefor
US11717984B2 (en) 2015-11-06 2023-08-08 Seiko Epson Corporation Manufacturing method for three-dimensional structure and manufacturing apparatus therefor
US10926526B2 (en) 2015-11-12 2021-02-23 Seiko Epson Corporation Method of manufacturing three-dimensionally formed object
WO2017104234A1 (ja) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
US10569331B2 (en) 2016-06-01 2020-02-25 Sodick Co., Ltd. Three-dimensional printer
JP6132962B1 (ja) * 2016-06-01 2017-05-24 株式会社ソディック 積層造形装置および積層造形装置の材料粉体の再利用方法
JP2017214627A (ja) * 2016-06-01 2017-12-07 株式会社ソディック 積層造形装置および積層造形装置の材料粉体の再利用方法
JP2018197000A (ja) * 2016-07-22 2018-12-13 株式会社リコー 立体造形用樹脂粉末、立体造形物の製造装置、及び立体造形物の製造方法
US11232891B2 (en) 2016-11-21 2022-01-25 Lg Chem, Ltd. Composition for 3 dimensional printing
JP2019536890A (ja) * 2016-11-21 2019-12-19 エルジー・ケム・リミテッド 3dプリンティング用組成物
JP2018090841A (ja) * 2016-11-30 2018-06-14 セイコーエプソン株式会社 エネルギー線焼結用粉末、エネルギー線焼結用粉末の製造方法および焼結体の製造方法
EP3335819A1 (en) 2016-12-16 2018-06-20 Canon Kabushiki Kaisha Additive manufacturing apparatus and method of producing three-dimensionally shaped object
US11192185B2 (en) 2016-12-16 2021-12-07 Canon Kabushiki Kaisha Method of producing product
US11235393B2 (en) 2016-12-16 2022-02-01 Canon Kabushiki Kaisha Additive manufacturing apparatus and method of producing three-dimensionally shaped object
WO2018159134A1 (ja) * 2017-02-28 2018-09-07 セイコーエプソン株式会社 三次元造形物製造用組成物、三次元造形物の製造方法および三次元造形物製造装置
JP2018141224A (ja) * 2017-02-28 2018-09-13 セイコーエプソン株式会社 三次元造形物製造用組成物、三次元造形物の製造方法および三次元造形物製造装置
US11648728B2 (en) 2017-02-28 2023-05-16 Seiko Epson Corporation Three-dimensional shaped article producing composition, production method for three-dimensional shaped article, and three-dimensional shaped article production apparatus
WO2018159133A1 (ja) * 2017-02-28 2018-09-07 セイコーエプソン株式会社 三次元造形物製造用組成物、三次元造形物の製造方法および三次元造形物製造装置
JP2018158470A (ja) * 2017-03-22 2018-10-11 日本電気株式会社 積層造形装置及び積層造形方法
US11235391B2 (en) 2018-10-22 2022-02-01 Seiko Epson Corporation Device for manufacturing three-dimensional shaped object and method for manufacturing three-dimensional shaped object
JP7472467B2 (ja) 2019-11-08 2024-04-23 セイコーエプソン株式会社 三次元造形物製造用粉末、三次元造形物製造用組成物および三次元造形物の製造方法

Also Published As

Publication number Publication date
CN104550900B (zh) 2019-05-07
JP6379850B2 (ja) 2018-08-29
CN104550900A (zh) 2015-04-29
US20150104346A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP6379850B2 (ja) レーザー焼結用粉末および構造物の製造方法
JP6844225B2 (ja) 焼結用粉末および焼結体の製造方法
Bai et al. Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor
Ziaee et al. Binder jetting: A review of process, materials, and methods
JP6633677B2 (ja) 粉末積層造形に用いる粉末材料およびそれを用いた粉末積層造形法
CN111050954B (zh) 用于增材制造的设备及方法
Maleksaeedi et al. Property enhancement of 3D-printed alumina ceramics using vacuum infiltration
Holman et al. Spreading and infiltration of inkjet-printed polymer solution droplets on a porous substrate
US10376961B2 (en) Powder spheroidizing via fluidized bed
JP2015180537A (ja) 三次元造形物の製造方法
JP6303016B2 (ja) 積層造形物の製造方法
US5817206A (en) Selective laser sintering of polymer powder of controlled particle size distribution
JP6791165B2 (ja) 粉末材料、立体造形物の製造方法および立体造形装置
JP2020517824A (ja) 印刷物を作成するシステムおよび方法
US20190001556A1 (en) Additive manufacturing material for powder rapid prototyping manufacturing
Diener et al. Literature review: methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing
JP2019112699A (ja) 金属粉末材料
KR101612341B1 (ko) 나노 입자 및 바인더를 함유한 잉크 조성물 및 이를 이용한 3차원 물품의 제조방법
JP2019157217A (ja) バインダジェット法に用いる積層造形用粉末材料
JP6569269B2 (ja) 立体造形用粉末材料、立体造形材料セット、立体造形物製造装置、及び立体造形物の製造方法
CN109071357B (zh) 将基于石墨烯的添加剂添加至应用激光烧蚀的涂层中使用的靶材的方法
WO2017163834A1 (ja) 粉末材料、および立体造形物の製造方法
JP2019112700A (ja) 金属粉末材料の製造方法
Scheithauer et al. Processing of thermoplastic suspensions for additive manufacturing of ceramic-and metal-ceramic-composites by thermoplastic 3D-printing (T3DP)
JP6724974B2 (ja) 焼結造形方法、液状結合剤、および焼結造形物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6379850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150