JP2014185341A - タイヤトレッド用ゴム組成物および空気入りタイヤ - Google Patents

タイヤトレッド用ゴム組成物および空気入りタイヤ Download PDF

Info

Publication number
JP2014185341A
JP2014185341A JP2014034728A JP2014034728A JP2014185341A JP 2014185341 A JP2014185341 A JP 2014185341A JP 2014034728 A JP2014034728 A JP 2014034728A JP 2014034728 A JP2014034728 A JP 2014034728A JP 2014185341 A JP2014185341 A JP 2014185341A
Authority
JP
Japan
Prior art keywords
group
conjugated diene
mass
rubber
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014034728A
Other languages
English (en)
Other versions
JP6476555B2 (ja
Inventor
Masaki Sato
正樹 佐藤
Satoshi Mihara
諭 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2014034728A priority Critical patent/JP6476555B2/ja
Publication of JP2014185341A publication Critical patent/JP2014185341A/ja
Application granted granted Critical
Publication of JP6476555B2 publication Critical patent/JP6476555B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】タイヤにしたときにウェット性能および低転がり抵抗性に優れ、かつ、耐スコーチ性に優れたタイヤトレッド用ゴム組成物を提供する。
【解決手段】共役ジエン系ゴム(P)を20質量%以上含むゴム成分と、シリカ(Q)と、シランカップリング剤(R)とを含有し、上記共役ジエン系ゴム(P)が、特定の構造体(p)を5質量%以上含み、上記シランカップリング剤(R)が、特定の平均組成式で表されるポリシロキサンであり、上記シランカップリング剤(R)の含有量が、上記シリカ(Q)の含有量に対して1.0〜20質量%であり、上記シリカ(Q)の含有量が、上記ゴム成分100質量部に対して60〜200質量部である、タイヤトレッド用ゴム組成物。
【選択図】なし

Description

本発明は、タイヤトレッド用ゴム組成物および空気入りタイヤに関する。
近年、車両走行時の低燃費性の面から、タイヤの転がり抵抗を低減することが求められている。また、安全性の面からウェット性能の向上が求められている。これに対し、タイヤのトレッド部を構成するゴム成分に、シリカを配合して、低転がり抵抗性とウェット性能を両立する方法が知られている。
しかし、シリカはゴム成分との親和性が低く、また、シリカ同士の凝集性が高いため、ゴム成分に単にシリカを配合してもシリカが分散せず、転がり抵抗を低減する効果やウェット性能を向上する効果が十分に得られないという問題があった。
このようななか、特許文献1には、イソプレンブロックを有する共役ジエン系ゴムを含有するゴム組成物が開示されている。特許文献1によると、上記組成物を用いることで、シリカとゴムとの親和性が良好となり、タイヤの低発熱性(低転がり抵抗性)やウェットグリップ性を向上させることができる旨が記載されている。
また、タイヤトレッド用ゴム組成物には、併せて、貯蔵段階や加硫工程前段階の架橋(ゴム焼け)が少ないことが求められる。すなわち、優れた耐スコーチ性(加工性)が求められる。
国際公開第2011/105362号
一方、環境問題および資源問題から、車両のさらなる低燃費性が求められ、それに伴い、タイヤの低転がり抵抗性のさらなる向上が求められている。また、求められる安全レベルの向上に伴い、ウェット性能についてもさらなる向上が求められている。
このようななか、特許文献1に記載のゴム組成物について検討したところ、耐スコーチ性には優れるものの、低転がり抵抗性およびウェット性能は昨今求められているレベルを満たしていないことが明らかとなった。
そこで、本発明は、上記実情を鑑みて、タイヤにしたときにウェット性能および低転がり抵抗性に優れ、かつ、耐スコーチ性に優れたタイヤトレッド用ゴム組成物を提供することを目的とする。
本発明者らは、上記課題について鋭意検討した結果、特定の共役ジエン系ゴムを所定量含有するゴム成分と特定のシランカップリング剤(後述する式(1)の平均組成式で表されるポリシロキサン)とを併用することで、タイヤにしたときにウェット性能および低転がり抵抗性に優れ、かつ、耐スコーチ性に優れたタイヤトレッド用ゴム組成物が得られることを見出し、本発明に至った。
(1) 共役ジエン系ゴム(P)を20質量%以上含むゴム成分と、シリカ(Q)と、シランカップリング剤(R)とを含有し、
上記共役ジエン系ゴム(P)が、共役ジエン系重合体鎖(p1)と、変性剤(p2)との反応により得られる、3以上の上記共役ジエン系重合体鎖(p1)が上記変性剤(p2)を介して結合してなる構造体(p)を5質量%以上含み、
上記共役ジエン系重合体鎖(p1)が、一方の端にイソプレン単位を70質量%以上含有するイソプレンブロックを有し、他方の端に活性末端を有する、共役ジエン系重合体鎖であり、
上記変性剤(p2)が、エポキシ基および/またはヒドロカルビルオキシシリル基を有し、上記エポキシ基と、上記ヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基との合計数が3以上である、変性剤であり、
上記シランカップリング剤(R)が、下記式(1)の平均組成式で表されるポリシロキサンであり、
上記シランカップリング剤(R)の含有量が、上記シリカ(Q)の含有量に対して1.0〜20質量%であり、
上記シリカ(Q)の含有量が、上記ゴム成分100質量部に対して60〜200質量部である、タイヤトレッド用ゴム組成物。
(A)a(B)b(C)c(D)d(R1eSiO(4-2a-b-c-d-e)/2 (1)
(式(1)中、Aはスルフィド基を含有する2価の有機基を表す。Bは炭素数5〜10の1価の炭化水素基を表す。Cは加水分解性基を表す。Dはメルカプト基を含有する有機基を表す。R1は炭素数1〜4の1価の炭化水素基を表す。a〜eは、0≦a<1、0≦b<1、0<c<3、0<d<1、0≦e<2、0<2a+b+c+d+e<4の関係式を満たす(ただし、aとbのいずれか一方は0ではない)。)
(2) 上記イソプレンブロックにおけるイソプレン単位由来のビニル結合含有量が5〜85質量%である、上記(1)に記載のタイヤトレッド用ゴム組成物。
(3) 上記共役ジエン系重合体鎖(p1)における上記イソプレンブロック以外の部分が、共役ジエン単量体の単独重合体鎖、または、共役ジエン単量体と芳香族ビニル単量体との共重合体鎖である、上記(1)または(2)に記載のタイヤトレッド用ゴム組成物。
(4) 上記式(1)中、aが0よりも大きい、上記(1)〜(3)のいずれかに記載のタイヤトレッド用ゴム組成物。
(5) 上記式(1)中、bが0よりも大きい、上記(1)〜(4)のいずれかに記載のタイヤ用ゴム組成物。
(6) 上記ゴム成分100質量部に対して、軟化点が60〜150℃の芳香族変性テルペン樹脂を1〜30質量部さらに含有する、上記(1)〜(5)のいずれかに記載のタイヤトレッド用ゴム組成物。
(7) 上記(1)〜(6)のいずれかに記載のタイヤトレッド用ゴム組成物をタイヤトレッドに用いた空気入りタイヤ。
以下に示すように、本発明によれば、タイヤにしたときにウェット性能および低転がり抵抗性に優れ、かつ、耐スコーチ性に優れたタイヤトレッド用ゴム組成物およびそれをタイヤトレッドに用いた空気入りタイヤを提供することができる。
本発明の空気入りタイヤの実施態様の一例を表すタイヤの部分断面概略図である。
以下に、本発明のタイヤトレッド用ゴム組成物、および本発明のタイヤトレッド用ゴム組成物を用いた空気入りタイヤについて説明する。
[タイヤトレッド用ゴム組成物]
本発明のタイヤトレッド用ゴム組成物は、共役ジエン系ゴム(P)を20質量%以上含むゴム成分と、シリカ(Q)と、シランカップリング剤(R)とを含有し、上記共役ジエン系ゴム(P)は、共役ジエン系重合体鎖(p1)と、変性剤(p2)との反応により得られる、3以上の上記共役ジエン系重合体鎖(p1)が上記変性剤(p2)を介して結合してなる構造体(p)を5質量%以上含む。
ここで、上記共役ジエン系重合体鎖(p1)は、一方の端にイソプレン単位を70質量%以上含有するイソプレンブロックを有し、他方の端に活性末端を有する、共役ジエン系重合体鎖である。
また、上記変性剤(p2)は、エポキシ基および/またはヒドロカルビルオキシシリル基を有し、上記エポキシ基と、上記ヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基との合計数が3以上である、変性剤である。
また、上記シランカップリング剤(R)は、後述する式(1)の平均組成式で表されるポリシロキサンである。
また、上記シランカップリング剤(R)の含有量は、上記シリカ(Q)の含有量に対して1.0〜20質量%である。
また、上記シリカ(Q)の含有量は、上記ゴム成分100質量部に対して60〜200質量部である。
本発明のタイヤトレッド用ゴム組成物は、後述する構造体(p)を所定量含有する共役ジエン系ゴム(P)と、シランカップリング剤(R)(後述する式(1)の平均組成式で表されるポリシロキサン)とを併用するため、ウェット性能、低転がり抵抗性および耐スコーチ性のいずれについても優れた特性を示すタイヤトレッド用ゴム組成物となると考えられる。
その理由は明らかではないが、およそ以下のとおりと推測される。
後述するように、構造体(p)は、イソプレンブロックを有する共役ジエン系重合体鎖(p1)が変性剤(p2)を介して結合した構造を有する。また、後述する式(1)の平均組成式で表されるポリシロキサン(以下、特定ポリシロキサンともいう)は、加水分解性基とメルカプト基とを有する。
本発明のタイヤトレッド用ゴム組成物は、上記構造体(p)を所定量含有する共役ジエン系ゴム(P)と、特定ポリシロキサンとを併用するため、特定ポリシロキサンのメルカプト基および加水分解性基が、構造体(p)のイソプレンブロック、および、シリカ(Q)の双方と相互作用し、ゴム成分中でのシリカ(Q)の分散性を向上させ、結果として、優れたウェット性能および低転がり抵抗性を示すものと考えられる。特に、メルカプト基がイソプレンブロックに対して強く親和することが、上述するような優れた特性を担保しているものと考えられる。このことは、特定ポリシロキサンを使用するが構造体(p)を含有しない共役ジエン系ゴムを使用した場合(後述する比較例4および5)よりも、共役ジエン系ゴム(P)と特定ポリシロキサンとを併用した場合(後述する本願実施例)の方が、ウェット性能および低転がり抵抗性に優れるという事実からも推測される。
さらに、特定ポリシロキサンのポリシロキサン構造により、特定ポリシロキサンのメルカプト基が安定化され、優れた耐スコーチ性が担保されるものと考えられる。このことは、特定ポリシロキサン以外のメルカプト系シランカップリング剤を使用した場合(後述する比較例1および2)よりも、特定ポリシロキサンを使用した場合(後述する本願実施例)の方が、耐スコーチ性に優れるという事実からも推測される。
以下、本発明のタイヤトレッド用ゴム組成物に含有される各成分について詳述する。
〔ゴム成分〕
本発明のタイヤトレッド用ゴム組成物に含有されるゴム成分は、後述する共役ジエン系ゴム(P)を20質量%以上含有する。上記ゴム成分は、共役ジエン系ゴム(P)以外のジエン系ゴムを含有してもよい。
共役ジエン系ゴム(P)は、後述する共役ジエン系重合体鎖(p1)と、後述する変性剤(p2)との反応により得られる、3以上の共役ジエン系重合体鎖(p1)が変性剤(p2)を介して結合してなる後述する構造体(p)を5質量%以上含むものである。
<共役ジエン系重合体鎖(p1)>
共役ジエン系ゴム(P)に含まれる構造体(p)を形成するのに使用される共役ジエン系重合体鎖(p1)は、共役ジエン単量体単位を含んでなる重合体鎖であって、一方の端にイソプレンブロックを有し、他方の端に活性末端(重合活性末端またはリビング成長末端)を有するものであれば、特に限定されない。
上記共役ジエン系重合体鎖(p1)は、例えば、不活性溶媒中で、イソプレンまたはイソプレンを所定量含んでなるイソプレン混合物を、重合開始剤を用いてリビング重合することにより、活性末端(重合活性末端またはリビング成長末端)を有するイソプレンブロックを形成させ、次いで、共役ジエン単量体または共役ジエン単量体を含んでなる単量体混合物を、活性末端を有するイソプレンブロックに結合させ、引き続きリビング重合することにより得ることができる。なお、上記共役ジエン単量体を含んでなる単量体混合物は、さらに芳香族ビニル単量体を含んでなることが好ましい。
(イソプレンブロック)
イソプレンブロックは、イソプレンの単独重合体、または、イソプレンと他の単量体(モノマー)との共重合体であり、イソプレン単位の含有量が70質量%以上のポリイソプレンである。イソプレンブロック中のイソプレン単位の含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることが特に好ましい。
上述のとおり、上記共役ジエン系重合体鎖(p1)は、一方の端に上記イソプレンブロックを有する。共役ジエン系重合体鎖(p1)の鎖中にさらにイソプレンブロックを有してもよい。両方の端にイソプレンブロックを有し、そのうちの一方の端のイソプレンブロックが活性末端を有してもよいが、活性末端ではない方の端にのみイソプレンブロックを有するのが生産性の観点から好ましい。
イソプレンブロックの重量平均分子量は、特に制限されないが、強度の観点から、好ましくは500〜25,000、より好ましくは1,000〜15,000であり、特に好ましくは1,500〜10,000である。
イソプレンブロックの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、特に制限されないが、生産性の観点から、好ましくは1.0〜1.5、より好ましくは1.0〜1.4、特に好ましくは1.0〜1.3である。
イソプレンブロックを得るために用いるイソプレンと共重合し得るその他の単量体としては、イソプレンと共重合可能なものであれば特に限定されず、例えば、1,3−ブタジエン、スチレン、α−メチルスチレンなどを用いることができる。これらの中でも、スチレンが好ましい。イソプレンブロック中、その他の単量体単位の含有量は、30質量%未満であり、20質量%未満であることが好ましく、10質量%未満であることがより好ましく、イソプレン単位以外の単量体を含有していないことが特に好ましい。
イソプレン(またはイソプレン混合物)の重合に用いられる不活性溶媒としては、溶液重合において通常使用されるものであって、重合反応を阻害しないものであれば、特に制限なく使用できる。その具体例としては、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、2−ブテンなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘキセンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;などが挙げられる。不活性溶媒の使用量は特に制限されないが、通常、全単量体(イソプレンおよびその他の単量体)の濃度が1〜50質量%になるような量であり、好ましくは10〜40質量%になるような量である。
イソプレンブロックを合成する際の重合開始剤としては、イソプレン(またはイソプレン混合物)をリビング重合させて、活性末端を有する重合体鎖を与えることができるものであれば、特に限定されないが、例えば、有機アルカリ金属化合物および有機アルカリ土類金属化合物、ならびにランタン系列金属化合物などを主触媒とする重合開始剤が好ましく使用される。有機アルカリ金属化合物の具体例としては、例えば、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、フェニルリチウム、およびスチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4−ジリチオブタン、1,4−ジリチオ−2−エチルシクロヘキサン、1,3,5−トリリチオベンゼン、および1,3,5−トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、ジ−n−ブチルマグネシウム、ジ−n−ヘキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ−t−ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ−t−ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、およびジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、ランタン、セリウム、プラセオジム、ネオジム、サマリウムおよびガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、および有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤が挙げられる。これらの重合開始剤のなかでも、有機モノリチウム化合物および有機多価リチウム化合物を用いることが好ましく、有機モノリチウム化合物を用いることがより好ましく、n−ブチルリチウムを用いることが特に好ましい。なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ヘキサメチレンイミン、およびヘプタメチレンイミン(好ましくは、ピロリジン、ヘキサメチレンイミン、およびヘプタメチレンイミン)などの第2級アミンと反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
重合開始剤の使用量は、目的とする分子量に応じて決定すればよいが、イソプレン(またはイソプレン混合物)100g当り、好ましくは4〜250mmol、より好ましくは30〜200mmol、特に好ましくは40〜100mmolの範囲である。
イソプレン(またはイソプレン混合物)を重合するに際し、重合温度は、通常、−80〜150℃、好ましくは0〜100℃、より好ましくは20〜90℃の範囲である。
イソプレンブロックにおけるイソプレン単位由来のビニル結合含有量を調節するために、重合に際し、不活性有機溶媒に極性化合物を添加することが好ましい。極性化合物としては、ジブチルエーテル、テトラヒドロフラン、2,2−ジ(テトラヒドロフリル)プロパンなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらの中でも、エーテル化合物、第三級アミンが好ましく、その中でも、重合開始剤の金属とキレート構造を形成し得るものがより好ましく、2,2−ジ(テトラヒドロフリル)プロパン、テトラメチルエチレンジアミンが特に好ましい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1molに対して、好ましくは0.1〜30mol、より好ましくは0.5〜10molの範囲で調節すればよい。極性化合物の使用量がこの範囲にあると、ビニル結合含有量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。
イソプレンブロックにおけるイソプレン単位由来のビニル結合含有量は、ウェット性能がより優れる理由から、好ましくは5〜85質量%、より好ましくは21〜85質量%、さらに好ましくは50〜80質量%、特に好ましくは70〜80質量%である。なお、イソプレン単位由来のビニル結合含有量とは、イソプレンブロックにおける、イソプレン単位由来の1,2−ビニル結合の単位と、イソプレン単位由来の3,4−ビニル結合の単位との合計の割合(質量%)である。
(イソプレンブロック以外の部分)
共役ジエン系重合体鎖(p1)におけるイソプレンブロック以外の部分は、共役ジエン単量体の単独重合体鎖または共役ジエン単量体と芳香族ビニル単量体との共重合体鎖であることが好ましい。イソプレンブロック以外の部分における共役ジエン単量体単位と芳香族ビニル単量体単位との質量比(共役ジエン単量体単位:芳香族ビニル単量体単位)は、100:0〜50:50が好ましく、90:10〜70:30がより好ましい。
共役ジエン系重合体鎖(p1)においてイソプレンブロック以外の部分を得るために用いる共役ジエン単量体としては、特に限定されないが、例えば、1,3−ブタジエン、イソプレン(2−メチル−1,3−ブタジエン)、2,3−ジメチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1,3−ペンタジエン、および1,3−ヘキサジエンなどが挙げられる。これらの中でも、1,3−ブタジエン、またはイソプレンを用いることが好ましく、1,3−ブタジエンを用いることがより好ましい。これらの共役ジエン単量体は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
また、共役ジエン系重合体鎖(p1)においてイソプレンブロック以外の部分を得るために用いる芳香族ビニル単量体としては、特に限定されないが、例えば、スチレン、α−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2−エチルスチレン、3−エチルスチレン、4−エチルスチレン、2,4−ジイソプロピルスチレン、2,4−ジメチルスチレン、4−t−ブチルスチレン、5−t−ブチル−2−メチルスチレン、ビニルナフタレン、ジメチルアミノメチルスチレン、およびジメチルアミノエチルスチレンなどを挙げることができる。これらの中でも、スチレン、α−メチルスチレン、および4−メチルスチレンが好ましく、スチレンがより好ましい。これらの芳香族ビニル単量体は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
共役ジエン系重合体鎖(p1)においてイソプレンブロック以外の部分を得るために用いる単量体として、本発明における本質的な特性を損なわない範囲において、所望により、共役ジエン単量体および芳香族ビニル単量体以外の他の単量体を使用することができる。他の単量体としては、例えば、アクリロニトリル、およびメタクリロニトリルなどのα,β−不飽和ニトリル;アクリル酸、メタクリル酸、および無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、およびアクリル酸ブチルなどの不飽和カルボン酸エステル;1,5−ヘキサジエン、1,6−へプタジエン、1,7−オクタジエン、ジシクロペンタジエン、および5−エチリデン−2−ノルボルネンなどの非共役ジエンなどを挙げることができる。これらの単量体の使用量は、共役ジエン系重合体鎖(p1)においてイソプレンブロック以外の部分を得るために用いる全単量体中、10質量%以下とするのが好ましく、5質量%以下とするのがより好ましい。
共役ジエン系重合体鎖(p1)においてイソプレンブロック以外の部分の重合に用いられる不活性溶媒については、上述のイソプレンブロックの合成に用いられる不活性溶媒と同様である。
共役ジエン系重合体鎖(p1)においてイソプレンブロック以外の部分の合成に用いられる重合開始剤としては上述した活性末端を有するイソプレンブロックをそのまま用いる。重合開始剤の使用量は、目的とする分子量に応じて決定すればよいが、単量体(混合物)100g当り、通常、0.1〜5mmol、好ましくは0.2〜2mmol、より好ましくは0.3〜1.5mmolの範囲である。
共役ジエン系重合体鎖(p1)においてイソプレンブロック以外の部分を重合するに際し、重合温度は、通常、−80〜150℃一、好ましくは0〜100℃、より好ましくは20〜90℃の範囲である。重合様式としては、回分式、連続式など、いずれの様式をも採用できる。共役ジエン系重合体鎖(p1)におけるイソプレンブロック以外の部分を、共役ジエン単量体と芳香族ビニル単量体との共重合体鎖とする場合、あるいは、2種以上の共役ジエン単量体からなる共重合体鎖とする場合には、結合のランダム性を制御しやすい点で、回分式が好ましい。
共役ジエン系重合体鎖(p1)におけるイソプレンブロック以外の部分を、共役ジエン単量体と芳香族ビニル単量体との共重合体鎖とする場合、あるいは、2種以上の共役ジエン単量体からなる共重合体鎖とする場合の各単量体の結合様式は、例えば、ブロック状、テーパー状、またはランダム状など種々の結合様式とすることができる。これらの中でも、ランダム状が好ましい。共役ジエン単量体と芳香族ビニル単量体との結合様式をランダム状にする場合、重合系内において、共役ジエン単量体と芳香族ピニル単量体との合計量に対する芳香族ビニル単量体の比率が高くなりすぎないように、共役ジエン単量体または共役ジエン単量体と芳香族ビニル単量体とを、連続的または断続的に重合系内に供給して重合することが好ましい。
共役ジエン系重合体鎖(p1)のイソプレンブロック以外の部分におけるビニル結合含有量を調節するためには、イソプレンブロックにおけるイソプレン単位由来のビニル結合含有量の調節時と同様、重合に際し、不活性有機溶媒に極性化合物を添加することが好ましい。ただし、イソプレンブロックの合成時に、不活性有機溶媒に、共役ジエン系重合体鎖のイソプレンブロック以外の部分におけるビニル結合含有量を調節するのに十分な量の極性化合物を添加している場合は、新たに極性化合物を添加しなくてもよい。イソプレンブロック以外の部分におけるビニル結合含有量を調節するために用いられる極性化合物についての具体例は、上述のイソプレンブロックの合成に用いられる極性化合物と同様である。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1molに対して、好ましくは0.01〜100mol、より好ましくは0.1〜30molの範囲で調節すればよい。極性化合物の使用量がこの範囲にあると、イソプレンブロック以外の部分におけるビニル結合含有量の調節が容易であり、かつ、重合開始剤の失活による不具合も発生し難い。
共役ジエン系重合体鎖(p1)のイソプレンブロック以外の部分におけるビニル結合含有量は、粘弾性特性と強度とのバランスの観点から、好ましくは10〜90質量%、より好ましくは20〜80質量%である。
なお、イソプレンブロック以外の部分におけるビニル結合含有量とは、共役ジエン系重合体鎖(p1)のイソプレンブロック以外の部分における、ビニル結合単位の割合(質量%)である。
(共役ジエン系重合体鎖(p1)の分子量)
共役ジエン系重合体鎖(p1)の重量平均分子量は、特に限定されないが、1,000〜2,000,000が好ましく、10,000〜1,500,000がより好ましく、100,000〜1,000,000が特に好ましい。共役ジエン系重合体鎖(p1)の重量平均分子量が上記範囲内にあるとき、タイヤの強度と低転がり抵抗性とのバランスが良好となる。
共役ジエン系重合体鎖(p1)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、好ましくは1.0〜3.0、より好ましくは1.0〜2.5、特に好ましくは1.0〜2.2である。この分子量分布の値(Mw/Mn)が上記範囲内にあると、共役ジエン系ゴム(P)の製造が容易となる。
(共役ジエン系重合体鎖(p1)の製造方法)
共役ジエン系重合体鎖(p1)は、上述したように、例えば、不活性溶媒中、まず重合開始剤を用いてイソプレン(またはイソプレン混合物)をリビング重合させることにより、活性末端を有するイソプレンブロックを形成し、次いで、このイソプレンブロックを新たな重合開始剤として用いて、共役ジエン単量体などの単量体をリビング重合させることにより得ることができる。この際、共役ジエン単量体などの単量体の溶液中にイソプレンブロックを加えてもよいし、イソプレンブロックの溶液中に共役ジエン単量体などの単量体を加えてもよいが、共役ジエン単量体などの単量体の溶液中にイソプレンブロックを加えることが好ましい。また、共役ジエン単量体などの単量体の重合転化率が通常95%以上になった時点で、新たにイソプレン(またはイソプレン混合物)を添加することにより、共役ジエン系重合体鎖(p1)の活性末端側にもイソプレンブロックを形成させることができる。このイソプレン(またはイソプレン混合物)の使用量は、初めの重合反応に使用した重合開始剤1molに対して、好ましくは10〜100mol、より好ましくは15〜70mol、特に好ましくは20〜35molである。
(共役ジエン系重合体鎖(p1)の好適な態様)
共役ジエン系重合体鎖(p1)は、芳香族ビニル単量体単位を含有しなくともよいが、含有することが好ましい。共役ジエン系重合体鎖(p1)における共役ジエン単量体単位と芳香族ビニル単量体単位との質量比(共役ジエン単量体単位:芳香族ビニル単量体単位)の好ましい範囲は、上述のイソプレンブロック以外の部分と同じである。また、共役ジエン系重合体鎖(p1)におけるビニル結合含有量の好ましい範囲も、上述のイソプレンブロック以外の部分と同じである。なお、共役ジエン系重合体鎖(p1)におけるビニル結合量とは、共役ジエン系重合体鎖(p1)におけるビニル結合単位の割合(質量%)である。
<変性剤(p2)>
本発明で使用される共役ジエン系ゴム(P)は、以上のようにして得られる共役ジエン系重合体鎖(p1)の活性末端と、エポキシ基および/またはヒドロカルビルオキシシリル基を有し、上記エポキシ基と、上記ヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基(−OR:ここでRは炭化水素基またはアリール基)との合計数が3以上である変性剤(p2)とが反応してなるものである。
本明細書において「変性剤」とは、1分子中に、共役ジエン系重合体鎖(p1)の活性末端と反応する官能基を有する化合物である。ただし、含有する上記官能基は、シリカと親和性を有するものに限る。本発明において、上記官能基は、エポキシ基、または、ヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基である。
本発明の共役ジエン系ゴムに含有される構造体(p)を形成するのに用いられる変性剤(p2)は、エポキシ基および/またはヒドロカルビルオキシシリル基を有し、エポキシ基と、ヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基との合計数が3以上である変性剤であれば、特に限定されない。すなわち、変性剤(p2)としては、分子中に3以上のエポキシ基を有するものや、分子中にヒドロカルビルオキシシリル基を有し、ヒドロカルビルオキシシリル基においてケイ素原子と結合しているヒドロカルビルオキシ基が分子中に3以上含まれているものを用いることができ、それに加えて、分子中にエポキシ基およびヒドロカルビルオキシシリル基の両方を有し、1分子内において、エポキシ基と、ヒドロカルビルオキシシリル基においてケイ素原子と結合しているヒドロカルビルオキシ基との合計数が3以上のものを用いることもできる。なお、分子中にヒドロカルビルオキシシリル基を有し、ヒドロカルビルオキシシリル基においてケイ素原子と結合しているヒドロカルビルオキシ基が分子中に2以上含まれているという場合、1つのヒドロカルビルオキシ基を有するケイ素原子が2以上含まれているもの、同一のケイ素原子に2以上のヒドロカルビルオキシ基を有するもの、およびこれらの組合せを指す。なお、ヒドロカルビルオキシシリル基のケイ素原子にヒドロカルビルオキシ基以外の有機基が結合している場合、この有機基については特に制限はない。
なお、共役ジエン系重合体鎖(p1)が、エポキシ基を有する変性剤(p2)と反応する場合は、変性剤(p2)における少なくとも一部のエポキシ基が開環することにより、エポキシ基が開環した部分の炭素原子と共役ジエン系重合体鎖(p1)の活性末端との結合が形成されると考えられる。また、共役ジエン系重合体鎖(p1)が、ヒドロカルビルオキシシリル基を有する変性剤(p2)と反応する場合は、変性剤(p2)のヒドロカルビルオキシシリル基における少なくとも一部のヒドロカルビルオキシ基が脱離することにより、変性剤(p2)が含有するケイ素原子と共役ジエン系重合体鎖(p1)の活性末端との結合が形成されると考えられる。
エポキシ基と、ヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基との合計数が3以上である変性剤(p2)を用いることにより、3以上の上記共役ジエン系重合体鎖(p1)が上記変性剤(p2)を介して結合してなる構造体(p)を有する共役ジエン系ゴム(P)を得ることができる。
変性剤(p2)に含まれるヒドロカルビルオキシシリル基としては、例えば、メトキシシリル基、エトキシシリル基、プロポキシシリル基、ブトキシシリル基などのアルコキシシリル基、ならびにフェにキシシリル基などのアリールオキシシリル基が挙げられる。これらの中でも、アルコキシシリル基が好ましく、エトキシシリル基がより好ましい。
また、変性剤(p2)に含まれるヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基およびブトキシ基などのアルコキシ基、ならびにフェノキシ基などのアリールオキシ基が挙げられる。これらの中でも、アルコキシ基が好ましく、エトキシ基がより好ましい。
変性剤(p2)は、ウェット性能および低転がり抵抗性がより優れる理由から、ポリオルガノシロキサンであることが好ましい。
変性剤(p2)の好適な態様としては、下記式(A1)で表されるポリオルガノシロキサン、下記式(A2)で表されるポリオルガノシロキサン、および下記式(A3)で表されるポリオルガノシロキサン、ならびに下記式(A4)で表されるヒドロカルビルオキシシランなどが挙げられる。なかでも、下記式(A1)で表されるポリオルガノシロキサン、下記式(A2)で表されるポリオルガノシロキサン、および下記式(A3)で表されるポリオルガノシロキサンであることが好ましく、下記式(A1)で表されるポリオルガノシロキサンであることがより好ましい。
上記式(A1)中、R1〜R8は、炭素数1〜6のアルキル基または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。上記式(A1)中、X1およびX4は、炭素数1〜5のアルコキシ基、炭素数6〜14のアリールオキシ基、もしくはエポキシ基を含有する炭素数4〜12の基、または、炭素数1〜6のアルキル基、もしくは炭素数6〜12のアリール基であり、X1およびX4は同一であっても相違していてもよい。上記式(A1)中、X2は、炭素数1〜5のアルコキシ基、炭素数6〜14のアリールオキシ基、またはエポキシ基を含有する炭素数4〜12の基である。上記式(A1)中、X3は、2〜20のアルキレングリコールの繰返し単位を含有する基である。上記式(A1)中、mは3〜200の整数、nは0〜200の整数、kは0〜200の整数である。
上記式(A2)中、R9〜R16は、炭素数1〜6のアルキル基、または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。上記式(A2)中、X5〜X8は、炭素数1〜5のアルコキシ基、炭素数6〜14のアリールオキシ基、またはエポキシ基を含有する炭素数4〜12の基であり、これらは互いに同一であっても相違していてもよい。
上記式(A3)中、R17〜R19は、炭素数1〜6のアルキル基、または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。上記式(A3)中、X9〜X11は、炭素数1〜5のアルコキシ基、炭素数6〜14のアリールオキシ基、またはエポキシ基を含有する炭素数4〜12の基であり、これらは互いに同一であっても相違していてもよい。上記式(A3)中、sは1〜18の整数である。
上記式(A4)中、R20は、炭素数1〜12のアルキレン基である。上記式(A4)中、R21〜R29は、炭素数1〜6のアルキル基、または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。上記式(A4)中、rは1〜10の整数である。
上記式(A1)で表されるポリオルガノシロキサンにおいて、R1〜R8、X1およびX4で表される炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、およびシクロヘキシル基などが挙げられる。炭素数6〜12のアリール基としては、例えば、フェニル基、およびメチルフェニル基などが挙げられる。これらのなかでも、ポリオルガノシロキサン自体の製造の観点から、メチル基、およびエチル基が好ましい。
上記式(A1)で表されるポリオルガノシロキサンにおいて、X1、X2、およびX4で表される炭素数1〜5のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、およびブトキシ基などが挙げられる。なかでも、共役ジエン系重合体鎖(p1)の活性末端との反応性の観点から、メトキシ基、およびエトキシ基が好ましい。
上記式(A1)で表されるポリオルガノシロキサンにおいて、X1、X2、およびX4で表される炭素数6〜14のアリールオキシ基としては、例えば、フェノキシ基、およびトリルオキシ基などが挙げられる。
上記式(A1)で表されるポリオルガノシロキサンにおいて、X1、X2、およびX4で表されるエポキシ基を含有する炭素数4〜12の基としては、下記式(A5)で表される基が挙げられる。
上記式(A5)中、Z1は、炭素数1〜10のアルキレン基またはアルキルアリーレン基であり、Z2はメチレン基、硫黄原子、または酸素原子であり、Eはエポキシ基を有する炭素数2〜10のヒドロカルビル基(炭化水素基)である。上記式(A5)中、*は結合位置を表す。
上記式(A5)で表される基において、Z2が酸素原子であるものが好ましく、Z2が酸素原子であり、かつ、Eがグリシジル基であるものがより好ましく、Z1が炭素数3のアルキレン基であり、Z2が酸素原子であり、かつ、Eがグリシジル基であるものが特に好ましい。
上記式(A1)で表されるポリオルガノシロキサンにおいて、X1およびX4としては、上記の中でも、エポキシ基を含有する炭素数4〜12の基、または炭素数1〜6のアルキル基が好ましく、また、X2としては、上記の中でも、エポキシ基を含有する炭素数4〜12の基が好ましく、X1およびX4が炭素数1〜6のアルキル基であり、かつ、X2がエポキシ基を含有する炭素数4〜12の基であることがより好ましい。
上記式(A1)で表されるポリオルガノシロキサンにおいて、X3、すなわち2〜20のアルキレングリコールの繰返し単位を含有する基としては、下記式(A6)で表される基が好ましい。
上記式(A6)中、tは2〜20の整数であり、Pは炭素数2〜10のアルキレン基またはアルキルアリーレン基であり、Rは水素原子またはメチル基であり、Qは炭素数1〜10のアルコキシ基またはアリールオキシ基である。上記式(A6)中、*は結合位置を表す。これらの中でも、tが2〜8の整数であり、Pが炭素数3のアルキレン基であり、Rが水素原子であり、かつ、Qがメトキシ基であるものが好ましい。
上記式(A1)で表されるポリオルガノシロキサンにおいて、mは、低転がり抵抗性および機械的強度がより優れる理由から、好ましくは20〜150、より好ましくは30〜120の整数である。
上記式(A1)で表されるポリオルガノシロキサンにおいて、nは、好ましくは0〜150の整数、より好ましくは0〜120の整数である。また、上記式(A1)で表されるポリオルガノシロキサンにおいて、kは、好ましくは0〜150の整数、より好ましくは0〜120の整数である。
上記式(A1)で表されるポリオルガノシロキサンにおいて、m、n、およびkの合計数は、400以下であることが好ましく、300以下であることがより好ましく、250以下であることが特に好ましい。m、n、およびkの合計数が400以下であるとポリオルガノシロキサン自体の製造が容易になると共に、その粘度が高くなりすぎず、取り扱いも容易となる。
上記式(A2)で表されるポリオルガノシロキサンにおいて、R9〜R16の具体例および好適な態様は、上記式(A1)中のR1〜R8と同様である。また、上記式(A2)で表されるポリオルガノシロキサンにおいて、X5〜X8の具体例および好適な態様は、上記式(A1)中のX2と同様である。
上記式(A3)で表されるポリオルガノシロキサンにおいて、R17〜R19の具体例および好適な態様は、上記式(A1)中のR1〜R8と同様である。また、上記式(A3)で表されるポリオルガノシロキサンにおいて、X9〜X11の具体例および好適な態様は、上記式(A1)中のX2と同様である。
上記式(A4)で表されるヒドロカルビルオキシシランにおいて、R20で表される炭素数1〜12のアルキレン基としては、メチレン基、エチレン基、およびプロピレン基などが挙げられる。これらの中でも、プロピレン基が好ましい。
上記式(A4)で表されるヒドロカルビルオキシシランにおいて、R21〜R29の具体例および好適な態様は、上記式(A1)中のR1〜R8と同様である。
上記式(A4)で表されるヒドロカルビルオキシシランの具体例としては、N,N−ビス(トリメチルシリル)−3−アミノプロピルトリメトキシシラン、N,N−ビス(トリメチルシリル)−3−アミノプロピルトリエトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルトリメトキシシラン、およびN,N−ビス(トリメチルシリル)アミノエチルトリエトキシシランなどを挙げることができる。これらの中でも、N,N−ビス(トリメチルシリル)−3−アミノプロピルトリメトキシシランおよびN,N−ビス(トリメチルシリル)−3−アミノプロピルトリエトキシシランを用いることが好ましい。
変性剤(p2)の他の例としては、テトラメトキシシランなどのテトラアルコキシシラン化合物;ビス(トリメトキシシリル)メタンなどのヘキサアルコキシシラン化合物;メチルトリエトキシシランなどのアルキルアルコキシシラン化合物;ビニルトリメトキシシランンなどのアルケニルアルコシキシシラン化合物;フェニルトリメトキシシランなどのアリールアルコキシシラン化合物;トリエトキシクロロシランなどのハロゲノアルコキシシラン化合物;3−グリシドキシエチルトリメトキシシラン、3−グリシドキシブチルプロピルトリメトキシシラン、ビス(3−グリシドキシプロピル)ジメトキシシランなどのエポキシ基含有アルコキシシラン化合物;ビス(3−(トリエトキシシリル)プロピル)ジスルフィドなどの硫黄含有アルコキシシラン化合物;ビス(3−トリメトキシシリルプロピル)メチルアミンなどのアミノ基含有アルコキシシラン化合物;トリス(3−トリメトキシシリルプロピル)イソシアヌレートなどのイソシアネート基含有アルコキシシラン化合物;テトラグリシジル−1,3−ビスアミノメチルシクロヘキサンなどのエポキシ基含有化合物;などが挙げられる。
変性剤(p2)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いることもできる。
変性剤(p2)の使用量は、特に限定されないが、重合反応に使用した重合開始剤のモル数に対する、共役ジエン系重合体鎖(p1)の活性末端と反応する変性剤(p2)中の、エポキシ基と、ヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基との合計のモル数の割合が、通常、0.1〜5であり、低転がり抵抗性および機械的強度がより優れる理由から、0.5〜3であることが好ましい。
共役ジエン系重合体鎖(p1)は、上述の変性剤(p2)を反応させる前に、本発明の効果を阻害しない範囲で、重合停止剤、変性剤(p2)以外の重合末端変性剤、およびカップリング剤などを重合系内に添加して、共役ジエン系重合体鎖(p1)の活性末端の一部を不活性化してもよい。
このとき用いられる重合末端変性剤およびカップリング剤としては、例えば、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドン、N−フェニル−2−ピロリドン、およびN−メチル−ε−カプロラクタムなどのN−置換環状アミド類;1,3−ジメチルエチレン尿素、および1,3−ジエチル−2−イミダゾリジノンなどのN−置換環状尿素類;4,4’−ビス(ジメチルアミノ)ベンゾフェノン、および4,4’−ビス(ジエチルアミノ)ベンゾフェノンなどのN−置換アミノケトン類;ジフェニルメタンジイソシアネ−ト、および2,4−トリレンジイソシアネートなどの芳香族イソシアネート類;N,N−ジメチルアミノプロピルメタクリルアミドなどのN,N−ジ置換アミノアルキルメタクリルアミド類;4−N,N−ジメチルアミノベンズアルデヒドなどのN−置換アミノアルデヒド類;ジシクロヘキシルカルボジイミドなどのN−置換カルボジイミド類;N−エチルエチリデンイミン、N−メチルベンジリデンイミンなどのシッフ塩基類;4−ビニルピリジンなどのピリジル基含有ビニル化合物;四塩化錫、四塩化ケイ素、ヘキサクロロジシラン、ビス(トリクロロシリル)メタン、1,2−ビス(トリクロロシリル)エタン、1,3−ビス(トリクロロシリル)プロパン、1,4−ビス(トリクロロシリル)ブタン、1,5−ビス(トリクロロシリル)ペンタン、および1,6−ビス(トリクロロシリル)ヘキサンなどのハロゲン化金属化合物;などが挙げられる。これらの中でも、カップリング効率がより優れる理由から、ハロゲン化金属化合物をカップリング剤として用いることが好ましく、1分子中に5以上のケイ素−ハロゲン原子結合を有するハロゲン化ケイ素化合物をカップリング剤として用いることがより好ましく、1,6−ビス(トリクロロシリル)ヘキサンを用いることが特に好ましい。
カップリング剤の使用量は、本発明の効果を阻害しない範囲であれば特に制限されず、例えば、1分子中に5以上のケイ素−ハロゲン原子結合を有するハロゲン化ケイ素化合物の場合、その使用量は、低転がり抵抗性および機械的強度がより優れる理由から、重合反応に使用した重合開始剤のモル数に対する、ハロゲン化ケイ素化合物のケイ素−ハロゲン原子結合のmol数の割合が、0.001〜0.25であることが好ましく、0.01〜0.2であることがより好ましい。
上記カップリング剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
共役ジエン系重合体鎖(a2)を含有する溶液に、変性剤(a1)およびカップリング剤などを添加する際には、反応を良好に制御する観点から、それらを不活性溶媒に溶解して重合系内に添加することが好ましい。その溶液濃度は、1〜50質量%の範囲とすることが好ましい。
<共役ジエン系ゴム(P)>
本発明のタイヤトレッド用ゴム組成物に含有される共役ジエン系ゴム(P)は、共役ジエン系重合体鎖(p1)と、変性剤(p2)とが反応することにより得られる共役ジエン系ゴムであり、具体的には、3以上の共役ジエン系重合体鎖(p1)が変性剤(p2)を介して結合してなる構造体を5質量%以上含有するものである。
共役ジエン系重合体鎖(p1)と変性剤(p2)との反応は、例えば、共役ジエン系重合体鎖(p1)を含有する溶液に、変性剤(p2)を添加することにより行なうことができる。変性剤(p2)およびカップリング剤などを添加する時期は、特に限定されないが、共役ジエン系重合体鎖(p1)における重合反応が完結しておらず共役ジエン系重合体鎖(p1)を含有する溶液がイソプレン等の単量体を含有している状態、より具体的には、共役ジエン系重合体鎖(p1)を含有する溶液が、好ましくは100ppm以上、より好ましくは300〜50,000ppmの単量体を含有している状態で、この溶液に変性剤(p2)およびカップリング剤などを添加することが望ましい。変性剤(p2)およびカップリング剤などの添加を行なうことにより、共役ジエン系重合体鎖(p1)と重合系中に含まれる不純物との副反応を抑制して、反応を良好に制御することが可能となる。
共役ジエン系ゴム(P)を得るにあたり、変性剤(p2)およびカップリング剤などを2種以上併用する場合において、それらを重合系に添加する順序は特に限定されない。変性剤(p2)と、1分子中に5以上のケイ素−ハロゲン原子結合を有するカップリング剤としてのハロゲン化ケイ素化合物とを併用する場合においても、その添加順序は、特に限定されないが、カップリング剤の添加を変性剤(p2)の添加より先に行なうことが好ましい。このような順序で添加を行なうことにより、カップリング剤を介して得られる高分岐共役ジエン系ゴムが得られやすくなり、その高分岐共役ジエン系ゴムを用いて得られるタイヤは、操縦安定性がより優れる。
変性剤(p2)およびカップリング剤などを反応させるときの条件としては、温度が、通常、0〜100℃、好ましくは30〜90℃の範囲であり、それぞれの反応時間が、通常、1〜120分、好ましくは2〜60分の範囲である。
共役ジエン系重合体鎖(p1)に変性剤(p2)を反応させた後は、メタノールなどのアルコール、または水を添加して活性末端を失活させることが好ましい。
共役ジエン系重合体鎖(p1)の活性末端を失活させた後、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤、クラム化剤、およびスケール防止剤などを重合溶液に添加した後、直接乾燥およびスチームストリッピングにより重合溶液から重合溶媒を分離して、共役ジエン系ゴム(P)を回収する。なお、重合溶液から重合溶媒を分離する前に、重合溶液に伸展油を混合し、共役ジエン系ゴム(P)を油展ゴムとして回収してもよい。
共役ジエン系ゴム(P)を油展ゴムとして回収する場合に用いる伸展油としては、例えば、パラフィン系、芳香族系およびナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸などが挙げられる。石油系軟化剤を用いる場合には、多環芳香族の含有量が3%未満であることが好ましい。この含有量は、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により測定される。伸展油を使用する場合、その使用量は、共役ジエン系ゴム(P)100質量部に対して、通常、5〜100質量部、好ましくは10〜60質量部、より好ましくは20〜50質量部である。
共役ジエン系ゴム(P)は、3以上の共役ジエン系重合体鎖(p1)が変性剤(p2)を介して結合された構造体(p)を5質量%以上含有してなり、より好ましくは5〜40質量%含有してなり、特に好ましくは10〜30質量%含有してなるものである。
最終的に得られた共役ジエン系ゴム(P)の全量に対する、3以上の共役ジエン系重合体鎖(p1)が変性剤(p2)を介して結合された構造体(p)の割合を「3分岐以上のカップリング率(質量%)」(以下、単にカップリング率ともいう)として表す。これは、ゲルパーミエーションクロマトグラフィ(ポリスチレン換算)により測定することができる。ゲルパーミエーションクロマトグラフィ測定により得られたチャートより、全溶出面積(s1)に対する、分子量の最も小さいピークが示すピークトップ分子量の2.8倍以上のピークトップ分子量を有するピーク部分の面積(s2)の比(s2/s1)を3分岐以上のカップリング率とする。なお、変性剤(p2)以外のカップリング剤などを変性前に添加した場合には、変性剤(p2)を添加する前にサンプルを採取し、GPCを測定しておくことで、カップリング剤のみと結合した共役ジエン系重合体鎖の割合の補正を行うことができる。
共役ジエン系ゴム(P)の重量平均分子量は、特に限定されないが、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、通常、1,000〜3,000,000、好ましくは100,000〜2,000,000、より好ましくは300,000〜1,500,000の範囲である。重量平均分子量が3,000,000以下であると、共役ジエン系ゴム(P)へのシリカ(Q)の配合が容易となり、タイヤトレッド用ゴム組成物の耐スコーチ性がより優れたものとなる。また、重量平均分子量が1,000以上であると、得られるタイヤの低転がり抵抗性がより優れたものとなる。
共役ジエン系ゴム(P)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、特に限定されないが、好ましくは1.1〜3.0、より好ましくは1.2〜2.5、特に好ましくは1.3〜2.2である。この分子量分布の値(Mw/Mn)が3.0以下であると、得られるタイヤの低転がり抵抗性がより優れたものとなる。
共役ジエン系ゴム(P)のムーニー粘度(ML1+4(100℃))も、特に限定されないが、通常、20〜100、好ましくは30〜90、より好ましくは40〜85の範囲である。なお、共役ジエン系ゴム(P)を油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。
<ジエン系ゴム>
上述のとおり、本発明のタイヤトレッド用ゴム組成物に含有されるゴム成分は、共役ジエン系ゴム(P)以外のジエン系ゴムを含有してもよい。
上記ジエン系ゴムとしては特に制限されないが、その具体例としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、芳香族ビニル−共役ジエン共重合体ゴム、アクリロニトリル−ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br−IIR、Cl−IIR)、クロロプレンゴム(CR)などが挙げられる。上記ジエン系ゴムは、1種のジエン系ゴムを単独で用いても、2種以上のジエン系ゴムを併用してもよい。
〔シリカ(Q)〕
本発明のタイヤトレッド用ゴム組成物に含有されるシリカ(Q)は特に限定されず、タイヤ等の用途でゴム組成物に配合されている従来公知の任意のシリカを用いることができる。
上記シリカ(Q)としては、例えば、湿式シリカ、乾式シリカ、ヒュームドシリカ、珪藻土などが挙げられる。上記シリカ(Q)は、1種のシリカを単独で用いても、2種以上のシリカを併用してもよい。
上記シリカ(Q)は、タイヤにしたときのウェット性能および耐摩耗性により優れる理由から、セチルトリメチルアンモニウムブロマイド(CTAB)吸着比表面積が100〜300m2/gであることが好ましく、140〜260m2/gであることがより好ましい。
ここで、CTAB吸着比表面積は、シリカがシランカップリング剤との吸着に利用できる表面積の代用特性であり、シリカ表面へのCTAB吸着量をJIS K6217−3:2001「第3部:比表面積の求め方−CTAB吸着法」にしたがって測定した値である。
本発明のタイヤトレッド用ゴム組成物において、上記シリカ(Q)の含有量は、上記ゴム成分100質量部に対して、60〜200質量部であり、60〜150質量部であることが好ましく、ウェット性能、低転がり抵抗性および混合加工性がより優れる理由から、65〜145質量部であることがより好ましく、70〜140質量部であることがさらに好ましい。
〔シランカップリング剤(R)〕
本発明のタイヤトレッド用ゴム組成物に用いられるシランカップリング剤(R)は、下記式(1)の平均組成式で表されるポリシロキサン(特定ポリシロキサン)である。
(A)a(B)b(C)c(D)d(R1eSiO(4-2a-b-c-d-e)/2 (1)
上記式(1)中、Aはスルフィド基を含有する2価の有機基(以下、スルフィド基含有有機基ともいう)を表す。なかでも、下記式(2)で表される基であることが好ましい。
−(CH2n−Sx−(CH2n (2)
上記式(2)中、nは1〜10の整数を表し、なかでも、2〜4の整数であることが好ましい。
上記式(2)中、xは1〜6の整数を表し、なかでも、2〜4の整数であることが好ましい。
上記式(2)中、*は、結合位置を示す。
上記式(2)で表される基の具体例としては、例えば、−CH2−S2−CH2−C24−S2−C24−C36−S2−C36−C48−S2−C48−CH2−S4−CH2−C24−S4−C24−C36−S4−C36−C48−S4−C48などが挙げられる。
上記式(1)中、Bは炭素数5〜10の1価の炭化水素基を表し、その具体例としては、例えば、ヘキシル基、オクチル基、デシル基などが挙げられる。
上記式(1)中、Cは加水分解性基を表し、その具体例としては、例えば、アルコキシ基、フェノキシ基、カルボキシル基、アルケニルオキシ基などが挙げられる。なかでも、下記式(3)で表される基であることが好ましい。
−OR2 (3)
上記式(3)中、R2は炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数6〜10のアラルキル基(アリールアルキル基)または炭素数2〜10のアルケニル基を表し、なかでも、炭素数1〜5のアルキル基であることが好ましい。上記炭素数1〜20のアルキル基の具体例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基などが挙げられる。上記炭素数6〜10のアリール基の具体例としては、例えば、フェニル基、トリル基などが挙げられる。上記炭素数6〜10のアラルキル基の具体例としては、例えば、ベンジル基、フェニルエチル基などが挙げられる。上記炭素数2〜10のアルケニル基の具体例としては、例えば、ビニル基、プロぺニル基、ペンテニル基などが挙げられる。
上記式(3)中、*は、結合位置を示す。
上記式(1)中、Dはメルカプト基を含有する有機基を表す。なかでも、下記式(4)で表される基であることが好ましい。
−(CH2m−SH (4)
上記式(4)中、mは1〜10の整数を表し、なかでも、1〜5の整数であることが好ましい。
上記式(4)中、*は、結合位置を示す。
上記式(4)で表される基の具体例としては、−CH2SH、−C24SH、−C36SH、−C48SH、−C510SH、−C612SH、−C714SH、−C816SH、−C918SH、−C1020SHが挙げられる。
上記式(1)中、R1は炭素数1〜4の1価の炭化水素基を表す。
上記式(1)中、a〜eは、0≦a<1、0≦b<1、0<c<3、0<d<1、0≦e<2、0<2a+b+c+d+e<4の関係式を満たす(ただし、aとbのいずれか一方は0ではない)。
上記特定ポリシロキサンは、耐スコーチ性がより優れる理由から、aが0よりも大きい(0<a)ことが好ましい。すなわち、スルフィド基含有有機基を有することが好ましい。なかでも、耐スコーチ性がさらに優れる理由から、0<a≦0.50であることが好ましい。
上記式(1)中、bは、ウェット特性、低転がり抵抗性および耐スコーチ性がより優れる理由から、0<bであることが好ましく、0.10≦b≦0.89であることが好ましい。
上記式(1)中、cは、ウェット特性、低転がり抵抗性および耐スコーチ性がより優れる理由から、1.2≦c≦2.0であることが好ましい。
上記式(1)中、dは、ウェット特性、低転がり抵抗性および耐スコーチ性がより優れる理由から、0.1≦d≦0.8であることが好ましい。
上記特定ポリシロキサンは、シリカの分散性が良好であり、また、耐スコーチ性がより優れる理由から、上記式(1)中、Aが上記式(2)で表される基であり、上記式(1)中のCが上記式(3)で表される基であり、上記式(1)中のDが上記式(4)で表される基であるポリシロキサンであることが好ましい。
上記特定ポリシロキサンの分子量は、耐スコーチ性を確保しながらシリカの分散性に優れるという観点から、500〜2300であるのが好ましく、600〜1500であるのがより好ましい。上記特定ポリシロキサンの分子量は、トルエンを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によりポリスチレン換算で求められた重量平均分子量である。
上記特定ポリシロキサンの酢酸/ヨウ化カリウム/ヨウ素酸カリウム添加−チオ硫酸ナトリウム溶液滴定法によるメルカプト当量は、加硫反応性に優れるという観点から、550〜1900g/molであるのが好ましく、600〜1500g/molであるのがより好ましい。
なお、上記特定ポリシロキサンの骨格には、ケイ素原子以外の金属(例えば、Sn、Ti、Al)は存在しない。
上記特定ポリシロキサンを製造する方法は特に限定されないが、第1の好適な態様としては、下記式(6)で表される有機ケイ素化合物と、下記式(7)で表される有機ケイ素化合物とを加水分解縮合する方法が挙げられる。また、第2の好適な態様としては、下記式(5)で表される有機ケイ素化合物と、下記式(6)で表される有機ケイ素化合物と、下記式(7)で表される有機ケイ素化合物とを加水分解縮合する方法が挙げられる。また、第3の好適な態様としては、下記式(5)で表される有機ケイ素化合物と、下記式(6)で表される有機ケイ素化合物と、下記式(7)で表される有機ケイ素化合物と、下記式(8)で表される有機ケイ素化合物とを加水分解縮合する方法が挙げられる。
なかでも、耐スコーチ性がより優れる理由から、上記第2の好適な態様であることが好ましい。
上記式(5)中、R51は炭素数1〜20のアルキル基、炭素数6〜10のアリール基または炭素数2〜10のアルケニル基を表し、なかでも、炭素数1〜5のアルキル基であることが好ましい。上記炭素数1〜20のアルキル基の具体例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基などが挙げられる。上記炭素数6〜10のアリール基の具体例としては、例えば、フェニル基、トリル基、ナフチル基などが挙げられる。炭素数2〜10のアルケニル基の具体例としては、例えば、ビニル基、プロペニル基、ペンテニル基などが挙げられる。
上記式(5)中、R52は炭素数1〜10のアルキル基または炭素数6〜10のアリール基を表す。上記炭素数1〜10のアルキル基の具体例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基などが挙げられる。上記炭素数6〜10のアリール基の具体例は上記R51と同じである。
上記式(5)中、nの定義および好適な態様は、上記nと同じである。
上記式(5)中、xの定義および好適な態様は、上記xと同じである。
上記式(5)中、yは1〜3の整数を表す。
上記式(5)で表される有機ケイ素化合物の具体例としては、例えば、ビス(トリメトキシシリルプロピル)テトラスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィド、ビス(トリメトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)ジスルフィドなどが挙げられる。
上記式(6)中、R61の定義、具体例および好適な態様は、上記R51と同じである。
上記式(6)中、R62の定義、具体例および好適な態様は、上記R52と同じである。
上記式(6)中、zの定義は、上記yと同じである。
上記式(6)中、pは5〜10の整数を表す。
上記式(6)で表される有機ケイ素化合物の具体例としては、例えば、ペンチルトリメトキシシラン、ペンチルメチルジメトキシシラン、ペンチルトリエトキシシラン、ペンチルメチルジエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルメチルジメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルメチルジエトキシシラン、オクチルトリメトキシシラン、オクチルメチルジメトキシシラン、オクチルトリエトキシシラン、オクチルメチルジエトキシシラン、デシルトリメトキシシラン、デシルメチルジメトキシシラン、デシルトリエトキシシラン、デシルメチルジエトキシシランなどが挙げられる。
上記式(7)中、R71の定義、具体例および好適な態様は、上記R51と同じである。
上記式(7)中、R72の定義、具体例および好適な態様は、上記R52と同じである。
上記式(7)中、mの定義および好適な態様は、上記mと同じである。
上記式(7)中、wの定義は、上記yと同じである。
上記式(7)で表される有機ケイ素化合物の具体例としては、例えば、α−メルカプトメチルトリメトキシシラン、α−メルカプトメチルメチルジメトキシシラン、α−メルカプトメチルトリエトキシシラン、α−メルカプトメチルメチルジエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシランなどが挙げられる。
上記式(8)中、R81の定義、具体例および好適な態様は、上記R51と同じである。
上記式(8)中、R82の定義、具体例および好適な態様は、上記R52と同じである。
上記式(8)中、vの定義は、上記yと同じである。
上記式(8)中、qは1〜4の整数を表す。
上記式(8)で表される有機ケイ素化合物の具体例としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、メチルエチルジエトキシシラン、プロピルトリメトキシシラン、プロピルメチルジメトキシシラン、プロピルメチルジエトキシシランなどが挙げられる。
上記特定ポリシロキサンを製造する際には必要に応じて溶媒を用いてもよい。溶媒としては特に限定されないが、具体的にはペンタン、ヘキサン、ヘプタン、デカンなどの脂肪族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系溶媒、ホルムアミド、ジメチルホルムアミド、N−メチルピロリドンなどのアミド系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、メタノール、エタノール、プロパノールなどのアルコール系溶媒などが挙げられる。
また、上記特定ポリシロキサンを製造する際には必要に応じて触媒を用いてもよい。触媒としては特に限定されないが、具体的には塩酸、酢酸などの酸性触媒、テトラブチルオルトチタネート、アンモニウムフルオリドなどのルイス酸触媒、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、酢酸ナトリウム、酢酸カリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸カルシウム、ナトリウムメトキシド、ナトリウムエトキシドなどのアルカリ金属塩、トリエチルアミン、トリブチルアミン、ピリジン、4−ジメチルアミノピリジンなどのアミン化合物などが挙げられる。
上記触媒は、金属としてSn、TiまたはAlを含有する有機金属化合物でないことが好ましい。このような有機金属化合物を使用した場合、ポリシロキサン骨格に金属が導入されて、上記特定ポリシロキサン(骨格には、ケイ素原子以外の金属(例えば、Sn、Ti、Al)は存在しない)が得られないことがある。
上記特定ポリシロキサンを製造する際に使用される有機ケイ素化合物として、メルカプト基を有するシランカップリング剤[例えば、式(7)で表される有機ケイ素化合物]及びスルフィド基又はメルカプト基を有するシランカップリング剤以外のシランカップリング剤[例えば、式(6)や式(8)で表される有機ケイ素化合物]を併用する際、メルカプト基を有するシランカップリング剤とスルフィド基又はメルカプト基を有するシランカップリング剤以外のシランカップリング剤との混合比(モル比)(メルカプト基を有するシランカップリング剤/スルフィド基又はメルカプト基を有するシランカップリング剤以外のシランカップリング剤)は、ウェット性能、低転がり抵抗性、加工性により優れるという観点から、1.1/8.9〜6.7/3.3であるのが好ましく、1.4/8.6〜5.0/5.0であるのがより好ましい。
上記特定ポリシロキサンを製造する際に使用される有機ケイ素化合物として、メルカプト基を有するシランカップリング剤[例えば、式(7)で表される有機ケイ素化合物]及びスルフィド基を有するシランカップリング剤[例えば、式(5)で表される有機ケイ素化合物]を併用する際、メルカプト基を有するシランカップリング剤とスルフィド基を有するシランカップリング剤との混合比(モル比)(メルカプト基を有するシランカップリング剤/スルフィド基を有するシランカップリング剤)は、ウェット性能、低転がり抵抗性、加工性により優れるという観点から、2.0/8.0〜8.9/1.1であるのが好ましく、2.5/7.5〜8.0/2.0であるのがより好ましい。
上記特定ポリシロキサンを製造する際に使用される有機ケイ素化合物として、メルカプト基を有するシランカップリング剤[例えば、式(7)で表される有機ケイ素化合物]、スルフィド基を有するシランカップリング剤[例えば、式(5)および/またはで表される有機ケイ素化合物]、及びスルフィド基又はメルカプト基を有するシランカップリング剤以外のシランカップリング剤[例えば、式(6)や式(8)で表される有機ケイ素化合物]を併用する際、メルカプト基を有するシランカップリング剤の量は、前3者の合計量(モル)中の10.0〜73.0%であるのが好ましい。スルフィド基を有するシランカップリング剤の量は、前3者の合計量中の5.0〜67.0%であるのが好ましい。スルフィド基又はメルカプト基を有するシランカップリング剤以外のシランカップリング剤の量は、前3者の合計量中の16.0〜85.0%であるのが好ましい。
本発明のタイヤトレッド用ゴム組成物において、上記シランカップリング剤(R)の含有量は、上記シリカ(Q)の含有量に対して1.0〜20質量%であり、ウェット性能、低転がり抵抗性および耐スコーチ性がより優れる理由から、4〜18質量%であることが好ましく、5〜14質量%であることがより好ましく、6〜12質量%であることがさらに好ましい。
〔任意成分〕
本発明のタイヤトレッド用ゴム組成物には、必要に応じて、その効果や目的を損なわない範囲でさらに添加剤を含有することができる。
上記添加剤としては、例えば、本発明のタイヤトレッド用ゴム組成物に含有されるシランカップリング剤(R)以外のシランカップリング剤、シリカ(Q)以外の充填剤(例えば、カーボンブラック)、酸化亜鉛、ステアリン酸、老化防止剤、加工助剤、アロマオイル、プロセスオイル、液状ポリマー、テルペン系樹脂、熱硬化性樹脂、加硫剤、加硫促進剤などのタイヤトレッド用ゴム組成物に一般的に使用される各種添加剤が挙げられる。
本発明のタイヤトレッド用ゴム組成物は、ウェット性能、低転がり抵抗性および耐スコーチ性がより優れる理由から、テルペン系樹脂を含有するのが好ましい。上記テルペン系樹脂は芳香族変性テルペン樹脂(特に、軟化点が60〜150℃のもの)であることが好ましい。上記テルペン樹脂の含有量は、上記ゴム成分100質量部に対して、1〜30質量部であることが好ましい。
〔タイヤトレッド用ゴム組成物の製造方法〕
本発明のタイヤトレッド用ゴム組成物の製造方法は特に限定されず、その具体例としては、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロールなど)を用いて、混練する方法などが挙げられる。
また、本発明のタイヤトレッド用ゴム組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
[空気入りタイヤ]
本発明の空気入りタイヤは、上述した本発明のタイヤトレッド用ゴム組成物をタイヤトレッドに使用した空気入りタイヤである。
図1に、本発明の空気入りタイヤの実施態様の一例を表すタイヤの部分断面概略図を示すが、本発明の空気入りタイヤは図1に示す態様に限定されるものではない。
図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3はタイヤトレッド部を表す。
また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
また、タイヤトレッド3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
本発明の空気入りタイヤは、本発明のタイヤトレッド用ゴム組成物を空気入りタイヤのトレッドに用いる以外は特に制限はなく、例えば従来公知の方法に従って製造することができる。また、タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。
以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<共役ジエン系ゴム1の製造>
窒素置換された100mlアンプル瓶に、シクロヘキサン28gおよびテトラメチルエチレンジアミン8.6mmolを添加し、さらに、n−ブチルリチウム6.1mmolを添加した。次いで、イソプレン8.0gをゆっくりと添加し、60℃のアンプル瓶内で120分反応させることにより、イソプレンブロック(開始剤1とする)を得た。この開始剤1について、重量平均分子量、分子量分布、およびイソプレン単位由来のビニル結合含有量を測定した。測定結果を第1表に示す。
次に、撹拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、1,3−ブタジエン357.7gおよびスチレン132.3gを仕込んだ後、開始剤1を全量加え、40℃で重合を開始した。重合を開始してから10分経過後、1,3−ブタジエン195.3g、スチレン14.7gを60分間かけて連続的に添加した。重合反応中の最高温度は60℃であった。連続添加終了後、さらに20分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、次いで、1,6−ビス(トリクロロシリル)ヘキサン0.08mmolを20質量%濃度のシクロヘキサン溶液の状態で添加し、10分間反応させた。さらに、下記式(9)で表されるポリオルガノシロキサンA0.027mmolを20質量%濃度のキシレン溶液の状態で添加し、30分間反応させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴム1を含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、100質量部の共役ジエン系ゴム1に対して0.15質量部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴム1を得た。
上記式(9)中、X1、X4、R1〜R3およびR5〜R8はメチル基である。上記式(9)中、mは80、kは120である。上記式(9)中、X2は下記式(10)で表される基である(ここで、*は結合位置を表す)。
共役ジエン系ゴム1について、重量平均分子量、分子量分布、カップリング率、イソプレンブロック以外の部分におけるスチレン単位含有量、イソプレンブロック以外の部分におけるビニル結合含有量、および、ムーニー粘度を測定した。測定結果を第2表に示す。なお、測定方法は以下のとおりである。
(重量平均分子量、分子量分布およびカップリング率)
重量平均分子量、分子量分布およびカップリング率(共役ジエン系ゴム(P)に対する構造体(p)の割合(質量%))については、ゲルパーミエーションクロマトグラフィにより、ポリスチレン換算の分子量に基づくチャートを得て、そのチャートに基づいて求めた。なお、ゲルパーミエーションクロマトグラフィの具体的な測定条件は、以下のとおりである。
・測定器:HLC−8020(東ソ一社製)
・カラム:GMH−HR−H(東ソ一社製)2本を直列に連結した
・検出器:示差屈折計RI−8020(東ソ一社製)
・溶離夜:テトラヒドロフラン
・カラム温度:40℃
ここで、カップリング率は、全溶出面積(s1)に対する、分子量の最も小さいピークが示すピークトップ分子量の2.8倍以上のピークトップ分子量を有するピーク部分の面積(s2)の比(s2/s1)である。
(スチレン単位含有量およびビニル結合含有量)
スチレン単位含有量およびビニル結合含有量については、1H−NMRにより測定した。
(ムーニー粘度)
ムーニー粘度(ML1+4(100℃))については、JIS K6300−1:2001に準じて測定した。
<共役ジエン系ゴム2の製造>
窒素置換された100mlアンプル瓶に、シクロヘキサン28gおよびテトラメチルエチレンジアミン7.5mmolを添加し、さらに、n−ブチルリチウム5.4mmolを添加した。次いで、イソプレン7.0gをゆっくりと添加し、70℃のアンプル瓶内で120分反応させることにより、イソプレンブロック(開始剤2とする)を得た。この開始剤2について、重量平均分子量、分子量分布、およびイソプレン単位由来のビニル結合含有量を測定した。測定結果を第1表に示す。
次に、撹拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、1,3−ブタジエン357.7gおよびスチレン132.3gを仕込んだ後、さらに開始剤2を全量加え、40℃で重合を開始した。重合を開始してから10分経過後、1,3−ブタジエン195.3g、スチレン14.7gを60分間かけて連続的に添加した。重合反応中の最高温度は60℃であった。連続添加終了後、さらに20分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、次いで、上記式(9)で表されるポリオルガノシロキサンA0.023mmolを20質量%濃度のキシレン溶液の状態で添加し、30分間反応させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴム2を含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、100質量部の共役ジエン系ゴム2に対して0.15質量部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴム2を得た。
共役ジエン系ゴム2について、重量平均分子量、分子量分布、カップリング率、イソプレンブロック以外の部分におけるスチレン単位含有量、イソプレンブロック以外の部分におけるビニル結合含有量およびムーニー粘度を測定した。測定結果を第2表に示す。なお、測定方法や上述のとおりである。
<共役ジエン系ゴム3の製造>
窒素置換された100mlアンプル瓶に、シクロヘキサン50gおよびテトラメチルエチレンジアミン0.9mmolを添加し、さらに、n−ブチルリチウム5.4mmolを添加した。次いで、イソプレン9.0gをゆっくりと添加し、70℃のアンプル瓶内で120分反応させることにより、イソプレンブロック(開始剤3とする)を得た。この開始剤3について、重量平均分子量、分子量分布、およびイソプレン単位由来のビニル結合含有量を測定した。測定結果を第1表に示す。
次に、撹拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、1,3−ブタジエン357.7gおよびスチレン132.3gを仕込んだ後、さらに開始剤3を全量加え、40℃で重合を開始した。重合を開始してから10分経過後、1,3−ブタジエン195.3gおよびスチレン14.7gを60分間かけて連続的に添加した。重合反応中の最高温度は60℃であった。連続添加終了後、さらに20分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、次いで、上記式(9)で表されるポリオルガノシロキサンA0.023mmolを20質量%濃度のキシレン溶液の状態で添加し、30分間反応させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴム3を含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、100質量部の共役ジエン系ゴム3に対して0.15質量部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴム3を得た。
共役ジエン系ゴム3について、重量平均分子量、分子量分布、カップリング率、イソプレンブロック以外の部分におけるスチレン単位含有量、イソプレンブロック以外の部分におけるビニル結合含有量およびムーニー粘度を測定した。測定結果を第2表に示す。なお、測定方法や上述のとおりである。
<共役ジエン系ゴム4の製造>
窒素置換された100mlアンプル瓶に、シクロヘキサン50gおよびテトラメチルエチレンジアミン7.0mmolを添加し、さらに、n−ブチルリチウム5.1mmolを添加した。次いで、イソプレン10.2gをゆっくりと添加し、60℃のアンプル瓶内で120分反応させることにより、イソプレンブロック(開始剤4とする)を得た。この開始剤4について、重量平均分子量、分子量分布、およびイソプレン単位由来のビニル結合含有量を測定した。測定結果を第1表に示す。
次に、撹拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、1,3−ブタジエン357.7gおよびスチレン132.3gを仕込んだ後、さらに開始剤4を全量加え、40℃で重合を開始した。重合を開始してから10分経過後、1,3−ブタジエン195.3gおよびスチレン14.7gを60分間かけて連続的に添加した。重合反応中の最高温度は60℃であった。連続添加終了後、さらに20分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、次いで、N,N−ビス(トリメチルシリル)−3−アミノプロピルトリエトキシシラン0.55mmolを20質量%濃度のキシレン溶液の状態で添加し、10分間反応させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴム4を含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、100質量部の共役ジエン系ゴム4に対して0.15質量部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴム4を得た。
共役ジエン系ゴム4について、重量平均分子量、分子量分布、カップリング率、イソプレンブロック以外の部分におけるスチレン単位含有量、イソプレンブロック以外の部分におけるビニル結合含有量およびムーニー粘度を測定した。測定結果を第2表に示す。なお、測定方法や上述のとおりである。
<ポリシロキサン1の製造方法>
撹拌機、還流冷却器、滴下ロート及び温度計を備えた2Lセパラブルフラスコにγ―メルカプトプロピルトリエトキシシラン(信越化学工業製 KBE−803)190.8g(0.8mol)、オクチルトリエトキシシラン(信越化学工業製 KBE−3083)442.4g(1.6mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸32.4g(1.8mol)とエタノール75.6gの混合溶液を滴下した。その後、80℃にて2時間攪拌した。その後、濾過、5%KOH/EtOH溶液14.6gを滴下し80℃で2時間攪拌した。その後、減圧濃縮、濾過することで無色透明液体のポリシロキサン412.3gを得た。GPCにより測定した結果、平均分子量は850であり、平均重合度は4.0(設定重合度4.0)であった。また、酢酸/ヨウ化カリウム/ヨウ素酸カリウム添加−チオ硫酸ナトリウム溶液滴定法によりメルカプト当量を測定した結果、650g/molであり、設定通りのメルカプト基含有量であることが確認された。以上より、下記平均組成式で示される。
(−C8170.667(−OC251.50(−C36−SH)0.333SiO0.75
得られたポリシロキサンをポリシロキサン1とする。
<ポリシロキサン2の製造方法>
撹拌機、還流冷却器、滴下ロート及び温度計を備えた2Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業製 KBE−846)107.8g(0.2mol)、γ―メルカプトプロピルトリエトキシシラン(信越化学工業製 KBE−803)190.8g(0.8mol)、オクチルトリエトキシシラン(信越化学工業製 KBE−3083)442.4g(1.6mol)、エタノール190.0gを納めた後、室温にて0.5N塩酸37.8g(2.1mol)とエタノール75.6gの混合溶液を滴下した。その後、80℃にて2時間攪拌した。その後、濾過、5%KOH/EtOH溶液17.0gを滴下し80℃で2時間攪拌した。その後、減圧濃縮、濾過することで褐色透明液体のポリシロキサン480.1gを得た。GPCにより測定した結果、平均分子量は840であり、平均重合度は4.0(設定重合度4.0)であった。また、酢酸/ヨウ化カリウム/ヨウ素酸カリウム添加−チオ硫酸ナトリウム溶液滴定法によりメルカプト当量を測定した結果、730g/molであり、設定通りのメルカプト基含有量であることが確認された。以上より、下記平均組成式で示される。
(−C36−S4−C36−)0.071(−C8170.571(−OC251.50(−C36SH)0.286SiO0.75
得られたポリシロキサンをポリシロキサン2とする。
<ポリシロキサン3の製造方法>
撹拌機、還流冷却器、滴下ロート及び温度計を備えた2Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業製 KBE−846)107.8g(0.2mol)、γ―メルカプトプロピルトリエトキシシラン(信越化学工業製 KBE−803)190.8g(0.8mol)、オクチルトリエトキシシラン(信越化学工業製 KBE−3083)442.4g(1.6mol)、エタノール190.0gを納めた後、室温にて0.5N塩酸42.0g(2.33mol)とエタノール75.6gの混合溶液を滴下した。その後、80℃にて2時間攪拌した。その後、濾過、5%KOH/EtOH溶液18.9gを滴下し80℃で2時間攪拌した。その後、減圧濃縮、濾過することで褐色透明液体のポリシロキサン560.9gを得た。GPCにより測定した結果、平均分子量は1220であり、平均重合度は6.0(設定重合度6.0)であった。また、酢酸/ヨウ化カリウム/ヨウ素酸カリウム添加−チオ硫酸ナトリウム溶液滴定法によりメルカプト当量を測定した結果、710g/molであり、設定通りのメルカプト基含有量であることが確認された。以上より、下記平均組成式で示される。
(−C36−S4−C36−)0.071(−C8170.571(−OC251.334(−C36SH)0.286SiO0.833
得られたポリシロキサンをポリシロキサン3とする。
(比較ポリシロキサン1の製造方法)
3−メルカプトプロピルトリメトキシシラン(0.1mol)を水および濃塩酸水溶液で加水分解し、その後、エトキシメチルポリシロキサン(100g)を添加し、縮合することでポリシロキサンを得た。得られたポリシロキサンを比較ポリシロキサン1とする。
上記比較ポリシロキサン1は、3−メルカプトプロピルトリメトキシシランのメトキシ基とエトキシメチルポリシロキサンのエトキシ基とが縮合した構造を有する。すなわち、上記比較ポリシロキサン1が有する1価の炭化水素基はメチル基のみである。また、上記比較ポリシロキサン1はスルフィド基を含有する2価の有機基を有さない。
(比較ポリシロキサン2の製造方法)
ビス(3−(トリエトキシシリル)プロピル)テトラスルフィド(0.1mol)を水および濃塩酸水溶液で加水分解し、その後、エトキシメチルポリシロキサン(100g)を添加し、縮合することでポリシロキサンを得た。得られたポリシロキサンを比較ポリシロキサン2とする。
上記比較ポリシロキサン2は、ビス(3−(トリエトキシシリル)プロピル)テトラスルフィドのエトキシ基とエトキシメチルポリシロキサンのエトキシ基とが縮合した構造を有する。すなわち、上記比較ポリシロキサン2が有する1価の炭化水素基はメチル基のみである。また、上記比較ポリシロキサン2はメルカプト基を含有する有機基を有さない。
<実施例1〜9、比較例1〜11>
下記第3表に示す成分を、下記第3表に示す割合(質量部)で配合した。
具体的には、まず、下記第3表に示す成分のうち硫黄および加硫促進剤を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて150℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得た。さらに、上記バンバリーミキサーを用いて、得られたマスターバッチに硫黄および加硫促進剤を混合し、タイヤトレッド用ゴム組成物を得た。
<tanδ(0℃)>(ウェット性能の指標)
調製したタイヤトレッド用ゴム組成物(未加硫)を金型(15cm×15cm×0.2cm)中で、160℃で20分間プレス加硫して加硫ゴムシートを作製した。
作製した加硫ゴムシートについて、JIS K6394:2007に準じて、粘弾性スペクトロメーター(岩本製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度0℃の条件で、tanδ(0℃)を測定した。
結果を第3表に示す。結果は比較例1のtanδ(0℃)を100とする指数で表した。指数が大きいほどtanδ(0℃)が大きく、タイヤにしたときにウェット性能に優れる。
<tanδ(60℃)>(低転がり抵抗性の指標)
調製したタイヤトレッド用ゴム組成物(未加硫)を金型(15cm×15cm×0.2cm)中で、160℃で20分間プレス加硫して加硫ゴムシートを作製した。
作製した加硫ゴムシートについて、JIS K6394:2007に準じて、粘弾性スペクトロメーター(岩本製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度60℃の条件で、tanδ(60℃)を測定した。
結果を第3表に示す。結果は比較例1のtanδ(60℃)を100とする指数で表した。指数が小さいほどtanδ(60℃)が小さく、タイヤにしたときに低転がり抵抗性に優れる。
<ムーニー粘度>
調製したタイヤトレッド用ゴム組成物(未加硫)について、JIS K6300−1:2001に準じて、L形ロータを使用し、予熱時間1分、ロータの回転時間4分、試験温度100℃の条件で、ムーニー粘度を測定した。
結果を第3表に示す。結果は比較例1の値を100とする指数で表した。
<ムーニースコーチ>(耐スコーチ性の指標)
調製したタイヤトレッド用ゴム組成物(未加硫)について、JIS K6300−1:2001に準じて、L形ロータを使用し、試験温度125℃の条件で、スコーチタイムを測定した。
結果を第3表に示す。結果は比較例1のスコーチタイムを100とする指数で表した。指数が大きいほどスコーチタイムが長く、耐スコーチ性(加工性)が優れることを示す。
上記第3表に示されている各成分の詳細は以下のとおりである。
・共役ジエン系ゴム1:上述のとおり製造された共役ジエン系ゴム1
・共役ジエン系ゴム2:上述のとおり製造された共役ジエン系ゴム2
・共役ジエン系ゴム3:上述のとおり製造された共役ジエン系ゴム3
・共役ジエン系ゴム4:上述のとおり製造された共役ジエン系ゴム4
・比較共役ジエン系ゴム1:NS616(日本ゼオン社製)(シリカ用末端変性SSBR)
・ブタジエンゴム:Nipo l1220(日本ゼオン社製)
・シリカ(実施例9以外):Zeosil 1165MP(CTAB吸着比表面積=160m2/g、ローディア社製)
・シリカ(実施例9):Zeosil 1115MP(CTAB吸着比表面積=110m2/g、Solvey社製)
・カーボンブラック:ショウブラックN339(CTAB吸着比表面積=90m2/g、キャボットジャパン社製)
・比較シランカップリング剤1:VP Si363(エボニックデグッサ社製)(下記式(11)で表される化合物。ここで、R111:−OC25、R112:−O(C24O)5−C1327、R114:−(CH23−、l=1、m=2、n=0。)
・比較シランカップリング剤2:上述のとおり合成された比較ポリシロキサン1
・比較シランカップリング剤3:上述のとおり合成された比較ポリシロキサン2
・シランカップリング剤1:上述のとおり合成されたポリシロキサン1
・シランカップリング剤2:上述のとおり合成されたポリシロキサン2
・ステアリン酸:ステアリン酸YR(NOFコーポレーション社製)
・酸化華:酸化亜鉛3種(正同化学工業社製)
・老化防止剤:Santoflex6PPD(Solutia Europe社製)
・プロセスオイル:エキストラクト4号S(昭和シェル石油社製)
・加硫促進剤1:ノクセラーCZ−G(大内新興化学工業社製)
・加硫促進剤2:Perkacit DPG(Flexsys社製)
・硫黄:油処理イオウ(鶴見化学工業社製)
第3表から分かるように、共役ジエン系ゴム(P)とシランカップリング剤(R)とを併用する本願実施例1〜9は、いずれも優れたウェット性能および低転がり抵抗性を示した。
実施例1と4との対比から、シランカップリング剤(R)がスルフィド基含有有機基を有するポリシロキサンである実施例4の方が優れた耐スコーチ性を示した。
実施例1〜3の対比から、シランカップリング剤(R)の含有量がシリカ(Q)の含有量に対して5〜14質量%である実施例1は、ウェット性能、低転がり抵抗性および耐スコーチ性のバランスの点で最も優れていた。
共役ジエン系ゴム(P)を含有するがシランカップリング剤(R)を含有しない(シランカップリング剤(R)以外のメルカプト系シランカップリング剤を含有する)比較例1および2と比較して、共役ジエン系ゴム(P)とシランカップリング剤(R)とを併用する本願実施例1〜9は、優れた耐スコーチ性を示した。
また、シランカップリング剤(R)を含有するが共役ジエン系ゴム(P)を含有しない比較例4および5と比較して、共役ジエン系ゴム(P)とシランカップリング剤(R)とを併用する本願実施例1〜9は、ウェット性能、低転がり抵抗性および耐スコーチ性のいずれの点においても優れた特性を示した。
共役ジエン系ゴム(P)とシランカップリング剤(R)とを併用するが、シランカップリング剤(R)の含有量がシリカ(Q)の含有量に対して1.0質量%に満たない比較例6は、耐スコーチ性に優れるものの、ウェット性能および低転がり抵抗性の点で本願実施例1〜9より劣っていた。
共役ジエン系ゴム(P)とシランカップリング剤(R)とを併用するが、シランカップリング剤(R)の含有量がシリカ(Q)の含有量に対して20質量%を超える比較例7は、ウェット性能および低転がり抵抗性に優れるものの、耐スコーチ性の点で本願実施例1〜9より劣っていた。
シリカ(Q)の含有量がゴム成分100質量部に対して60質量部に満たない比較例8はウェット性能および低転がり抵抗性の点で本願実施例1〜9より劣っていた。
また、共役ジエン系ゴム(P)を含有するがシランカップリング剤(R)を含有しない(シランカップリング剤(R)以外のポリシロキサンを含有する)比較例11および12は、ウェット性能が本願実施例1〜9より劣っていた。
共役ジエン系ゴム(P)とシランカップリング剤(R)とを併用するが、ゴム成分中の共役ジエン系ゴム(P)の含有量が20質量%未満である比較例10と比較して、ゴム成分中の共役ジエン系ゴム(P)の含有量が20質量以上である本願実施例1〜9は、優れた低転がり抵抗性を示した。
1 ビード部
2 サイドウォール部
3 タイヤトレッド部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
8 リムクッション

Claims (7)

  1. 共役ジエン系ゴム(P)を20質量%以上含むゴム成分と、シリカ(Q)と、シランカップリング剤(R)とを含有し、
    前記共役ジエン系ゴム(P)が、共役ジエン系重合体鎖(p1)と、変性剤(p2)との反応により得られる、3以上の前記共役ジエン系重合体鎖(p1)が前記変性剤(p2)を介して結合してなる構造体(p)を5質量%以上含み、
    前記共役ジエン系重合体鎖(p1)が、一方の端にイソプレン単位を70質量%以上含有するイソプレンブロックを有し、他方の端に活性末端を有する、共役ジエン系重合体鎖であり、
    前記変性剤(p2)が、エポキシ基および/またはヒドロカルビルオキシシリル基を有し、前記エポキシ基と、前記ヒドロカルビルオキシシリル基に含まれるヒドロカルビルオキシ基との合計数が3以上である、変性剤であり、
    前記シランカップリング剤(R)が、下記式(1)の平均組成式で表されるポリシロキサンであり、
    前記シランカップリング剤(R)の含有量が、前記シリカ(Q)の含有量に対して1.0〜20質量%であり、
    前記シリカ(Q)の含有量が、前記ゴム成分100質量部に対して60〜200質量部である、タイヤトレッド用ゴム組成物。
    (A)a(B)b(C)c(D)d(R1eSiO(4-2a-b-c-d-e)/2 (1)
    (式(1)中、Aはスルフィド基を含有する2価の有機基を表す。Bは炭素数5〜10の1価の炭化水素基を表す。Cは加水分解性基を表す。Dはメルカプト基を含有する有機基を表す。R1は炭素数1〜4の1価の炭化水素基を表す。a〜eは、0≦a<1、0≦b<1、0<c<3、0<d<1、0≦e<2、0<2a+b+c+d+e<4の関係式を満たす(ただし、aとbのいずれか一方は0ではない)。)
  2. 前記イソプレンブロックにおけるイソプレン単位由来のビニル結合含有量が5〜85質量%である、請求項1に記載のタイヤトレッド用ゴム組成物。
  3. 前記共役ジエン系重合体鎖(p1)における前記イソプレンブロック以外の部分が、共役ジエン単量体の単独重合体鎖、または、共役ジエン単量体と芳香族ビニル単量体との共重合体鎖である、請求項1または2に記載のタイヤトレッド用ゴム組成物。
  4. 前記式(1)中、aが0よりも大きい、請求項1〜3のいずれか1項に記載のタイヤトレッド用ゴム組成物。
  5. 前記式(1)中、bが0よりも大きい、請求項1〜4のいずれか1項に記載のタイヤ用ゴム組成物。
  6. 前記ゴム成分100質量部に対して、軟化点が60〜150℃の芳香族変性テルペン樹脂を1〜30質量部さらに含有する、請求項1〜5のいずれか1項に記載のタイヤトレッド用ゴム組成物。
  7. 請求項1〜6のいずれか1項に記載のタイヤトレッド用ゴム組成物をタイヤトレッドに用いた空気入りタイヤ。
JP2014034728A 2013-02-25 2014-02-25 タイヤトレッド用ゴム組成物および空気入りタイヤ Active JP6476555B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014034728A JP6476555B2 (ja) 2013-02-25 2014-02-25 タイヤトレッド用ゴム組成物および空気入りタイヤ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013035030 2013-02-25
JP2013035030 2013-02-25
JP2014034728A JP6476555B2 (ja) 2013-02-25 2014-02-25 タイヤトレッド用ゴム組成物および空気入りタイヤ

Publications (2)

Publication Number Publication Date
JP2014185341A true JP2014185341A (ja) 2014-10-02
JP6476555B2 JP6476555B2 (ja) 2019-03-06

Family

ID=51833194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034728A Active JP6476555B2 (ja) 2013-02-25 2014-02-25 タイヤトレッド用ゴム組成物および空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP6476555B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185339A (ja) * 2013-02-25 2014-10-02 Yokohama Rubber Co Ltd:The スタッドレスタイヤ用ゴム組成物およびスタッドレスタイヤ
WO2016167270A1 (ja) * 2015-04-13 2016-10-20 横浜ゴム株式会社 ゴム組成物及びタイヤ
JP2020534380A (ja) * 2017-07-19 2020-11-26 コンパニー ゼネラール デ エタブリッスマン ミシュラン シリコーンオイルに基づくゴム組成物

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273559A (ja) * 1997-01-29 1998-10-13 Yokohama Rubber Co Ltd:The 加工性を改良したタイヤトレッド用ゴム組成物
JP2000038395A (ja) * 1998-06-10 2000-02-08 Degussa Huels Ag オリゴマ―のオルガノシランポリスルファン、その製造方法、それを含有するゴム混合物、その製造方法及びゴム混合物から得られた成形体
JP2000128990A (ja) * 1998-10-27 2000-05-09 Degussa Huels Ag 硫黄官能性ポリオルガノシロキサン、その製造法、該化合物を含有するゴム混合物、その製造法および該混合物からなる成形体
JP2001192454A (ja) * 2000-01-14 2001-07-17 Shin Etsu Chem Co Ltd オルガノポリシロキサン、ゴム用配合剤及びそれを用いたゴム組成物並びにタイヤ
JP2002201278A (ja) * 2000-11-02 2002-07-19 Yokohama Rubber Co Ltd:The ゴム反応性ポリシロキサン及びそれを含むゴム組成物
JP2003113243A (ja) * 2001-07-06 2003-04-18 Degussa Ag オリゴマーオルガノシラン、その製法、その使用、それを含有するゴム混合物、およびその混合物を含有する成形体
JP2004511598A (ja) * 2000-10-13 2004-04-15 株式会社ブリヂストン 有機シランのテトラスルフィドであるシリカ連成剤と共に高い混合温度でコンパウンド化したシリカ補強ゴム
JP2008537740A (ja) * 2005-03-24 2008-09-25 株式会社ブリヂストン 揮発性有機化合物(voc)の放出が少ないシリカ補強ゴムの配合
JP2008542465A (ja) * 2005-05-26 2008-11-27 ロディア・シミ 無機充填剤を有するゴム組成物における有機珪素カップリング剤の使用
WO2011105362A1 (ja) * 2010-02-26 2011-09-01 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
WO2013031488A1 (ja) * 2011-08-26 2013-03-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2014002750A1 (ja) * 2012-06-27 2014-01-03 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014028797A (ja) * 2012-06-27 2014-02-13 Shin Etsu Chem Co Ltd オルガノポリシロキサン及びその製造方法
WO2014034673A1 (ja) * 2012-08-30 2014-03-06 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP5846333B2 (ja) * 2013-02-25 2016-01-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273559A (ja) * 1997-01-29 1998-10-13 Yokohama Rubber Co Ltd:The 加工性を改良したタイヤトレッド用ゴム組成物
JP2000038395A (ja) * 1998-06-10 2000-02-08 Degussa Huels Ag オリゴマ―のオルガノシランポリスルファン、その製造方法、それを含有するゴム混合物、その製造方法及びゴム混合物から得られた成形体
JP2000128990A (ja) * 1998-10-27 2000-05-09 Degussa Huels Ag 硫黄官能性ポリオルガノシロキサン、その製造法、該化合物を含有するゴム混合物、その製造法および該混合物からなる成形体
JP2001192454A (ja) * 2000-01-14 2001-07-17 Shin Etsu Chem Co Ltd オルガノポリシロキサン、ゴム用配合剤及びそれを用いたゴム組成物並びにタイヤ
JP2004511598A (ja) * 2000-10-13 2004-04-15 株式会社ブリヂストン 有機シランのテトラスルフィドであるシリカ連成剤と共に高い混合温度でコンパウンド化したシリカ補強ゴム
JP2002201278A (ja) * 2000-11-02 2002-07-19 Yokohama Rubber Co Ltd:The ゴム反応性ポリシロキサン及びそれを含むゴム組成物
JP2003113243A (ja) * 2001-07-06 2003-04-18 Degussa Ag オリゴマーオルガノシラン、その製法、その使用、それを含有するゴム混合物、およびその混合物を含有する成形体
JP2008537740A (ja) * 2005-03-24 2008-09-25 株式会社ブリヂストン 揮発性有機化合物(voc)の放出が少ないシリカ補強ゴムの配合
JP2008542465A (ja) * 2005-05-26 2008-11-27 ロディア・シミ 無機充填剤を有するゴム組成物における有機珪素カップリング剤の使用
WO2011105362A1 (ja) * 2010-02-26 2011-09-01 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
WO2013031488A1 (ja) * 2011-08-26 2013-03-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2014002750A1 (ja) * 2012-06-27 2014-01-03 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014028797A (ja) * 2012-06-27 2014-02-13 Shin Etsu Chem Co Ltd オルガノポリシロキサン及びその製造方法
WO2014034673A1 (ja) * 2012-08-30 2014-03-06 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP5846333B2 (ja) * 2013-02-25 2016-01-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185339A (ja) * 2013-02-25 2014-10-02 Yokohama Rubber Co Ltd:The スタッドレスタイヤ用ゴム組成物およびスタッドレスタイヤ
WO2016167270A1 (ja) * 2015-04-13 2016-10-20 横浜ゴム株式会社 ゴム組成物及びタイヤ
JPWO2016167270A1 (ja) * 2015-04-13 2017-09-28 横浜ゴム株式会社 ゴム組成物及びタイヤ
JP2020534380A (ja) * 2017-07-19 2020-11-26 コンパニー ゼネラール デ エタブリッスマン ミシュラン シリコーンオイルに基づくゴム組成物

Also Published As

Publication number Publication date
JP6476555B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
JP5846333B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6331267B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6115319B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
KR101702697B1 (ko) 공액 디엔계 고무, 고무 조성물, 고무 가교물, 및 타이어, 그리고 공액 디엔계 고무의 제조 방법
JP6156385B2 (ja) 共役ジエン系ゴムの製造方法
JP5845883B2 (ja) 変性共役ジエン系ゴム組成物の製造方法、ゴム組成物の製造方法、ゴム架橋物の製造方法及びタイヤの製造方法
JP5796688B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6467820B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2016031769A1 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6459307B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP5987865B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6791203B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014162809A (ja) ゴム組成物および空気入りタイヤ
JP6476555B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2018145233A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
WO2019221184A1 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6319469B1 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6511872B2 (ja) 共役ジエン系重合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6476555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250