JP2015045726A - 表示駆動装置及び表示装置 - Google Patents

表示駆動装置及び表示装置 Download PDF

Info

Publication number
JP2015045726A
JP2015045726A JP2013176540A JP2013176540A JP2015045726A JP 2015045726 A JP2015045726 A JP 2015045726A JP 2013176540 A JP2013176540 A JP 2013176540A JP 2013176540 A JP2013176540 A JP 2013176540A JP 2015045726 A JP2015045726 A JP 2015045726A
Authority
JP
Japan
Prior art keywords
gate
circuit
output amplitude
driven
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013176540A
Other languages
English (en)
Inventor
杉山 公彦
Kimihiko Sugiyama
公彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synaptics Japan GK
Original Assignee
Synaptics Display Devices GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synaptics Display Devices GK filed Critical Synaptics Display Devices GK
Priority to JP2013176540A priority Critical patent/JP2015045726A/ja
Priority to US14/470,971 priority patent/US9640130B2/en
Priority to CN201410432277.1A priority patent/CN104424907B/zh
Publication of JP2015045726A publication Critical patent/JP2015045726A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】アクティブマトリクス型表示パネルを駆動する表示駆動装置において、ゲート配線の左右の引き回し経路や配線層の相違に起因する、輝度ムラを低減する。
【解決手段】アクティブマトリクス型表示パネルは、基板に垂直方向から見たときに上下方向に配線される複数のソース線と左右方向に配線される複数のゲート線とが互いに交差して配線され、交差する複数の箇所のそれぞれに画素が配置され、駆動されたゲート線によって選択された画素に複数のソース線から表示データに対応する電荷が転送される。この表示パネルに接続可能な表示駆動装置において、複数のゲート線のうち、左から配線されるゲート線を駆動する第1ゲート駆動回路と、右から配線されるゲート線を駆動する第2ゲート駆動回路の、それぞれの出力振幅を独立に調整可能な回路を備える。
【選択図】図1

Description

本発明は、表示駆動装置及び表示装置に関し、特にアクティブマトリクス型表示パネルのゲート線を駆動する回路に好適に利用できるものである。
液晶表示(LCD: Liquid Crystal Display)装置などの表示装置においては、表示パネルの大型化と高精細化が進んでいる。これらの表示装置には、多くの場合、アクティブマトリクス型表示パネルが採用されている。アクティブマトリクス型表示パネルでは、複数のソース線と複数のゲート線が互いに交差して配線され、交差する複数の箇所のそれぞれに画素が配置されている。駆動されたゲート線によって選択された複数の画素に、複数のソース線から表示データに対応する電荷がそれぞれ転送され、画素に転送された電荷の量に応じて、その画素に表示される輝度が決まる。表示パネルの大型化と高精細化に伴い、表示される輝度の面内傾斜などの斑(ムラ)の問題が顕在化した。
特許文献1には、走査線(ゲート線)制御回路内部のスイッチの内部抵抗に発生する電圧降下を補償して輝度の低下を低減する、画像表示装置が開示されている。特許文献2と特許文献3には、ソースドライバから出力される階調信号の行毎の電圧降下の差を、走査ライン(ゲート線)に印加する走査信号電圧を行毎に変えることによって補正する、表示駆動装置が開示されている。特許文献4には、列配線(ソース線)の配線抵抗と配線容量に起因する輝度ムラを抑制することができる画像表示装置が開示されている。行配線(ゲート線)が選択され駆動されるのに同期して、選択された行配線の位置に応じて、列配線とその駆動回路との間の抵抗を可変する。
特開2005−345752号公報 特開2008−77005号公報 特開2009−163255号公報 特開2012−88550号公報
特許文献1、2、3及び4について本発明者が検討した結果、以下のような新たな課題があることがわかった。
表示パネルに対しては、狭額縁化も併せて求められる傾向にあり、ゲート線を左右から1ラインずつ交互に配線したり、左右それぞれにゲート線駆動回路を配置する場合がある。このとき、右から駆動され配線されるゲート線と左から駆動され配線されるゲート線とでは、引き回しの経路が異なるために、配線抵抗と配線容量が異なる場合があることがわかった。またさらに、左と右から配線されるゲート線が、互いに異なる配線層、配線材料を用いて構成される表示パネルが存在することも知られている。このときのゲート配線は、1ライン毎に交互に左右に振り分けられるので、1ライン毎に配線抵抗や配線容量が異なり、輝度の低下の程度が異なるという問題が発生することが分かった。
このような問題は、上記特許文献1から4には記載も示唆もなく、特に特許文献2と3に示されるように、ソースドライバからの距離に応じて、領域ごとに補正する方法では解決することができない。特許文献1では、図6に示されるように、右側駆動時と左側駆動時で、水平位置に対して電圧が分布する特性が示されているが、これは単に駆動回路から離れるにしたがって振幅が減衰する現象を示しているに過ぎず、右からの配線と左からの配線の、配線抵抗や配線容量の有意差については、記載も示唆もされていない。
本発明の目的は、アクティブマトリクス型表示パネルを駆動する表示駆動装置において、ゲート配線のゲート駆動回路からの左右の引き回し経路や配線層の相違に起因する、輝度ムラを低減することにある。
このような課題を解決するための手段を以下に説明するが、その他の課題と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
一実施の形態によれば、下記の通りである。
すなわち、基板に垂直方向から見たときに上下方向に配線される複数のソース線と左右方向に配線される複数のゲート線とが互いに交差して配線され、交差する複数の箇所のそれぞれに画素が配置され、駆動されたゲート線によって選択された画素に複数のソース線から表示データに対応する電荷が転送される、表示パネルに接続可能な、表示駆動装置において、複数のゲート線のうち、左から配線されるゲート線を駆動する第1ゲート駆動回路と、右から配線されるゲート線を駆動する第2ゲート駆動回路の、それぞれの出力振幅を独立に調整可能な回路を備える。
前記一実施の形態によって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、アクティブマトリクス型表示パネルを駆動する表示駆動装置において、ゲート配線のゲート駆動回路からの左右の引き回し経路や配線層の相違に起因する、輝度ムラを低減することができる。
図1は、実施形態1に係る表示装置及び表示駆動装置の構成を表すブロック図である。 図2は、実施形態2に係る出力振幅調整回路の構成例を表す回路図である。 図3は、図2に示した出力振幅調整回路の動作を表す真理値表である。 図4は、実施形態2に係る出力振幅調整回路の別の構成例を表す回路図である。 図5は、図4に示した出力振幅調整回路の動作を表す真理値表である。 図6は、実施形態3に係る表示装置及び表示駆動装置の構成を表すブロック図である。 図7は、実施形態3に係る出力振幅調整回路の第1の構成例を表す回路図である。 図8は、出力振幅調整回路の第2の構成例を表す回路図である。 図9は、出力振幅調整回路の第3の構成例を表す回路図である。 図10は、出力振幅調整回路の第4の構成例を表す回路図である。 図11は、出力振幅調整回路の第5の構成例を表す回路図である。 図12は、第3または第4の構成例の出力振幅調整回路の動作を表す波形図である。 図13は、第5の構成例の出力振幅調整回路の動作を表す波形図である。 図14は、実施形態4に係る表示パネルの構成を表すブロック図である。 図15は、実施形態4に係る表示駆動装置の構成を表すブロック図である。 図16は、実施形態4に係る出力振幅調整回路の第1の構成例を表す回路図である。 図17は、出力振幅調整回路の第2の構成例を表す回路図である。 図18は、出力振幅調整回路の第3の構成例を表す回路図である。 図19は、実施形態5に係る表示装置の構成を表す説明図である。
1.実施の形態の概要
先ず、本願において開示される代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
〔1〕<左右のゲート駆動回路の出力振幅を左右独立に調整する回路>
本願において開示される代表的な実施の形態に係る表示駆動装置は、表示パネル(80)に接続可能な表示駆動装置(10)であって、以下のように構成される。
前記表示パネルは、基板に垂直方向から見たときに上下方向に配線される複数のソース線(S1〜Sx)と左右方向に配線される複数のゲート線(G1〜Gm)とが互いに交差する複数の箇所のそれぞれに画素が配置され、駆動されたゲート線によって選択された複数の画素に複数のソース線から表示データに対応する電荷がそれぞれ転送される。
前記表示駆動装置は、前記複数のゲート線のうち、左から配線される第1ゲート線群(G1,G3,…Gm−1)を駆動する第1ゲート駆動回路群(1_1、1_3、…1_m−1)と、右から配線される第2ゲート線群(G2,G4,…Gm)を駆動する第2ゲート駆動回路群(1_2、1_4、…1_m)の、それぞれの出力振幅を独立に調整可能な出力振幅調整回路(3)を備える。
これにより、アクティブマトリクス型表示パネルを駆動する表示駆動装置において、ゲート配線のゲート駆動回路からの左右の引き回し経路や配線層の相違に起因する、輝度ムラを低減することができる。
〔2〕<駆動対象のゲート線までの配線長により出力振幅を調整>
項1において、前記出力振幅調整回路は、前記第1ゲート駆動回路群のうち、駆動対象の第1ゲート線までの配線長が長い第1ゲート駆動回路(例えば1_1)の出力振幅を、駆動対象の第1ゲート線までの配線長が短い第1ゲート駆動回路(例えば1_m−1)の出力振幅よりも大きくする。また、前記第2ゲート駆動回路群のうち、駆動対象の第2ゲート線までの配線長が長い第2ゲート駆動回路(例えば1_2)の出力振幅を、駆動対象の第2ゲート線までの配線長が短い第2ゲート駆動回路(例えば1_m)の出力振幅よりも大きくする。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を調整することができ、遠端のゲート線に対する出力振幅を、近端のゲート線に対する出力振幅よりも大きくすることができるため、配線抵抗と配線容量による信号振幅の減衰を補償して、発生する輝度ムラをさらに低減することができる。
〔3〕<ゲート線に対する出力振幅を近端から遠端にかけて階段状に調整>
項2において、前記出力振幅調整回路は、駆動対象の第1ゲート線までの配線長に基づいて、前記第1ゲート駆動回路群を分けたグループ毎に、そのグループに含まれる第1ゲート駆動回路の出力振幅を当該配線長に基づく値に調整可能に構成され、駆動対象の第2ゲート線までの配線長に基づいて、前記第2ゲート駆動回路群を分けたグループ毎に、そのグループに含まれる第2ゲート駆動回路の出力振幅を当該配線長に基づく値に調整可能に構成される(図6、7〜10、12)。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を、近端から遠端にかけて階段状に調整することができ、発生する輝度ムラを低減することができる。
〔4〕<ゲート線に対する出力振幅を近端から遠端にかけて連続的に調整>
項2において、前記出力振幅調整回路は、前記第1ゲート駆動回路群に含まれる第1ゲート駆動回路の出力振幅を、駆動対象の第1ゲート線までの配線長に基づいて連続的に調整可能に構成され、前記第2ゲート駆動回路群に含まれる第2ゲート駆動回路の出力振幅を、駆動対象の第2ゲート線までの配線長に基づいて連続的に調整可能に構成される(図6、11、13)。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を、近端から遠端にかけて連続的に調整することができ、発生する輝度ムラを低減することができる。
〔5〕<表示パネルに実装されたゲート駆動回路に供給する電源を調整>
項1において、前記第1ゲート駆動回路群(82_L)と前記第2ゲート駆動回路群(82_R)は前記表示パネル(80)に実装され、前記表示駆動装置は、前記第1ゲート駆動回路群に第1電源(GVDD1,GVSS1)を供給し、前記第2ゲート駆動回路群に第2電源(GVDD2,GVSS2)を供給する。前記出力振幅調整回路は、前記第1電源の電圧と前記第2電源の電圧とを互いに独立に調整可能に構成される。
これにより、ゲート駆動回路を内蔵する表示パネルに接続される表示駆動装置においても、左右の引き回し配線の経路や配線抵抗と配線容量の相違に起因する、輝度ムラを低減することができる。
〔6〕<駆動対象のゲート線までの配線長によりゲート駆動回路に供給する電源の電圧を調整>
項5において、前記出力振幅調整回路は、前記表示駆動装置からの距離が遠い第1ゲート線(例えばG1)が駆動されるときの前記第1電源の電圧を、前記表示駆動装置からの距離が近い第1ゲート線(例えばGm−1)が駆動されるときの前記第1電源の電圧よりも高くするように調整可能に構成される。また、前記表示駆動装置からの距離が遠い第2ゲート線(例えばG2)が駆動されるときの前記第2電源の電圧を、前記表示駆動装置からの距離が近い第2ゲート線(例えばGm)が駆動されるときの前記第2電源の電圧よりも高くするように調整可能に構成される。
これにより、ゲート駆動回路を内蔵する表示パネルに接続される表示駆動装置においても、駆動されるゲート線までの電源配線と信号配線の合計の配線長に基づいて、ゲート駆動回路の出力振幅を調整することができ、遠端のゲート線に対する出力振幅を、近端のゲート線に対する出力振幅よりも大きくすることができる。このため、電源配線の配線抵抗と配線容量によるゲート駆動回路における電源電圧の低下と、その出力のゲート線の配線抵抗と配線容量による信号振幅の減衰を合わせて補償して、発生する輝度ムラをさらに低減することができる。
〔7〕<表示パネル上に実装されたタッチパネルを利用した自己自動補償>
項1において、前記表示パネルは、前記基板上に積層され複数のタッチ検出線(91、92)を有するタッチパネル(90)をさらに備える。前記表示駆動装置は、前記複数のタッチ検出線のそれぞれに接続され当該タッチ検出線上の信号の振幅を検出可能な、複数の受信回路(93、94)を備える。
前記表示駆動装置において、前記出力振幅調整回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときに前記複数の受信回路によって検出される信号の振幅値と、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに前記複数の受信回路によって検出される信号の振幅値との差を小さくするように、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群の少なくとも一方の出力振幅を調整可能に構成される。
これにより、タッチパネル(90)が積層された表示パネル(80)を駆動する表示駆動装置(10)において、ゲート配線の左右の引き回し経路や配線層の相違に起因する輝度ムラを、個体ごとの特性に合わせて低減することができる。さらに、自己自動補償(セルフ・オートキャリブレーション)回路として内蔵することも可能であり、または、そのような補償手段をキャリブレーションの時にのみ外付けして、補償値を表示駆動装置内の不揮発性メモリに保持するように構成しても良い。
〔8〕<配線長の違いに起因する輝度ムラの自己自動補償>
項7の表示駆動装置において、前記出力振幅調整回路は、前記表示駆動装置からの距離が遠い第1ゲート線(例えばG1)が駆動されるときに前記受信回路によって検出された信号振幅と、前記表示駆動装置からの距離が近い第1ゲート線(例えばGm−1)が駆動されるときに前記受信回路によって検出された信号振幅との差を小さくするように、前記第1ゲート駆動回路群に含まれる第1ゲート駆動回路の出力振幅を調整可能に構成される。また、前記表示駆動装置からの距離が遠い第2ゲート線(例えばG2)が駆動されるときに前記受信回路によって検出された信号振幅と、前記表示駆動装置からの距離が近い第2ゲート線(例えばGm)が駆動されるときに前記受信回路によって検出された信号振幅との差を小さくするように、前記第2ゲート駆動回路群に含まれる第2ゲート駆動回路の出力振幅を調整可能に構成される。
これにより、配線抵抗と配線容量による信号振幅の減衰を自己自動補償して、発生する輝度ムラをさらに低減することができる。
〔9〕<ゲート線と並行するタッチ検出線によりゲート線の信号振幅を測定>
項7において、前記複数のタッチ検出線は、上下方向に配線される複数の第1タッチ検出線群(91)と左右方向に配線される複数の第2タッチ検出線群(92)とを含んで構成される。
前記表示駆動装置において、前記出力振幅調整回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときに、前記複数の第2タッチ検出線群に接続される受信回路(94)によって検出される信号の振幅値と、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに、前記複数の第2タッチ検出線群に接続される受信回路(94)によって検出される信号の振幅値との差を小さくするように、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群の少なくとも一方の出力振幅を調整可能に構成される。
これにより、タッチ検出線によるゲート線の信号振幅の検出感度を向上させることができる。
〔10〕<ゲート線の信号振幅を測定するときにソース線をHiZ駆動>
項9において、前記表示駆動装置は、前記複数のソース線のそれぞれを駆動する複数のソース駆動回路(2)を備え、前記複数のソース駆動回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときと、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに、前記複数のソース線(S1〜Sx)をハイインピーダンスにする制御を可能に構成される。
これにより、タッチ検出線によるゲート線の信号振幅の検出感度を、さらに向上させることができる。
〔11〕<1チップ構成>
項1から項10のうちのいずれか1項において、表示駆動装置(10)は、単一の半導体基板上に集積される。
これにより、表示駆動装置の実装面積を小さくすることができる。
〔12〕<左右のゲート駆動回路の出力振幅を左右独立に調整可能な表示装置>
本願において開示される代表的な実施の形態に係る表示装置は、表示パネル(80)と表示駆動装置(10)とを備える表示装置(100)であって、以下のように構成される。
前記表示パネルは、基板に垂直方向から見たときに上下方向に配線される複数のソース線(S1〜Sx)と左右方向に配線される複数のゲート線(G1〜Gm)とが互いに交差する複数の箇所のそれぞれに画素が配置され、駆動されたゲート線によって選択された複数の画素に複数のソース線から表示データに対応する電荷がそれぞれ転送される。
前記表示駆動装置は、前記複数のゲート線のうち、左から配線される第1ゲート線群(G1,G3,…Gm−1)を駆動する第1ゲート駆動回路群(1_1、1_3、…1_m−1)と、右から配線される第2ゲート線群(G2,G4,…Gm)を駆動する第2ゲート駆動回路群(1_2、1_4、…1_m)の、それぞれの出力振幅を独立に調整可能な出力振幅調整回路(3)を備える。
これにより、アクティブマトリクス型表示パネルと、それを駆動する表示駆動装置を備えた表示装置において、ゲート配線のゲート駆動回路からの左右の引き回し経路や配線層の相違に起因する、輝度ムラを低減することができる。
〔13〕<駆動対象のゲート線までの配線長により出力振幅を調整>
項12において、前記出力振幅調整回路は、前記第1ゲート駆動回路群のうち、駆動対象の第1ゲート線までの配線長が長い第1ゲート駆動回路(例えば1_1)の出力振幅を、駆動対象の第1ゲート線までの配線長が短い第1ゲート駆動回路(例えば1_m−1)の出力振幅よりも大きくする。また、前記第2ゲート駆動回路群のうち、駆動対象の第2ゲート線までの配線長が長い第2ゲート駆動回路(例えば1_2)の出力振幅を、駆動対象の第2ゲート線までの配線長が短い第2ゲート駆動回路(例えば1_m)の出力振幅よりも大きくする。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を調整することができ、遠端のゲート線に対する出力振幅を、近端のゲート線に対する出力振幅よりも大きくすることができるため、配線抵抗と配線容量による信号振幅の減衰を補償して、発生する輝度ムラをさらに低減することができる。
〔14〕<ゲート線に対する出力振幅を近端から遠端にかけて階段状に調整>
項13において、前記出力振幅調整回路は、駆動対象の第1ゲート線までの配線長に基づいて、前記第1ゲート駆動回路群を分けたグループ毎に、そのグループに含まれる第1ゲート駆動回路の出力振幅を当該配線長に基づく値に調整可能に構成され、駆動対象の第2ゲート線までの配線長に基づいて、前記第2ゲート駆動回路群を分けたグループ毎に、そのグループに含まれる第2ゲート駆動回路の出力振幅を当該配線長に基づく値に調整可能に構成される(図6、7〜10、12)。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を、近端から遠端にかけて階段状に調整することができ、発生する輝度ムラを低減することができる。
〔15〕<ゲート線に対する出力振幅を近端から遠端にかけて連続的に調整>
項13において、前記出力振幅調整回路は、前記第1ゲート駆動回路群に含まれる第1ゲート駆動回路の出力振幅を、駆動対象の第1ゲート線までの配線長に基づいて連続的に調整可能に構成され、前記第2ゲート駆動回路群に含まれる第2ゲート駆動回路の出力振幅を、駆動対象の第2ゲート線までの配線長に基づいて連続的に調整可能に構成される(図6、11、13)。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を、近端から遠端にかけて連続的に調整することができ、発生する輝度ムラを低減することができる。
〔16〕<表示パネルに実装されたゲート駆動回路に供給する電源を調整>
項12において、前記第1ゲート駆動回路群(82_L)と前記第2ゲート駆動回路群(82_R)は前記表示パネルに実装され、前記表示駆動装置は、前記第1ゲート駆動回路群に第1電源(GVDD1,GVSS1)を供給し、前記第2ゲート駆動回路群に第2電源(GVDD2,GVSS2)を供給する。前記出力振幅調整回路は、前記第1電源の電圧と前記第2電源の電圧とを互いに独立に調整可能に構成される。
これにより、ゲート駆動回路を内蔵する表示パネルと、それに接続される表示駆動装置とを含んで構成される表示装置においても、左右の引き回し配線の経路や配線抵抗と配線容量の相違に起因する、輝度ムラを低減することができる。
〔17〕<駆動対象のゲート線までの配線長によりゲート駆動回路に供給する電源の電圧を調整>
項16において、前記出力振幅調整回路は、前記表示駆動装置からの距離が遠い第1ゲート線(例えばG1)が駆動されるときの前記第1電源の電圧を、前記表示駆動装置からの距離が近い第1ゲート線(例えばGm−1)が駆動されるときの前記第1電源の電圧よりも高くするように調整可能に構成される。また、前記表示駆動装置からの距離が遠い第2ゲート線(例えばG2)が駆動されるときの前記第2電源の電圧を、前記表示駆動装置からの距離が近い第2ゲート線(例えばGm)が駆動されるときの前記第2電源の電圧よりも高くするように調整可能に構成される。
これにより、ゲート駆動回路を内蔵する表示パネルと、それに接続される表示駆動装置とを含んで構成される表示装置においても、駆動されるゲート線までの電源配線と信号配線の合計の配線長に基づいて、ゲート駆動回路の出力振幅を調整することができ、遠端のゲート線に対する出力振幅を、近端のゲート線に対する出力振幅よりも大きくすることができる。このため、電源配線の配線抵抗と配線容量によるゲート駆動回路における電源電圧の低下と、その出力のゲート線の配線抵抗と配線容量による信号振幅の減衰を合わせて補償して、発生する輝度ムラを低減することができる。
〔18〕<表示パネル上に実装されたタッチパネルを利用した自己自動補償>
項11において、前記表示装置は、前記表示パネルに積層され複数のタッチ検出線(91、92)を有するタッチパネル(90)をさらに備える。前記表示駆動装置は、前記複数のタッチ検出線のそれぞれに接続され当該タッチ検出線上の信号の振幅を検出可能な、複数の受信回路(93、94)を備える。
前記表示駆動装置において、前記出力振幅調整回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときに前記複数の受信回路によって検出される信号の振幅値と、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに前記複数の受信回路によって検出される信号の振幅値との差を小さくするように、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群の少なくとも一方の出力振幅を調整可能に構成される。
これにより、タッチパネル(90)が積層された表示パネル(80)とそれらを駆動する表示駆動装置(10)を含んで構成される表示装置(100)において、ゲート配線の左右の引き回し経路や配線層の相違に起因する輝度ムラを、個体ごとの特性に合わせて低減することができる。さらに、自己自動補償(セルフ・オートキャリブレーション)回路として内蔵することも可能であり、または、そのような補償手段をキャリブレーションの時にのみ外付けして、補償値を表示装置内または表示駆動装置内の不揮発性メモリに保持するように構成しても良い。
〔19〕<配線長の違いに起因する輝度ムラの自己自動補償>
項18の表示駆動装置において、前記出力振幅調整回路は、前記表示駆動装置からの距離が遠い第1ゲート線(例えばG1)が駆動されるときに前記受信回路によって検出された信号振幅と、前記表示駆動装置からの距離が近い第1ゲート線(例えばGm−1)が駆動されるときに前記受信回路によって検出された信号振幅との差を小さくするように、前記第1ゲート駆動回路群に含まれる第1ゲート駆動回路の出力振幅を調整可能に構成される。また、前記表示駆動装置からの距離が遠い第2ゲート線(例えばG2)が駆動されるときに前記受信回路によって検出された信号振幅と、前記表示駆動装置からの距離が近い第2ゲート線(例えばGm)が駆動されるときに前記受信回路によって検出された信号振幅との差を小さくするように、前記第2ゲート駆動回路群に含まれる第2ゲート駆動回路の出力振幅を調整可能に構成される。
これにより、配線抵抗と配線容量による信号振幅の減衰を自己自動補償して、発生する輝度ムラをさらに低減することができる。
〔20〕<ゲート線と並行するタッチ検出線によりゲート線の信号振幅を測定>
項18の表示装置において、前記複数のタッチ検出線は、上下方向に配線される複数の第1タッチ検出線群(91)と左右方向に配線される複数の第2タッチ検出線群(92)とを含んで構成される。
前記表示駆動装置において、前記出力振幅調整回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときに、前記複数の第2タッチ検出線群に接続される受信回路(94)によって検出される信号の振幅値と、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに、前記複数の第2タッチ検出線群に接続される受信回路(94)によって検出される信号の振幅値との差を小さくするように、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群の少なくとも一方の出力振幅を調整可能に構成される。
これにより、タッチ検出線によるゲート線の信号振幅の検出感度を向上させることができる。
〔21〕<ゲート線の信号振幅を測定するときにソース線をHiZ駆動>
項20の表示装置において、前記表示駆動装置は、前記複数のソース線のそれぞれを駆動する複数のソース駆動回路(2)を備え、前記複数のソース駆動回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときと、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに、前記複数のソース線(S1〜Sx)をハイインピーダンスにする制御を可能に構成される。
これにより、タッチ検出線によるゲート線の信号振幅の検出感度を、さらに向上させることができる。
2.実施の形態の詳細
本発明の実施の形態について更に詳述する。
〔実施形態1〕<左右のゲート駆動回路の出力振幅を独立に調整する表示駆動装置>
図1は、実施形態1に係る表示装置100及び表示駆動装置10の構成を表すブロック図である。表示駆動装置10は、アクティブマトリクス型表示パネル80に接続されることができる。
表示パネル80は、基板に垂直方向から見たときに上下方向に配線される複数のソース線S1〜Sxと左右方向に配線される複数のゲート線G1〜Gmとが互いに交差する複数の箇所のそれぞれに画素が配置され、駆動されたゲート線によって選択された複数の画素に複数のソース線から表示データに対応する電荷がそれぞれ転送される。
表示駆動装置10は、複数のゲート駆動回路1_1、1_2、1_3、1_4、…1_m−1、1_mと、ソース駆動回路2と、出力振幅調整回路3と、走査タイミング生成回路4とを備える。複数のゲート駆動回路1_1、1_2、1_3、1_4、…1_m−1、1_mは、走査タイミング生成回路4から供給される走査タイミング信号に基づいて、複数のゲート線G1〜Gmを1ラインずつ順次駆動する。これを「走査(スキャン)」と呼ぶ。ソース駆動回路2は、図示を省略したインターフェースを介して入力される表示データに対応する信号振幅を出力することができ、ゲート駆動回路1による走査に同期して、表示データに対応する信号振幅で、複数のソース線S1〜Sxを並列に駆動する。ゲート駆動回路1によって駆動され選択された1ラインのゲート線に接続される複数の画素に、ソース線S1〜Sxから表示データに対応する量の電荷がそれぞれ転送される。
複数のゲート駆動回路は、複数のゲート線のうち左から配線されるゲート線群G1,G3,…Gm−1を駆動する第1ゲート駆動回路群1_1、1_3、…1_m−1と、右から配線されるゲート線群G2,G4,…Gmを駆動する第2ゲート駆動回路群1_2、1_4、…1_mに分けられる。出力振幅調整回路3は、第1ゲート駆動回路群1_1、1_3、…1_m−1と第2ゲート駆動回路群1_2、1_4、…1_mの出力振幅を独立に調整することができる。
これにより、アクティブマトリクス型表示パネル80を駆動する表示駆動装置10において、ゲート配線のゲート駆動回路からの左右の引き回し経路や配線層の相違に起因する、輝度ムラを低減することができる。特に制限されないが、例えば、表示駆動装置10は単一チップのIC(Integrated Circuit)として、公知のCMOS(Complementary Metal-Oxide-Semiconductor)半導体製造技術を用いて、単一のシリコン基板上に形成され、表示パネル80上にフリップチップ実装され、ゲート線G1〜Gmは表示パネル80上の配線層により形成される。表示駆動装置10が実装される位置から、表示領域のゲート線G1〜Gmまでの距離は、表示パネル80の物理的な大きさによって決まり、ゲート配線のゲート駆動回路1からの引き回し経路にも影響する。ゲート駆動回路からのゲート配線の引き回しは、左右で配線長が異なる場合がある他、使用する配線層の違いによっても、配線抵抗と配線容量の違いを生じさせる。本実施形態1を始めとする本発明では、出力振幅調整回路3によって左右のゲート駆動回路出力振幅を調整することにより、ゲート配線のゲート駆動回路からの左右の引き回し経路や配線層の相違に起因する、輝度ムラを低減することができる。ゲート駆動回路1は、表示パネル80のガラス等の基板上に低温ポリシリコン(LTP:Low-Temperature Poly Silicon)等による薄膜トランジスタ(TFT:Thin Film Transistor)を用いて形成されることができる。この場合は、ゲート駆動回路1に供給する電源配線の左右の引き回し経路や配線層の相違に起因して発生する、左右のゲート駆動回路出力振幅の差を補償することにより、輝度ムラを低減することができる。
左右のゲート駆動回路出力振幅を独立して調整するために、出力振幅調整回路3に左右それぞれの出力振幅を調整する、振幅調整レジスタa(5_L)と振幅調整レジスタb(5_R)とを備えることができる。振幅調整レジスタa(5_L)と振幅調整レジスタb(5_R)は、揮発性のレジスタで構成し、電源投入時などの初期化シーケンスにおいて、適切な値を設定するように構成してもよい。また、ヒューズ、NVM(Non-Volatile Memory)などの不揮発性の記憶素子で構成し、接続される表示パネル80に応じてトリミングしてもよい。
〔実施形態2〕<出力振幅調整回路>
図2は、実施形態2に係る出力振幅調整回路3の構成例を表す回路図である。出力振幅調整回路3は、第1ゲート駆動回路群1_L(1_1、1_3、…1_m−1)と第2ゲート駆動回路群1_R(1_2、1_4、…1_m)に電源Vref0LとVref0Rをそれぞれ供給する。第1ゲート駆動回路群1_Lを構成するゲート駆動回路1_1、1_3、…1_m−1は、それぞれCMOSインバータで、電源Vref0LとVSSが供給され、走査タイミング生成回路4から供給される走査タイミング信号を、反転増幅してゲート線群G1,G3,…Gm−1を駆動する。第2ゲート駆動回路群1_Rを構成するゲート駆動回路1_2、1_4、…1_mも同様に、それぞれCMOSインバータで、電源Vref0RとVSSが供給され、走査タイミング生成回路4から供給される走査タイミング信号を、反転増幅してゲート線群G2,G4,…Gmを駆動する。
出力振幅調整回路3は、抵抗ラダー8_1と、スイッチ9_Lと9_Rと、ボルテージフォロワ回路7_1Lと7_1Rと、振幅調整レジスタa(5_L)と振幅調整レジスタb(5_R)とを含んで構成される。抵抗ラダー8_1は、高電位側電源VGHと低電位側電源VGLの間に直列接続された複数の抵抗器で構成され、各タップから階調電圧を出力する。図示される抵抗ラダー8_1は、高電位側電源VGHにRa1、低電位側電源VGLにRa2がそれぞれ接続され、その間に複数のRa0が互いに直列接続され、抵抗分圧された階調電圧が出力される。スイッチ9_Lと9_Rは、出力された階調電圧から、それぞれ振幅調整レジスタa(5_L)と振幅調整レジスタb(5_R)によって指定される電圧を選んで、ボルテージフォロワ回路7_1Lと7_1Rに供給する。ボルテージフォロワ回路7_1Lと7_1Rはそれぞれ電流増幅を行って、選択された電圧をゲート駆動回路1に電源として供給する。即ち、第1ゲート駆動回路群1_Lに電源Vref0Lを、第2ゲート駆動回路群1_Rに電源Vref0Rをそれぞれ供給する。第1ゲート駆動回路群1_Lと第2ゲート駆動回路群1_Rを構成するゲート駆動回路1はCMOSインバータであるので、出力振幅はそれぞれVSSを基準として、Vref0LとVref0Rとなる。
図3は、図2に示した出力振幅調整回路3の動作を表す真理値表である。スイッチ9_Lと9_Rは同様の動作をそれぞれ独立に行うので、スイッチ9として説明する。スイッチ9は、SW0からSW7までの8個の入力接点から1個を選択して出力するスイッチである。SW0からSW7までのどの接点が選択されたかにより、図3に示すように抵抗選択値RaΣが決まり、出力される階調電圧Vref0が選択される。出力される階調電圧Vref0の電圧は下式により算出される。
Figure 2015045726
この例では、8階調の階調電圧から選択する例を示したが、階調数は任意に変更することができる。また、ラダー抵抗8_1は、左右で共用する例を示したが、左右別々に設けることもできる。左右で共用することにより、ラダー抵抗8_1を形成するための領域(チップ面積)を節約することができる一方、左右別々に設けることにより、ラダー抵抗8_1からスイッチ9_Lと9_Rまでの配線のための面積を節約することができる。
図4は、実施形態2に係る出力振幅調整回路3の別の構成例を表す回路図である。図3には、左右の回路を示したが、図4には左側のゲート線を駆動する回路のみを示す。右側のゲート線を駆動する回路も同様に構成することができる。
出力振幅調整回路3は、第1ゲート駆動回路群1_L(1_1、1_3、…1_m−1)に電源Vref0を供給する。第1ゲート駆動回路群1_Lを構成するゲート駆動回路1_1、1_3、…1_m−1は、それぞれCMOSインバータで、電源Vref0とVSSが供給され、走査タイミング生成回路4から供給される走査タイミング信号を、反転増幅してゲート線群G1,G3,…Gm−1を駆動する。
出力振幅調整回路3は、抵抗ラダー8_2と、スイッチ9_1と9_2と9_3と、ボルテージフォロワ回路7_2Lと、振幅調整レジスタa(5_2L)とを含んで構成される。抵抗ラダー8_2は、高電位側電源VGHと低電位側電源VGLの間に直列接続された抵抗器で構成され、各タップから階調電圧を出力する。図示される抵抗ラダー8_2は、抵抗ラダー8_1と同様に、高電位側電源VGHにRa1、低電位側電源VGLにRa2がそれぞれ接続され、その間に複数のRa0が互いに直列接続され、抵抗分圧された階調電圧が出力される。スイッチ9_1と9_2と9_3は、出力された階調電圧から、それぞれ振幅調整レジスタa(5_2L)によって指定される電圧を選んで、ボルテージフォロワ回路7_2Lに供給する。ボルテージフォロワ回路7_2Lは電流増幅を行って、選択された電圧を第1ゲート駆動回路群1_Lに電源Vref0として供給する。第1ゲート駆動回路群1_Lを構成するゲート駆動回路1はCMOSインバータであるので、出力振幅はVSSを基準としてVref0となる。
図5は、図4に示した出力振幅調整回路の動作を表す真理値表である。スイッチ9_1と9_2と9_3の3個のスイッチのオン/オフの組合せによって、図5に示すように抵抗選択値RaΣが決まり、出力される階調電圧Vref0が選択される。出力される階調電圧Vref0の電圧は下式により算出される。
Figure 2015045726
この例でも図2、図3の例と同様に、8階調の階調電圧から選択する例を示したが、階調数は任意に変更することができる。
図2に例示した回路によれば、図4に例示した回路よりも、出力電圧を高精度に制御することが容易となる。各タップにおいてスイッチの影響が均等に加わるため、原理的に比精度に影響を与えないからである。一方、図4に例示した回路によれば、回路規模を縮小することができ、テスティングも容易とすることができる。スイッチの数が階調数に対して2を底とする対数(階調数をkとするとスイッチの数はlog2k)で済むので、必要なスイッチの数が少なく、また、スイッチを制御するために、2進数の信号を直接接続すればよいので、デコーダを必要としない。ただし、ラダー抵抗8_2を左右で共用することはできない。
〔実施形態3〕<ゲート駆動回路の出力振幅を遠端/近端で調整する表示駆動装置>
表示駆動装置10は、例えば表示駆動ICとして構成され、表示パネル80の基板上の一辺に辺縁部にフリップチップ実装される。このとき、表示駆動ICが実装された位置からゲート線まで、表示パネル80の基板上の配線が引き回されることとなる。駆動されるゲート線が表示駆動ICから近いか遠いかによって配線長が異なり、配線抵抗と配線容量も異なるので、ゲート駆動回路1から出力された信号の出力振幅の減衰量も異なることとなる。遠端のゲート線に達するときには、近端のゲート線に達するときよりも、振幅の減衰が著しい。そこで、遠端のゲート線を駆動するゲート駆動回路1の出力振幅を、遠端のゲート線を駆動するゲート駆動回路1の出力振幅よりも予め大きくしておくことにより、減衰量を補償して、遠端から近端まで均等な振幅の信号で、ゲート線を駆動することができる。
図6は、実施形態3に係る表示装置100及び表示駆動装置10の構成を表すブロック図である。図1と同様に、表示駆動装置10は、アクティブマトリクス型表示パネル80に接続されることができ、表示駆動装置10は、複数のゲート駆動回路1_1、1_2、1_3、1_4、…1_m−1、1_mと、ソース駆動回路2と、出力振幅調整回路3と、走査タイミング生成回路4とを備える。
出力振幅調整回路3は、左右のゲート駆動回路出力振幅を独立して調整するために、階調レベル生成回路6_Lと6_Rを左右それぞれ独立に備え、さらに、左側の近端と遠端に位置するゲート線を駆動するときの出力振幅をそれぞれ規定する、近端振幅調整レジスタc(5_3L)と遠端振幅調整レジスタd(5_4L)を備え、右側の近端と遠端に位置するゲート線を駆動するときの出力振幅をそれぞれ規定する、近端振幅調整レジスタe(5_3R)と遠端振幅調整レジスタf(5_4R)を備える。これらのレジスタも、振幅調整レジスタa(5_L)と振幅調整レジスタb(5_R)と同様に、揮発性のレジスタで構成し、電源投入時などの初期化シーケンスにおいて、適切な値を設定するように構成してもよい。また、ヒューズやNVMなどの不揮発性の記憶素子で構成し、接続される表示パネル80に応じてトリミングしてもよい。
出力振幅調整回路3は、第1ゲート駆動回路群1_Lのうち、駆動対象のゲート線までの配線長が長いゲート駆動回路(例えば1_1)の出力振幅を、駆動対象のゲート線までの配線長が短いゲート駆動回路(例えば1_m−1)の出力振幅よりも大きくする。例えば遠端のゲート線G1を駆動するゲート駆動回路1_1の出力振幅を、遠端振幅調整レジスタd(5_4L)によって調整し、近端のゲート線Gm−1を駆動するゲート駆動回路1_m−1の出力振幅を、近端振幅調整レジスタc(5_3L)によって調整することができるように構成する。また、第2ゲート駆動回路群1_Rのうち、駆動対象のゲート線までの配線長が長いゲート駆動回路(例えば1_2)の出力振幅を、駆動対象のゲート線までの配線長が短いゲート駆動回路(例えば1_m)の出力振幅よりも大きくする。例えば遠端のゲート線G2を駆動するゲート駆動回路1_2の出力振幅を、遠端振幅調整レジスタf(5_4R)によって調整し、近端のゲート線Gmを駆動するゲート駆動回路1_mの出力振幅を、近端振幅調整レジスタe(5_3R)によって調整することができるように構成する。その他の構成と動作は、図1と同様であるので、説明を省略する。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を調整することができ、遠端のゲート線に対する出力振幅を、近端のゲート線に対する出力振幅よりも大きくすることができるため、配線抵抗と配線容量による信号振幅の減衰を補償して、発生する輝度ムラをさらに低減することができる。
出力振幅調整回路3は、種々の回路構成を採ることができるので、いくつかの構成例について、以下に説明する。以下の図7から図11に示す構成例では、図4と同様に左側のゲート線を駆動する回路のみを示すが、実際には右側のゲート線を駆動する回路も同様に構成することができ、図3と同様に左右の回路を備えて構成することができる。
図7は、実施形態3に係る出力振幅調整回路3の第1の構成例を表す回路図である。出力振幅調整回路3は、第1ゲート駆動回路群1_L(1_1、1_3、…1_m−1)に電源Vref0Lを供給する。第1ゲート駆動回路群1_Lを構成するゲート駆動回路1_1、1_3、…1_m−1は、それぞれCMOSインバータで、電源Vref0とVSSが供給され、走査タイミング生成回路4から供給される走査タイミング信号を、反転増幅してゲート線群G1,G3,…Gm−1を駆動する。
出力振幅調整回路3は、抵抗ラダー8_3と、スイッチ9_5と、ボルテージフォロワ回路7_3Lと、スイッチ9_4と、近端振幅調整レジスタc(5_3L)と遠端振幅調整レジスタd(5_4L)とそれらの中間値を算出する回路11を含んで構成される。抵抗ラダー8_3は、高電位側電源VGHと低電位側電源VGLの間に直列接続された抵抗器で構成され、各タップから階調電圧を出力する。抵抗ラダー8_3は、高電位側電源VGHにRa1、低電位側電源VGLにRa2がそれぞれ接続され、その間に複数のRa0が互いに直列接続され、抵抗分圧された階調電圧が出力される。スイッチ9_5は、出力された階調電圧から1つの階調電圧を選択して、ボルテージフォロワ回路7_3Lに供給する。ボルテージフォロワ回路7_3Lは電流増幅を行って、第1ゲート駆動回路群1_Lに電源Vref0Lを供給する。第1ゲート駆動回路群1_Lを構成するゲート駆動回路1はCMOSインバータであるので、出力振幅はそれぞれVSSを基準として、Vref0Lとなる。
走査タイミング生成回路4は、第1ゲート駆動回路群1_Lの各ゲート駆動回路1_1〜1_m−1に走査タイミング信号を供給するのと同期して、スイッチ9_4を制御し、スイッチ9_5に適切な振幅調整値を供給する。具体的には、近端のゲート線を駆動するゲート駆動回路1_m−1に走査タイミング信号を供給するのと同期して、スイッチ9_4によって、近端振幅調整レジスタc(5_3L)が選択される。スイッチ9_5により、選択された近端振幅調整レジスタc(5_3L)に格納されるパラメータに基づいた電圧Vref0Lが選択され、ゲート駆動回路1_m−1に電源電圧として供給されて、ゲート線Gm−1を駆動する信号の出力振幅となる。また、遠端のゲート線を駆動するゲート駆動回路1_1に走査タイミング信号を供給するのと同期して、スイッチ9_4によって、遠端振幅調整レジスタd(5_4L)が選択される。スイッチ9_5により、選択された遠端振幅調整レジスタd(5_4L)に格納されるパラメータに基づいた電圧Vref0Lが選択され、ゲート駆動回路1_1に電源電圧として供給されて、ゲート線G1を駆動する信号の出力振幅となる。近端と遠端の中間では、近端振幅調整レジスタc(5_3L)に格納されるパラメータと遠端振幅調整レジスタd(5_4L)に格納されるパラメータの中間の値を、中間値算出回路11によって算出して、スイッチ9_5に供給する。図7には、スイッチ9_4を3接点のスイッチとして記載したが、中間値算出回路11を多段階の出力として4接点以上に細かく制御しても良い。近端振幅調整レジスタc(5_3L)や遠端振幅調整レジスタd(5_4L)あるいは中間値生成回路11の出力によって選択されるスイッチ9_5の選択状態と、出力電圧Vref0Lとの関係は、図3に示した真理値表と、前述の式1によって規定される。
出力振幅調整回路3は、第1ゲート駆動回路群1_Lを駆動対象の第1ゲート線までの配線長に基づいて、いくつかのグループに分け、そのグループに含まれるゲート駆動回路1の出力振幅を当該配線長に基づく値に調整する。グループ毎に階段状に第1ゲート駆動回路群1_Lに供給する電源電圧を制御することにより、グループ毎の出力振幅を調整する。遠端から近端に向かって順次走査するときには、出力振幅は順次階段状に低くなるように制御される。図示と説明を省略するが、出力振幅調整回路3は、右側の第2ゲート駆動回路群1_Rに対しても、同様に構成され動作する。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を、近端から遠端にかけて階段状に調整することができ、発生する輝度ムラを低減することができる。
図8は、出力振幅調整回路3の第2の構成例を表す回路図である。出力振幅調整回路3は、第1ゲート駆動回路群1_L(1_1、1_3、…1_m−1)に電源Vref0Lを供給する。第1ゲート駆動回路群1_Lを構成するゲート駆動回路1_1、1_3、…1_m−1は、それぞれCMOSインバータで、電源Vref0とVSSが供給され、走査タイミング生成回路4から供給される走査タイミングを、反転増幅してゲート線群G1,G3,…Gm−1を駆動する。
出力振幅調整回路3は、抵抗ラダー8_4と、スイッチ9_6〜9_8と、ボルテージフォロワ回路7_4Lと、スイッチ9_4と、近端振幅調整レジスタc(5_3L)と遠端振幅調整レジスタd(5_4L)とそれらの中間値を算出する回路11を含んで構成される。抵抗ラダー8_4は、高電位側電源VGHと低電位側電源VGLの間に直列接続された抵抗器で構成され、各タップから階調電圧を出力する。抵抗ラダー8_4は、高電位側電源VGHにRa1、低電位側電源VGLにRa2がそれぞれ接続され、その間に複数のRa0が互いに直列接続され、抵抗分圧された階調電圧が出力される。スイッチ9_6〜9_8は、出力された階調電圧から1つの階調電圧を選択して、ボルテージフォロワ回路7_4Lに供給する。ボルテージフォロワ回路7_4Lは電流増幅を行って、第1ゲート駆動回路群1_Lに電源Vref0Lを供給する。第1ゲート駆動回路群1_Lを構成するゲート駆動回路1はCMOSインバータであるので、出力振幅はそれぞれVSSを基準として、Vref0Lとなる。
走査タイミング生成回路4は、図7と同様に、第1ゲート駆動回路群1_Lの各ゲート駆動回路1_1〜1_m−1に走査タイミング信号を供給するのと同期してスイッチ9_4を制御し、スイッチ9_6〜9_8に適切な振幅調整値を供給する。具体的には、近端のゲート線を駆動するゲート駆動回路1_m−1に走査タイミング信号を供給するのと同期して、スイッチ9_4によって、近端振幅調整レジスタc(5_3L)が選択される。スイッチ9_6〜9_8により、選択された近端振幅調整レジスタc(5_3L)に格納されるパラメータに基づいた電圧Vref0Lが選択され、ゲート駆動回路1_m−1に電源電圧として供給されて、ゲート線Gm−1を駆動する信号の出力振幅となる。また、遠端のゲート線を駆動するゲート駆動回路1_1に走査タイミング信号を供給するのと同期して、スイッチ9_4によって、遠端振幅調整レジスタd(5_4L)が選択される。スイッチ9_6〜9_8により、選択された遠端振幅調整レジスタd(5_4L)に格納されるパラメータに基づいた電圧Vref0Lが選択され、ゲート駆動回路1_1に電源電圧として供給されて、ゲート線G1を駆動する信号の出力振幅となる。近端と遠端の中間では、近端振幅調整レジスタc(5_3L)に格納されるパラメータと遠端振幅調整レジスタd(5_4L)に格納されるパラメータの中間の値を、中間値算出回路11によって算出して、スイッチ9_6〜9_8に供給する。図8には、図7と同様にスイッチ9_4を3接点のスイッチとして記載したが、中間値算出回路11を多段階の出力として4接点以上に細かく制御しても良い。近端振幅調整レジスタc(5_3L)や遠端振幅調整レジスタd(5_4L)あるいは中間値生成回路11の出力によって決まるスイッチ9_6〜9_8のオン/オフ状態と、出力電圧Vref0Lとの関係は、図5に示した真理値表と、前述の式2によって規定される。
図8に示す出力振幅調整回路3を採用した場合も、図7に示した場合と同様に、第1ゲート駆動回路群1_Lを駆動対象の第1ゲート線までの配線長に基づいて、いくつかのグループに分け、そのグループに含まれるゲート駆動回路1の出力振幅を当該配線長に基づく値に調整する。グループ毎に階段状に第1ゲート駆動回路群1_Lに供給する電源電圧を制御することにより、グループ毎の出力振幅を調整する。遠端から近端に向かって順次走査するときには、出力振幅は順次階段状に低くなるように制御される。図示と説明を省略するが、出力振幅調整回路3は、右側の第2ゲート駆動回路群1_Rに対しても、同様に構成され動作する。これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を、近端から遠端にかけて階段状に調整することができ、発生する輝度ムラを低減することができる。
図9は、出力振幅調整回路3の第3の構成例を表す回路図である。出力振幅調整回路3は、ラダー抵抗8_5とスイッチ9_9と近端振幅調整レジスタc/e(5_3)と遠端振幅調整レジスタd/f(5_4)と近端振幅レベル生成回路12_1と遠端振幅レベル生成回路12_2を含んで構成される。ラダー抵抗8_5は、図7のラダー抵抗8_3に代えて、7個の抵抗Ra0が直列接続され、一端が近端振幅レベル生成回路12_1に接続され、他端が遠端振幅レベル生成回路12_2に接続される。近端振幅レベル生成回路12_1は、近端振幅調整レジスタc/e(5_3)に基づいて、近端振幅電圧VstartL/Rを生成してラダー抵抗8_5の一端に供給し、遠端振幅レベル生成回路12_2は、遠端振幅調整レジスタd/f(5_4)に基づいて、遠端振幅電圧VendL/Rを生成してラダー抵抗8_5の他端に供給する。ラダー抵抗8_5は、近端振幅電圧VstartL/Rから遠端振幅電圧VendL/Rまでを8階調の電圧に分圧してスイッチ9_9に供給する。走査タイミング生成回路4は、ゲート駆動回路群1_L/Rの各ゲート駆動回路1_1〜1_mに走査タイミング信号を供給するのと同期して、スイッチ9_9を制御し、ゲート駆動回路群1_L/Rの各ゲート駆動回路1_1〜1_mに電源を供給する。スイッチ9_9の選択状態と、出力電圧Vref0L/Rとの関係は、図3に示した真理値表と、下記の式3によって規定される。
Figure 2015045726
図12は、第3の構成例の出力振幅調整回路3の動作を表す波形図である。横軸は時間であり、縦軸はVSSを基準とするゲート駆動回路の出力振幅である。ゲート線を近端から遠端までの8個のグループに分け、時刻t0からt1までは、近端に最も近いグループのゲート線を駆動する期間であり、ゲート駆動回路の出力振幅はVstartである。その後、順次ゲート駆動回路の出力振幅を階段状に上昇させる。時刻t7からt8までは、遠端に最も近いグループのゲート線を駆動する期間であり、ゲート駆動回路の出力振幅はVendとなる。
図10は、出力振幅調整回路3の第4の構成例を表す回路図である。出力振幅調整回路3は、ラダー抵抗8_6とスイッチ9_10〜9_12と近端振幅調整レジスタc/e(5_3)と遠端振幅調整レジスタd/f(5_4)とを含んで構成される。ラダー抵抗8_6は、図8のラダー抵抗8_4と同様に、高電位側電源VGHにRa1、低電位側電源VGLにRa2がそれぞれ接続され、その間に複数のRa0が互いに直列接続され、抵抗分圧された階調電圧を出力する。抵抗Ra1の値は遠端振幅調整レジスタd/f(5_4)によって調整され、抵抗Ra2の値は近端振幅調整レジスタc/e(5_3)によって調整される。スイッチ9_10〜9_12のオン/オフ状態の組合せによって決まる電圧が、ボルテージフォロワ回路7_6に供給され、ボルテージフォロワ回路7_6により、ゲート駆動回路1に電源電圧Vref0L/Rとして供給される。スイッチ9_10〜9_12のオン/オフ状態と、出力電圧Vref0L/Rとの関係は、図5に示した真理値表と、前述の式2によって規定される。近端振幅調整レジスタc/e(5_3)と遠端振幅調整レジスタd/f(5_4)により、末端の抵抗Ra1とRa2の値を調整することにより、近端のゲート線を駆動するときのゲート駆動回路1の出力振幅がVstartL/Rに、遠端のゲート線を駆動するときのゲート駆動回路1の出力振幅がVendL/Rになるように設定する。走査タイミング生成回路4によって、図9に示した出力振幅調整回路3に対する制御と同様の同期制御を行うことにより、図12に示したのと同様に、ゲート駆動回路の出力振幅を階段状に上昇させる制御を行うことができる。
図11は、出力振幅調整回路3の第5の構成例を表す回路図である。出力振幅調整回路3は、図7等と同様に、第1ゲート駆動回路群1_L(1_1、1_3、…1_m−1)に電源Vref0Lを供給する。第1ゲート駆動回路群1_Lを構成するゲート駆動回路1_1、1_3、…1_m−1は、それぞれCMOSインバータで、電源Vref0とVSSが供給され、走査タイミング生成回路4から供給される走査タイミングを、反転増幅してゲート線群G1,G3,…Gm−1を駆動する。
出力振幅調整回路3は、PWM回路13と、チャージポンプ14と、ローパスフィルタ15と、ボルテージフォロワ回路7_7とを含んで構成される。PWM回路13は、パルス幅変調(PWM:Pulse Width Modulation)回路であり、例えばデューティ比0%から100%までパルス幅が制御されたパルスを出力する。CMOSインバータと同様に構成されるチャージポンプ14は、高電位側電源に遠端ゲート線に対する出力振幅に相当する電圧Vendが、低電位側電源に近端ゲート線に対する出力振幅に相当する電圧Vstartがそれぞれ接続され、入力端子にデューティ比0%のパルスが入力されると、出力端子からVendが出力され、入力端子にデューティ比100%のパルスが入力されると、出力端子からVstartが出力される。チャージポンプ14の出力は、ローパスフィルタ15によって平滑され、ボルテージフォロワ7_7に供給される。PWMのデューティ比と出力電圧Vref0の関係は、下式を使って算出することができる。
Figure 2015045726
デューティ比を0%から100%まで変調するとしたのは、理解を容易にするための一例であって、実際の変調度はある程度の余裕を持たせ、例えば5%から95%などとし、それに応じてチャージポンプ14に供給する低電位側電源はVstartよりも低めに、高電位側電源はVendより高めに設定される。
図13は、第5の構成例の出力振幅調整回路3の動作を表す波形図である。図12と同様に、横軸は時間であり、縦軸はVSSを基準とするゲート駆動回路の出力振幅である。時刻t0には近端のゲート線が出力振幅Vstartによって駆動され、出力振幅は時刻t8に至るまで連続的に上昇され、遠端のゲート線が駆動される時刻t8には、出力振幅はVendになる。
これにより、駆動されるゲート線までの配線長に基づいて、ゲート駆動回路の出力振幅を、近端から遠端にかけて連続的に調整することができ、発生する輝度ムラを低減することができる。
〔実施形態4〕<表示パネル側に表示駆動回路>
図14は、実施形態4に係る表示パネル80の構成を表すブロック図である。表示パネル80は、アクティブマトリクス81を挟んで左右に、パネル内シフトレジスタ82_Lと82_Rとを備える。アクティブマトリクス81は、基板に垂直方向から見たときに上下方向に配線される複数のソース線S1〜Sxと左右方向に配線される複数のゲート線G1〜Gmとを有し、ソース線S1〜Sxとゲート線G1〜Gmとが互いに交差する複数の箇所のそれぞれに画素が配置される。左側に配置されるパネル内シフトレジスタ82_Lは、ゲート線群G1,G3,…Gm−1を駆動する第1ゲート駆動回路群1_1、1_3、…1_m−1と、第1ゲート駆動回路群1_1、1_3、…1_m−1に走査タイミング信号を順次供給する、シフトレジスタを含んで構成される。パネル内シフトレジスタ82_Lには、電源GVDD1とGVSS1、シフトレジスタを制御するためのクロックや起動信号などの制御信号SOUT11〜SOUT1nが供給される。右側に配置されるパネル内シフトレジスタ82_Rは、ゲート線群G2,G4,…Gmを駆動する第2ゲート駆動回路群1_2、1_4、…1_mと、第1ゲート駆動回路群第2ゲート駆動回路群1_2、1_4、…1_mに走査タイミング信号を順次供給する、シフトレジスタを含んで構成される。パネル内シフトレジスタ82_Rには、電源GVDD2とGVSS2、シフトレジスタを制御するためのクロックや起動信号などの制御信号SOUT21〜SOUT2nが供給される。シフトレジスタとゲート駆動回路1は、特に制限されないが例えば、表示パネル80のガラス等の基板上に低温ポリシリコン(LTP)等による薄膜トランジスタ(TFT)を用いて形成されることができる。
図15は、実施形態4に係る表示駆動装置10の構成を表すブロック図である。表示駆動装置10は、出力振幅調整回路3と、走査タイミング生成回路4と、図示を省略されたソース駆動回路2とを含んで構成される。出力振幅調整回路3は、パネル電源発生回路a〜d(16_a〜16_d)と、パネル電源調整レジスタa〜d(17_a〜17_d)と、インバータ18_11〜18_1nと18_21〜18_2nとを含んで構成される。パネル電源発生回路a(16_a)はパネル電源調整レジスタa(17_a)によって指定されるパラメータに基づいてGVDD1を発生し、パネル電源発生回路b(16_b)はパネル電源調整レジスタb(17_b)によって指定されるパラメータに基づいてGVSS1を発生し、左側のパネル内シフトレジスタ82_Lに供給する。インバータ18_11〜18_1nは、電源としてGVDD1とGVSS1が供給され、走査タイミング生成回路4から供給される制御信号をレベル変換して、左側のパネル内シフトレジスタ82_Lに制御信号SOUT11〜SOUT1nを供給する。パネル電源発生回路c(16_c)はパネル電源調整レジスタc(17_c)によって指定されるパラメータに基づいてGVDD2を発生し、パネル電源発生回路d(16_d)はパネル電源調整レジスタd(17_d)によって指定されるパラメータに基づいてGVSS2を発生し、右側のパネル内シフトレジスタ82_Rに供給する。インバータ18_21〜18_2nは、電源としてGVDD2とGVSS2が供給され、走査タイミング生成回路4から供給される制御信号をレベル変換して、右側のパネル内シフトレジスタ82_Rに制御信号SOUT21〜SOUT2nを供給する。
これにより、左側から駆動されるゲート線群G1,G3,…Gm−1を駆動するための出力振幅はパネル電源調整レジスタaとb(17_aと17_b)によって、右側から駆動されるゲート線群G2,G4,…Gmを駆動するための出力振幅はパネル電源調整レジスタcとd(17_cと17_d)によって、それぞれ独立に設定される。そのため、ゲート駆動回路1を内蔵する表示パネル80に接続される表示駆動装置10においても、左右の引き回し配線の経路や配線抵抗と配線容量の相違に起因する、輝度ムラを低減することができる。
図16は、実施形態4に係る出力振幅調整回路3の第1の構成例を表す回路図である。
出力振幅調整回路3は、左右のパネル内シフトレジスタ82_Lと82_Rに接続される回路を含んで構成されるが、図16には、パネル内シフトレジスタ82_Lに接続される回路のみが示される。出力振幅調整回路3は、パネル電源調整レジスタaとb(17_aと17_b)と、パネル電源発生回路aとb(16_aと16_b)と、抵抗ラダー8_7と、スイッチ9_13と、ボルテージフォロワ回路7_7と、インバータ18_11〜18_1nとを含んで構成される。パネル電源発生回路b(16_b)はパネル電源調整レジスタb(17_b)によって指定されるパラメータに基づいてGVSS1を発生して、抵抗ラダー8_7とボルテージフォロワ回路7_7とインバータ18_11〜18_1nの低電位側電源とし、パネル内シフトレジスタ82_Lに供給する。パネル電源発生回路a(16_a)はパネル電源調整レジスタa(17_a)によって指定されるパラメータに基づいてGVDD1よりも高い電圧VGHを発生して、抵抗ラダー8_7に供給する。抵抗ラダー8_7は、抵抗分圧された階調電位から、スイッチ9_13によって選択された電位をGVDD1として生成し、ボルテージフォロワ回路7_7によって電流増幅を行って、インバータ18_11〜18_1nの高電位側電源とパネル内シフトレジスタ82_Lに供給する。インバータ18_11〜18_1nは、走査タイミング生成回路4から供給される制御信号をレベル変換して、制御信号SOUT11〜SOUT1nを出力する。スイッチ9_13は、SW0からSW7までの8個の入力接点から1個を選択して出力するスイッチであり、SW0からSW7までのどの接点が選択されたかにより、図3に示したのと同様に抵抗選択値RaΣが変わり、出力される階調電圧GVDD1が選択される。出力される階調電圧GVDD1の電圧は、前述の式1と同様の計算式により算出される。この例では、8階調の階調電圧から選択する例を示したが、階調数は任意に変更することができる。
スイッチ9_13は、図示されるように、走査タイミング生成回路4により、制御信号SOUT11〜SOUT1nと同期して制御されるように構成されても良い。実施形態3に示した出力振幅調整回路3と同様に、パネル内シフトレジスタ82_L内のゲート駆動回路が、遠端のゲート線を駆動するタイミングに合わせて、表示駆動装置10が出力するGVDD1を最も高くし、近端のゲート線を駆動するタイミングに合わせて、表示駆動装置10が出力するGVDD1を最も低くする。例えば図12に示されるように、階段状に制御される。ゲート駆動回路をパネル内に形成することにより、ゲート駆動回路からゲート線までの配線の長さは、短くかつ一定にすることができるが、表示駆動装置10からパネル内シフトレジスタ82_L内の各ゲート駆動回路までの電源(GVDD1とGVSS1)の配線長が、遠端のゲート駆動回路までは最も長く、近端のゲート駆動回路までは最も短くなる。電源の配線長の相違により、電圧降下の大きさが変わり、ゲート駆動回路から出力されるゲート駆動信号の出力振幅も変わることとなる。遠端のゲート線を駆動するための、ゲート駆動回路の出力振幅は、最も小さくなる。遠端のゲート線が駆動されるときの表示駆動装置10が出力するGVDD1を最も高くして、電源配線による電圧降下を補償することにより、遠端と近端のゲート線が駆動される出力振幅を、同じ振幅値に合わせるように制御することができる。
駆動されるゲート線までの電源配線(GVDD1,GVSS1,GVDD2,GVSS2)の配線長に基づいて、ゲート駆動回路の出力振幅を調整することができ、遠端のゲート線に対する出力振幅を、近端のゲート線に対する出力振幅よりも大きくすることができる。これにより、電源配線の配線抵抗と配線容量による電圧降下に起因する、ゲート駆動回路の出力振幅の減衰を補償して、発生する輝度ムラをさらに低減することができる。
図17は、出力振幅調整回路3の第2の構成例を表す回路図である。図17も同様に、パネル内シフトレジスタ82_Lに接続される回路のみが示される。出力振幅調整回路3は、パネル電源調整レジスタa〜b(17_a〜17_b)と、パネル電源発生回路a〜b(16_a〜16_b)と、抵抗ラダー8_8と、スイッチ9_14と9_15と9_16と、ボルテージフォロワ回路7_8と、インバータ18_11〜18_1nとを含んで構成される。パネル電源発生回路b(16_b)はパネル電源調整レジスタb(17_b)によって指定されるパラメータに基づいてGVSS1を発生して、抵抗ラダー8_8とボルテージフォロワ回路7_8とインバータ18_11〜18_1nの低電位側電源とし、パネル内シフトレジスタ82_Lに供給する。パネル電源発生回路a(16_a)はパネル電源調整レジスタa(17_a)によって指定されるパラメータに基づいてGVDD1よりも高い電圧VGHを発生して、抵抗ラダー8_8に供給する。抵抗ラダー8_8は、抵抗分圧された階調電位から、スイッチ9_14と9_15と9_16によって選択された電位をGVDD1として生成し、ボルテージフォロワ回路7_8によって電流増幅を行って、インバータ18_11〜18_1nの高電位側電源とパネル内シフトレジスタ82_Lに供給する。インバータ18_11〜18_1nは、走査タイミング生成回路4から供給される制御信号をレベル変換して、制御信号SOUT11〜SOUT1nを供給する。スイッチ9_14と9_15と9_16の3個のスイッチのオン/オフの組合せによって、前述の図5に示したのと同様に抵抗選択値RaΣが変わり、出力される階調電圧Vref0Lが選択される。出力される階調電圧Vref0Lの電圧は、前述の式2と同様の計算式により算出される。この例では、8階調の階調電圧から選択する例を示したが、階調数は任意に変更することができる。
スイッチ9_14と9_15と9_16は、図示されるように、走査タイミング生成回路4により、制御信号SOUT11〜SOUT1nと同期して制御されるように構成されても良い。図16に示した例と同様に、パネル内シフトレジスタ82_L内のゲート駆動回路が、遠端のゲート線を駆動するタイミングに合わせて、表示駆動装置10が出力するGVDD1を最も高くし、近端のゲート線を駆動するタイミングに合わせて、表示駆動装置10が出力するGVDD1を最も低くする。例えば図12に示されるように、階段状に制御される。これにより、電源配線(GVDD1,GVSS1,GVDD2,GVSS2)の配線抵抗と配線容量による電圧降下に起因する、ゲート駆動回路の出力振幅の減衰を補償して、発生する輝度ムラをさらに低減することができる。
図18は、出力振幅調整回路3の第3の構成例を表す回路図である。図18も同様に、パネル内シフトレジスタ82_Lに接続される回路のみが示される。出力振幅調整回路3は、パネル電源調整レジスタaとb(17_aと17_b)と、パネル電源発生回路aとb(16_aと16_b)と、PWM回路13と、チャージポンプ14と、ローパスフィルタ15と、ボルテージフォロワ回路7_9と、インバータ18_11〜18_1nとを含んで構成される。パネル電源発生回路b(16_b)はパネル電源調整レジスタb(17_b)によって指定されるパラメータに基づいてGVSS1を発生して、インバータ18_11〜18_1nを含む出力振幅調整回路3内共通の低電位側電源とし、合せてパネル内シフトレジスタ82_Lに供給する。パネル電源発生回路a(16_a)はパネル電源調整レジスタa(17_a)によって指定されるパラメータに基づいてGVDD1よりも高い電圧Vendを発生して、チャージポンプ14に供給する。PWM回路13は、走査タイミング生成回路4から供給される走査タイミング信号に同期して、チャージポンプ14に入力されるパルスのデューティ比を制御する。例えば遠端のゲート線を駆動するときのGVDD1がVendと等しく、近端のゲート線を駆動するときのGVDD1はそれよりも10%降下させるとき、即ち、遠端のゲート線の振幅が近端に比べて10%低いとき、デューティ比は、90%から100%の間で制御される。これにより、駆動されるゲート線までの電源配線(GVDD1,GVSS1,GVDD2,GVSS2)の配線長に基づいて、ゲート駆動回路の出力振幅を、近端から遠端にかけて連続的に調整することができ、発生する輝度ムラを低減することができる。
VstartをGVSS1と分離して近端のゲート線を駆動するときのGVDD1とし、図11と同様に、デューティ比を0%から100%の間で制御するように構成してもよい。この場合、GVDD1は、実施形態3と同様に、図13に示すように、近端から遠端にかけて連続的に調整される。
〔実施形態5〕<自己自動補正>
図19は、実施形態5に係る表示装置100の構成を表す説明図である。表示装置100は、表示パネル80とタッチパネル90を含んで構成される。表示パネル80は、基板に垂直方向から見たときに上下方向に配線される複数のソース線S1〜Sxと左右方向に配線される複数のゲート線G1〜Gmとが互いに交差する複数の箇所のそれぞれに画素が配置された、アクティブマトリクス型表示パネルである。タッチパネル90は、上下方向に配線されるタッチ検出線91と左右方向に配線されるタッチ検出線92とを備える自己容量型タッチセンサパネルであり、例えばインセル方式またはオンセル方式により、表示パネル80に積層して形成される。表示パネル80のソース線S1〜Sxにはソース駆動回路2が接続され、ゲート線G1〜Gmには左側と右側のゲート駆動回路1_Lと1_Rが接続される。図19では、左側のゲート駆動回路1_Lは図示が省略されている。タッチパネル90のタッチ検出線91のそれぞれには受信回路(RXx)93が接続され、タッチ検出線92のそれぞれには受信回路(RXy)94が接続され、タッチ操作による容量変化を検出することにより、タッチの個数や位置を検出する。
ソース駆動回路2、ゲート駆動回路1_Lと1_R、及び、受信回路(RXxとRXy)93と94は、例えば、単一半導体基板上に形成された表示駆動装置10として構成され、表示パネル80の基板上にフリップチップ実装される。一部の回路が別の半導体チップに形成されてもよく、さらには、表示パネル80またはタッチパネル90の基板上のTFTを使って形成されてもよい。
表示装置100では、ゲート駆動回路1によって駆動されたゲート線の振幅を、タッチ検出線91と92の一方または両方に現れる信号の振幅から推定し、遠端と近端のゲート線が同じ振幅になるように調整する、自己自動補償(セルフ・オートキャリブレーション)を行うことができる。その方法の一例を以下に示す。
ゲート駆動回路1_Rにより、近端Aのゲート線Gmをゲート振幅Vstartで駆動し、そのゲート線Gmと並行するタッチ検出線92のうちの近端Cに現れる振幅受信レベルを、受信回路RXy94で検出する。次に、ゲート駆動回路1_Rにより、遠端Bのゲート線G2をゲート振幅Vendで駆動し、そのゲート線G2と並行するタッチ検出線92のうちの遠端Dに現れる振幅受信レベルを、受信回路RXy94で検出する。近端Cゲート振幅受信レベルと遠端Dゲート振幅受信レベルが等しくなるように、ゲート振幅VstartとVendの一方または両方を調整する。例えば、近端Aの振幅を固定し、遠端Bの振幅送信レベルを変化させ、その都度、遠端Dゲート振幅受信レベルの値を、近端Cゲート振幅受信レベルと比較し、値が等しくなるまで、繰り返す。値が等しくなったときの遠端Bゲート振幅設定値Vendを、ゲート振幅補正値として、表示補正動作に用いる。左側であるゲート駆動回路1_L側は、右側の振幅受信レベルと同じ振幅受信レベルが得られるように調整した上で、上記と同様の遠端と近端の調整を行なう。ここで、「等しい」あるいは「同じ」振幅、電圧、レベルは、厳密に等しいことを要件とするものではなく、等しくなる方向、或いは同じになる方向、即ち差が小さくなる方向に調整されればよい。結果として輝度のムラが視認できない程度まで、差が小さくなればよいからである。
これにより、タッチパネル90が積層された表示パネル80を駆動する表示駆動装置10において、ゲート配線の左右の引き回し経路や配線層の相違に起因する輝度ムラを、個体ごとの特性に合わせて低減することができる。さらに、上記のような機能を有する自己自動補償(セルフ・オートキャリブレーション)回路を、表示駆動装置10に内蔵することも可能である。一方、そのような補償手段をキャリブレーションの時にのみ外付けして、補償値を表示駆動装置内の不揮発性メモリに保持するように構成しても良い。補償値を不揮発性メモリに保存し、電源投入やリセットの度にレジスタにロードされるように構成することにより、補正された表示動作の起動を早くすることができる。
また、自己自動補償の期間は、ソース駆動回路2による駆動を停止して、ソース線S1〜Sxがハイインピーダンスになるように制御するとよい。これにより、タッチ検出線によるゲート線の信号振幅の検出感度を、さらに向上させることができる。
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、ゲート駆動回路1、ソース駆動回路2、出力振幅調整回路3、走査タイミング生成回路4等は、それらの機能を備えていればよく、別の名称の機能ブロックまたは機能モジュールに、他の回路と渾然一体に形成されても良い。また、全てを単一チップの半導体集積回路に内蔵するように形成しても良く、あるいは、一部を別チップまたは表示パネル80などの基板上のTFTで形成してもよい。
1 ゲート駆動回路
2 ソース駆動回路
3 出力振幅調整回路
4 走査タイミング生成回路
5 振幅調整レジスタ
6 階調レベル生成回路
7 ボルテージフォロワ回路
8 抵抗ラダー
9 スイッチ
10 表示駆動装置
11 中間値生成回路
12 振幅レベル生成回路
13 PWM回路
14 チャージポンプ
15 ローパスフィルタ
16 パネル電源発生回路
17 パネル電源調整レジスタ
18 インバータ
80 表示パネル
81 アクティブマトリクス
82 パネル内シフトレジスタ
90 タッチパネル
91、92 タッチ検出線
93、94 受信回路
100 表示装置

Claims (21)

  1. 表示パネルに接続可能な表示駆動装置であって、
    前記表示パネルは、基板に垂直方向から見たときに上下方向に配線される複数のソース線と左右方向に配線される複数のゲート線とが互いに交差する複数の箇所のそれぞれに画素が配置され、駆動されたゲート線によって選択された複数の画素に複数のソース線から表示データに対応する電荷がそれぞれ転送され、
    前記表示駆動装置は、前記複数のゲート線のうち、左から配線される第1ゲート線群を駆動する第1ゲート駆動回路群と、右から配線される第2ゲート線群を駆動する第2ゲート駆動回路群の、それぞれの出力振幅を独立に調整可能な出力振幅調整回路を備える、表示駆動装置。
  2. 請求項1において、前記出力振幅調整回路は、前記第1ゲート駆動回路群のうち、駆動対象の第1ゲート線までの配線長が長い第1ゲート駆動回路の出力振幅を、駆動対象の第1ゲート線までの配線長が短い第1ゲート駆動回路の出力振幅よりも大きくし、前記第2ゲート駆動回路群のうち、駆動対象の第2ゲート線までの配線長が長い第2ゲート駆動回路の出力振幅を、駆動対象の第2ゲート線までの配線長が短い第2ゲート駆動回路の出力振幅よりも大きくする、表示駆動装置。
  3. 請求項2において、前記出力振幅調整回路は、駆動対象の第1ゲート線までの配線長に基づいて、前記第1ゲート駆動回路群を分けたグループ毎に、そのグループに含まれる第1ゲート駆動回路の出力振幅を当該配線長に基づく値に調整可能に構成され、駆動対象の第2ゲート線までの配線長に基づいて、前記第2ゲート駆動回路群を分けたグループ毎に、そのグループに含まれる第2ゲート駆動回路の出力振幅を当該配線長に基づく値に調整可能に構成される、表示駆動装置。
  4. 請求項2において、前記出力振幅調整回路は、前記第1ゲート駆動回路群に含まれる第1ゲート駆動回路の出力振幅を、駆動対象の第1ゲート線までの配線長に基づいて連続的に調整可能に構成され、前記第2ゲート駆動回路群に含まれる第2ゲート駆動回路の出力振幅を、駆動対象の第2ゲート線までの配線長に基づいて連続的に調整可能に構成される、表示駆動装置。
  5. 請求項1において、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群は前記表示パネルに実装され、前記表示駆動装置は、前記第1ゲート駆動回路群に第1電源を供給し、前記第2ゲート駆動回路群に第2電源を供給し、
    前記出力振幅調整回路は、前記第1電源の電圧と前記第2電源の電圧とを互いに独立に調整可能に構成される、表示駆動装置。
  6. 請求項5において、前記出力振幅調整回路は、前記表示駆動装置からの距離が遠い第1ゲート線が駆動されるときの前記第1電源の電圧を、前記表示駆動装置からの距離が近い第1ゲート線が駆動されるときの前記第1電源の電圧よりも高くするように調整可能に構成され、前記表示駆動装置からの距離が遠い第2ゲート線が駆動されるときの前記第2電源の電圧を、前記表示駆動装置からの距離が近い第2ゲート線が駆動されるときの前記第2電源の電圧よりも高くするように調整可能に構成される、表示駆動装置。
  7. 請求項1において、前記表示パネルは、前記基板上に積層され複数のタッチ検出線を有するタッチパネルをさらに備え、
    前記表示駆動装置は、前記複数のタッチ検出線のそれぞれに接続され当該タッチ検出線上の信号の振幅を検出可能な、複数の受信回路を備え、
    前記出力振幅調整回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときに前記複数の受信回路によって検出される信号の振幅値と、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに前記複数の受信回路によって検出される信号の振幅値との差を小さくするように、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群の少なくとも一方の出力振幅を調整可能に構成される、表示駆動装置。
  8. 請求項7において、前記出力振幅調整回路は、前記表示駆動装置からの距離が遠い第1ゲート線が駆動されるときに前記受信回路によって検出された信号振幅と、前記表示駆動装置からの距離が近い第1ゲート線が駆動されるときに前記受信回路によって検出された信号振幅との差を小さくするように、前記第1ゲート駆動回路群に含まれる第1ゲート駆動回路の出力振幅を調整可能に構成され、前記表示駆動装置からの距離が遠い第2ゲート線が駆動されるときに前記受信回路によって検出された信号振幅と、前記表示駆動装置からの距離が近い第2ゲート線が駆動されるときに前記受信回路によって検出された信号振幅との差を小さくするように、前記第2ゲート駆動回路群に含まれる第2ゲート駆動回路の出力振幅を調整可能に構成される、表示駆動装置。
  9. 請求項7において、前記複数のタッチ検出線は、上下方向に配線される複数の第1タッチ検出線群と左右方向に配線される複数の第2タッチ検出線群とを含んで構成され、
    前記出力振幅調整回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときに、前記複数の第2タッチ検出線群に接続される受信回路によって検出される信号の振幅値と、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに、前記複数の第2タッチ検出線群に接続される受信回路によって検出される信号の振幅値との差を小さくするように、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群の少なくとも一方の出力振幅を調整可能に構成される、表示駆動装置。
  10. 請求項9において、前記表示駆動装置は、前記複数のソース線のそれぞれを駆動する複数のソース駆動回路を備え、前記複数のソース駆動回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときと、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに、前記複数のソース線をハイインピーダンスにする制御を可能に構成される、表示駆動装置。
  11. 請求項1から請求項10のうちのいずれか1項において、単一の半導体基板上に集積される、表示駆動装置。
  12. 表示パネルと表示駆動装置とを備える表示装置であって、
    前記表示パネルは、基板に垂直方向から見たときに上下方向に配線される複数のソース線と左右方向に配線される複数のゲート線とが互いに交差する複数の箇所のそれぞれに画素が配置され、駆動されたゲート線によって選択された画素に複数のソース線から表示データに対応する電荷が転送され、
    前記表示駆動装置は、前記複数のゲート線のうち、左から配線される第1ゲート線群を駆動する第1ゲート駆動回路群と、右から配線される第2ゲート線群を駆動する第2ゲート駆動回路群の、それぞれの出力振幅を独立に調整可能な出力振幅調整回路を備える、表示装置。
  13. 請求項12において、前記出力振幅調整回路は、前記第1ゲート駆動回路群のうち、駆動対象の第1ゲート線までの配線長が長い第1ゲート駆動回路の出力振幅を、駆動対象の第1ゲート線までの配線長が短い第1ゲート駆動回路の出力振幅よりも大きくし、前記第2ゲート駆動回路群のうち、駆動対象の第2ゲート線までの配線長が長い第2ゲート駆動回路の出力振幅を、駆動対象の第2ゲート線までの配線長が短い第2ゲート駆動回路の出力振幅よりも大きくする、表示装置。
  14. 請求項13において、前記出力振幅調整回路は、駆動対象の第1ゲート線までの配線長に基づいて、前記第1ゲート駆動回路群を分けたグループ毎に、そのグループに含まれる第1ゲート駆動回路の出力振幅を当該配線長に基づく値に調整可能に構成され、駆動対象の第2ゲート線までの配線長に基づいて、前記第2ゲート駆動回路群を分けたグループ毎に、そのグループに含まれる第2ゲート駆動回路の出力振幅を当該配線長に基づく値に調整可能に構成される、表示装置。
  15. 請求項13において、前記出力振幅調整回路は、前記第1ゲート駆動回路群に含まれる第1ゲート駆動回路の出力振幅を、駆動対象の第1ゲート線までの配線長に基づいて連続的に調整可能に構成され、前記第2ゲート駆動回路群に含まれる第2ゲート駆動回路の出力振幅を、駆動対象の第2ゲート線までの配線長に基づいて連続的に調整可能に構成される、表示装置。
  16. 請求項12において、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群は前記表示パネルに実装され、前記表示駆動装置は、前記第1ゲート駆動回路群に第1電源を供給し、前記第2ゲート駆動回路群に第2電源を供給し、
    前記出力振幅調整回路は、前記第1電源の電圧と前記第2電源の電圧とを互いに独立に調整可能に構成される、表示装置。
  17. 請求項16において、前記出力振幅調整回路は、前記表示駆動装置からの距離が遠い第1ゲート線が駆動されるときの前記第1電源の電圧を、前記表示駆動装置からの距離が近い第1ゲート線が駆動されるときの前記第1電源の電圧よりも高くするように調整可能に構成され、前記表示駆動装置からの距離が遠い第2ゲート線が駆動されるときの前記第2電源の電圧を、前記表示駆動装置からの距離が近い第2ゲート線が駆動されるときの前記第2電源の電圧よりも高くするように調整可能に構成される、表示装置。
  18. 請求項11において、前記表示装置は、前記表示パネルに積層され複数のタッチ検出線を有するタッチパネルをさらに備え、
    前記表示駆動装置は、前記複数のタッチ検出線のそれぞれに接続され当該タッチ検出線上の信号の振幅を検出可能な、複数の受信回路を備え、
    前記出力振幅調整回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときに前記複数の受信回路によって検出される信号の振幅値と、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに前記複数の受信回路によって検出される信号の振幅値との差を小さくするように、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群の少なくとも一方の出力振幅を調整可能に構成される、表示装置。
  19. 請求項18において、前記出力振幅調整回路は、前記表示駆動装置からの距離が遠い第1ゲート線が駆動されるときに前記受信回路によって検出された信号振幅と、前記表示駆動装置からの距離が近い第1ゲート線が駆動されるときに前記受信回路によって検出された信号振幅との差を小さくするように、前記第1ゲート駆動回路群に含まれる第1ゲート駆動回路の出力振幅を調整可能に構成され、前記表示駆動装置からの距離が遠い第2ゲート線が駆動されるときに前記受信回路によって検出された信号振幅と、前記表示駆動装置からの距離が近い第2ゲート線が駆動されるときに前記受信回路によって検出された信号振幅との差を小さくするように、前記第2ゲート駆動回路群に含まれる第2ゲート駆動回路の出力振幅を調整可能に構成される、表示装置。
  20. 請求項18において、前記複数のタッチ検出線は、上下方向に配線される複数の第1タッチ検出線群と左右方向に配線される複数の第2タッチ検出線群とを含んで構成され、
    前記出力振幅調整回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときに、前記複数の第2タッチ検出線群に接続される受信回路によって検出される信号の振幅値と、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに、前記複数の第2タッチ検出線群に接続される受信回路によって検出される信号の振幅値との差を小さくするように、前記第1ゲート駆動回路群と前記第2ゲート駆動回路群の少なくとも一方の出力振幅を調整可能に構成される、表示装置。
  21. 請求項20において、前記表示駆動装置は、前記複数のソース線のそれぞれを駆動する複数のソース駆動回路を備え、前記複数のソース駆動回路は、前記第1ゲート駆動回路群により前記第1ゲート線群が駆動されたときと、前記第2ゲート駆動回路群により前記第2ゲート線群が駆動されたときに、前記複数のソース線をハイインピーダンスにする制御を可能に構成される、表示装置。
JP2013176540A 2013-08-28 2013-08-28 表示駆動装置及び表示装置 Pending JP2015045726A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013176540A JP2015045726A (ja) 2013-08-28 2013-08-28 表示駆動装置及び表示装置
US14/470,971 US9640130B2 (en) 2013-08-28 2014-08-28 Display driver and display device
CN201410432277.1A CN104424907B (zh) 2013-08-28 2014-08-28 显示驱动装置及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176540A JP2015045726A (ja) 2013-08-28 2013-08-28 表示駆動装置及び表示装置

Publications (1)

Publication Number Publication Date
JP2015045726A true JP2015045726A (ja) 2015-03-12

Family

ID=52582476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176540A Pending JP2015045726A (ja) 2013-08-28 2013-08-28 表示駆動装置及び表示装置

Country Status (3)

Country Link
US (1) US9640130B2 (ja)
JP (1) JP2015045726A (ja)
CN (1) CN104424907B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133810A (ja) * 2015-01-15 2016-07-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置
WO2018078748A1 (ja) * 2016-10-26 2018-05-03 堺ディスプレイプロダクト株式会社 液晶表示装置及び液晶表示装置の駆動方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176512A (ja) * 2014-03-18 2015-10-05 シナプティクス・ディスプレイ・デバイス合同会社 半導体装置
US9293102B1 (en) * 2014-10-01 2016-03-22 Apple, Inc. Display having vertical gate line extensions and minimized borders
KR102412675B1 (ko) * 2015-06-03 2022-06-24 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN105047156B (zh) * 2015-08-18 2017-08-04 青岛海信电器股份有限公司 液晶面板驱动方法、装置与液晶显示器
KR20170028464A (ko) * 2015-09-03 2017-03-14 삼성디스플레이 주식회사 표시 장치
CN105206242B (zh) 2015-10-28 2017-11-07 京东方科技集团股份有限公司 驱动电路及其驱动方法、显示面板
TWI579822B (zh) * 2015-11-17 2017-04-21 瑞鼎科技股份有限公司 顯示面板驅動電路及其補償方法
CN105427823A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 一种栅极驱动电压的调节方法、调节装置及显示装置
CN105575352A (zh) * 2016-03-02 2016-05-11 京东方科技集团股份有限公司 栅极驱动方法及电路、显示装置
JP6840948B2 (ja) 2016-07-25 2021-03-10 船井電機株式会社 液晶表示装置
US11137858B2 (en) * 2016-09-23 2021-10-05 Apple Inc. Location-based swing compensation for touch channel attenuation
CN107146586A (zh) * 2017-06-20 2017-09-08 惠科股份有限公司 显示面板驱动电路、显示装置和显示面板驱动电路的驱动方法
KR102458156B1 (ko) * 2017-08-31 2022-10-21 엘지디스플레이 주식회사 표시 장치
JP7054577B2 (ja) * 2017-11-20 2022-04-14 シナプティクス インコーポレイテッド 表示ドライバ、表示装置及びムラ補正方法
CN109166502B (zh) 2018-09-12 2020-10-16 惠科股份有限公司 一种检测方法和显示面板
CN111179792B (zh) * 2018-11-12 2021-05-07 重庆先进光电显示技术研究院 一种显示面板、检测方法及显示装置
CN109346023A (zh) * 2018-12-13 2019-02-15 惠科股份有限公司 一种显示装置的驱动装置和驱动方法
CN109785786B (zh) * 2018-12-25 2020-09-11 友达光电(昆山)有限公司 驱动电路及触控栅极驱动电路
CN109782502B (zh) 2019-01-17 2022-05-13 京东方科技集团股份有限公司 阵列基板和显示装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318898A (ja) * 1994-05-24 1995-12-08 Hitachi Ltd アクティブマトリクス型液晶表示装置およびその駆動方法
US20030020702A1 (en) * 2001-07-27 2003-01-30 Shigoru Matsuyama Scanning line driver circuits, electrooptic apparatuses, electronic apparatuses and semiconductor devices
JP2004094014A (ja) * 2002-09-02 2004-03-25 Hitachi Displays Ltd 表示装置
JP2005107382A (ja) * 2003-10-01 2005-04-21 Casio Comput Co Ltd 表示装置
JP2005308823A (ja) * 2004-04-16 2005-11-04 Seiko Epson Corp 電荷除去回路、電気光学装置および電子機器
JP2007065157A (ja) * 2005-08-30 2007-03-15 Seiko Epson Corp 電気光学装置、及びこれを備えた電子機器
JP2007079367A (ja) * 2005-09-16 2007-03-29 Seiko Epson Corp 電気光学装置、及びこれを備えた電子機器
JP2008058634A (ja) * 2006-08-31 2008-03-13 Hitachi Displays Ltd 表示装置
US20080074404A1 (en) * 2006-09-25 2008-03-27 Casio Computer Co., Ltd. Display driving apparatus and display apparatus comprising the same
US20080186298A1 (en) * 2007-02-07 2008-08-07 Sony Corporation Display apparatus
JP2009008942A (ja) * 2007-06-28 2009-01-15 Lg Display Co Ltd 液晶表示装置およびその駆動方法
JP2009163255A (ja) * 2009-03-03 2009-07-23 Casio Comput Co Ltd 表示装置の駆動方法
JP2010107739A (ja) * 2008-10-30 2010-05-13 Hitachi Displays Ltd 液晶表示装置
JP2011158864A (ja) * 2010-02-04 2011-08-18 Casio Computer Co Ltd 発光駆動装置、発光装置及びその駆動制御方法、並びに、電子機器
JP2012073465A (ja) * 2010-09-29 2012-04-12 Sony Corp タッチ検出機能付き表示装置および電子機器
JP2013054520A (ja) * 2011-09-02 2013-03-21 Canon Inc タッチパネル装置及びその制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325554A (ja) * 1994-05-31 1995-12-12 Canon Inc 電子源駆動装置及び画像表示装置及びそれらの制御方法
TWI249630B (en) * 1999-05-10 2006-02-21 Matsushita Electric Ind Co Ltd Image display device and method for displaying image
JP2002366112A (ja) * 2001-06-07 2002-12-20 Hitachi Ltd 液晶駆動装置及び液晶表示装置
US6873308B2 (en) * 2001-07-09 2005-03-29 Canon Kabushiki Kaisha Image display apparatus
JP2005345752A (ja) * 2004-06-03 2005-12-15 Hitachi Ltd 映像表示装置
JP2006292817A (ja) * 2005-04-06 2006-10-26 Renesas Technology Corp 表示駆動用半導体集積回路および自発光型表示装置を備えた電子機器
JP2008139861A (ja) * 2006-11-10 2008-06-19 Toshiba Matsushita Display Technology Co Ltd 有機発光素子を用いたアクティブマトリクス型表示装置、および有機発光素子を用いたアクティブマトリクス型表示装置の駆動方法
JP2009222786A (ja) * 2008-03-13 2009-10-01 Hitachi Displays Ltd 液晶表示装置
JP5343871B2 (ja) * 2009-03-12 2013-11-13 株式会社リコー タッチパネル装置、これを含むタッチパネル付き表示装置、及びタッチパネル装置の制御方法
JP2012088550A (ja) 2010-10-20 2012-05-10 Canon Inc 画像表示装置及びその制御方法
KR102001890B1 (ko) * 2012-09-28 2019-07-22 엘지디스플레이 주식회사 액정표시장치

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318898A (ja) * 1994-05-24 1995-12-08 Hitachi Ltd アクティブマトリクス型液晶表示装置およびその駆動方法
US20030020702A1 (en) * 2001-07-27 2003-01-30 Shigoru Matsuyama Scanning line driver circuits, electrooptic apparatuses, electronic apparatuses and semiconductor devices
JP2003044004A (ja) * 2001-07-27 2003-02-14 Seiko Epson Corp 走査ライン駆動回路、電気光学装置、電子機器及び半導体装置
JP2004094014A (ja) * 2002-09-02 2004-03-25 Hitachi Displays Ltd 表示装置
JP2005107382A (ja) * 2003-10-01 2005-04-21 Casio Comput Co Ltd 表示装置
JP2005308823A (ja) * 2004-04-16 2005-11-04 Seiko Epson Corp 電荷除去回路、電気光学装置および電子機器
JP2007065157A (ja) * 2005-08-30 2007-03-15 Seiko Epson Corp 電気光学装置、及びこれを備えた電子機器
JP2007079367A (ja) * 2005-09-16 2007-03-29 Seiko Epson Corp 電気光学装置、及びこれを備えた電子機器
JP2008058634A (ja) * 2006-08-31 2008-03-13 Hitachi Displays Ltd 表示装置
US20080074404A1 (en) * 2006-09-25 2008-03-27 Casio Computer Co., Ltd. Display driving apparatus and display apparatus comprising the same
JP2008077005A (ja) * 2006-09-25 2008-04-03 Casio Comput Co Ltd 表示駆動装置及びそれを備える表示装置
US20080186298A1 (en) * 2007-02-07 2008-08-07 Sony Corporation Display apparatus
JP2008191535A (ja) * 2007-02-07 2008-08-21 Sony Corp 表示装置
JP2009008942A (ja) * 2007-06-28 2009-01-15 Lg Display Co Ltd 液晶表示装置およびその駆動方法
JP2010107739A (ja) * 2008-10-30 2010-05-13 Hitachi Displays Ltd 液晶表示装置
JP2009163255A (ja) * 2009-03-03 2009-07-23 Casio Comput Co Ltd 表示装置の駆動方法
JP2011158864A (ja) * 2010-02-04 2011-08-18 Casio Computer Co Ltd 発光駆動装置、発光装置及びその駆動制御方法、並びに、電子機器
JP2012073465A (ja) * 2010-09-29 2012-04-12 Sony Corp タッチ検出機能付き表示装置および電子機器
JP2013054520A (ja) * 2011-09-02 2013-03-21 Canon Inc タッチパネル装置及びその制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133810A (ja) * 2015-01-15 2016-07-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置
JP7005123B2 (ja) 2015-01-15 2022-01-21 三星ディスプレイ株式會社 表示装置
WO2018078748A1 (ja) * 2016-10-26 2018-05-03 堺ディスプレイプロダクト株式会社 液晶表示装置及び液晶表示装置の駆動方法

Also Published As

Publication number Publication date
CN104424907A (zh) 2015-03-18
US9640130B2 (en) 2017-05-02
CN104424907B (zh) 2018-09-07
US20150061985A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP2015045726A (ja) 表示駆動装置及び表示装置
US9483991B2 (en) Liquid crystal display device and driving method thereof
TWI362026B (ja)
JP4400605B2 (ja) 表示駆動装置及び表示装置
US9171511B2 (en) Liquid crystal display
TWI336063B (en) Display driver
US20150279297A1 (en) Drive capacity control for display panel driver and display device
CN102334153A (zh) 显示装置
US10964287B1 (en) Level voltage generation circuit, data driver, and display apparatus
KR20070060757A (ko) 표시 장치 및 그 구동 장치
KR20050047756A (ko) 액정 표시 장치 및 그 구동 방법
JP2006058603A (ja) フラットディスプレイ装置及びフラットディスプレイ装置の駆動方法
US10210829B2 (en) Display apparatus and method of operation
JP2007065076A (ja) 表示装置
US20060087485A1 (en) Electro-optic device
CN105825827B (zh) 显示装置
KR100672654B1 (ko) 액정표시장치의 감마 전압 발생 장치
WO2013099189A1 (ja) 表示装置
JP2008185932A (ja) 液晶表示装置
KR101535818B1 (ko) 액정 표시 장치
JP2015175860A (ja) 液晶表示装置
JP5024311B2 (ja) 表示装置の駆動方法
KR20060118775A (ko) 액정 표시 장치의 구동 장치
TWI813047B (zh) 液晶顯示裝置及其驅動方法
US8405651B2 (en) Driving circuit and driving controller capable of adjusting internal impedance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190130