JP2014162984A - 高強度冷延鋼板の製造方法 - Google Patents

高強度冷延鋼板の製造方法 Download PDF

Info

Publication number
JP2014162984A
JP2014162984A JP2013038141A JP2013038141A JP2014162984A JP 2014162984 A JP2014162984 A JP 2014162984A JP 2013038141 A JP2013038141 A JP 2013038141A JP 2013038141 A JP2013038141 A JP 2013038141A JP 2014162984 A JP2014162984 A JP 2014162984A
Authority
JP
Japan
Prior art keywords
steel sheet
pickling
chemical conversion
steel plate
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013038141A
Other languages
English (en)
Other versions
JP5637230B2 (ja
JP2014162984A5 (ja
Inventor
Shoichiro Taira
章一郎 平
Wataru Tanimoto
亘 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013038141A priority Critical patent/JP5637230B2/ja
Priority to EP14757038.6A priority patent/EP2963157B1/en
Priority to PCT/JP2014/001020 priority patent/WO2014132637A1/ja
Priority to US14/770,498 priority patent/US20160002807A1/en
Publication of JP2014162984A publication Critical patent/JP2014162984A/ja
Publication of JP2014162984A5 publication Critical patent/JP2014162984A5/ja
Application granted granted Critical
Publication of JP5637230B2 publication Critical patent/JP5637230B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

【課題】化成処理性および塗装後耐食性に優れた、Siを強化元素として含有する冷延鋼板の製造方法を提供する。
【解決手段】0.5〜2.0質量%のSiを含有する高強度冷延鋼板の製造方法として、鋼板を非酸化性雰囲気で加熱焼鈍した後、酸洗により鋼板を0.5g/m以上2.0g/m未満溶解させる酸洗工程と、酸洗後の鋼板表面に対して、付着量が500〜5000mg/mになる条件で亜鉛を電気めっきする電気めっき工程と、を有する高強度冷延鋼板の製造方法を採用する。
【選択図】なし

Description

本発明は、化成処理性および塗装後耐食性に優れた高強度冷延鋼板の製造方法に関するものである。
近年、地球温暖化対策として、自動車からのCO排出量を減らすために、車体の軽量化をいかに行うかが自動車メーカーにとって課題となっている。車体の軽量化に対しては、使用する鋼板の薄肉化が最も有効であるが、鋼板の強度が同じままで板厚だけを薄くすると、鋼板の剛性が減少し、今度は衝突時などの乗員の安全性を確保できなくなる。このため、板厚を薄くし、その分で減った剛性を鋼の高強度化により補った、高強度冷延鋼板を車体材料として採用する動きが徐々に高まっている。至近では引張強度1180MPaクラスの高強度冷延鋼板においてもボディ用途に使用する動きが活発になってきている。
鋼板を高強度化するには、SiやMnなどの合金元素を添加して固溶強化したり結晶粒を微細化したりする方法や、Nb、Ti、Vなどの析出物形成元素を添加して析出強化する方法、マルテンサイト相などの硬質な変態組織を生成させて強化する方法などが有効である。
一般に合金元素の添加による高強度化は、一方で延性の低下を招くため、部品の形状をつくるプレス成形がしにくいという欠点があるが、Siは他の元素と比較して延性低下の影響が小さいことから、延性を確保しつつ高強度化を図る際には有効な元素である。このため、加工性と高強度化を両立した鋼板にはSiの添加がほぼ必須と言ってよい。
しかしながら、Siは酸化物の平衡酸素分圧が非常に低く、一般の冷延鋼板の製造で使用される連続焼鈍炉内の還元性雰囲気においても容易に酸化されることから、Siを含有した鋼板を連続焼鈍炉に通板すると、Siが鋼板表面で選択酸化されSiOが形成される。このように表面にSiOが形成された鋼板を塗装前の化成処理に供すると、このSiOが化成処理液と鋼板の反応を阻害するため、化成処理により形成される化成結晶がSiOが存在する箇所で形成されない所謂スケと呼ばれる部分が鋼板表面に存在する。このように化成処理後にスケが存在する鋼板は、化成処理後の水洗段階で既に錆が見られることがあり、また仮に錆にまで至らなかったとしても、電着塗装後の鋼板の耐食性が非常に悪いことから、Siを含有する高強度冷延鋼板をボディ用途に使用することは非常に困難である。
このようなSiを含有する高強度冷延鋼板の化成処理性を改善する方法としては、従来から多くの提案がある。例えば、特許文献1には、原子比[Si/Mn]が1以下の酸化物を表面に形成した冷延鋼板と、その製造方法として、鋼板成分の[Si/Mn]比、焼鈍温度と、雰囲気の水素と水分の分圧比をパラメータとして規定したものが提案されている。しかし、この方法では、鋼板成分のSi量が増加するにつれて、焼鈍温度を低下させる必要がある。所望の強度や延びを得るために高温焼鈍が必要な場合には、雰囲気の水分比を上げることで達成できるが、このようにすると鋼板表面にはFe系酸化物が形成されるため、製品として成立しない。すなわち、現在の高強度冷延鋼板の主流である1.0%程度のSiを含有する鋼板に対しては適用できない技術である。
特許文献2には、Si:0.05〜2%、かつ[Si]/[Mn]≦0.4の鋼板に対して、鋼板表面のSi−Mn複合酸化物のサイズと単位面積あたりの個数、かつSiを主体とする酸化物の鋼板表面被覆率を規定した高強度冷延鋼板が提案されている。また、特許文献3には、Si:0.1〜1%、かつ[Si]/[Mn]≦0.4の鋼板に対して、鋼板表面のMn−Si複合酸化物の[Mn/Si]比とサイズと単位面積あたりの個数、かつSiを主体とする酸化物の鋼板表面被覆率を規定した高強度冷延鋼板が提案されている。さらに、特許文献4には、Si:0.1〜2%、かつ[Si]/[Mn]≦0.4の鋼板に対して、鋼板表面のMn−Si複合酸化物の[Mn/Si]比とサイズと単位面積あたりの個数、かつSiを主体とする酸化物の鋼板表面被覆率を規定した高強度冷延鋼板が提案されている。これらは、最大2%のSiを含有する鋼板に対してまで成立し、その製法例としては、熱間圧延後の酸洗条件や連続焼鈍時の露点を−40℃以下に抑えることを提示している。これらの方法は前提としてSi/Mn比を満足する鋼板であることが必要であり、鋼板成分の自由度が少ない欠点がある。また、連続焼鈍時の露点を−40℃以下とすることは現実の製造ラインの露点変動を考えるとかなり制御が困難であるため、量産には適さない技術である。
特許文献5には、Si:0.4%以上、かつ[Si]/[Mn]≧0.4の鋼板に対して、鋼板表面のSi基酸化物の表面被覆率を規定した冷延鋼板と、焼鈍後に酸洗を施す製造方法が提案されている。また、特許文献6には、Siを0.5質量%以上含有する鋼板に対して、焼鈍後に鋼板表面を2.0g/m以上研削する技術が提案されている。さらに、特許文献7には、Si:0.5〜2.0%含有する鋼板を焼鈍した後に、pH0〜4、温度10〜100℃の酸性溶液で5〜150秒間処理し、かつpH10〜14、温度10〜100℃のアルカリ溶液で2〜50秒間処理を行う技術が提案されている。これらは、いずれも焼鈍後の表面に形成された酸化物層を除去する技術に関する。特許文献5の例では、Si基酸化物を除去するために高濃度の酸を使用する必要がある。この場合、鉄地の不働態皮膜の形成を促進するため、この文献に記載の方法が必ずしも化成処理性の向上に繋がらない可能性がある。また、特許文献6や7では、ライン内に、研削のセクション、もしくは酸性溶液処理からアルカリ溶液処理を行うセクションを設ける必要があり、設備の長大化やコストの増加を招き、現実的ではない。
さらに特許文献8には、鋼板表面に付着量が10〜2000mg/mの亜鉛めっき皮膜を有し、かつ所定の結晶配向性を持たせることで、耐型かじり性と化成処理性を両立する技術が提案されている。この技術は、主に耐型かじり性を改善するためになされたものであり、化成処理性については、わずかな亜鉛付着量においても亜鉛の付着部と鋼板露出部との間でミクロセルが形成され、化成処理反応が活発になると示唆している。しかし、鋼板のSi濃度が高い場合などは、かなりの鋼板表面がSiO酸化物で覆われており、この部分が鋼板露出部であった場合には、必ずしもミクロセルを形成するとはいえない。
特開平04−276060号公報 特許第3934604号公報 特開2005−290440号公報 特許第3889768号公報 特開2004−323969号公報 特開2003−226920号公報 特開2007−009269号公報 特開2006−299351号公報
このように、延性を低下させずに高強度を図る目的でSiを添加した冷延鋼板の場合、化成処理性を満足する技術は未だ十分とは言えず、高強度冷延鋼板の自動車車体への適用を阻害しているのが現状である。
本発明は、Siを強化元素として含有する高強度冷延鋼板において、上記のような問題点を解決し、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法を提供することを目的とする。
本発明者らは、SiOが鋼板表面に形成されると、この部分でFeが溶解しないために化成結晶が形成しにくいことに着目し、なんらかの方法で溶解反応を生じさせることが化成結晶形成に結びつくと考えた。そこで、一般的な化成皮膜(化成結晶から構成される皮膜)の一種であるリン酸亜鉛皮膜に着目し、冷延鋼板表面に化成皮膜を形成するだけの薄いZnを付与することで、化成処理後にリン酸亜鉛被膜を形成できると考え、種々の検討を実施した。
その結果、鋼板表面に形成されるSiOの中には、膜状でかつ比較的広い面積で存在するものがあり、このSiO膜の上にはZnが析出できないため、化成皮膜を形成する効果が得られないことが分かった。また、このような表面でのSiO分布の異なる鋼板に対して、Zn付着量を変化させることだけでは化成皮膜形成を促進することができないことも明らかになった。
そこで、本発明者らは、さらに検討を進めたところ、焼鈍後の鋼板に対して0.5g/m以上の減量となるように酸洗を施した後に、さらに電気亜鉛めっきを施すことによって、あらゆる高Si系冷延鋼板に対して化成皮膜を緻密かつ均一に形成できることを見出した。具体的には本発明は以下のものを提供する。
(1) 0.5〜2.0質量%のSiを含有する高強度冷延鋼板の製造方法であって、鋼板を非酸化性雰囲気で加熱焼鈍した後、酸洗により鋼板を0.5g/m以上2.0g/m未満溶解させる焼鈍酸洗工程と、酸洗後の鋼板表面に対して、付着量が100〜5000mg/mになる条件で亜鉛を電気めっきする電気めっき工程と、を有することを特徴とする、高強度冷延鋼板の製造方法。
(2)前記非酸化性雰囲気が、窒素と水素の混合ガスを導入することによって得られるものであり、前記非酸化性雰囲気中の水素の含有量が10vol%以下であり、前記加熱焼鈍は、加熱温度が900℃以下であることを特徴とする(1)に記載の高強度冷延鋼板の製造方法。
(3)さらに、前記電気めっき工程後の鋼板を、0.001g/L以上の濃度のP含有水溶液に、温度が30℃以上の範囲で接触させる水溶液接触工程を有することを特徴とする(1)または(2)に記載の高強度冷延鋼板の製造方法。
本発明によれば、延性を下げることなく鋼の高強度化が可能であるため、高強度冷延鋼板の加工性を維持できる。また塗装下地の化成処理においても化成皮膜が緻密かつ均一に形成されるため、物性と化成処理性を両立した高強度冷延鋼板を得ることができる。さらに、化成処理後に塗装した場合にも高強度冷延鋼板は塗装後耐食性に優れる。
以下、本発明を詳細に説明する。なお、本発明は以下の実施形態に限定されない。
本発明は、0.5〜2.0質量%のSiを含有する高強度冷延鋼板の製造方法であり、焼鈍酸洗工程と、電気めっき工程を有する。
焼鈍酸洗工程とは、鋼板を非酸化性雰囲気で加熱焼鈍した後、酸洗により鋼板を0.5g/m以上2.0g/m以下溶解させる工程である。また、電気めっき工程とは、酸洗後の鋼板表面に対して、付着量が100〜5000mg/mになる条件で亜鉛を電気めっきする工程である。
先ず、加熱焼鈍される対象となる鋼板について説明する。なお、本明細書において、成分組成、濃度における「%」表示は、特に断らない限り「質量%」を意味する。
本発明の鋼板は、Siを0.5〜2.0%含有する。Siを含有することで、比較的成形性を損なわずに固溶強化により鋼を強化することができる。Siの含有量を0.5%以上にすることで十分に高い強度が得られる。Siの含有量を2.0%以下にすることで延性の劣化が小さく、冷間圧延時の生産効率の低下を防ぐことができる。
本発明ではSi以外の元素については特に限定しないが、本発明で用いる鋼板は、以下の元素を以下の範囲で含有することが好ましい。
本発明で用いる鋼板は、Cを0.05〜0.25%以下含むことが好ましい。Cは鋼の組織強化に必要な残留オーステナイト、ベイナイト、マルテンサイトなどの生成に有効な元素だからである。所望の組織を得るためにCを適宜添加する必要が生じた場合は、0.05%以上含有させることが好ましい。しかし、Cの含有量が0.25%を超えると溶接性の劣化を招く場合があるので、Cの含有量は0.25%以下に制限することが好ましい。より好ましいCの含有量は0.05〜0.10%以下である。
本発明で用いる鋼板はMnを0.5〜3.0%含有することが好ましい。Mnを含有することで、固溶強化により鋼を強化できるとともに、鋼の焼入性を向上させ、残留オーステナイト、ベイナイト、マルテンサイトの生成を促進させることができる。所望の組織を得るためにMnを適宜添加する必要が生じた場合は、Mnの含有量を0.5%以上含有させることが好ましい。しかし、このような作用は、3.0%を超えるとその効果が飽和し、コストの上昇を招くので、Mnの含有量は3.0%以下に制限することが好ましい。より好ましいMnの含有量は1.6〜2.6%である。
本発明で用いる鋼板はPを0.005〜0.05%含有することが好ましい。Pは固溶強化元素であり、通常、高強度冷延鋼板を得るのに有効な元素である。Pは0.005%以上含有させることが好ましいが、0.05%を超えるとスポット溶接性を低下させる場合がある。より好ましいPの含有量は0.02〜0.03%である。
本発明で用いる鋼板はSの含有量が0.005%以下であるものが好ましい。Sは鋼中にMnSとして析出され、この析出物は鋼板の伸びフランジ性を低下させる。より好ましいSの含有量は0.0020%以下である。
本発明で用いる鋼板はAlを0.005〜0.06%含有することが好ましい。Alは製鋼段階での脱酸剤として添加される元素であり、伸びフランジ性を低下させる非金属介在物をスラグとして分離するのに有効な元素である。この効果を得るためにはAlの含有量を0.005%以上にすることが好ましい。Alの含有量が0.06%を超えるとコストの上昇を招く。より好ましいAlの含有量は0.007〜0.040である。
上記成分以外の残部はFe及び不可避的不純物であることが好ましい。ここで不可避的不純物の例はO、N等である。O、Nは鋼材を溶製する段階で不可避的に混入する代表的な不可避的不純物である。特にNは素材鋼板の成形性を劣化させるので、可能な限り製鋼工程で除去、低減することが望ましい。しかしながら、Nを必要以上に低減すると精錬コストが上昇するので、Nの含有量は実質的に無害となる0.01%以下とすることが好ましい。より好ましいNの含有量は0.0040%以下である。
上記の鋼板の製造方法は特に限定されないが、例えば、上記成分組成を有する溶鋼から製造することができる。より具体的には、先ず、化学成分範囲に調整された溶鋼から、連続鋳造または造塊でスラブを製造する。次いで、得られたスラブを冷却後再加熱するか、あるいはそのまま熱間圧延を行う。次いで、得られた熱延板を冷却し巻取り、酸洗し、冷間圧延し、所望の板厚の鋼板とする。なお、熱間圧延から冷間圧延までは、条件を特に限定することなく、通常の方法を用いることができる。
焼鈍酸洗工程では、上記鋼板を非酸化性雰囲気で加熱焼鈍し、その後、酸洗により鋼板を0.5g/m以上溶解させる。以下、焼鈍酸洗工程について説明する。
ここでいう非酸化性雰囲気とは、実質的に鋼板の主成分であるFeが酸化物を形成しない雰囲気であることを言う。また、通常の焼鈍工程では窒素などの不活性ガスを使用するため、雰囲気中の酸素濃度自体を制御することはないが、使用するガスの露点が高いとFeが酸化する雰囲気になるため、露点は0℃以下であることとする。一方、下限については特に限界はないが、−50℃より低くなると水分量の制御に特殊な設備が必要になるため、ここでは下限を−50℃とする。
なお、本発明における非酸化性雰囲気とは、単純にFeが酸化しないだけでなく、冷間圧延までの工程で形成されている薄い表面酸化膜(Fe主体)を還元する働きも必要になるため、水素を含有する窒素ガスであることが必要である。なお、必要な水素の割合は、0.1〜10vol%までの範囲であり、これを下回ると薄い表面酸化膜の還元が十分でなくなる一方、これを超えても表面酸化膜の還元に対する効果は変わらないためである。
なお、雰囲気ガスの露点は特に限定されず、一般的な範囲に設定すればよく、−50〜0℃の範囲で設定すればよい。雰囲気ガスの露点はFeの酸化が抑えられる範囲で適宜調整すればよい。
加熱焼鈍を行う際の加熱方式、加熱条件は特に限定されないが、加熱温度は900℃以下であることが好ましい。また、焼鈍により鋼板を充分に加熱する観点からは、加熱温度を700℃以上にすることが好ましい。より好ましい加熱温度は800〜850℃である。
加熱焼鈍の際の加熱時間(昇温時間と最高鋼板到達温度に達した後の保持時間の合計)は特に限定されないが、後述する膜状の酸化物の面積比率を制御しやすい観点から4分以下であることが好ましい。また、焼鈍により鋼板を充分加熱する観点から加熱時間は10秒以上であることが好ましい。
また、化成処理性を向上させるためには、焼鈍後の鋼板表面に存在する膜状の酸化物の後述する面積率を制御することが好ましく、加熱温度及び加熱時間が上記範囲にあれば、鋼板表面の酸化物の面積率を許容範囲内に抑えやすい。
加熱焼鈍後に鋼板の冷却を行う。この冷却での冷却速度、冷却停止温度は特に限定されず、一般的な条件を採用可能である。例えば、冷却速度であれば5〜150℃/秒の範囲が一般的であり、冷却停止温度であれば300〜500℃の範囲が一般的である。
この非酸化性雰囲気中での加熱焼鈍により、鋼板成分のうち易酸化性元素が、鋼板表面に酸化物として濃化する現象が生じる。この酸化物の代表的なものに、SiO、MnOやSi−Mn系複合酸化物がある。
これらの酸化物が鋼板表面に存在する部分では、化成処理液が鋼板をエッチングし化成結晶を析出する反応が阻害され、鋼板表面では部分的に化成結晶が形成されない部分、いわゆるスケが発生し、化成処理性に劣るものとなる。特に、表面濃化した酸化物が膜状に比較的広い面積で鋼板上に存在する場合、この化成処理性低下の問題は大きくなる。
本発明では、加熱焼鈍後の下記酸洗により鋼板の化成処理性を改善する。具体的には鋼板を0.5g/m以上溶解させる酸洗を行う。鋼板を0.5g/m以上溶解させることで、鋼板表面の化成処理性を改善する。特に、本発明によれば、焼鈍時に、膜状に表面濃化が発生した鋼板に対しても、化成皮膜を形成できる。
本発明において上記のような効果を奏するのは以下のメカニズムによるものと考えられる。SiやMnなどの易酸化性元素を比較的多く含有する鋼板を焼鈍すると、表面にはある分布を持って酸化物が濃化する。この表面濃化した酸化物には、比較的小さな粒状で分布するものと、やや広い膜状で分布するものがある。電気めっきにより亜鉛めっきを付与した際には、膜状に分布する酸化物の上には亜鉛が析出されない。これは、表面濃化する酸化物は一般的に絶縁物であり、局部的に電気を通すことのできない部分が存在するためである。このような部分では、鋼板が化成処理液と接触した際に、Feの溶解が生じないだけでなく、付与した亜鉛もほとんど存在しない。その結果、化成処理液による溶解反応が生じないことから、化成皮膜を形成することができない。ここで、ある一定量の減量となる酸洗を焼鈍板に対して施すと、鋼板表面のFe成分が溶解する反応が生じ、表面に濃化した酸化物はそのまま溶解せずに残るが、膜状に分布する酸化物の下側でFe成分が優先的に溶解し、空隙を形成することが考えられる。この鋼板に対して亜鉛を電気めっきすると、膜状の酸化物が存在しない部分では鋼板表面に亜鉛が析出するが、膜状の酸化物が存在する部分では、鋼板と酸化物の界面に形成された空隙に、亜鉛めっきが析出する。さらに亜鉛めっきを付与した鋼板に対して化成処理を施すと、膜状の酸化物直下の空隙に形成された亜鉛めっきに対しても、処理液による溶解反応が生じ、この空隙部分のZnを起点として化成結晶が析出することで、均一かつ緻密な化成皮膜を形成することができると考えられる。
焼鈍後の酸洗は、従来から行われている。例えば、上記特許文献でも焼鈍後に酸洗を行うことが記載されている。例えば、特許文献2〜4には、主にSi系酸化物よりもSi−Mn系酸化物を多く形成させ、このSi−Mn系酸化物が可溶性であることを利用した技術が記載されており、これを補助する目的で焼鈍後の酸洗を行う場合がある。この特許文献2〜4における酸洗の目的は上記の通りであり、鋼板表面の溶解まで想定していないからで0.5g/m以上溶解する酸洗ではないといえる。
また、特許文献5〜7では主にSi酸化物を除去するために強力な酸洗を行うことが記載されており、特許文献5及び6では酸洗においてSi酸化物を除去するためには2g/m以上の鋼板減少量となる酸洗が必要である。特許文献7には、酸及びアルカリでの処理によりSi系酸化物を除去することが記載されており、2g/m以上の鋼板減量となる酸洗が必要である。また、特許文献5〜7では鋼板表面にSi系酸化物のない状態であることから、本発明での鋼板表面の構造とは異なっている。一方、特許文献8にも、電気亜鉛めっきに先立って、酸またはアルカリを用いた前処理が記載されているが、これは、あくまで洗浄・活性化を目的にしたものである。洗浄や活性化を目的とした酸洗の場合、積極的に鋼板表面を溶解させる必要は無く、通常、酸洗による酸洗減量は0.1g/m程度である。
このように、従来には、本発明のような、酸洗により化成処理性を改善する技術は存在しない。
このような過去の技術とは異なる十分な酸洗を施すことが本発明では重要であり、酸洗減量として0.5g/m以上が必要となる。これは0.5g/m未満の酸洗減量では、部分的に空隙を作ることはできるものの不十分であり、前述した効果が得られないためである。化成皮膜を形成する観点からの酸洗減量の上限はないが、極端に多い酸洗減量は、化成処理性を悪化させ、また、設備の長大化や処理の長時間化を招き実用的ではないため、2.0g/m未満の酸洗減量である。
酸洗に使用する酸性液の種類は特に限定されず、硝酸、フッ化水素酸、塩酸、硫酸等の使用が好ましい。この中では作業の安全性等の観点から硫酸の使用が好ましい。また、酸性液の酸濃度は特に限定されず、例えば5質量%以上20質量%以下の範囲から適宜設定すればよい。
酸洗の方法は特に限定されず、一般的な方法を採用可能であるが、本発明においては酸洗減量制御の容易さの観点から、電解酸洗により酸洗する方法が好ましい。通電の際の電流密度を一定として通電時間を変更したり、通電時間を一定として電流密度を変更したりする等して、酸洗減量を調整できる。
上記のような酸洗処理の後、以下の電気めっき工程を行うことで高強度冷延鋼板の化成処理性が向上する。本発明では、酸洗後の鋼板表面に対して、付着量が100〜5000mg/mになる条件で亜鉛を電気めっきする。本発明では鋼板表面に付与した亜鉛めっきが化成結晶の形成を促進する働きをするため、緻密かつ均一な化成皮膜を形成するのに十分なZn量が鋼板表面に存在している必要がある。この観点から下限のZn付着量は100mg/mとなる。一方、Zn付着量が多くなっても化成処理性の観点では問題ないが、冷延鋼板自身の化成性改善の目的のみではZn付着量増加はコストアップにつながるため、付着量の上限は5000mg/mとする。
本発明においては、電気めっき工程により上記の付着量でZnめっきを鋼板表面に形成できればよく、電気めっき工程における条件は特に限定されない。
通常、電気亜鉛めっきは、亜鉛イオンを所定量含有する酸性のめっき液で満たされた亜鉛めっき浴中で、陰極としての鋼板及び不溶性陽極を用いて、めっき液を循環させながら電解することで鋼板表面に亜鉛めっきを形成する方法である。めっき液中のZnイオンの濃度、めっき浴中の酸性成分の種類、めっき浴のpHや温度、めっき液を循環させる際の流速、電解を行う際の電流密度は、所望の付着量で亜鉛めっきを鋼板表面に形成できるのであれば特に限定されない。
付着量の調整は、例えば、通電時間を一定として電流密度を変化させたり、電流密度を一定として通電時間を変化させたりすることにより行える。
また、本発明においては前述したように、膜状のSi酸化物と鋼板の間に存在する空隙にZnが析出していることが特徴であるが、この空隙部の全体面積に対する比率についても制御することは有効である。ここで、本発明で規定しているZnの下限付着量は、鋼板表面全体を被覆可能なZn量であるが、本発明のように非導電物質のSi系酸化物が存在し、かつ鋼板との界面に空隙が存在すると、析出すべきZnはこの空隙に形成されるため、トータルとして鋼板表面全体をZnが被覆することになる。しかしながら、Si系酸化物が鋼板表面の大半を占め、かつその鋼板との界面に空隙が存在したとしても、その隙間には十分なZnを析出させることが困難であるため、この空隙部の比率は40%以下にすることが望ましい。一方、この比率を測定することは困難であるが、Zn付着量が本発明の規定範囲内にあることを前提にして、電子線マイクロアナライザー(EPMA)などの手法により鋼板表面からZnの分布を分析し、表面に検出されないZnの面積割合を計算することで求めることができる。また、この面積割合を制御するためには、焼鈍後の鋼板表面に存在する膜状のSi系酸化物の面積率を制御すればよい。
表面にSiOの膜が形成されている部分は、電気が通らないためZn層は形成されないが、鋼板とSiOとの隙間がある場合には、この隙間にZn層が形成される。したがって、隙間と鋼板表面に付着するZnを合わせて被覆率100%になる。本発明においては、鋼板表面にZnが一定以上付着することが好ましい。具体的には、被覆率100%中の表面に付着するZnの面積割合が60%以上、隙間に付着するZnの面積割合(上記の空隙部の比率)が40%以下であることが好ましい。
本発明の製造方法で製造された高強度冷延鋼板は、化成処理性に優れる。前述した工程に加え、さらに高強度冷延鋼板をリン含有水溶液(P含有水溶液)に接触させるP含有水溶液接触工程を行うことが好ましい。なお、本発明において化成処理後の高強度冷延鋼板も、本発明の製造方法で得られた高強度冷延鋼板に含まれる。
先ず、本発明の方法で得られる高強度冷延鋼板を用いた化成処理では、アルカリ脱脂工程→表面調整工程→りん酸亜鉛処理工程が一般的である。ここで、前述したようなP含有水溶液接触工程を加えることで、亜鉛めっき表面に微量なPが付着し、これによりアルカリ脱脂液の劣化などを考えた場合でも十分に脱脂が可能である。このメカニズムについては推定を含んでいるが、以下のように考えられる。電気亜鉛めっき浴として一般的な硫酸亜鉛浴を使用すると硫酸根がZnめっき皮膜中に取り込まれ、この硫酸根が油との親和性を高めるために、脱脂が困難になると考えられる。これに対して、Pを含有する水溶液を鋼板に接触させると、表面に存在する硫酸根が洗い流されることと、さらにPが微量に付着することで油との親和性を低くするため、脱脂性が向上すると考えられる。
P含有水溶液接触工程において、鋼板に接触させる水溶液のP濃度は特に限定されないが、0.001g/L以上が好ましく、0.001〜10g/Lの範囲にあると特に有効である。これは、0.001g/L未満であると、硫酸根の洗浄効果が小さく、かつPの表面への付着が十分でないためであり、逆に10g/Lを超えても効果に大きな差は認められないため上限は10g/Lとする。また、P含有水溶液の温度は特に限定されないが、30℃以上であることが好ましく、30〜80℃の範囲で処理すると有効である。30℃以上であるとP含有水溶液接触工程を行うことによる効果が充分に得られる。上限については、効果の有無の観点では存在しないが、実ライン操業での昇温の観点からは80℃以下であることが現実的である。また60℃を超えると効果は十分であるが、加熱するための設備が余計に必要など経済上適切でないため上限を60℃とすることがより好ましい。
P含有水溶液を接触させる方法については浸漬方式やスプレー方式など採用することができ、この方法は特に限定されない。また、スプレー方式を採用した場合のスプレー圧やノズル径、ノズルから鋼板の距離などは、水溶液が鋼板に接触するだけの十分な条件が満たされていればよく、この条件についても特に限定されない。
一般的な化成処理におけるアルカリ脱脂工程とは、鋼板に塗布された防錆油や、自動車ボディ外板のプレス成形時には頻繁に使用されるプレス洗浄油などを除去する。亜鉛めっきを施した鋼板をそのままアルカリ脱脂液に浸漬させても、油等の除去が難しくなる場合がある。特に、自動車メーカーの塗装ラインなどで次々と流れてくる何台もの車体に対してアルカリ脱脂をする場合、アルカリ脱脂液に油が混入したりアルカリ脱脂液が劣化したりする問題が考えられるため、場合により十分に脱脂が施されず以降のリン酸塩処理に悪影響を及ぼすことがある。本発明において、P含有水溶液による処理を行えば、上記のようなアルカリ脱脂液の劣化の問題が生じても化成処理に及ぼす悪影響を小さくできる。
また、アルカリ脱脂液としては、例えばオルトケイ酸ナトリウム、メタケイ酸ナトリウム、1号ケイ酸ナトリウム、2号ケイ酸ナトリウムなどのケイ酸塩、第一リン酸ナトリウム、第二リン酸ナトリウム、第三リン酸ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウムなどのリン酸塩、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、ホウ酸ナトリウム、亜硫酸ナトリウムなどのアルカリ、ノニオン系、アニオン系、カチオン系の界面活性剤の中から選ばれる少なくとも1種を含むpH9〜14の液を挙げることができる。
アルカリ脱脂工程の後に行う表面調整工程により、この後に行う化成処理により形成される皮膜(リン酸塩結晶から構成される皮膜)をより均一に付着させることができる。表面調整処理としては、チタンコロイド含有水性液、リン酸亜鉛コロイド含有水性液等への浸漬処理等が挙げられる。
その後、リン酸亜鉛処理工程を行う。このリン酸亜鉛処理工程が化成皮膜を形成するための工程である。
リン酸亜鉛処理の方法は特に限定しないが、リン酸亜鉛を含有する化成処理液に鋼板を浸漬する方法、化成処理液をスプレー、コーター等によるコーティングする方法などが挙げられる。
化成処理により形成されるリン酸塩結晶は、フォスフォフィライト(ZnFe(PO・4HO)であるが、本発明ではリン酸塩結晶がホパイト(Zn(PO・4HO)も多く析出する。従来、P比(X線回折により化成処理後の鋼板を分析し、フォスフォフィライトの強度をP、ホパイトの強度をHとした時のP/(P+H)の値)が高いほど塗装後耐食性に優れていることが知られていたが、近年では化成処理薬剤や電着塗料の改善が急速に進んでいるため、塗装後の性能に及ぼすP比の影響が問題になることはない。
これまで、主として高Si系高強度冷延鋼板の化成処理性改善の観点から本発明の効果について述べてきたが、鋼板表面における亜鉛の存在により、塗装後耐食性の向上も認められる。このため、本発明は、冷延鋼板に対する化成処理性と塗装後耐食性の双方を確保する技術である。
塗装に使用される塗料の種類は特に限定されず、用途等に応じて適宜選択可能である。また、塗料の塗装方法も特に限定されず、塗装方法としては電着塗装、ロールコーター塗装、カーテンフロー塗装、スプレー塗装等が挙げられる。また、塗料を乾燥させるために、熱風乾燥、赤外線加熱、誘導加熱等の手段を用いることができる。
このようにして得られた塗装後の鋼板も、本発明の製造方法で製造される高強度冷延鋼板に含まれる。
表1に示した成分組成を有するA〜Dの鋼を常法の製綱プロセスで溶製し、連続鋳造してスラブとし、次いで、このスラブを1250℃に再加熱後、仕上げ圧延終了温度を850℃、巻き取り温度を600℃とする熱間圧延を施し、板厚3.0mmの熱延板とした。この熱延板を、酸洗後、板厚1.5mmまで冷間圧延し供試材とした。この供試材を、ラボの還元加熱シミュレータを使用して水素を10vol%含有した窒素雰囲気中で800〜850℃の範囲の加熱処理を行い、焼鈍板を作製した。
焼鈍した鋼板は、100g/Lの硫酸水溶液を使用して、ステンレス板をカソードに用いた電解酸洗に供した。この際、電流密度は10A/dmと一定にし、通電時間により酸洗減量を変化させた。
酸洗が施された鋼板は、硫酸亜鉛七水和物:1mol/Lを含有し、硫酸によりpH2.0に調整した水溶液を用いて、アノードにイリジウムオキサイド板を使用して電気めっきを施し、表面に亜鉛めっきを付着させた。亜鉛めっきにおける亜鉛の付着量は、電流密度と通電時間を変えることで変化させた。また、亜鉛めっきの後には、P含有水溶液接触工程を行った。
このようにして作製した冷延鋼板に対して、加速電圧:5kVでX線マイクロアナライザー(EPMA)分析に供し、Znのマッピング分析結果からZnが検出されない存在比率(Zn面積率)を画像処理により計算した。また、化成処理性の良否を判定するために、次のような化成処理を実施した。
まず、市販のアルカリ脱脂液(日本パーカライジング社製、ファインクリーナーFC−E2001)を所定濃度で建浴した場合と、劣化した場合を想定して所定濃度の2倍に希釈した場合で、鋼板を2分間浸漬し、水洗後の鋼板の水濡れ率を評価した。水濡れ率が80%以上のものを○、80%に満たないものを△、50%以下のものを×とし、脱脂性の指標とした。本発明では水濡れ率80%以上にあるものを良好とする。
次に、所定濃度で建浴した脱脂液で脱脂した冷延鋼板を、表面調整液(日本パーカライジング社製、PL−ZTH)に浸漬し、その後、リン酸塩処理液(日本パーカライジング社製、パルボンドPB−L3080)に、浴温:43℃、処理時間:120秒の条件で浸漬し化成処理を行った。化成処理後の鋼板表面をSEMを用いて倍率300倍で10視野観察し、化成結晶が生成していない領域(スケ)の有無と大きさ、および結晶状態の不均一さにより、以下の5段階で評価した(化成評点)。なお、ここで微小なスケとは直径10μmの円程度の大きさである。
5点:スケは認められず、また結晶も均一である。
4点:わずかに結晶の不均一も認められるがスケは認められない。
3点:微小なスケが認められる。
2点:比較的大きなスケが認められる。
1点:比較的大きなスケが多数認められる。
さらに、市販のED塗装(関西ペイント製、GT−10)を塗膜厚:20μmにて実施したものに対して、NTカッターでクロスカットを入れた後、温塩水(5%NaCl、50℃)に10日間浸漬した。浸漬後のサンプルはポリエステルテープでクロスカット部を覆い剥離作業を行った後に、カットからの片側の最大剥離幅(温塩水浸漬片側剥離幅)を測定した。表2〜4に試験結果を示す。
Figure 2014162984
Figure 2014162984
Figure 2014162984
Figure 2014162984
表1より、いずれの鋼板もSiを多く含んでいるものである。また、表2より焼鈍を施したのみで、焼鈍酸洗工程、電気めっき工程を行わず化成処理を行った例(比較例1〜4)では、化成処理皮膜にスケが多く見られる判定である。また、塗装鋼板の温塩水浸漬後の剥離幅も大きい値になっている。
また、焼鈍を行っただけの鋼板に、本発明で規定した付着量範囲の亜鉛めっきを行ったものの、本発明で規定した酸洗を施していない例(比較例5〜8)、酸洗を施していてもその酸洗減量が本発明で規定した範囲内にない例(比較例9〜12)においては、化成処理皮膜状態に対する判定も温塩水浸漬後の剥離幅もほとんど改善が認められない。
これに対して、焼鈍後の鋼板に酸洗を施し、さらに本発明で規定した付着量範囲の亜鉛めっきを行った例(本発明例1〜4)では、化成処理皮膜状態に対してスケなく均一であり、また温塩水浸漬後の剥離幅も小さく安定していることが分かる。
一方で、焼鈍後の鋼板に対して十分な酸洗を行っても、本発明で規定した付着量範囲より少ない亜鉛めっきを施した例(比較例13〜16)では、化成処理皮膜の状態に対する改善は小さく、温塩水浸漬後の剥離幅も大きいままである。
酸洗減量と亜鉛めっき付着量を本発明範囲内で満足した例(本発明例5〜20)では、いずれの特性も十分に満足していることが分かる。
また、本発明例21〜24は、焼鈍での加熱時間を通常考えられるものより長くすることで表面状態を変化させたものであるが、これらと他の発明例とを比較すると、本発明で規定した酸洗減量や亜鉛めっき付着量の範囲であるにも関わらず、化成皮膜ならびに温塩水浸漬後の剥離幅も大きいままであることから、付着量とともに表面でのZnが分布する面積率をも考慮に入れる必要があることが分かる。
この他に、酸洗減量を変化させた例(本発明例25〜32)や、焼鈍時の水素濃度を変化させた例(本発明例33〜44)でも化成皮膜状態や温塩水浸漬時の剥離幅に改善は認められるが、特に水素濃度が非常に低い場合(本発明例41〜44)には、酸洗が十分でないと表面の酸化膜が強固でZnめっきを施すことが困難であり、酸洗減量をその他の条件よりも多くする必要があった。すなわち、現実的には雰囲気中の水素濃度を0.1%以上にしておくことが望ましいことを示唆している。
また、電気めっき後の鋼板をP含有水溶液に接触させない例(本発明例45)あるいは接触させたとしてもそのP濃度が低い例(本発明例46)では、建浴したままの脱脂液では十分な脱脂性が得られるものの、実際の塗装ラインでの劣化状態を模擬した希釈液では脱脂後に水はじきが発生していた。また、同様に、P濃度は高くても処理液温度が低い例(本発明例50)でも、希釈脱脂液では十分な脱脂性が得られなかった。これに対して、P濃度および処理液温度が本発明範囲内にある例(本発明例47〜49、51〜52)では、希釈脱脂液においても十分な脱脂性が得られた。
本発明により、合金元素を多く含む高張力冷延鋼板においても塗装前の化成処理性が良好であり、かつ塗装後の耐食性も良好になることから、自動車ボディ用途として適用できる。

Claims (3)

  1. 0.5〜2.0質量%のSiを含有する高強度冷延鋼板の製造方法であって、
    鋼板を非酸化性雰囲気で加熱焼鈍した後、酸洗により鋼板を0.5g/m以上2.0g/m未満溶解させる酸洗工程と、
    酸洗後の鋼板表面に対して、付着量が500〜5000mg/mになる条件で亜鉛を電気めっきする電気めっき工程と、を有することを特徴とする、高強度冷延鋼板の製造方法。
  2. 前記非酸化性雰囲気が、窒素と水素の混合ガスを導入することによって得られるものであり、
    前記非酸化性雰囲気中の水素の含有量が10vol%以下であり、
    前記加熱焼鈍は、加熱温度が900℃以下であることを特徴とする請求項1に記載の高強度冷延鋼板の製造方法。
  3. さらに、前記電気めっき工程後の鋼板を、0.001g/L以上の濃度のP含有水溶液に、温度が30℃以上の範囲で接触させる水溶液接触工程を有することを特徴とする請求項1または2のいずれか1項に記載の高強度冷延鋼板の製造方法。
JP2013038141A 2013-02-28 2013-02-28 高強度冷延鋼板の製造方法 Active JP5637230B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013038141A JP5637230B2 (ja) 2013-02-28 2013-02-28 高強度冷延鋼板の製造方法
EP14757038.6A EP2963157B1 (en) 2013-02-28 2014-02-26 Process for producing high-strength cold-rolled steel sheet
PCT/JP2014/001020 WO2014132637A1 (ja) 2013-02-28 2014-02-26 高強度冷延鋼板の製造方法
US14/770,498 US20160002807A1 (en) 2013-02-28 2014-02-26 Process of manufacturing high-strength cold rolled steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038141A JP5637230B2 (ja) 2013-02-28 2013-02-28 高強度冷延鋼板の製造方法

Publications (3)

Publication Number Publication Date
JP2014162984A true JP2014162984A (ja) 2014-09-08
JP2014162984A5 JP2014162984A5 (ja) 2014-10-16
JP5637230B2 JP5637230B2 (ja) 2014-12-10

Family

ID=51427914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038141A Active JP5637230B2 (ja) 2013-02-28 2013-02-28 高強度冷延鋼板の製造方法

Country Status (4)

Country Link
US (1) US20160002807A1 (ja)
EP (1) EP2963157B1 (ja)
JP (1) JP5637230B2 (ja)
WO (1) WO2014132637A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093048A (ko) * 2018-01-17 2020-08-04 제이에프이 스틸 가부시키가이샤 고강도 합금화 전기 아연 도금 강판 및 그 제조 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696692B2 (ja) * 2016-09-20 2020-05-20 株式会社東芝 電極、非水電解質電池、電池パック及び車両
US10968532B2 (en) * 2016-11-30 2021-04-06 H&H Research & Development, Llc Method for electrolytic cleaning of aluminum
CN111876784B (zh) * 2020-07-31 2022-02-22 西安热工研究院有限公司 一种应用于scal型间冷系统的缓蚀剂及其加药方法
CN115404475B (zh) * 2021-05-28 2023-09-12 宝山钢铁股份有限公司 一种具有优良可磷化性能的钢板酸洗工艺

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276060A (ja) 1991-02-28 1992-10-01 Sumitomo Metal Ind Ltd 冷延鋼板及びその製造方法
JPH07331483A (ja) * 1994-06-06 1995-12-19 Kobe Steel Ltd 電気亜鉛めっき鋼板の製造方法
JPH08104995A (ja) * 1994-10-06 1996-04-23 Kawasaki Steel Corp 外観の優れた電気亜鉛めっき鋼板の製造方法
JP2003226920A (ja) 2002-02-06 2003-08-15 Kobe Steel Ltd りん酸塩被膜処理性に優れた高Si含有高張力鋼板の製造方法
JP4319559B2 (ja) 2003-04-10 2009-08-26 株式会社神戸製鋼所 化成処理性に優れる高強度冷延鋼板
JP3934604B2 (ja) 2003-12-25 2007-06-20 株式会社神戸製鋼所 塗膜密着性に優れた高強度冷延鋼板
JP4698971B2 (ja) 2004-03-31 2011-06-08 株式会社神戸製鋼所 塗膜密着性と加工性に優れた高強度冷延鋼板
JP3889768B2 (ja) 2005-03-31 2007-03-07 株式会社神戸製鋼所 塗膜密着性と延性に優れた高強度冷延鋼板および自動車用鋼部品
JP2006299351A (ja) 2005-04-21 2006-11-02 Jfe Steel Kk 耐型かじり性および化成処理性に優れた鋼板
JP4655782B2 (ja) 2005-06-30 2011-03-23 Jfeスチール株式会社 高延性で、化成処理性に優れる780MPa以上の引張強度を有する超高強度冷延鋼板の製造方法
JP5853683B2 (ja) * 2011-01-25 2016-02-09 Jfeスチール株式会社 化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法
JP2013127093A (ja) * 2011-12-19 2013-06-27 Jfe Steel Corp リン酸塩処理性に優れた高強度鋼板の製造方法
CN104204309A (zh) * 2012-04-13 2014-12-10 新日铁住金株式会社 电镀用钢板和电镀钢板以及它们的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093048A (ko) * 2018-01-17 2020-08-04 제이에프이 스틸 가부시키가이샤 고강도 합금화 전기 아연 도금 강판 및 그 제조 방법
KR102561381B1 (ko) 2018-01-17 2023-07-28 제이에프이 스틸 가부시키가이샤 고강도 합금화 전기 아연 도금 강판 및 그 제조 방법

Also Published As

Publication number Publication date
EP2963157A1 (en) 2016-01-06
EP2963157B1 (en) 2018-11-28
JP5637230B2 (ja) 2014-12-10
EP2963157A4 (en) 2016-03-16
US20160002807A1 (en) 2016-01-07
WO2014132637A1 (ja) 2014-09-04

Similar Documents

Publication Publication Date Title
EP1439240B2 (en) Method for hot-press forming a plated steel product
KR101716728B1 (ko) 고강도 강판 및 그의 제조 방법 그리고 고강도 용융 아연 도금 강판 및 그의 제조 방법
KR101668638B1 (ko) 합금화 용융 아연 도금 강판
JP5853683B2 (ja) 化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法
JP5020526B2 (ja) 耐食性、加工性、塗装性に優れた合金化溶融亜鉛メッキ鋼板およびその製造方法
JP5637230B2 (ja) 高強度冷延鋼板の製造方法
JP2017186663A (ja) ホットスタンプ用合金化溶融亜鉛めっき鋼板
JPWO2015022778A1 (ja) 高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5817770B2 (ja) 化成処理性および塗装後耐食性に優れ、かつ摺動性も良好な高強度冷延鋼板の製造方法
JP2014005489A (ja) プレス成形性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法
JP2008266685A (ja) 外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法
JP7247946B2 (ja) 溶融亜鉛めっき鋼板及びその製造方法
JP5928437B2 (ja) 化成処理性および塗装後耐食性に優れた高強度冷延鋼板の製造方法
KR20220156925A (ko) Al 도금 핫 스탬프 강재
JP5655717B2 (ja) プレス成形性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法
JP5907106B2 (ja) 亜鉛めっき冷延鋼板
JP7283643B2 (ja) Fe系皮膜付き素材冷延鋼板、Fe系皮膜付き素材冷延鋼板の製造方法、Fe系皮膜付き冷延鋼板の製造方法、溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板の製造方法
KR101978014B1 (ko) 고강도 강판 및 고강도 용융 아연 도금 강판 그리고 그것들의 제조 방법
US11866828B2 (en) Plated steel sheet for hot stamping
WO2021193038A1 (ja) Fe系皮膜付き素材冷延鋼板、Fe系皮膜付き素材冷延鋼板の製造方法、Fe系皮膜付き冷延鋼板の製造方法、溶融亜鉛めっき鋼板の製造方法、および合金化溶融亜鉛めっき鋼板の製造方法
JP2016176101A (ja) プレス成形用表面処理鋼板およびプレス成形品
JP2004269947A (ja) 加工性に優れた高強度高延性溶融亜鉛めっき鋼板とその製造方法
KR20130131871A (ko) 젖음성 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그의 제조방법
JP2018090878A (ja) 熱間プレス成形用鋼板および熱間プレス成形品、ならびに熱間プレス成形品の製造方法
JP2005248236A (ja) 純亜鉛層を有する合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140813

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140813

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5637230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250