JP2014200802A - レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法 - Google Patents

レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法 Download PDF

Info

Publication number
JP2014200802A
JP2014200802A JP2013076583A JP2013076583A JP2014200802A JP 2014200802 A JP2014200802 A JP 2014200802A JP 2013076583 A JP2013076583 A JP 2013076583A JP 2013076583 A JP2013076583 A JP 2013076583A JP 2014200802 A JP2014200802 A JP 2014200802A
Authority
JP
Japan
Prior art keywords
nozzle
gas
laser beam
inner nozzle
coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013076583A
Other languages
English (en)
Other versions
JP6120646B2 (ja
Inventor
功明 塩地
Komei Shioji
功明 塩地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP2013076583A priority Critical patent/JP6120646B2/ja
Publication of JP2014200802A publication Critical patent/JP2014200802A/ja
Application granted granted Critical
Publication of JP6120646B2 publication Critical patent/JP6120646B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

【課題】ノズルが過熱するような場合でもノズルの耐熱強度を高めることができるレーザ加工機の同軸ノズルを提供する。【解決手段】内側をレーザ光とインナーシールドガスG1とが通過するインナーノズル13と、インナーノズル13の外側に設けられ、インナーノズル13との間に確保した筒状の空間19を通して先端からアウターシールドガスG2を噴出するアウターノズル15と、インナーシールドガスG1として不活性ガスを供給すると共にアウターシールドガスG2として不活性ガスを供給するシールドガス供給手段S1,S2とを有し、先端側インナーノズル13Bがカーボンで構成され、インナーシールドガスG1およびアウターシールドガスG2が層流状態で流れる。【選択図】図3

Description

本発明は、レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法に関するものである。
従来、レーザ用同軸ノズル(レーザノズル)200は、ワークの溶接をする際、溶接部からの反射光がレーザ発振器やその光学系に戻りレーザ発振器やその光学系にダメージを与えてしまうことを防止するために、ワークWの加工面に対して10°〜20°傾けてられている(図2参照)。
なお、従来の技術に関する文献として、例えば、特許文献1〜特許文献4を掲げることができる。
特開平7−68382号公報 特公平4−2353号公報 特開平7−155956号公報 特開昭51−135859号公報
ところで、レーザノズルを傾けることで、レーザ発振器やその光学系でのダメージの発生は防止できるが、ワークの加工面からの反射光がレーザノズルにあたってしまい(照射されてしまい)、レーザノズルが過熱してしまうという問題がある。また、従来からスパッタ付着対策としてカーボン材質のノズルが使用される例があるが、大気中ではカーボン材質のノズルは400℃近傍から酸化による劣化が始まるため、そのままでは反射光による過熱に対して耐熱強度上の問題がある。
本発明は、上記問題点に鑑みてなされたものであり、レーザ発振器やその光学系でのダメージの発生を防止すべく、ワークの加工面に対してレーザ加工機の同軸ノズルを傾けて使用することで、ワークの加工面からの反射光が同軸ノズルに当たってノズルが過熱するような場合でも、ノズルの熱劣化を抑制して耐熱強度を高めることができるレーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法を提供することを目的とする。
請求項1の発明のレーザ加工機の同軸ノズルは、内側をレーザ光とインナーシールドガスとが通過し、先端からワークに向けて前記レーザ光を出射すると共に前記インナーシールドガスを噴出するインナーノズルと、前記インナーノズルの外側に設けられ、該インナーノズルとの間に確保した筒状の空間を通して先端からアウターシールドガスを噴出するアウターノズルと、前記インナーノズルの内側に前記インナーシールドガスとして不活性ガスを供給すると共に前記インナーノズルの外側の前記筒状の空間に前記アウターシールドガスとして不活性ガスを供給するシールドガス供給手段と、を有し、前記インナーノズルの少なくとも先端部が、不活性ガス雰囲気下に置かれることで耐熱強度の向上する材料で構成されていることを特徴とする。
請求項2の発明は、請求項1に記載のレーザ加工機の同軸ノズルであって、前記不活性ガス雰囲気下に置かれることで耐熱強度の向上する材料として、カーボンが使用されていることを特徴とする。
請求項3の発明は、請求項1または2に記載のレーザ加工機の同軸ノズルであって、少なくとも前記インナーノズルの内側を通過する前記インナーシールドガスの流れを層流とすることを特徴とする。
請求項4の発明は、請求項3に記載のレーザ加工機の同軸ノズルであって、前記インナーノズルの周壁または該インナーノズルの内部に連通する筒状部品の周壁に、前記インナーノズルの内側に前記インナーシールドガスを供給する供給口が、前記ガス供給手段の一要素として設けられ、この供給口に、前記インナーノズルの内側に供給する前記インナーシールドガスの流れを層流化する整流手段が設けられていることを特徴とする。
請求項5の発明は、請求項1〜3のいずれか1項に記載のレーザ加工機の同軸ノズルであって、前記ガス供給手段による前記不活性ガスの供給および供給停止する制御手段を備え、該制御手段が、レーザ加工中に前記ガス供給手段に不活性ガスを供給させると共に、レーザ加工終了後に、前記インナーノズルの温度が所定以下になるまでの間、引き続いて前記ガス供給手段に不活性ガスの供給を継続させることを特徴とする。
請求項6の発明は、請求項1〜5のいずれか1項に記載のレーザ加工機の同軸ノズルであって、前記インナーノズルを冷却する冷却回路が更に設けられていることを特徴とする。
請求項7の発明は、請求項6に記載のレーザ加工機の同軸ノズルであって、前記冷却回路は、クロスジェットガスを用いて前記インナーノズルの外周を冷却する構成であることを特徴とする。
請求項8の発明は、請求項7に記載のレーザ加工機の同軸ノズルであって、前記冷却回路は、前記インナーノズルと前記アウターノズルとの間に存在する筒状の空間に中間筒状体を設置することで、前記クロスジェットガスのみが流れる空間を前記インナーノズルの外周の少なくとも一部を囲むようにして形成してあることを特徴とする。
請求項9の発明は、請求項1〜8のいずれか1項に記載のレーザ加工機の同軸ノズルにおいて、レーザ加工機の同軸ノズルから発したレーザ光が照射されるワークの部位からは、前記インナーノズルで遮られていることで、前記アウターノズルが見えないように構成されていることを特徴とする。
請求項10の発明のレーザ加工方法は、請求項1に記載のレーザ加工機の同軸ノズルを用いたレーザ加工方法であって、レーザ加工中は、不活性ガスをインナーノズルの先端とアウターノズルの先端から共に噴出しながらワークに対してレーザ加工を行うと共に、レーザ加工終了後、前記インナーノズルの先端部の温度が所定以下となるまでの間、レーザ加工中に引き続いて前記不活性ガスを前記インナーノズルの先端と前記アウターノズルの先端から共に噴出することで、前記不活性ガスにより前記インナーノズルの先端部を覆うことを特徴とする。
請求項1の発明によれば、インナーノズルの先端部を、インナーノズルの内側を流れる不活性ガスとインナーノズルの外側を流れる不活性ガスとで覆うことができ、インナーノズルの先端部への大気中の酸素の接触を不活性ガスによって遮断することができる。従って、レーザ発振器やその光学系でのダメージの発生を防止すべく、ワークの加工面に対してレーザ加工機の同軸ノズルを傾けて使用することで、ワークの加工面からの反射光がインナーノズルの先端部に当たってインナーノズルが過熱した場合でも、大気中の酸素の接触を遮断することで、インナーノズルの先端部の熱劣化を抑制して耐熱強度を高めることができる。
請求項2の発明によれば、インナーノズルの少なくとも先端部がカーボンで構成されているので、レーザ加工(主に溶接加工)に伴うスパッタの付着を防ぐことができる。また、インナーノズルの先端部がワークからの反射光による加熱を受けている間、不活性ガスによりカーボン製のインナーノズルの先端部を覆うことができるため、カーボン部分の耐熱強度を2000℃以上に高めることができる。即ち、カーボンは大気中では400℃近傍で酸化し消耗や強度低下を引き起こすが、窒素ガス雰囲気中では2000℃まで、アルゴンガス雰囲気中では3000℃まで反応しないことが知られている。従って、レーザ加工中、および加工終了後のインナーノズルの温度が400℃近傍に下がるまでの間、カーボン部分を窒素またはアルゴンの不活性ガス雰囲気中に置くことによって、カーボン部分の耐熱温度を引き上げることができ、その結果、同軸ノズルの寿命を延ばすことができる。
請求項3の発明によれば、少なくともインナーノズルの内側を通過するインナーシールドガスの流れを層流としたので、大気中の酸素の巻き込みを確実に遮断することができる。
請求項4の発明によれば、インナーノズルの内部の空間にインナーシールドガスを供給するに当たり、インナーノズルの周壁またはインナーノズルの内部に連通する筒状部品の周壁に設けた供給口から整流手段(ガスレンズとしてのメッシュ等)を介してインナーシールドガスを層流状態で供給するので、レーザ光の通過するインナーノズルの内部やそれに連通する筒状部品の内部を障害物のない空間として完全に空けておくことができ、レーザ光の通過を妨げることがない。
請求項5の発明によれば、レーザ加工中および加工終了後にインナーノズルの先端部の温度が所定以下となるまで、不活性ガスでインナーノズルの先端部を覆うことができる。従って、確実にインナーノズルの先端部の耐熱強度を高めることができる。つまり、インナーノズルの先端部をスパッタ剥離性の良好なカーボン等で構成した場合、レーザ加工終了後においても、インナーノズルの先端部の温度が、酸化の発生する温度(例えば、カーボンの場合は約400℃)を下回るのを待ってから、不活性ガスの供給を停止する。こうすることで、インナーノズルの先端部の過熱による酸化(劣化)を、レーザ加工終了後にも確実に抑制することができ、インナーノズルの先端部の耐熱強度を引き上げることができる。
なお、インナーノズルの先端部の温度が所定以下となったと判断する手段の例として、制御手段の中に、加工終了時点からの経過時間(自然放冷時間)をタイマーにより測定して判断する手段、放射温度計などでインナーノズルの先端部の温度を計測して判断する手段、インナーノズルの先端部の赤熱状態をカメラを用いた色判別にて測定して温度を推定し判断する手段、などを設けることができる。
請求項6の発明によれば、レーザ発振器やその光学系でのダメージの発生を防止すべく、ワークの加工面に対してレーザ加工機の同軸ノズルを傾けて使用することで、ワークの加工面からの反射光が同軸ノズルにあたっても、同軸ノズルが過熱することを防ぐことがきる。
請求項7の発明によれば、クロスジェットガスを用いてインナーノズルの外周を冷却する構成であるので、冷却用の媒体を新たに追加することなく、簡素な構成で同軸ノズルを冷却することができる。また、クロスジェットガスを用いるので、同軸ノズルの冷却にかかるランニングコストを低減することができる。
請求項8の発明によれば、中間筒状体によってクロスジェットガスのみが流れる空間(インナーノズルを冷却するための空間)を形成してあるので、シールドガス(インナーシールドガス、アウターシールドガス)の流れが乱れることがなく、ワークの加工点(溶接部)でもシールドガスの濃度を所望の値に保つことが容易となる。
請求項9の発明によれば、同軸ノズルから発したレーザ光が照射されるワークの部位からアウターノズルが見えないように構成されているので、レーザ光の反射によってアウターノズルがダメージを受けることがなくなり、アウターノズルの交換が不要になる。
請求項10の発明によれば、レーザ加工中および加工終了後にインナーノズルの先端部の温度が所定以下となるまで、不活性ガスでインナーノズルの先端部を覆うので、確実にインナーノズルの先端部の耐熱強度を高めることができる。つまり、インナーノズルの先端部をスパッタ剥離性の良好なカーボン等で構成した場合、インナーノズルの先端部の温度が、酸化の発生する温度(例えば、カーボンの場合は約400℃)を下回るのを待ってから、不活性ガスの供給を停止する。こうすることで、インナーノズルの先端部の過熱による酸化(劣化)を抑制することができ、インナーノズルの先端部の耐熱強度を引き上げることができる。
なお、インナーノズルの先端部の温度が所定以下となったと判断する方法としては、加工終了時点からの経過時間(自然放冷時間)をタイマーにより測定する方法、放射温度計などでインナーノズルの先端部の温度を計測管理する方法、インナーノズルの先端部の赤熱状態をカメラを用いた色判別にて測定して温度を推定管理する方法などを採用することができる。
本発明の実施形態に係るレーザ加工機の同軸ノズルが採用されているレーザ加工用ヘッドの概略構成を示す斜視図である。 レーザ加工機の同軸ノズルをワークの加工面に対して傾けて使用するときの状況を示す斜視図である。 本発明の実施形態に係るレーザ加工機の同軸ノズルの概略構成を示す断面斜視図である。 本発明の実施形態に係るレーザ加工機の同軸ノズルが採用されているレーザ加工用ヘッドの概略構成を示す断面図である。 本発明の実施形態に係るレーザ加工機の同軸ノズルの概略構成を示す断面図である。
以下、本発明の実施形態を図面を参照して説明する。
まず、実施形態に係るレーザ加工機(例えばレーザ光LBを使用してワークを溶接するレーザ溶接機)の同軸ノズル1が採用されているレーザ加工用ヘッド3の概略構成を説明する。
レーザ加工用ヘッド3は、図1や図4で示すように、光学素子支持体5とクロスジェット組立体7とノズルベース9と同軸ノズル(レーザ加工機の同軸ノズル)1とを備えて構成されている。
ここで、説明の便宜のために、レーザ加工用ヘッド3の軸(中心軸)の延伸方向をZ軸方向とし、このZ軸方向における一端側を基端側(上側)とし、他端側を先端側(下側)とする。
光学素子支持体5は、レーザ加工用ヘッド3の基端部側に位置しており、光学素子支持体5の先端にはクロスジェット組立体7が一体的に設けられ、クロスジェット組立体7の先端にはノズルベース9が一体的に設けられ、ノズルベース9の先端には同軸ノズル1が一体的に設けられている。
光学素子支持体5は、レーザ光を集光する集光レンズ等の光学素子を支持しているものであり、クロスジェット組立体7は、光学素子支持体5に設けられている集光レンズ等の光学素子を保護するためにクロスジェットガスG3のエアーカーテンG4を生成するものである(図1参照)。
図示しないレーザ発振器が発したレーザ光LBは、レーザ加工用ヘッド3の内部を通って(レーザ加工用ヘッド3の中心軸やこのまわりを通って、Z軸方向の基端側から先端側に進み)同軸ノズル1から出射されてワークW(図2参照)に照射されるようになっている。
ここで、同軸ノズル1について詳しく説明する。同軸ノズル1は、インナーノズル13とアウターノズル15と冷却回路17とを備えて構成されている。
インナーノズル13は、筒状(例えば円筒状)に形成されており、内側をレーザ光と、レーザ光の加工部位に供給されるインナーシールドガス(インナーガス)G1とが通過することで、先端からワークWに向けてレーザ光LBを出射すると共に、ワークWに対する加工部位に向けてインナーシールドガスG1を噴出するようになっている(図3参照)。
インナーノズル13の内側は、レーザ光が通過するので、インナーシールドガスG1の流れを層流化する部品(ガスレンズ用メッシュなど)等を取り付けることができない。そのため、後述するように、レーザ光の通過を邪魔しない位置(レーザ光の通過する空間の側方)に層流化を実現する部品を配置している。
インナーシールドガスG1とは、例えば、レーザ光が照射されたワークWの酸化を防止するとともに発生するプラズマを除去するためにワークWの加工部位に供給されるガスであり、ここでは、例えば窒素ガスやアルゴンガス等の不活性ガスが使用されている。プラズマとは、レーザ光によって蒸発したワークWの蒸気(ワークWが金属である場合には、金属蒸気)である。
アウターノズル15は、筒状(例えば円筒状)に形成されており、インナーノズル13の外側でインナーノズル13に一体的に連結されている。また、アウターノズル15は、インナーノズル13の外側に筒状(例えば円筒状)の空間(隙間)19を形成するように、インナーノズル13を囲んでおり、筒状の空間19のところをアウターシールドガス(アウターガス)G2が流れ、先端からアウターシールドガスG2を噴出するようになっている(図3参照)。
アウターシールドガスG2とは、例えば、レーザ光が照射された加工部位でのワークWの酸化を防止するために加工部位のまわりに供給されるガスであり、ここでは、例えば窒素ガスやアルゴンガス等の不活性ガスが使用されている。
アウターノズル15とインナーノズル13の間の筒状の空間19は、レーザ光が通過する部分ではないために、通常の層流化部品(ガスレンズ用メッシュ27など)を設置することができて、層流化した状態でアウターシールドガスG2をインナーノズル13に沿って噴出することができるようになっている。
なお、インナーノズル13の中心軸とアウターノズル15の中心軸とは、レーザ加工用ヘッド3の軸に一致している。レーザ加工用ヘッド3は、従来と同様にして、平面状のワークWの加工面に対し垂直な直線に対して、同軸ノズル1の軸を10°〜20°傾けて、ワークWにレーザ光を照射するようになっている(図2参照)。
冷却回路17は、インナーノズル13の外周を冷却するものである。冷却回路17は、前述したインナーガスG1やアウターガスG2とは異なるガスであるクロスジェットガスG3を用いてインナーノズル13の外周を冷却する構成になっている。クロスジェットガスG3とは、レーザ加工によって発生するスパッタから、レーザ光が通過する集光レンズ等の光学系を保護するためのガスである。
なお、冷却回路17で冷却に使用されたクロスジェットガスG3が、前述したように、クロスジェット組立体7で(光学素子支持体5の光学系とワークWのレーザ照射部との間で)エアーカーテンG4を形成し、集光レンズ等の光学系を保護するようになっている。
すなわち、クロスジェットガスG3によって、インナーノズル13内に入ってきた溶接のスパッタ等を吹き飛ばし、溶接のスパッタ等が光学素子支持体5の集光レンズやレンズ保護用のウィンドウに付着しないようにすることができる。なお、図1では、クロスジェットガスG3の経路が概略的に示されている。
また、冷却回路17は、インナーノズル13とアウターノズル15との間に存在する円筒状の空間(間隙)19に、例えば円筒状の中間筒状体21を設置することで(中間筒状体21をインナーノズル13に一体的に設置することで)、クロスジェットガスG3のみが流れる空間(例えば円筒状等の筒状の空間)23を形成している。この空間23は、インナーノズル13の外周の少なくとも一部を囲んでいる。
また、レーザ加工用ヘッド3では、同軸ノズル1から発したレーザ光が照射されるワークWの部位からは、インナーノズル13(特に、後述する先端側インナーノズル13B)で遮られていることで、アウターノズル15やその他の構成体(光学素子支持体5、クロスジェット組立体7、ノズルベース9等)が見えないように構成されている。もちろん、平面状のワークWの加工面に対し垂直な直線に対して、同軸ノズル1の軸を10°〜20°傾けて加工する場合にあっても、見えないようになっている。
同軸ノズル1についてさらに詳しく説明する。
図5等で示すように、ノズルベース9の先端(下端)には、インナーノズル13の内側の空間34に連通する筒状部品として円筒状のメッシュ支持体25が設けられており、そのメッシュ支持体25の外側に、メッシュ支持体25よりも径の大きい円筒状のパーテーション29が設けられ、このパーテーション29の外側に、パーテーション29よりも径の大きい円筒状のノズルホルダー33が設けられている。
パーテーション29は、アウターノズル15の内側の円筒状の空間19の内部に別の空間を仕切るもので、メッシュ支持体25とパーテーション29との間には、その別の空間として、円筒状のインナーガスチャンバ31が確保されている。
メッシュ支持体25の周壁には、インナーガスチャンバ31の上部に位置させて、インナーノズル13の内側の空間34にインナーシールドガスG1を供給する複数の供給口(切欠によって構成されている)26が設けられており、それら供給口26に、インナーノズル13の内側の空間35に供給するインナーシールドガスG1の流れを層流化するためのガスレンズ用のメッシュ(整流手段)27が設けられている。つまり、インナーガスチャンバ31の基端(上端)側の箇所はメッシュ27を通して、メッシュ支持体25の内側の空間35(インナーノズル13の内側の空間34に連通する空間)につながっている。
この場合のメッシュ27は、供給口26ごとに円弧曲面状または矩形平面状の形で設けられていてもよいし、全部の供給口26を覆うように円筒面状に設けられていてもよい。また、供給口26の向きをメッシュ支持体25の軸線に直交する方向に設定するのではなく、ノズル先端方向に斜めに向くように設定してもよい。
インナーガスチャンバ31には、その上部に位置して、インナーシールドガスG1がインナーガスチャンバ31内に流入する流入口(矢印S1の先端で示す)が設けられている。
そして、ノズルベース9に設けられた流路(図示せず)を通ってきたインナーシールドガスG1は、インナーガスチャンバ31とメッシュ27と空間35とを通り、インナーノズル13の内部の空間34を経てインナーノズル13の先端から噴出され、レーザ加工部位に供給されるようになっている。
ここでは、このインナーシールドガスG1の流路を含む手段により、不活性ガスをインナーノズル13の内部に供給する第1のシールドガス供給手段S1(図3中の矢印で便宜的に示す)が構成されている。
なお、ノズルベース9に設けられた流路(図示せず)を通ってインナーガスチャンバ31まで到達したインナーシールドガスG1の少なくとも一部は、インナーガスチャンバ31の先端側の内面(インナーガスチャンバ31の内底面)にぶつかって、一旦基端側に方向を変え、メッシュ27を通るようになっている。このようにガス流れの方向が反転することで、流入口から流入するインナーガスを流入時の流体エネルギーを減衰させた上でインナーガスを供給口25から排出する。従って、インナーシールドガスG1の流速および不均一性が緩和され、その後、メッシュ27を通過することで層流化された状態でインナーノズル13内に導入される。
また、メッシュ27が設けられた供給口26の総面積は、インナーノズル13の上端開放口と下端開放口の断面積の和よりも小さくなるように設定されており、インナーノズル13内で層流となる上限速度(レイノズル数などで計算される)以下でインナーシールドガスG1の必要流量を供給できるようになっている。そのため、インナーノズル13内に導入されたインナーシールドガスG1は、方向を変えながらインナーノズル13の先端から噴出されても、層流状態を維持することができるようになっている。
パーテーション29の先端には、ノズルホルダー33と一体の円筒状の基端側インナーノズル13Aが連結されており、基端側インナーノズル13Aの先端には、先が円錐状になって細くなっている筒状の先端側インナーノズル13Bが接続されている。この先端側インナーノズル13Bには、スパッタの付着対策としてカーボン製のものが使用されている。
そして、円筒状の基端側インナーノズル13Aと先端側インナーノズル13Bとでインナーノズル13が形成されており、先端側インナーノズル13Bが基端側インナーノズル13Aに螺合されていることで、先端側インナーノズル13Bが容易に交換できるようになっている。
なお、本実施形態では、ノズルホルダー33と基端側インナーノズル13Aとが一体で構成され、ノズルホルダー33の先端側は、インナーノズル13の一部を形成する基端側インナーノズル13Aとなっている。
中間筒状体21の径は、インナーノズル13の径よりも大きくなっており、ノズルホルダー33の先端に設けられており、基端側インナーノズル13Aを覆っている。中間筒状体21と基端側インナーノズル13Aとの間には、円筒状の空間23が形成されている。
そして、図示しない流路を通ってきたクロスジェットガスG3が、空間23を通って基端側インナーノズル13Aを冷却し、図示しない別流路を通って、クロスジェット組立体7まで戻り、集光レンズ等の光学素子を保護するためにクロスジェットガスG3のエアーカーテンG4を生成するようになっている。
なお、基端側インナーノズル13Aの外周には、大きな外径部と小さな外径部とが軸方向で交互に並んで形成されているフィン39が設けられており、クロスジェットガスG3による基端側インナーノズル13Aの冷却効率が高められている。
アウターノズル15の径は、インナーノズル13や中間筒状体21の径よりも大きくなっており、アウターノズル15は、ノズルホルダー33の先端に設けられ、中間筒状体21と基端側インナーノズル13Aと先端側インナーノズル13Bの一部(基端側部位)を覆っている。
そして、図示しない流路を通ってきたアウターシールドガスG2が、アウターノズル15とインナーノズル13との間に確保された円筒状の空間19を経由し、アウターノズル15の先端の開口37に設けたガスレンズ用のメッシュ27を通過し、レーザ加工部位のまわりに向けて層流状態で噴出されるようになっている。
ここでは、アウターノズル15とインナーノズル13との間に確保された円筒状の空間19にアウターシールドガスG2を供給する流路を含む手段により、第2のシールドガス供給手段S2(図3中の矢印で便宜的に示す)が構成されており、前述したインナーシールドガスG1を供給する第1のシールドガス供給手段S1と共通の不活性ガス(窒素ガスやアルゴンガス等)を供給できるようになっている。
また、このレーザ加工機には、前述した第1、第2のシールドガス供給手段を制御する制御手段(図示略)が設けられており、この制御手段が、レーザ加工中にシールドガス供給手段に不活性ガスを供給させると共に、レーザ加工終了後に、インナーノズル13の温度が所定以下になるまでの間、引き続いて不活性ガスの供給を継続させるようになっている。
この同軸ノズル1によれば、インナーノズル13の先端部を、インナーノズル13の内側を流れる不活性ガスとインナーノズル13の外側を流れる不活性ガスとで覆うことができ、インナーノズル13の先端部への大気中の酸素の接触を不活性ガスによって遮断することができる。従って、レーザ発振器やその光学系でのダメージの発生を防止すべく、ワークWの加工面に対してレーザ加工機の同軸ノズル1を傾けて使用することで、ワークWの加工面からの反射光が先端側インナーノズル13B(インナーノズル13の先端部)に当たって先端側インナーノズル13Bが過熱した場合でも、大気中の酸素の接触を遮断することで、先端側インナーノズル13Bの熱劣化を抑制して耐熱強度を高めることができる。
また、この同軸ノズル1によれば、先端側インナーノズル13Bが、不活性ガス雰囲気下に置かれることで耐熱強度を向上させる材料としてのカーボンで構成されているので、レーザ加工(主に溶接加工)に伴うスパッタの付着を防ぐことができる。また、先端側インナーノズル13BがワークWからの反射光による加熱を受けている間、不活性ガスによりカーボン製の先端側インナーノズル13Bの先端部を覆うことができるため、カーボン部分の耐熱強度を2000℃以上に高めることができる。即ち、カーボンは大気中では400℃近傍で酸化し消耗や強度低下を引き起こすが、窒素ガス雰囲気中では2000℃まで、アルゴンガス雰囲気中では3000℃まで反応しないことが知られている。従って、レーザ加工中、および加工終了後の先端側インナーノズル13Bの温度が400℃近傍に下がるまでの間、カーボン部分を窒素またはアルゴンの不活性ガス雰囲気中に置くことによって、カーボン部分の耐熱温度を引き上げることができ、その結果、先端側インナーノズル13Bの寿命を延ばすことができる。
また、この同軸ノズル1によれば、インナーノズル13の内側と外側を通過するインナーシールドガスG1およびアウターシールドガスG2の流れを層流としているので、大気中の酸素の巻き込みを確実に遮断することができる。
また、この同軸ノズル1によれば、インナーノズル13の内部の空間34にインナーシールドガスG1を供給するに当たり、インナーノズルの周壁またはインナーノズルの内部に連通する筒状部品(パーテーション29)の周壁に設けた供給口26からガスレンズとしてのメッシュ27を介してインナーシールドガスG1を層流状態で供給するので、レーザ光の通過するインナーノズル13の内部やそれに連通する筒状部品(パーテーション29)の内部を障害物のない空間として完全に空けておくことができ、レーザ光の通過を妨げることがない。
また、この同期ノズル1によれば、レーザ加工中および加工終了後に先端側インナーノズル13Bの温度が所定以下となるまで、不活性ガスで先端側インナーノズル13Bを覆うことができるので、確実に先端側インナーノズル13Bの耐熱強度を高めることができる。
つまり、先端側インナーノズル13Bをカーボンで構成した場合、レーザ加工終了後においても、先端側インナーノズル13Bの温度が、酸化の発生する温度(例えば、カーボンの場合は約400℃)を下回るのを待ってから、不活性ガスの供給を停止する。こうすることで、先端側インナーノズル13Bの過熱による酸化(劣化)を、レーザ加工終了後にも確実に抑制することができ、先端側インナーノズル13Bの耐熱強度を引き上げることができる。
なお、インナーノズルの先端部の温度が所定以下となったと判断する方法としては、加工終了時点からの経過時間(自然放冷時間)をタイマーにより測定する方法、放射温度計などでインナーノズルの先端部の温度を計測管理する方法、インナーノズルの先端部の赤熱状態をカメラを用いた色判別にて測定して温度を推定管理する方法などを採用することができる。
また、この同軸ノズル1によれば、インナーノズル13を冷却する冷却回路17が、熱源(ワークWにおける溶接部等の加工部位)の近く設けられているので、ワークWの加工面に対してレーザ加工用ヘッド3の同軸ノズル1を傾けて使用することでワークWの加工面からの反射光がインナーノズル13にあたっても、インナーノズル13の過熱を防ぐことがきる。また、冷却効率の高い冷却水を用いることなくレーザ光の出力を上げても、インナーノズル13の過熱を防ぐことができる。さらに、インナーノズル13が冷却されることで、熱伝導によりアウターノズル15も冷却され過熱が防止される。
また、この同軸ノズル1によれば、クロスジェットガスG3を用いてインナーノズル13の外周を冷却する構成であるので、冷却用の媒体を新たに追加することなく、簡素な構成で同軸ノズル1を冷却することができる。また、クロスジェットガスG3を用いるので、同軸ノズル1の冷却にかかるランニングコストを低減することができる。
また、この同軸ノズル1によれば、中間筒状体21によってクロスジェットガスG3のみが流れる空間(インナーノズル13を冷却するための空間)23を形成してあるので、シールドガス(インナーシールドガス、アウターシールドガス)G1、G2の流れが乱れることがなく、ワークWの加工点(溶接部)でもシールドガスG1、G2の濃度を所望の値に保つことが容易になっている。
また、この同軸ノズル1によれば、レーザ加工用ヘッド3の同軸ノズル1から発したレーザ光LBが照射されるワークWの部位からは、アウターノズル15が見えないように構成されているので、レーザ光LBの反射によってアウターノズル15がダメージを受けることがなくなり、アウターノズルの15交換は不要になる。
なお、前記実施形態では、クロスジェットガスG3を用いてインナーノズル13を冷却しているが、クロスジェットガスG3に代えてもしくは加えて、冷媒(冷却水、冷却エアー)を用い、インナーノズル13を冷却するように構成してもよい。
また、前記実施形態では、先端側インナーノズル13Bをスパッタ付着防止性能の高いカーボンで構成した場合を延べたが、不活性ガス中で耐熱強度が高まる材質(例えば高分子材)を利用して先端側インナーノズル13Bを構成することも可能である。
1 レーザ加工機の同軸ノズル
13 インナーノズル
13B 先端側インナーノズル(インナーノズルの先端部)
15 アウターノズル
17 冷却回路
19 筒状の空間
21 中間筒状体
23 空間
26 供給口
27 メッシュ(整流手段)
29 パーテーション(筒状部品)
S1 第1のシールドガス供給手段
G1 インナーシールドガス(インナーガス)
S2 第2のシールドガス供給手段
G2 アウターシールドガス(アウターガス)
G3 クロスジェットガス
LB レーザ光

Claims (10)

  1. 内側をレーザ光とインナーシールドガスとが通過し、先端からワークに向けて前記レーザ光を出射すると共に前記インナーシールドガスを噴出するインナーノズルと、
    前記インナーノズルの外側に設けられ、該インナーノズルとの間に確保した筒状の空間を通して先端からアウターシールドガスを噴出するアウターノズルと、
    前記インナーノズルの内側に前記インナーシールドガスとして不活性ガスを供給すると共に前記インナーノズルの外側の前記筒状の空間に前記アウターシールドガスとして不活性ガスを供給するシールドガス供給手段と、を有し、
    前記インナーノズルの少なくとも先端部が、不活性ガス雰囲気下に置かれることで耐熱強度の向上する材料で構成されていることを特徴とするレーザ加工機の同軸ノズル。
  2. 請求項1に記載のレーザ加工機の同軸ノズルであって、
    前記不活性ガス雰囲気下に置かれることで耐熱強度の向上する材料として、カーボンが使用されていることを特徴とするレーザ加工機の同軸ノズル。
  3. 請求項1または2に記載のレーザ加工機の同軸ノズルであって、
    少なくとも前記インナーノズルの内側を通過する前記インナーシールドガスの流れを層流とすることを特徴とするレーザ加工機の同軸ノズル。
  4. 請求項3に記載のレーザ加工機の同軸ノズルであって、
    前記インナーノズルの周壁または該インナーノズルの内部に連通する筒状部品の周壁に、前記インナーノズルの内側に前記インナーシールドガスを供給する供給口が、前記ガス供給手段の一要素として設けられ、この供給口に、前記インナーノズルの内側に供給する前記インナーシールドガスの流れを層流化する整流手段が設けられていることを特徴とするレーザ加工機の同軸ノズル。
  5. 請求項1〜3のいずれか1項に記載のレーザ加工機の同軸ノズルであって、
    前記ガス供給手段による前記不活性ガスの供給および供給停止する制御手段を備え、
    該制御手段が、レーザ加工中に前記ガス供給手段に不活性ガスを供給させると共に、レーザ加工終了後に、前記インナーノズルの温度が所定以下になるまでの間、引き続いて前記ガス供給手段に不活性ガスの供給を継続させることを特徴とするレーザ加工機の同軸ノズル。
  6. 請求項1〜5のいずれか1項に記載のレーザ加工機の同軸ノズルであって、
    前記インナーノズルを冷却する冷却回路が更に設けられていることを特徴とするレーザ加工機の同軸ノズル。
  7. 請求項6に記載のレーザ加工機の同軸ノズルであって、
    前記冷却回路は、クロスジェットガスを用いて前記インナーノズルの外周を冷却する構成であることを特徴とするレーザ加工機の同軸ノズル。
  8. 請求項7に記載のレーザ加工機の同軸ノズルであって、
    前記冷却回路は、前記インナーノズルと前記アウターノズルとの間に存在する筒状の空間に中間筒状体を設置することで、前記クロスジェットガスのみが流れる空間を前記インナーノズルの外周の少なくとも一部を囲むようにして形成してあることを特徴とするレーザ加工機の同軸ノズル。
  9. 請求項1〜8のいずれか1項に記載のレーザ加工機の同軸ノズルにおいて、
    レーザ加工機の同軸ノズルから発したレーザ光が照射されるワークの部位からは、前記インナーノズルで遮られていることで、前記アウターノズルが見えないように構成されていることを特徴とするレーザ加工機の同軸ノズル。
  10. 請求項1に記載のレーザ加工機の同軸ノズルを用いたレーザ加工方法であって、
    レーザ加工中は、不活性ガスをインナーノズルの先端とアウターノズルの先端から共に噴出しながらワークに対してレーザ加工を行うと共に、レーザ加工終了後、前記インナーノズルの先端部の温度が所定以下となるまでの間、レーザ加工中に引き続いて前記不活性ガスを前記インナーノズルの先端と前記アウターノズルの先端から共に噴出することで、前記不活性ガスにより前記インナーノズルの先端部を覆うことを特徴とするレーザ加工方法。
JP2013076583A 2013-04-02 2013-04-02 レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法 Active JP6120646B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076583A JP6120646B2 (ja) 2013-04-02 2013-04-02 レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076583A JP6120646B2 (ja) 2013-04-02 2013-04-02 レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法

Publications (2)

Publication Number Publication Date
JP2014200802A true JP2014200802A (ja) 2014-10-27
JP6120646B2 JP6120646B2 (ja) 2017-04-26

Family

ID=52351743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076583A Active JP6120646B2 (ja) 2013-04-02 2013-04-02 レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法

Country Status (1)

Country Link
JP (1) JP6120646B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282162B1 (ko) * 2020-03-09 2021-07-28 한국원자력연구원 가공용 레이저 노즐 및 이를 구비하는 가공용 레이저 발사 장치
KR102626330B1 (ko) * 2023-02-15 2024-01-17 곽송희 동축 노즐과 탈축 노즐이 일체로 구비된 일체형 레이저 가공 장치 및 그 제어 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283485A (ja) * 1985-06-06 1986-12-13 Toyota Motor Corp レ−ザ肉盛時におけるガスシ−ル方法
JPS6268682A (ja) * 1985-09-20 1987-03-28 Matsushita Electric Ind Co Ltd 溶接用ト−チノズル
JPH03243292A (ja) * 1990-02-22 1991-10-30 Toshiba Corp レーザ溶接機
JPH07155956A (ja) * 1993-12-03 1995-06-20 Toyo Tanso Kk 自動アーク溶接機用カーボン製トーチノズル
JP2011125903A (ja) * 2009-12-18 2011-06-30 Okaden:Kk シールドガス流量調節装置
JP2012066290A (ja) * 2010-09-24 2012-04-05 Suzuki Motor Corp 溶接トーチノズル
JP2012139704A (ja) * 2010-12-28 2012-07-26 Akihisa Murata 狭窄ノズル及びこれを用いたtig溶接用トーチ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283485A (ja) * 1985-06-06 1986-12-13 Toyota Motor Corp レ−ザ肉盛時におけるガスシ−ル方法
JPS6268682A (ja) * 1985-09-20 1987-03-28 Matsushita Electric Ind Co Ltd 溶接用ト−チノズル
JPH03243292A (ja) * 1990-02-22 1991-10-30 Toshiba Corp レーザ溶接機
JPH07155956A (ja) * 1993-12-03 1995-06-20 Toyo Tanso Kk 自動アーク溶接機用カーボン製トーチノズル
JP2011125903A (ja) * 2009-12-18 2011-06-30 Okaden:Kk シールドガス流量調節装置
JP2012066290A (ja) * 2010-09-24 2012-04-05 Suzuki Motor Corp 溶接トーチノズル
JP2012139704A (ja) * 2010-12-28 2012-07-26 Akihisa Murata 狭窄ノズル及びこれを用いたtig溶接用トーチ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282162B1 (ko) * 2020-03-09 2021-07-28 한국원자력연구원 가공용 레이저 노즐 및 이를 구비하는 가공용 레이저 발사 장치
KR102626330B1 (ko) * 2023-02-15 2024-01-17 곽송희 동축 노즐과 탈축 노즐이 일체로 구비된 일체형 레이저 가공 장치 및 그 제어 방법

Also Published As

Publication number Publication date
JP6120646B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6148878B2 (ja) レーザ加工機の同軸ノズル
JP5418588B2 (ja) レーザ加工装置
EP3330035B1 (en) Laser cladding system and method
WO2017203862A1 (ja) レーザ溶接装置、およびレーザ溶接方法
JP4555743B2 (ja) レーザ加工ヘッド
EP3330038A1 (en) Laser cladding system and method
JP2006142383A (ja) レーザ溶接装置
JP6659746B2 (ja) 保護ウインドの汚れを抑制するレーザ加工ヘッド
US10335899B2 (en) Cross jet laser welding nozzle
US20180200838A1 (en) Laser processing method
JP4896457B2 (ja) レーザ加工機のレーザ照射用ノズル装置及びこの照射用ノズルによるブロー方法。
JP2016172283A (ja) 翼形部内に流路を切り開くためのシステムおよび方法
JP6120646B2 (ja) レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法
JP2010207874A (ja) 溶接装置と溶接方法
JP2012066290A (ja) 溶接トーチノズル
WO2017209086A1 (ja) レーザ加工装置
US20120080413A1 (en) Laser welding apparatus
JP2014240090A (ja) 溶接ヘッドおよび溶接装置
JPH11216589A (ja) レーザ加工機における光学系部材の汚損防止方法及びその装置
JP2014079783A (ja) レーザ・アークハイブリッド溶接方法、ハイブリッド溶接用ヘッド、及びハイブリッド溶接装置
JP2019198885A (ja) ハイブリッド溶接装置
JP4833558B2 (ja) レーザトーチ
JP4408080B2 (ja) ハイブリッドレーザ加工方法とそれに用いるハイブリッドレーザトーチ
WO2022074982A1 (ja) センサ用保護ケース、撮像装置、溶接システム、センサの冷却方法及びセンサの冷却制御方法
JPS61135497A (ja) レ−ザ反射光阻止用遮幣装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6120646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350