JP2014183285A - 発光素子 - Google Patents
発光素子 Download PDFInfo
- Publication number
- JP2014183285A JP2014183285A JP2013058370A JP2013058370A JP2014183285A JP 2014183285 A JP2014183285 A JP 2014183285A JP 2013058370 A JP2013058370 A JP 2013058370A JP 2013058370 A JP2013058370 A JP 2013058370A JP 2014183285 A JP2014183285 A JP 2014183285A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- composition
- algan
- superlattice
- ingan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 92
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 73
- 239000010410 layer Substances 0.000 description 345
- 229910002601 GaN Inorganic materials 0.000 description 58
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 30
- 239000013078 crystal Substances 0.000 description 14
- 230000004888 barrier function Effects 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
【課題】半導体構造層の歪、特に活性層のひずみを抑制し、高発光効率かつ高信頼性な発光素子を提供する。
【解決手段】GaN系半導体からなる発光素子10であって、n型半導体層13、少なくとも1つのInGaN超格子層を含む超格子構造層14、活性層15、AlGaN系半導体層16及びp型半導体層17が順次積層された構造を有し、AlGaN系半導体層16とp型半導体層17との界面には凹凸構造16Aが形成され、活性層15は、InGaN層又はInGaN量子井戸層QW1〜8であり、InGaN超格子層SS1〜4のIn組成は、活性層のIn組成よりも大きい。
【選択図】図1
【解決手段】GaN系半導体からなる発光素子10であって、n型半導体層13、少なくとも1つのInGaN超格子層を含む超格子構造層14、活性層15、AlGaN系半導体層16及びp型半導体層17が順次積層された構造を有し、AlGaN系半導体層16とp型半導体層17との界面には凹凸構造16Aが形成され、活性層15は、InGaN層又はInGaN量子井戸層QW1〜8であり、InGaN超格子層SS1〜4のIn組成は、活性層のIn組成よりも大きい。
【選択図】図1
Description
本発明は、発光素子に関し、特に窒化ガリウム(GaN)系半導体からなる発光素子に関する。
発光ダイオード(LED)などの半導体発光素子は、通常、成長用基板上に、n型半導体層、活性層(発光層)及びp型半導体層からなる半導体構造層を形成し、半導体構造層上にn電極とp電極とを形成して作製される。
特許文献1には、n型窒化物半導体層と活性層との間に電流分散層を有し、p型窒化物半導体層がp型AlGaN層及びp型GaN層からなる構造を有する窒化物半導体素子が開示されている。
窒化物系半導体から発光素子を作製する場合、例えば、n型半導体層としてn−GaN層、活性層としてアンドープのInGaN層、p型半導体層としてp−GaN層が用いられる。
また、電流印加時においてn−GaN層から活性層(InGaN活性層)の全体への電子供給を図る手法として、n−GaN層とInGaN活性層との間にInGaN層(電流拡散層)を形成することが知られている。
また、電子が活性層を越えてp−GaN層にリークするいわゆるホットエレクトロンのオーバーフローを防止する手法として、例えば、活性層とp−GaN層との間にAlGaN層(電子ブロック層)を形成することが知られている。
例えば特許文献1に記載されているように、n−GaN層と活性層との間及び活性層とp−GaN層との間にそれぞれ電流拡散層及び電子ブロック層を形成すると、上記した効果(それぞれ電流拡散効果及び電子のオーバーフロー抑制効果)を得ることができる。
しかし、その一方で、結晶の格子定数が異なる異種の半導体層を接合するいわゆるヘテロ接合を形成する界面の数が増加し、半導体構造層全体の結晶状態が悪化するという問題が依然として存在する。例えば、格子定数の相違による結晶の歪は、ピエゾ電界の発生及びこれによる電子と正孔(ホール)との再結合確率の低下を招く。従って、発光効率が低下する。また、結晶性の劣化によって素子の信頼性が低下するなどの問題を招来する。
本発明は上記した点に鑑みてなされたものであり、半導体構造層の歪、特に活性層の歪を抑制し、高発光効率かつ高信頼性な発光素子を提供することを目的としている。
本発明による発光素子は、GaN系半導体からなる発光素子であって、n型半導体層、少なくとも1つのInGaN超格子層を含む超格子構造層、活性層、AlGaN系半導体層及びp型半導体層が順次積層された構造を有し、AlGaN系半導体層のp型半導体層との界面には凹凸構造が形成され、活性層は、InGaN層又はInGaN量子井戸層であり、InGaN超格子層のIn組成は、活性層のIn組成よりも大きいことを特徴としている。
本発明は、n型半導体層と活性層との間に設ける電流拡散層の組成と、活性層とp型半導体層との間に設ける電子ブロック層の組成と、を調節することによって、半導体構造層、特に活性層における結晶の歪の発生を抑制することができることに着目してなされた。その結果、結晶の歪を抑制し、高い発光効率を実現する電流拡散層のIn組成及び電子ブロック層のAl組成の範囲を導出した。
また、本願の発明者は、電子ブロック層の構造が結晶の歪の抑制度合いに影響を与えることを見出した。具体的には、表面に凹凸構造を有するAlGaN層によって半導体構造層の歪を低減する効果を得ることができることがわかった。
以下において、本発明の実施例に係る半導体発光素子の構造について具体的に説明する。
図1(a)は、本発明の実施例1に係る半導体発光素子10の構造を説明する断面図である。半導体発光素子10は、成長用基板19上に半導体構造層11が形成された構造を有している。半導体構造層11は、成長用基板19側から、バッファ層12、n型半導体層13、超格子構造層14、活性層15、AlGaN系半導体層16及びp型半導体層17が順次積層された構造を有している。
以下においては、成長用基板としてサファイア基板19、バッファ層としてGaN層12、n型半導体層としてn−GaN層13、超格子構造層としてInGaN超格子層及びGaN層から構成された超格子構造(SL)層14、活性層としてInGaN井戸層及びGaN障壁層からなる多重量子井戸構造を有する活性層15、AlGaN系半導体としてp−AlGaN層16、p型半導体層としてp−GaN層17を用いる場合について説明する。
本実施例においては、結晶成長面がC面であるサファイア基板19上に、MOCVD法(有機金属気相成長法:Metal Organic Chemical Vapor Deposition)を用い、GaN層12(層厚:1μm)、n−GaN層13(層厚:4μm、ドーパント:Si、キャリア濃度:5×1018cm-3)、超格子構造層14(アンドープ、InGaN超格子層の層厚:4nm、GaN層の層厚:5nm、InGaN超格子層の層数:4)、活性層15(アンドープ、InGaN井戸層の層厚:4nm、GaN障壁層の層厚:5nm、InGaN井戸層の層数:8)、p−AlGaN層16(層厚:15nm、ドーパント:Mg、キャリア濃度:2.2×1018cm-3)及びp−GaN層17(層厚:100nm、ドーパント:Mg、キャリア濃度:4×1017cm-3)を成長した。また、活性層15のInGaN井戸層がInzGa1-zN(0.25≦z≦0.30)の組成を有するように成長条件を調節した。超格子構造層14は、InGaN超格子層のIn組成が、活性層14のIn組成(z)よりも大きくなるように形成した。
図1(b)は、超格子構造層14及び活性層15の詳細を説明する断面図である。図1(b)に示すように、超格子構造層14は、4層のInGaN超格子層(SS1〜SS4)を有し、その各々がGaN層(SB1〜SB5)の各々の間に設けられた構造を有している。また、活性層15は、8層のInGaN井戸層(QW1〜QW8)を有し、その各々がGaN障壁層(QB1〜QB9)の各々の間に設けられた構造を有している。
具体的には、n−GaN層13上に、超格子構造層14として、GaN層SB1、InGaN超格子層SS1、GaN層SB2、InGaN超格子層SS2・・・InGaN超格子層SB4及びGaN層SB5が順次積層されている。超格子構造層14のGaN層SB5上には、活性層15として、GaN障壁層QB1、InGaN井戸層QW1、GaN障壁層QB2・・・GaN障壁層QB8、InGaN井戸層QW8及びGaN障壁層QB9が順次積層されている。AlGaN系半導体層16は、活性層15のGaN障壁層QB9上に形成されている。
なお、以下においては、超格子構造層14のInGaN超格子層SS1〜SS4のいずれかを指すという意味で単にInGaN超格子層SSと称する場合がある。同様に、超格子構造層14のGaN層SB1〜SB5、活性層のInGaN井戸層QW1〜QW8及びGaN障壁層QB1〜QB9のいずれかを、それぞれGaN層SB、InGaN井戸層QW及びGaN障壁層QBと称する場合がある。
[p−AlGaN層16の構造]
p−AlGaN層(AlGaN系半導体層)16は、そのp−GaN層17側の表面(p−GaN層17との界面)に凹凸構造16Aを有している。凹凸構造16Aは、p−AlGaN層16の成長条件を調節することにより形成することができる。具体的には、凹凸構造16Aは、p−AlGaN層16を成長する際の成長温度、V/III比(III族材料に対するV族材料の供給比率)及びキャリアガス中の水素の割合などを調節することにより形成することができる。
p−AlGaN層(AlGaN系半導体層)16は、そのp−GaN層17側の表面(p−GaN層17との界面)に凹凸構造16Aを有している。凹凸構造16Aは、p−AlGaN層16の成長条件を調節することにより形成することができる。具体的には、凹凸構造16Aは、p−AlGaN層16を成長する際の成長温度、V/III比(III族材料に対するV族材料の供給比率)及びキャリアガス中の水素の割合などを調節することにより形成することができる。
本実施例においては、成長温度を約1000℃(AlGaNを成長する通常の成長温度よりも低い成長温度)とし、V/III比を50,000(通常よりも大きなV/III比)とした。また、キャリアガス中の水素の割合(F)については、IGを不活性ガス(例えばN2、Ar、He)とすると、F=H2/(H2+IG)の式で表すことができ、本実施例においてはF=0.23とした。
p−AlGaN層16はp−GaN層17との界面に凹凸構造16Aを有しているので、凹凸構造を有しないp−AlGaN層を設ける場合に比べて、活性層15を挟む超格子構造層14及びp−AlGaN層16の歪を低減することができる。また、凹凸構造16Aの部分すなわちp−AlGaN層16とp−GaN層17との界面近傍における結晶の歪を抑制することができる。従って、p−AlGaN層16が凹凸構造16Aを有することによって、半導体構造層11の歪を抑制することができる。この効果については、図3(a)及び(b)を用いて後述する。
p−AlGaN層16とp−GaN層17との界面に形成された凹凸構造16Aは、ごく微細な凹凸からなり、当該凹凸の深さは約5nm以下である。また、凹凸構造16Aの部分は、他のp−AlGaN層16の部分(凹凸構造16Aの部分よりも活性層15側のp−AlGaN層16の部分)よりもわずかに高いAl組成(約1〜3%)を有している。例えば、p−AlGaN層16の凹凸構造16A以外の部分におけるAl組成が21%であるとき、凹凸構造16Aの部分におけるAl組成は22%〜24%である。
また、凹凸構造16Aは、p−AlGaN層16の成長面(すなわちC面)以外の様々な面方位を有する微細な結晶面(ファセット)が表出したものである。p−AlGaN層16がこの凹凸構造16Aを有することによって、p−GaN層17は、この様々な結晶面上に成長されることとなる。このことが、格子不整合の抑制、引いては半導体構造層全体の歪を抑制する効果を奏していると解される。
なお、凹凸構造16Aにおける凹凸の形状及び層厚(深さ)は、成長条件を調節することによってある程度制御することができる。凹凸の深さは、凹凸構造16A上に形成されるp−GaN層17のモフォロジなどを考慮すると、1〜5nm、好ましくは2〜3nmであることが好ましい。
なお、p−AlGaN層16は、従来技術と同様に、電子ブロック層(電子が活性層からオーバーフローすることを防止する層)として機能する。また、p−AlGaN層16の凹凸構造16Aは、p−AlGaN層16及びp−GaN層17のドーパントであるMgのp−AlGaN層16とp−GaN層17との間での相互拡散を防止する機能を有していることが確認されている。
[In組成(x)及びAl組成(y)]
次に、超格子構造層14のIn組成(x)とp−AlGaN層16のAl組成(y)との関係について説明する。以下においては、超格子構造層14のInGaN超格子層SSにおけるIn組成を単にIn組成(x)、p−AlGaN層16におけるAl組成を単にAl組成(y)と称する場合がある。
次に、超格子構造層14のIn組成(x)とp−AlGaN層16のAl組成(y)との関係について説明する。以下においては、超格子構造層14のInGaN超格子層SSにおけるIn組成を単にIn組成(x)、p−AlGaN層16におけるAl組成を単にAl組成(y)と称する場合がある。
まず、超格子構造層14のInGaN超格子層SSのIn組成(x)とp−AlGaN層16のAl組成(y)とは、0.06≦(x×y)≦0.09(以下、式1と称する)を満たす関係を有している。すなわち、超格子構造層14のInGaN超格子層SS及びp−AlGaN層16は、式1を満たすような組成を有している。
図2(a)は、本実施例に係る半導体発光素子10における光出力の測定結果を示すグラフである。図2(a)は、異なる(x×y)の値を有する超格子構造層及びp−AlGaN層を有する半導体発光素子を作製し、当該半導体発光素子のEL(electro luminescence)測定を行った結果を示している。図の横軸は(x×y)の値、縦軸は規格化光出力を示している。図の破線は(x×y)の値と光出力との間の相関関係を表している。
図2(a)に示した測定結果から、(x×y)の値が約0.08の近傍までは光出力が上昇し、0.09を超えると急激に光出力が低下していることがわかる。従って、(x×y)の値が0.09以下であれば高い光出力を得ることができることがわかる。さらに、(x×y)の値が0.06〜0.09の範囲(PR)内(図中の閾値BLよりも上の点)であればさらに高い光出力を得ることがわかる。従って、(x×y)の値は(式1)を満たすことが好ましい。以下においては、説明の便宜上、図中における(x×y)の値が0.09を超えている場合の測定点(図では3点ある)を低光出力点LPと称する。また、(x×y)の値が0.09以下の場合の測定点を高光出力点HPと称する。
次に、超格子構造層14のInGaN超格子層SSのIn組成(x)及びp−AlGaN層のAl組成(y)の各々について説明する。超格子構造層14は、InxGa1-xN(0.37≦x≦0.45)の組成を有するInGaN超格子層SSを有する。また、p−AlGaN層16は、AlyGa1-yN(0.14≦y≦0.24)の組成を有していることが好ましい。
図2(b)は、超格子構造層14のInGaN超格子層SSに含まれるIn組成(x)及びp−AlGaN層16に含まれるAl組成(y)の好ましい範囲PRを示す図である。図の横軸はIn組成(x)、縦軸はAl組成(y)を示している。図の上部の曲線は(x×y)=0.09の式を満たす点の集合を示しており、下部の曲線は(x×y)=0.06の式を満たす点の集合を示している。図の三角で示した点は、図2(a)における高光出力点HPに対応する。また、図の×印で示した点は図2(a)における低光出力点LPに対応する。
図2(a)から、(x×y)の値が(式1)を満たすこと、すなわち、図2(b)における上部の曲線と下部の曲線との間の値をとることが条件であることがわかる。しかし、In組成(x)及びAl組成(y)の各々にも超格子構造層14及びAlGaN系半導体層16の機能を考慮した好ましい範囲が存在する。
超格子構造層14のInGaN超格子層SSのIn組成(x)は、大きくなると格子不整合が大きくなり、小さくなると電流拡散機能が損なわれる。これを考慮すると、超格子構造層14は、InxGa1-xN(0.37≦x≦0.45)の組成を有するInGaN超格子層SSを有することが好ましい。
AlGaN系半導体層16のAl組成(y)は、大きくなると格子不整合が大きくなり、小さくなると電子ブロック機能が損なわれる。これを考慮すると、AlGaN系半導体層16は、AlyGa1-yN(0.14≦y≦0.24)の組成を有していることが好ましい。
これら条件を考慮すると、図2(b)の破線で囲まれた部分(好ましい範囲PR)に含まれるIn組成(x)及びAl組成(y)を選択することによって、半導体構造層の各層の機能を発揮し、かつ半導体構造層の歪を抑制することができる。
従って、超格子構造層14のInGaN超格子層SSにおけるIn組成(x)及びAlGaN系半導体層(p−AlGaN層)16におけるAl組成(y)は、0.06≦(x×y)≦0.09の関係を満たしていることが好ましく、In組成(x)は0.37≦x≦0.45、Al組成(y)は0.14≦y≦0.24の範囲内であることがさらに好ましい。なお、好ましい範囲PR内のIn組成(x)及びAl組成(y)の一例としては、(x、y)=(0.21、0.42)及び(0.38、0.18)を挙げることができる。
図3(a)は、半導体発光素子10における半導体構造層11の部分的なバンド図を模式的に示している。説明のため、p−AlGaN層16の凹凸構造16Aをハッチングによって示している。また、超格子構造層14及び活性層15については各層の中間部分を省略してある。
超格子構造層14のInGaN超格子層SS、活性層15のInGaN井戸層QWは、GaN層(n−GaN層、p−GaN層などGaNの組成を有する層)よりも小さなバンドギャップを有している。また、InGaN超格子層SSのIn組成はInGaN井戸層QWのIn組成よりも大きい。従って、電子は、n−GaN層から、超格子構造層14において拡散され、活性層15の全体に供給された後、活性層15から光を放出する。
p−AlGaN層16はGaN層よりも大きなバンドギャップを有している。従って、活性層15に供給された電子はp−GaN層(図示せず)に移動することなく活性層15内に留まる。さらに、p−AlGaN層16は凹凸構造16Aを有しているので、p型ドーパントのMgの拡散を抑制する。従って、供給された電子の大部分を発光に寄与させることができる。
図3(b)は、超格子構造層14、活性層15及びp−AlGaN層16の歪を模式的に示す図である。まず、各層の歪について説明する。図3(a)を用いて説明したように、超格子構造層14及びp−AlGaN層16は、その各々の機能(電流拡散機能、電子ブロック機能及びドーパント拡散防止機能など)を発揮することができる。しかし、超格子構造層14及びp−AlGaN層16は、GaN層(n−GaN層及びp−GaN層など)とは格子定数が異なるため、歪が生ずる。
具体的には、Gaの一部がInに置換された層であるInGaN超格子層SSを有する超格子構造層14は、その結晶に圧縮歪が発生する。また、Gaの一部がAlに置換された層であるp−AlGaN層16は、その結晶に伸張歪が発生する。
この超格子構造層14及びp−AlGaN層16の歪は、活性層15に応力を及ぼし、光出力などの特性を低下させる原因となる。さらに、発光素子の信頼性にも悪影響を及ぼす。
図3(b)は、超格子構造層14、活性層15及びp−AlGaN層16の間の歪の関係を簡略化して説明するための模式的な図である。図3(b)には、超格子構造層14、活性層15及びp−AlGaN層16の各々における概略的な歪が示されている。
図3(b)は、半導体構造層が凹凸構造16Aを有するp−AlGaN層16を備える場合(実施例)及び凹凸構造16Aを有しない平坦なAlGaN層を備える場合(比較例)における半導体構造層の歪(それぞれ実線及び破線)を模式的に示している。図の横軸は積層方向を示しており、図の縦軸は歪の大小を模式的に示している。図の上部ほど圧縮歪であり、図の下部ほど伸張歪である。
図3(b)から分かるように、実施例(実線)においては、超格子構造層14及びp−AlGaN層16の各々の歪が比較例(破線)に比べて低減されている。従って、本実施例の活性層の歪は比較例の活性層の歪よりも小さい。さらに、凹凸構造16Aの部分すなわちp−AlGaN層16とp−GaN層17との界面近傍の歪が凹凸構造16Aによって低減されている。従って、半導体構造層全体の歪が低減され、結晶の信頼性など、素子の特性を向上させることができる。また、発光素子の発光効率が向上する。
上記したように、本実施例に係る半導体発光素子は、活性層のInGaN井戸層のIn組成よりも高いIn組成を有するInGaN超格子層からなる超格子構造層を有し、p型半導体層との界面に凹凸構造を有するAlGaN系半導体層を有している。従って、電子を活性層の全体に高い効率で供給し、かつ結晶の歪が抑制された半導体構造層を有する高発光効率な半導体発光素子を提供することができる。
また、InGaN超格子層はInxGa1-xN層(x:In組成)であり、AlGaN系半導体層はAlyGa1-yN層(y:Al組成)であり、In組成(x)及びAl組成(y)は、0.37≦x≦0.45、0.14≦y≦0.24、及びx×y≦0.09(好ましくは0.06≦x×y≦0.09)の関係を満たす。従って、半導体構造層の歪、特に活性層の歪を抑制することができる。
なお、上記においては、活性層が多重量子井戸構造を有する場合について説明したが、活性層は単一量子井戸構造又は単層構造を有していても良い。例えば、活性層は、InGaN層であってもよく、InGaN量子井戸層であっても良い。また、活性層のInGaN井戸層及びGaN障壁層の組成及び層厚、並びにInGaN井戸層の層数は、発光波長などを考慮して適宜調節することができる。また、n型半導体層、AlGaN系半導体層及びp型半導体層の層厚及びドーパント濃度は適宜調節することができる。
また、超格子構造層が4層のInGaN超格子層を有する場合について説明したが、超格子構造層は、少なくとも1層のInGaN超格子層を有していればよい。例えば、超格子構造層は、1つのInGaN超格子層が2つのGaN障壁層に挟まれた構造を有していても良い。また、InGaN超格子層が4nmの層厚を有する場合について説明したが、InGaN超格子層の層厚は、電流拡散効果、歪抑制効果などを考慮して、2〜10nmの範囲内で適宜調節することができる。
また、AlGaN系半導体層の凹凸構造が成長条件を調節することによって形成される場合について説明したが、凹凸構造はAlGaN系半導体層の表面にエッチングやスパッタリングなどを用いた既知の粗面化技術によって形成されてもよい。また、AlGaN系半導体層は、表面に凹凸構造を有するAlGaN層であればよいため、例えば、まずAlGaN系半導体層として平坦なAlGaN層を活性層上に形成し、次いで成長条件を変えて凹凸構造を有するAlGaN層を形成してもよい。
10 半導体発光素子
11 半導体構造層
13 n型半導体層
14 超格子構造層
SS1〜SS4 InGaN超格子層
15 活性層
QW1〜QW8 InGaN井戸層
16 AlGaN系半導体層
16A 凹凸構造
17 p型半導体層
11 半導体構造層
13 n型半導体層
14 超格子構造層
SS1〜SS4 InGaN超格子層
15 活性層
QW1〜QW8 InGaN井戸層
16 AlGaN系半導体層
16A 凹凸構造
17 p型半導体層
Claims (3)
- GaN系半導体からなる発光素子であって、
n型半導体層、少なくとも1つのInGaN超格子層を含む超格子構造層、活性層、AlGaN系半導体層及びp型半導体層が順次積層された構造を有し、
前記AlGaN系半導体層の前記p型半導体層との界面には凹凸構造が形成され、
前記活性層は、InGaN層又はInGaN量子井戸層であり、
前記InGaN超格子層のIn組成は、前記活性層のIn組成よりも大きいことを特徴とする発光素子。 - 前記InGaN超格子層はInxGa1-xN層(x:In組成)であり、前記AlGaN系半導体層はAlyGa1-yN層(y:Al組成)であり、前記In組成(x)及び前記Al組成(y)は、0.37≦x≦0.45、0.14≦y≦0.24、及びx×y≦0.09の関係を満たすことを特徴とする請求項1に記載の発光素子。
- 前記In組成(x)及び前記Al組成(y)は、0.06≦x×y≦0.09の関係を満たすことを特徴とする請求項2に記載の発光素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013058370A JP2014183285A (ja) | 2013-03-21 | 2013-03-21 | 発光素子 |
US14/221,243 US20140284550A1 (en) | 2013-03-21 | 2014-03-20 | Light-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013058370A JP2014183285A (ja) | 2013-03-21 | 2013-03-21 | 発光素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014183285A true JP2014183285A (ja) | 2014-09-29 |
Family
ID=51568452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013058370A Pending JP2014183285A (ja) | 2013-03-21 | 2013-03-21 | 発光素子 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20140284550A1 (ja) |
JP (1) | JP2014183285A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12020930B2 (en) | 2020-05-20 | 2024-06-25 | Asahi Kasei Kabushiki Kaisha | Nitride semiconductor element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016086017A (ja) * | 2014-10-23 | 2016-05-19 | スタンレー電気株式会社 | 半導体発光素子 |
CN108878597B (zh) * | 2018-05-29 | 2019-10-08 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制造方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002151796A (ja) * | 2000-11-13 | 2002-05-24 | Sharp Corp | 窒化物半導体発光素子とこれを含む装置 |
JP2002280611A (ja) * | 2001-03-21 | 2002-09-27 | Mitsubishi Cable Ind Ltd | 半導体発光素子 |
JP2004193619A (ja) * | 2002-12-11 | 2004-07-08 | Lumileds Lighting Us Llc | 光散乱を強化した発光素子 |
JP2007088481A (ja) * | 2005-09-23 | 2007-04-05 | Samsung Electro Mech Co Ltd | 窒化物半導体素子 |
JP2008053760A (ja) * | 2000-12-28 | 2008-03-06 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子 |
JP2008182069A (ja) * | 2007-01-25 | 2008-08-07 | Toshiba Corp | 半導体発光素子 |
US20100270531A1 (en) * | 2009-04-22 | 2010-10-28 | Ashmeet K. Samal | GaN BASED LIGHT EMITTERS WITH BAND-EDGE ALIGNED CARRIER BLOCKING LAYERS |
US20110108798A1 (en) * | 2008-04-25 | 2011-05-12 | June O Song | Light-emitting element and a production method therefor |
WO2012032915A1 (ja) * | 2010-09-10 | 2012-03-15 | 日本碍子株式会社 | 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子 |
JP2012059772A (ja) * | 2010-09-06 | 2012-03-22 | Toshiba Corp | 半導体発光素子 |
JP2012124219A (ja) * | 2010-12-06 | 2012-06-28 | Toyoda Gosei Co Ltd | 半導体発光素子 |
JP2013016873A (ja) * | 2012-10-25 | 2013-01-24 | Toshiba Corp | 半導体発光素子 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7053420B2 (en) * | 2001-03-21 | 2006-05-30 | Mitsubishi Cable Industries, Ltd. | GaN group semiconductor light-emitting element with concave and convex structures on the substrate and a production method thereof |
JP2003282447A (ja) * | 2002-03-20 | 2003-10-03 | Fuji Photo Film Co Ltd | 半導体素子用基板の製造方法および半導体素子用基板ならびに半導体素子 |
WO2008153130A1 (ja) * | 2007-06-15 | 2008-12-18 | Rohm Co., Ltd. | 窒化物半導体発光素子及び窒化物半導体の製造方法 |
CN102047454B (zh) * | 2008-04-16 | 2013-04-10 | Lg伊诺特有限公司 | 发光器件及其制造方法 |
KR101017396B1 (ko) * | 2008-08-20 | 2011-02-28 | 서울옵토디바이스주식회사 | 변조도핑층을 갖는 발광 다이오드 |
WO2011055774A1 (ja) * | 2009-11-06 | 2011-05-12 | 日本碍子株式会社 | 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の製造方法 |
KR101028286B1 (ko) * | 2009-12-28 | 2011-04-11 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
JP5709899B2 (ja) * | 2010-01-05 | 2015-04-30 | ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. | 発光ダイオード及びその製造方法 |
WO2011102411A1 (ja) * | 2010-02-19 | 2011-08-25 | シャープ株式会社 | 窒化物半導体発光素子および窒化物半導体発光素子の製造方法 |
EP2556572A1 (en) * | 2010-04-05 | 2013-02-13 | The Regents of the University of California | Aluminum gallium nitride barriers and separate confinement heterostructure (sch) layers for semipolar plane iii-nitride semiconductor-based light emitting diodes and laser diodes |
TWI606618B (zh) * | 2012-01-03 | 2017-11-21 | Lg伊諾特股份有限公司 | 發光裝置 |
-
2013
- 2013-03-21 JP JP2013058370A patent/JP2014183285A/ja active Pending
-
2014
- 2014-03-20 US US14/221,243 patent/US20140284550A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002151796A (ja) * | 2000-11-13 | 2002-05-24 | Sharp Corp | 窒化物半導体発光素子とこれを含む装置 |
JP2008053760A (ja) * | 2000-12-28 | 2008-03-06 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子 |
JP2002280611A (ja) * | 2001-03-21 | 2002-09-27 | Mitsubishi Cable Ind Ltd | 半導体発光素子 |
JP2004193619A (ja) * | 2002-12-11 | 2004-07-08 | Lumileds Lighting Us Llc | 光散乱を強化した発光素子 |
JP2007088481A (ja) * | 2005-09-23 | 2007-04-05 | Samsung Electro Mech Co Ltd | 窒化物半導体素子 |
JP2008182069A (ja) * | 2007-01-25 | 2008-08-07 | Toshiba Corp | 半導体発光素子 |
US20110108798A1 (en) * | 2008-04-25 | 2011-05-12 | June O Song | Light-emitting element and a production method therefor |
US20100270531A1 (en) * | 2009-04-22 | 2010-10-28 | Ashmeet K. Samal | GaN BASED LIGHT EMITTERS WITH BAND-EDGE ALIGNED CARRIER BLOCKING LAYERS |
JP2012059772A (ja) * | 2010-09-06 | 2012-03-22 | Toshiba Corp | 半導体発光素子 |
WO2012032915A1 (ja) * | 2010-09-10 | 2012-03-15 | 日本碍子株式会社 | 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子 |
JP2012124219A (ja) * | 2010-12-06 | 2012-06-28 | Toyoda Gosei Co Ltd | 半導体発光素子 |
JP2013016873A (ja) * | 2012-10-25 | 2013-01-24 | Toshiba Corp | 半導体発光素子 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12020930B2 (en) | 2020-05-20 | 2024-06-25 | Asahi Kasei Kabushiki Kaisha | Nitride semiconductor element |
Also Published As
Publication number | Publication date |
---|---|
US20140284550A1 (en) | 2014-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102618238B1 (ko) | 질화물 반도체 발광소자 | |
TWI659547B (zh) | Iii族氮化物半導體發光元件的製造方法 | |
JP5533744B2 (ja) | Iii族窒化物半導体発光素子 | |
JP4940317B2 (ja) | 半導体発光素子及びその製造方法 | |
JP5175918B2 (ja) | 半導体発光素子 | |
TW201631797A (zh) | Iii族氮化物半導體發光元件及其製造方法 | |
JP2010028072A (ja) | 窒化物半導体発光素子 | |
KR20120080559A (ko) | 반도체 발광 소자 | |
US20170012166A1 (en) | Semiconductor light-emitting element | |
WO2016002419A1 (ja) | 窒化物半導体発光素子 | |
WO2014061692A1 (ja) | 窒化物半導体発光素子 | |
TWI666790B (zh) | Iii族氮化物半導體發光元件的製造方法及iii族氮化物半導體發光元件 | |
JP4884826B2 (ja) | 半導体発光素子 | |
WO2018163824A1 (ja) | 半導体発光素子および半導体発光素子の製造方法 | |
JP2014183285A (ja) | 発光素子 | |
JP6829235B2 (ja) | 半導体発光素子および半導体発光素子の製造方法 | |
JP2009224370A (ja) | 窒化物半導体デバイス | |
JP5948767B2 (ja) | 窒化物半導体発光素子 | |
JP5800251B2 (ja) | Led素子 | |
JP5889981B2 (ja) | 半導体発光素子 | |
JP2008160025A (ja) | 窒化物半導体発光素子 | |
JP2014146684A (ja) | 半導体発光素子及びその製造方法 | |
JP6482388B2 (ja) | 窒化物半導体発光素子 | |
JP5615334B2 (ja) | 半導体発光素子 | |
JP7140978B2 (ja) | 窒化物半導体発光素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161025 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170418 |