JP2014168250A - 圧電デバイス及び電子機器 - Google Patents

圧電デバイス及び電子機器 Download PDF

Info

Publication number
JP2014168250A
JP2014168250A JP2014084265A JP2014084265A JP2014168250A JP 2014168250 A JP2014168250 A JP 2014168250A JP 2014084265 A JP2014084265 A JP 2014084265A JP 2014084265 A JP2014084265 A JP 2014084265A JP 2014168250 A JP2014168250 A JP 2014168250A
Authority
JP
Japan
Prior art keywords
temperature sensor
temperature
component
piezoelectric
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014084265A
Other languages
English (en)
Other versions
JP5924365B2 (ja
Inventor
Kyo Horie
協 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014084265A priority Critical patent/JP5924365B2/ja
Publication of JP2014168250A publication Critical patent/JP2014168250A/ja
Application granted granted Critical
Publication of JP5924365B2 publication Critical patent/JP5924365B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

【課題】 圧電振動子のパッケージ外部の温度センサーと、圧電振動素子の直近に位置しているために同等の熱的状態にある金属製の蓋部材とを熱的に結合することによって、起動時の周波数ドリフト特性を含めた高精度な温度特性を実現した。
【解決手段】 圧電デバイスは、圧電振動素子20と、温度センサー40と、両センサーを搭載する絶縁基板4と、絶縁基板にて第1凹所3が開口する厚肉部の端面に形成された金属封止体8と、金属封止体と接合されて第1凹所3を封止する蓋部材10と、絶縁基板に配線されている熱伝導部材15と、を有する。熱伝導部材は、温度センサーが搭載されている半田で覆われた温度センサー搭載パッドから、絶縁基板の内部または内壁を通って、金属封着体まで伸びており、温度センサーと蓋部材が熱的に接続される。
【選択図】 図1

Description

本発明は、例えば圧電振動子のパッケージ外部に温度センサー付き電子部品を組み込んだ圧電デバイスにおいて、電子部品の熱的状態を圧電振動素子に近づけることにより、起動時の周波数ドリフト特性を含めた高精度な温度特性を実現することを可能とした圧電デバイス及びこれを内蔵した電子機器に関する。
移動体通信市場においては、各種電装部品の実装性、保守・取扱性、装置間での部品の共通性等を考慮して、各機能毎に部品群のモジュール化を推進するメーカーが増えている。また、モジュール化に伴って、小型化、低コスト化も強く求められている。
特に、基準周波数信号発生用発振回路、PLL回路、及びシンセサイザー回路等、機能及びハード構成が確立し、且つ高安定性、高性能化が要求される回路部品に関してモジュール化への傾向が強まっている。更に、これらの部品群をモジュールとしてパッケージ化することによりシールド構造が確立しやすくなるという利点がある。
複数の関連部品をモジュール化、パッケージ化することにより構築される表面実装用のIC部品としては、例えば圧電振動子、圧電発振器、SAWデバイス等を例示することができる。
特許文献1、2、3には、これらの機能を高く維持しつつ、更なる小型化を図るために圧電振動子のパッケージ外部に発振回路、温度補償回路を含んだIC部品を組み付けた構造の表面実装型圧電発振器が開示されている。
この種の圧電発振器において、圧電振動子内の圧電振動素子の温度と、圧電振動子外部に接続されたIC部品に搭載された温度センサーによる検知温度との間に差が発生し易く、温度差がある場合には、発振器の発信周波数が誤った温度データに基づいた温度センサー出力に基づいて補正されるため、安定した温度・周波数特性を得ることができず、また起動時の周波数ドリフト特性が悪化する。
このような不具合に対処するために従来では、圧電振動片が直接に接続されている絶縁基板側の温度を測定点とした構成が考えられてきた。
すなわち、特許文献1には、圧電振動片をパッケージ内に収容した圧電振動子の外部に設けた電極部に、発振回路素子としてのIC部品を接続した温度補償型圧電発振器において、電極部と接続されたIC部品の接続端子の近傍に温度センサーを配置することによって、圧電振動片の温度と温度センサーにより感知した温度との差異を低減して温度・周波数特性、周波数ドリフト特性を安定化させる技術が開示されている。
しかし、圧電振動子側の電極部と接続されたIC部品の接続端子は、発振回路の増幅器と導通した構成になる。そして増幅器は、その動作に伴い発熱が起きるので、IC部品内で温度センサーを圧電振動子側の電極部に近接させると、場合によっては、IC部品の発熱温度を検出してしまう可能性があり上述した周波数ドリフト特性を悪化させてしまいかねない。
次に、特許文献2には、圧電振動素子をパッケージ内に収容した圧電振動子の内部に発振回路と温度センサーを備えた第一のIC部品を収容すると共に、圧電振動子の外部に温度補償回路を備えた第二のIC部品を接続することによって、温度センサーを圧電振動素子と同じ温度環境下に配置して、圧電振動素子の温度と温度センサーにより感知した温度との差異を低減して温度・周波数特性、周波数ドリフト特性を安定化させる技術が開示されている。
しかし、本来圧電振動子の外部に組み付ければ足りるIC部品を二分して、温度センサー付きの第一のIC部品をパッケージ内に収容する構造は、コストパフォーマンス的に実現性が低く、また発振器全体の小型化に対する障害ともなる。
次に、特許文献3には、圧電振動素子を片持ち支持状態で収容したパッケージの外部に設けた凹所内にIC部品を接続し、IC部品の温度センサー端子をパッケージ内部に設けた枕部材と接続することによって、圧電振動素子の温度と温度センサーにより感知した温度との差異を低減して温度・周波数特性、周波数ドリフト特性を安定化させる技術が開示されている。
しかし、圧電振動素子とパッケージのセラミックベースとの間には導電性接着剤が介在するため、圧電振動素子への熱伝導速度は枕部材を介した温度センサー端子への熱伝導速度よりも遅くなり、周波数ドリフト特性を効果的に高めることができない。
そして何れの特許文献の構造も、セラミック基板(絶縁基板)に圧電振動素子を搭載した構成である故に、圧電振動素子と物理的距離が近く直接接続されているセラミック基板の温度を測定すれば圧電振動素子の温度を正確に検知できるものと考えられたものではあるが、実際には周波数ドリフト特性をより良くする効果を十分得られなかった。
特開2006−191517公報 特開2008−263564公報 特開2010−035078公報
以上のように、圧電振動子の外部に温度センサーを含むIC部品を接続した従来の表面実装型圧電発振器にあっては、圧電振動子内の圧電振動素子の温度と、圧電振動子外部に配置された温度センサーによる検知温度との間に差が発生し易く、安定した温度・周波数特性を得ることができず、また起動時の周波数ドリフト特性が悪化するという問題があった。
本発明は上記に鑑みてなされたものであり、圧電振動子のパッケージ外部に温度センサーを備えたIC部品を組み込んだ表面実装型圧電発振器において、圧電振動素子の直近に位置しているために同等の熱的状態にある金属製の蓋部材とIC部品とを熱的に結合することによって、起動時の周波数ドリフト特性を含めた高精度な温度特性を実現することを可能とした表面実装型圧電発振器を提供することを目的としている。
本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]本発明に係る圧電デバイスは、圧電振動素子を備えると共に表面実装される実装端子を備えた絶縁基板と、前記絶縁基板との間で前記圧電振動素子を気密封止する金属製の蓋部材と、温度を検知するための温度センサーを少なくとも備えた電子部品と、を備え、前記絶縁基板にはパッド電極と、該絶縁基板の絶縁材料よりも熱伝導率が高く該パッド電極と前記蓋部材との間を接続する熱伝導部材とを備え、前記電子部品は、前記パッド電極に搭載されており、前記蓋部材と前記温度センサーを、前記パッド電極と前記熱伝導部材とを介して熱伝導可能に接続したことを特徴とする。
パッケージの気密空間内に収容された圧電振動素子に最も近い位置にある蓋部材と温度センサー、或いは温度センサーを搭載した電子部品とを熱伝導性の良好な熱伝導部材によって熱的に接続するようにしたので、温度センサーが誤った温度データを出力することがなくなり、周波数ドリフト特性を良好化することができる。
[適用例2]本発明に係る圧電デバイスでは、前記熱伝導部材は、金属製であり、前記実装端子と電気的に絶縁していることを特徴とする。
熱伝導部材を絶縁基板材料よりも熱伝導性の高い任意の金属材料から構成し、且つ実装端子と電気的に絶縁したので、温度センサーと蓋部材等との間を熱伝導性よく接続することができる。
[適用例3]本発明に係る圧電デバイスでは、前記電子部品は、前記温度センサーと、前記温度補償回路と、前記圧電振動素子の励振信号を発振用に増幅するための発振回路とを集積回路化したチップ状のIC部品であることを特徴とする。
電子部品としては種々の部品を想定できるが、その一例としてはIC部品を例示できる。
[適用例4]本発明に係る圧電デバイスでは、前記熱伝導部材と接続した前記パッド電極は前記電子部品の調整用端子、ダミー端子、温度センサー端子、のうちの少なくとも一つの端子と接続していることを特徴とする。
これらのニュートラル端子は、マザーボードの熱の影響を受けずに蓋部材の熱をIC部品に搭載された温度センサーに伝達することを可能とする。
[適用例5]本発明に係る圧電デバイスは、前記絶縁基板は、上面に前記圧電振動素子を収容する上部凹所を有すると共に、下面に前記IC部品を収容する下部凹所を備えた縦断面形状H型であり、前記熱伝導部材は、前記下部凹所内に配置した前記外部パッドを介して前記電子部品と熱的に接続されていることを特徴とする。
絶縁基板は、例えば縦断面形状H型であっても良い。
[適用例6]本発明に係る圧電デバイスは、前記絶縁基板は、内部に前記圧電振動素子を収容すると共に上部開口を前記蓋部材によって封止される素子収容凹所を備えたパッケージ部と、該パッケージ部から外部へ張り出し且つ上面に前記外部パッドを備えた電子部品搭載部と、を備え、前記熱伝導部材は、前記外部パッドを介して前記電子部品と熱的に接続されていることを特徴とする。
パッケージ部と、パッケージ部から外部へ張り出したIC部品搭載部とを備えた絶縁基板に本発明を適用することもできる。
[適用例7]本発明に係る電子機器は、適用例1乃至6の何れか一項に記載の圧電デバイスを内蔵したことを特徴とする。
本発明の圧電デバイスは、各種電子機器に適用することができる。
本発明の一実施形態に係る表面実装型圧電発振器の一例としての水晶発振器の縦断面図である。 図1の水晶発振器の回路構成を示す図である。 本発明の他の実施形態に係る水晶発振器の断面図である。 図3の水晶発振器の回路構成を示す図である。 本発明の水晶発振器の温度調整を行う場合の装置構成を示す断面図である。 本発明の他の実施形態に係る水晶発振器の構成を示す縦断面図である。 本発明の他の実施形態に係る水晶発振器の構成を示す縦断面図である。 図7の水晶発振器の回路構成図である。 携帯電話機を示す図である。
まず、本願の発明者は、圧電振動素子の温度が直接搭載された絶縁容器の温度よりも、蓋部材の温度の方に近いことを発見した。
そこで本願発明では、圧電振動素子の温度を検知するために後述する温度センサーにて後述する蓋部材の温度を検知しようとした構成を特徴としている。
以下、本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1は本発明の一実施形態に係る圧電デバイスである表面実装型圧電発振器の一例としての水晶発振器の縦断面図であり、図2はこの水晶発振器の回路構成を示す図である。
本発明に係る水晶発振器(圧電発振器)1の基本構成は、上部に水晶振動素子(圧電振動素子)20の各励振電極と電気的に接続される内部パッド(素子搭載パッド)5を備えると共に下部に複数の実装端子6を備えた絶縁容器(絶縁基板)4と、内部パッド5上に導電性接着剤7を介して搭載される圧電振動素子20と、絶縁容器4との間で圧電振動素子20を気密封止する金属製の蓋部材10と、圧電振動素子を収容した気密空間Sの外部の絶縁容器部位に配置された外部パッド(IC部品搭載用パッド)12上に搭載され発振回路、温度補償回路、及び温度センサーを構成する電子部品であるIC部品30と、各実装端子6と各内部パッド5と各外部パッド12との間を導通する接続導体9と、蓋部材とIC部品との間を熱伝導可能に接続し、且つ絶縁基板材料よりも熱伝導率が高い熱伝導部材15と、を備えた構成にある。
なお、IC部品30に代えて、サーミスタなどの温度センサーのみを電子部品として外部パッド12に接続して搭載することも可能である。
次に、図1に示した水晶発振器(圧電発振器)1の具体的な構成について説明する。
水晶発振器1は、パッケージ2の上面に設けた上部凹所3内に水晶振動素子(圧電振動素子)20を搭載して金属製の蓋部材10により気密封止すると共に、パッケージ2の外底面(下部凹所11)にIC部品30を搭載した構成を有している。
パッケージ2は、上面に上部凹所3を有したセラミック等の絶縁材料からなる絶縁容器(絶縁基板)4と、上部凹所3内に配置されて水晶振動素子20の各励振電極と電気的に接続される2つの内部パッド(素子搭載パッド)5と、絶縁容器4の外底面上に配置した複数の実装端子6と、発振回路、及び温度補償回路と共に温度センサーを集積回路化して備えたIC部品30を搭載するために絶縁容器の外底面(下部凹所11)内に配置された外部パッド(IC部品搭載用パッド)12と、各実装端子6と各内部パッド5と外部パッド12との間を導通する接続導体9と、上部凹所3内に設けた2つの内部パッド5に水晶振動素子(圧電振動素子)20上の2つの励振電極を夫々電気的に接続した状態で上部凹所3を気密封止する金属製(例えば、コバール製)の蓋部材10と、蓋部材とIC部品との間を熱伝導可能に接続し、且つセラミックから成る絶縁基板材料よりも熱伝導率が高い熱伝導部材15と、を備えている。
なお、本例では、絶縁容器(絶縁基板)4は、上面に圧電振動素子20を収容する上部凹所3を有すると共に、下面にIC部品を収容する下部凹所11を備えた縦断面形状H型である。
水晶振動素子20は、水晶等の圧電材料からなる水晶基板(例えば、ATカット水晶基板)と、水晶基板の表裏両面の振動領域に夫々形成した励振電極と、各励振電極から水晶基板端縁に延びるリード電極と、各リード端子の端部に設けたパッドと、を備えている。各パッドを内部パッド5上に導電性接着剤7を用いて接続することによって、水晶振動素子は絶縁容器上に搭載される。
各実装端子6は、下部凹所11の底面に配置されており、通常、水晶振動素子20側の各リード電極と導通する駆動電源用実装端子(Vcc端子)、制御電圧印加用実装端子(Vcon端子)、信号出力用実装端子(Out端子)、接地回路と導通するための接地用実装端子(Gnd端子)の4つの実装端子からなる。
なお、パッケージ2と水晶振動素子20は、水晶振動子(圧電振動子)25を構成している。
熱伝導部材15は、モリブデン、その他、絶縁基板材料よりも熱伝導性の高い任意の金属材料から構成し、その一端部(蓋部材との接続端部)を蓋部材10と熱的に接続する一方で、他端部(IC部品との接続端部)をシリコン製ベアチップのIC部品30の外面適所に節的に接続することによって、蓋部材10からの熱をIC部品30に伝導させて蓋部材10(水晶振動素子20)とIC部品30の少なくとも外面適所、またはその周辺も含めた範囲の各温度をより早く同等にし、且つ同等に維持しようとする手段である。蓋部材が、熱伝導率が絶縁基板材料よりも高い金属製であり、更に上部凹所3内の水晶振動素子20と直近であることで両者は同等の温度にあるため、熱伝導率の高い熱伝導部材15を用いて蓋部材10とIC部品と熱的に結合させれば、IC部品の温度を水晶振動素子20と限りなく近づけることが可能となる。
絶縁容器4の肉厚内部に熱伝導部材15を配線する場合には、セラミックシートを積層して絶縁容器を形成する際に、熱伝導部材の配線経路に相当する部位に貫通穴を形成しておき、この貫通穴内に金属材料を充填(メタライズ)する。また、絶縁容器の外面に熱伝導部材の一部を配線する場合には当該部位に金属材料をメタライズする。
IC部品30は、発振回路(圧電振動素子の励振信号を発振用に増幅するための増幅回路)、温度補償回路(圧電振動素子の周波数温度特性を補償するための回路)等の集積回路を備えたベアチップとしてのICチップであり、温度センサー(感温素子)が内蔵されている。
IC部品30の外面に露出配置された各端子をIC部品搭載用パッド12と一対一で対応させた状態で金などの金属バンプ接続や半田接続することにより、IC部品30は下部凹所内に固定される。
シリコン製のベアチップとしてのIC部品30は全体的に均一且つ良好な熱伝導性を有しているため、熱伝導部材15の他端部をIC部品外面のどの部位に接触(接続)させてもよいが、温度センサーに近い部位に接触させるのが好ましい。具体的には、好ましくは例えばIC部品の外面に設けた端子のうち、この水晶発振器1が搭載されるマザーボードMBと電気的に結合していない端子(ニュートラルな端子)と金属バンプなどの金属製接続媒体を介して機械的且つ熱的に接続される。
これは、マザーボードMBと電気的に結合した端子の場合、表面実装用の実装端子と導通した構成になる。
表面実装は、実装端子がマザーボードMBと面接触するために、マザーボードMBからの熱を圧電デバイスに伝達させ易い。
そこで、上述のようにニュートラルな端子を利用すれば、温度センサーには、マザーボードMBから伝達される蓋部材10以外の部材の熱(温度)よりも蓋部材からの熱の方が伝わり易い構造になる。したがって、水晶振動素子と同等の熱的条件の下に温度センサーが温度を検知し、この温度データに基づいて温度補償回路を作動させて周波数を高精度に制御することができる。
本実施形態におけるニュートラルな端子としては、例えば、IC部品の外面に露出して配置された調整用端子、NC(ノンコネクト)端子、ダミー端子等を例示することができ、好適にはマザーボードMBとの実装端子と電気的に導通していないような端子である。
これらのうちの少なくとも一つの端子と熱伝導部材の他端部とを接続することにより、水晶振動素子とIC部品との間の温度差を解消することが可能となる。
調整用端子は、製造時にIC部品の特性を測定、調整するために設けられており、調整が終了して発振器が完成された後では使用されず、しかもマザーボードMBとも接続されていないため、蓋部材との接続に利用可能である。
なお、調整用端子は、IC部品にデータを入力またはIC部品からデータを出力させるためにプローブと導通するが、NC端子やダミー端子はそのようなデータの入出力をしない。
このような調整工程におけるプローブとの接触による温度変化を心配する場合は、NC端子やダミー端子に熱伝導性部材を接続するのが望ましい。
次に、図2の回路図において、水晶振動素子20を備えた水晶振動子25に対して外付けされたIC部品30には、発振回路31と、温度補償回路33と、温度センサー(サーミスタ)40と、A/Dコンバータ35等が搭載されている。温度センサー40の出力(温度情報)は、A/Dコンバータ35によってデジタル信号化されて温度補償回路33に入力され、温度補償回路33はこの温度情報に基づいて生成した周波数制御情報を発振回路31に出力する。発振回路33は、この温度制御情報に基づいて温度補償周波数情報を出力する。
図2に示した端子42は、調整用端子、NC(ノンコネクト)端子、ダミー端子として機能をもつニュートラルな端子である。
また、図示しないNC端子は、本来周波数調整用に直流電圧を入力するための端子であるが、圧電デバイスとしてその機能を必要としない場合にこれを蓋部材との接続に使う。
ダミー端子は、熱伝導部材と接続されることによって蓋部材10とIC部品とを熱的に接続する以外の格別の用途は有さない熱伝導専用の端子である。
熱伝導部材15は、図示したように蓋部材とIC部品との間に介在する絶縁基板の肉厚内部に配設してもよいし、熱伝導部材の一部を絶縁基板の外部(凹所内壁を含む)に露出させた状態で配設してもよい。
図1に示すように絶縁容器4の上端面には蓋部材10を溶接するための金属製の封止材としてシームリング8などの金属封着体が形成されており、絶縁容器の製造時には熱伝導部材15の一端部はこのシームリング8と接触(溶接)した状態となっている。蓋部材をシームリングと溶着する際に熱伝導部材の一端部は蓋部材と接続固定される。熱伝導部材15の中間部は絶縁容器の肉厚内部、或いは外面に沿って配設され、その他端部は下部凹所11の内底面に延びて熱的にニュートラルなIC部品の端子36と固定される外部パッド12と接続される。
このような構成であれば蓋部材から端子36までの間が金属にて連結されるので熱伝導率の高い構造になる。
水晶発振器1の起動時にIC部品30に搭載された温度センサー40により取得される温度データを水晶振動素子20の温度に近づけて周波数ドリフト特性を向上させるためには、熱伝導部材15によってIC部品に伝達する熱量を可能な限り大きくすることが有効である。そのためには、熱伝導部材の直径を大きくすることが効果的であるが、絶縁基板の板厚との関係で直径の増大には限界があるため、熱伝導部材の本数を増やすことが現実的には有効である。熱伝導部材の本数を増やす場合には、絶縁基板の面方向(板厚方向と直交する方向)に熱伝導部材を配列することになる。
複数本の熱伝導部材を設けた場合、基本となる熱伝導部材の適所に他の熱伝導の他端部を接続してIC部品と接続される端部を一本化してもよいし、各熱伝導部材の各接続端部をIC部品に対して個別に接続してもよい。
次に、図3は本発明の他の実施形態に係る水晶発振器の断面図であり、図1と同一部材には同一符号を付して説明する。また、図4はこの水晶発振器の回路構成を示す図である。
この実施形態に係る水晶発振器1が図1の実施形態と異なる点は、熱伝導部材15の他端部を接続するニュートラルな端子をIC部品30の外面に露出配置した温度センサー端子45とした点にある。
図4中に示したように、温度センサー端子45は温度センサー(サーミスタ)40と電気的に接続された端子、例えば温度センサーの温度情報出力用の端子であり、これをIC部品の外面に露出することによって熱伝導部材15の他端部と熱的に接続できるようにしている。温度センサー端子45は好適にはマザーボードMBとは導通接続されない端子であり、さらに温度センサー40とシリコン基板上の金属配線を介して接続されているので、蓋部材10と接続することにより蓋部材からの熱が温度センサー40に伝達され易くなり、温度センサーが圧電振動素子の温度を検知する感度を高めることができる。
上記図1、2にて説明した実施形態以外にも水晶発振器1が搭載されるマザーボードMBと熱的、及び電気的に結合していないニュートラルな端子、すなわち好適にはマザーボードMBとの実装端子と電気的に導通していない端子であれば、熱伝導部材を介して蓋部材10と接続することができる。
或いは、熱伝導部材15の他端部の面積を広くして、IC部品の外面(端子形成部以外の面)と広い面積で接触するように構成して、蓋部材からIC部品に伝導される熱量を増やすようにしてもよい。
次に、図5は本発明の水晶発振器の温度調整を行う場合の装置構成を示す断面図である。
温度調整に際しては、ペルチェ素子等の加熱手段によって加熱されたステージ50の平坦な面上に蓋部材10の外面を面接触させた状態で水晶発振器1を載置し、絶縁容器4の底面に配置された外部端子にプローブ52を当接させて発振器を作動させつつ温度調整を行う。
熱伝導部材15を備えていない従来の水晶発振器に対してこの温度調整装置により温度調整作業を行う場合には、外部端子に接触させたプローブ52によって絶縁容器の熱が奪われるため、IC部品30の温度と水晶振動素子20の温度との間にずれが発生する。即ち、従来の水晶発振器にあっては、IC部品30は下部凹所11の底面に搭載されているため、IC部品内の温度センサーは下部凹所の底面の温度を検知することとなる。このため、プローブによって下部凹所底面の温度が奪われることによって、上部凹所3内に収容された水晶振動素子20とIC部品との間に無視しがたい程度の温度差が発生し、正確な温度調整ができなくなる。
これに対して上記各実施形態に係る本発明の水晶発振器の温度調整を行う場合にあっては、IC部品に搭載された温度センサーは、下部凹所の底面ではなくステージ50と接触した蓋部材10そのものの温度を検知することとなるため、水晶振動素子20とIC部品30との温度差をより少なくして温度調整の精度を高めることが可能となる。
特に、図3の実施形態に係る水晶発振器にあっては、温度センサー端子45を蓋部材10と直結しているため、蓋部材の温度をより直接的に測定できることとなり、両者の温度差を少なくしてより高精度な調整が可能となる。
このように本発明によれば、温度センサーが検知する温度は水晶振動素子の温度をほぼ忠実に反映しており、水晶振動素子とIC部品(少なくとも温度センサー)とが同じ温度に基づいて動作をすることとなる。
次に、図6は本発明の他の実施形態に係る水晶発振器(圧電発振器)の構成を示す縦断面図である。なお、図1と同一部分には同一符号を付して説明する。
この水晶発振器1を構成する絶縁容器(絶縁基板)4は、内部に水晶振動素子(圧電振動素子)20を収容すると共に上部開口を蓋部材10によって封止される素子収容凹所3を備えたパッケージ部と、パッケージ部から外部(本例では側方)へ張り出し且つ上面にIC部品搭載用パッド(外部パッド)71を備えたIC部品搭載部70と、を備えている。
そして水晶発振器1は、素子収容凹所3内に水晶振動素子20を収容した状態で蓋部材10にて封止した構成の水晶振動子60と、発振回路、温度補償回路、及び温度センサーを含んだIC部品30をIC部品搭載用パッド71上に金属バンプ接続または半田接続した構成である。
本実施形態の特徴的な構成は、絶縁容器(パッケージ部)4の内部、或いは外面に配設された熱伝導部材15を介してIC部品30と蓋部材10とを熱的に接続することによって、IC部品の温度を蓋部材に近い水晶振動素子20の温度と均一化させた点にある。
具体的には上述の実施形態と同様であり、熱伝導部材15をメタライズとすることでIC部品30の端子36と蓋部材10との間を金属製の熱伝導路にて繋いだ構造である。
熱伝導部材15は、その一端部を蓋部材10と接続する一方で、他端部は熱伝導部材15のIC部品外面のどの部位に接触させてもよいが、温度センサー端子や、IC部品における温度センサーに近い部位に接触させるのが好ましい。具体的には、例えばIC部品の外面に設けた端子のうち、この水晶発振器1が搭載されるマザーボードMBと電気的に結合していない端子(ニュートラルな端子)36と金バンプなどの金属製接続媒体を介して機械的且つ熱的に接続固定される。これによって、温度センサーには、マザーボードMBから伝達される蓋部材10以外の部材の熱(温度)よりも蓋部材からの熱の方が伝わり易い構造になる。したがって、水晶振動素子と同等の熱的条件の下に温度センサーが温度を検知し、この温度データに基づいて温度補償回路を作動させて周波数を高精度に制御することができる。
熱的にニュートラルな端子36としては、例えば、IC部品の外面に露出して配置された調整用端子、温度センサー端子、NC(ノンコネクト)端子、ダミー端子、温度センサー端子を例示することができ、これらのうちの少なくとも一つの端子と熱伝導部材の他端部とを接続することにより、水晶振動素子とIC部品との間の温度差を解消することが可能となる。このため、周波数ドリフト特性を高めることができる。
次に、図7は本発明の他の実施形態に係る水晶振動子(圧電振動子)の構成を示す縦断面図であり、図8はその圧電振動子を用いて構成した水晶発振器(圧電発振器)の回路構成図である。図1の実施形態と同一部分には同一符号を付して説明する。
水晶振動子Aは、断面H型のパッケージ2、パッケージ2の上面に設けた上部凹所3内に収容された水晶振動素子(圧電振動素子)20、上部凹所3を気密封止する金属製の蓋部材10、及びパッケージ2の外底面(下部凹所11)に搭載されたサーミスタ等の電子部品としての温度センサー(感温素子)80を備えた温度センサー付き水晶振動子(圧電振動子)である。
水晶発振器1は、水晶振動子Aと、IC部品(発振回路、温度補償回路)とを外部装置(例えば、図9に示すような携帯電話機、GPSモジュール等の電子機器)B側のマザーボードMB上に搭載され、電子機器に内蔵される。
温度センサー付き水晶振動子Aは、これを購入したユーザーが外部装置B内のマザーボードMB上に搭載することによって、マザーボードMB上の発振回路、温度補償回路(IC部品85)との組合せによって水晶発振器が完成される。
パッケージ2は、上面に上部凹所3を有したセラミック等からなる絶縁容器(絶縁基板)4と、上部凹所3内に配置されて水晶振動素子20の各励振電極と電気的に接続される2つの内部パッド(素子搭載パッド)5と、絶縁容器4の外底面上に配置した複数の実装端子6と、温度センサー80を搭載するために絶縁容器の外底面(下部凹所11)内に配置された外部パッド(温度センサー搭載パッド)12と、各実装端子6と各内部パッド5と外部パッド12との間を導通する図示しない接続導体と、上部凹所3内に設けた2つの内部パッド5に水晶振動素子(圧電振動素子)20上の2つの励振電極を夫々電気的に接続した状態で上部凹所3を気密封止する金属製(例えば、コバール製)の蓋部材10と、蓋部材と温度センサー80との間を熱伝導可能に接続し、且つセラミックから成る絶縁基板材料よりも熱伝導率が高い熱伝導部材15と、を備えている。
外部装置Bに搭載されたIC部品85は、発振回路86と、温度補償回路87と、A/Dコンバータ88等を含んでいる。水晶振動子A側に搭載された温度センサー80の出力(温度情報)は、A/Dコンバータ88によってデジタル信号化されて温度補償回路87に入力され、温度補償回路87はこの温度情報に基づいて生成した周波数制御情報を発振回路86に出力する。発振回路86は、この温度制御情報に基づいて温度補償周波数情報を生成して出力する。
本実施形態においては、水晶振動子A側に搭載された温度センサー80を、熱伝導部材15を介して水晶振動素子20の直近位置にある蓋部材10と熱的に接続しているため、温度センサーによって直接水晶振動素子の温度を検知しているのとほぼ同等の感度を得ることが可能となる。
また増幅回路などの発熱要素を備えた発振回路86や電源、温度補償回路87などを備えた回路部分を水晶振動素子と遠ざけて配置することが可能であるので、温度センサー80はより水晶振動素子の温度を正確に検知することができる。
またニュートラルな端子として、実装端子に導通しない構成のものを説明したが、例えば、ニュートラルな端子と実装端子との間に配線が接続されていた場合であっても、ニュートラルな端子と蓋部材との間を接続する熱導伝導性部材である配線の方の経路がより多く存在する、近いなどの構成によって熱伝導特性に優れるような場合であれば、本発明の効果を期待することができるが、十分な効果を得るには上述の実施形態のようにニュートラルな端子を実装端子に導通させない構成とすることが望ましい。
以上の構成を備えた各実施形態に係る発明は次のような効果を奏する。
即ち、温度補償機能付きの水晶発振器にあっては、温度センサーによって検知された水晶振動素子についての誤った温度データ信号(電圧値)にもとづいて周波数が補正されると、水晶発振器に電圧を印加した時点での発振周波数と、電圧を印加してから一定時間が経過した時点での発振周波数との周波数変動差を示す周波数ドリフト特性が悪くなるといった問題があった。
本発明では、パッケージの気密空間内に収容された水晶振動素子に最も近い位置にある蓋部材と温度センサー(温度センサーを搭載したIC部品)とを熱伝導性の良好な熱伝導部材によって熱的に接続するようにしたので、温度センサーが誤った温度データを出力することがなくなり、周波数ドリフト特性を良好化することができる。
なお、上記実施形態では絶縁基板4として上面側に上部凹所3を備えた絶縁容器を例示したが、上面が平坦な絶縁基板4上に水晶振動素子20を導電性接着剤により搭載し、この水晶振動素子を含む絶縁基板上の空間を逆椀状の金属蓋(蓋部材)によって気密封止するように構成してもよい。
上記実施形態では、圧電発振器の代表例として水晶発振器を例示したが、本発明は圧電材料から成る圧電振動素子を使用した発振器一般や、角速度センサーなど圧電振動素子を物理量センサーとした圧電デバイスにも適用することができる。
1…表面実装型圧電発振器、2…パッケージ、3…上部凹所、4…絶縁基板(絶縁容器)、5…素子搭載パッド、6…実装端子、7…導電性接着剤、8…シームリング、9…接続導体、10…蓋部材、11…下部凹所、12…IC部品搭載用パッド(外部パッド)、15…熱伝導部材、20…水晶振動素子、25…水晶振動子、30…IC部品、31…発振回路、33…温度補償回路、33…発振回路、35…Dコンバータ、36…ニュートラル端子、40…温度センサー、42…温度センサー端子、45…温度センサー端子、50…ステージ、52…プローブ、60…水晶振動子、70…IC部品搭載部、71…IC部品搭載用パッド(外部パッド)、80…温度センサー、85…IC部品、86…発振回路、87…温度補償回路、88…A/Dコンバータ

Claims (6)

  1. 圧電振動素子と、
    温度センサーと、
    第1面と、前記第1面の裏側である第2面と、前記第1面を底面とする第1凹所及び前記第2面を底面とする第2凹所を区画構成している肉厚部と、前記第1凹所に配置された前記圧電振動素子が搭載されている素子搭載パッドと、前記第2凹所に配置された前記温度センサーが搭載されている半田で覆われた温度センサー搭載パッドと、を備えた絶縁基板と、
    前記第1凹所が開口する側の前記肉厚部の端面に配置された金属封着体と、
    前記金属封着体と接合され、前記第1凹所を封止している金属製の蓋部材と、
    前記絶縁基板に配線されている金属製の熱伝導部材と、
    を備え、
    前記熱伝導部材は、前記温度センサー搭載パッドから、前記絶縁基板の内部または内壁を通って、前記金属封着体まで伸びており、前記温度センサーと前記蓋部材が熱的に接続されていることを特徴とする圧電デバイス。
  2. 前記温度センサーは、サーミスタであることを特徴とする請求項1に記載の圧電デバイス。
  3. 前記熱伝導部材は、前記肉厚部の内部、または前記厚肉部が前記第1凹所に臨む内壁を通っていることを特徴とする請求項1または2に記載の圧電デバイス。
  4. 前記肉厚部は貫通穴を備え、前記内部は前記貫通穴内であることを特徴とする請求項3に記載の圧電デバイス。
  5. 前記熱伝導部材は、複数の配線に分かれた構成を含んでいることを特徴とする請求項1乃至4の何れか一項に記載の圧電デバイス。
  6. 請求項1乃至5の何れか一項に記載の圧電デバイスを内蔵したことを特徴とする電子機器。
JP2014084265A 2014-04-16 2014-04-16 圧電デバイス及び電子機器 Active JP5924365B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084265A JP5924365B2 (ja) 2014-04-16 2014-04-16 圧電デバイス及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084265A JP5924365B2 (ja) 2014-04-16 2014-04-16 圧電デバイス及び電子機器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011054014A Division JP5747574B2 (ja) 2011-03-11 2011-03-11 圧電デバイス及び電子機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016022874A Division JP6288118B2 (ja) 2016-02-09 2016-02-09 電子機器

Publications (2)

Publication Number Publication Date
JP2014168250A true JP2014168250A (ja) 2014-09-11
JP5924365B2 JP5924365B2 (ja) 2016-05-25

Family

ID=51617689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084265A Active JP5924365B2 (ja) 2014-04-16 2014-04-16 圧電デバイス及び電子機器

Country Status (1)

Country Link
JP (1) JP5924365B2 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215908A (ja) * 1992-11-30 1994-08-05 Mitsubishi Materials Corp チップ型サーミスタ及びその製造方法
JP2000138339A (ja) * 1998-10-30 2000-05-16 Kyocera Corp 電子部品
JP2000151283A (ja) * 1998-08-31 2000-05-30 Kyocera Corp 表面実装型水晶発振器
JP2002271142A (ja) * 2001-03-13 2002-09-20 Nippon Dempa Kogyo Co Ltd 表面実装型の水晶発振器及びその製造方法
JP2002359103A (ja) * 2001-05-31 2002-12-13 Mitsubishi Materials Corp チップ型サーミスタ
JP2006191517A (ja) * 2004-12-07 2006-07-20 Seiko Epson Corp 温度補償型圧電発振器
JP2007096882A (ja) * 2005-09-29 2007-04-12 Kyocera Kinseki Corp 圧電発振器
JP2007096881A (ja) * 2005-09-29 2007-04-12 Kyocera Kinseki Corp 圧電発振器
JP2008205938A (ja) * 2007-02-21 2008-09-04 Nippon Dempa Kogyo Co Ltd 表面実装用の水晶振動子
JP2009005117A (ja) * 2007-06-22 2009-01-08 Daishinku Corp 表面実装型圧電振動デバイス
JP2009200817A (ja) * 2008-02-21 2009-09-03 Nippon Dempa Kogyo Co Ltd 恒温型の水晶発振器
JP2010119031A (ja) * 2008-11-14 2010-05-27 Nippon Dempa Kogyo Co Ltd 恒温型の水晶発振器
JP2010135995A (ja) * 2008-12-03 2010-06-17 Nippon Dempa Kogyo Co Ltd 表面実装水晶発振器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215908A (ja) * 1992-11-30 1994-08-05 Mitsubishi Materials Corp チップ型サーミスタ及びその製造方法
JP2000151283A (ja) * 1998-08-31 2000-05-30 Kyocera Corp 表面実装型水晶発振器
JP2000138339A (ja) * 1998-10-30 2000-05-16 Kyocera Corp 電子部品
JP2002271142A (ja) * 2001-03-13 2002-09-20 Nippon Dempa Kogyo Co Ltd 表面実装型の水晶発振器及びその製造方法
JP2002359103A (ja) * 2001-05-31 2002-12-13 Mitsubishi Materials Corp チップ型サーミスタ
JP2006191517A (ja) * 2004-12-07 2006-07-20 Seiko Epson Corp 温度補償型圧電発振器
JP2007096882A (ja) * 2005-09-29 2007-04-12 Kyocera Kinseki Corp 圧電発振器
JP2007096881A (ja) * 2005-09-29 2007-04-12 Kyocera Kinseki Corp 圧電発振器
JP2008205938A (ja) * 2007-02-21 2008-09-04 Nippon Dempa Kogyo Co Ltd 表面実装用の水晶振動子
JP2009005117A (ja) * 2007-06-22 2009-01-08 Daishinku Corp 表面実装型圧電振動デバイス
JP2009200817A (ja) * 2008-02-21 2009-09-03 Nippon Dempa Kogyo Co Ltd 恒温型の水晶発振器
JP2010119031A (ja) * 2008-11-14 2010-05-27 Nippon Dempa Kogyo Co Ltd 恒温型の水晶発振器
JP2010135995A (ja) * 2008-12-03 2010-06-17 Nippon Dempa Kogyo Co Ltd 表面実装水晶発振器

Also Published As

Publication number Publication date
JP5924365B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5747574B2 (ja) 圧電デバイス及び電子機器
JP2013102315A (ja) 圧電デバイス、及び電子機器
JP2010119031A (ja) 恒温型の水晶発振器
JP6175242B2 (ja) 圧電デバイス
JP2010035078A (ja) 圧電発振器
JP6288118B2 (ja) 電子機器
JP6610641B2 (ja) 電子機器
JP2008263564A (ja) 温度補償型圧電発振器
JP2016103758A (ja) 圧電デバイス
JP5924365B2 (ja) 圧電デバイス及び電子機器
JP2016103757A (ja) 圧電デバイス
JP2010035077A (ja) 圧電発振器
JP2003258554A (ja) 温度補償型圧電発振器
JP5468240B2 (ja) 表面実装用とした温度補償水晶発振器
JP2003224425A (ja) 温度補償型圧電発振器
JP2007180604A (ja) 圧電発振器
JP2008035175A (ja) 圧電発振器
JP2011055145A (ja) 電子デバイス
JP2013098687A (ja) 振動デバイス、及び電子機器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5924365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150