JP2014152934A - 熱交換体の表面処理方法及び熱交換体の表面処理装置 - Google Patents

熱交換体の表面処理方法及び熱交換体の表面処理装置 Download PDF

Info

Publication number
JP2014152934A
JP2014152934A JP2013019848A JP2013019848A JP2014152934A JP 2014152934 A JP2014152934 A JP 2014152934A JP 2013019848 A JP2013019848 A JP 2013019848A JP 2013019848 A JP2013019848 A JP 2013019848A JP 2014152934 A JP2014152934 A JP 2014152934A
Authority
JP
Japan
Prior art keywords
heat exchanger
porous resin
surface treatment
coating liquid
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013019848A
Other languages
English (en)
Other versions
JP5888703B2 (ja
Inventor
Yoshinori Yamamoto
義則 山本
Yasuhiro Yoshida
育弘 吉田
Osamu Hiroi
治 廣井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013019848A priority Critical patent/JP5888703B2/ja
Publication of JP2014152934A publication Critical patent/JP2014152934A/ja
Application granted granted Critical
Publication of JP5888703B2 publication Critical patent/JP5888703B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】簡易な装置により、優れた外観特性及び防汚特性を有する防汚コーティング膜を、熱交換体表面にムラなく均一に形成することができる熱交換体の表面処理方法及び熱交換体の表面処理装置を得る。
【解決手段】伝熱管(11)及び金属製フィン(12)を備えた熱交換体(1)にコーティング膜を形成するための熱交換体の表面処理方法において、熱交換体にコーティング液(4)を供給する上側多孔質樹脂(2)を熱交換体の上側端面に接触させるとともに、熱交換体内のコーティング液の余剰分を吸収する下側多孔質樹脂(3)を熱交換体の下側端面に接触させて、コーティング液を熱交換体に塗布する塗布工程と、上側多孔質樹脂を熱交換体の上側端面から取り除くとともに、下側多孔質樹脂を熱交換体の下側端面に接触させた状態を維持して熱交換体内のコーティング液を液切りする液切工程とを有する。
【選択図】図1

Description

本発明は、簡易な装置により、優れた外観特性及び防汚特性を有する防汚コーティング膜を、熱交換体表面にムラなく均一に形成することができる熱交換体の表面処理方法及び熱交換体の表面処理装置に関するものである。
車両及び施設に設置される空調機等の熱交換体のうち、特に、溶接や切断等の金属の加工現場、金属粉塵を扱う事業所等の各種建築物、及び、自動車、鉄道等の車両や関連施設等の、汚れや菌に晒される環境で使用される熱交換体においては、メンテナンスの負荷を軽減するための、熱交換体の汚れや菌の付着を防止する防汚コーティングが有効である。
このような、防汚コーティングのためのコーティング液としては、親水性、疎水性の両方の付与が求められるため、水性溶媒比が高いものが用いられる。
しかしながら、熱交換体を構成する伝熱管及び金属製フィンは、一般に、形状及び構造が複雑である。したがって、熱交換体に防汚コーティング膜をムラなく均一に形成するためには、コーティング液を塗り残しがないように、狭い伝熱管及び金属フィンの隙間に回り込ませるように供給する塗布工程と、コーティング液の成分を適切に残して吸収する液切工程及び乾燥工程が重要となる。
上記の課題を解決するための従来技術としては、遠心分離機を用いて液切工程を行うことにより、処理液の濃度を一定に保ってコーティング膜の厚さを均一化し、品質を向上させる方法がある(例えば、特許文献1参照)。
特許文献1では、被処理物をハンガーに吊り下げ、ハンガー着脱コンベアを用いて主コンベアから副コンベアへと移送し、遠心分離機を用いて前工程で付着した余分な液の液切りを行っている。この結果、被処理物を副コンベアから主コンベアへと復帰させて次の処理を行う際に、前工程での余分な付着液が次工程に持ち込まれることを防止している。
また、別の従来技術として、熱交換体組立て体を、遠心分離機の回転バスケット内に、チューブ長さ方向を半径線方向に一致させる態様によって配置した上で、遠心分離を行うことにより、保有した液を十分にムラなく能率的に液切りさせる方法がある(例えば、特許文献2参照)。
更に、別の従来技術として、浸漬による親水性処理中に熱交換体を上下に揺動するとともに、熱交換体を薬液槽から引き上げてエアブローによる液切れ処理を行うまでの間に、熱交換体を空中で上下に揺動することにより、コーティング液を十分にムラなく塗布及び液切りさせる方法がある(例えば、特許文献3参照)。
特開平6−10150号公報 特開平6−297140号公報 特開2005−321166号公報
しかしながら、従来技術には、以下のような課題がある。
上記のような従来の遠心分離機を用いる方法、或いは上下に振動させる方法では、熱交換体が大型で、形状及び構造が複雑な場合には、十分に液切れさせることが困難であった。
この結果、コーティング液の余剰分が堆積したままの状態でコーティング膜が形成され、膜ムラや凹凸が生じて不均一な膜が形成されてしまうという課題があった。また、設備が大掛かりになってしまうというコスト上の課題があった。
本発明は、上記のような課題を解決するためになされたものであり、簡易な装置により、優れた外観特性及び防汚特性を有する防汚コーティング膜を、熱交換体表面にムラなく均一に形成することができる熱交換体の表面処理方法及び熱交換体の表面処理装置を得ることを目的とする。
本発明に係る熱交換体の表面処理方法は、伝熱管及び金属製フィンを備えた熱交換体にコーティング膜を形成するための熱交換体の表面処理方法において、熱交換体にコーティング液を供給する上側多孔質樹脂を熱交換体の上側端面に接触させるとともに、熱交換体内のコーティング液の余剰分を吸収する下側多孔質樹脂を熱交換体の下側端面に接触させて、コーティング液を熱交換体に塗布する塗布工程と、上側多孔質樹脂を熱交換体の上側端面から取り除くとともに、下側多孔質樹脂を熱交換体の下側端面に接触させた状態を維持して熱交換体内のコーティング液を液切りする液切工程とを有するものである。
本発明に係る熱交換体の表面処理装置は、伝熱管及び金属製フィンを備えた熱交換体にコーティング膜を形成するための熱交換体の表面処理装置であって、熱交換体の上側端面に接触させてコーティング液を熱交換体に供給する上側多孔質樹脂と、熱交換体の下側端面に接触させて上側多孔質樹脂から熱交換体に供給されたコーティング液の余剰分を吸収するとともに、上側多孔質樹脂を取り除いた後に熱交換体の下側端面に接触させた状態を維持することで熱交換体内のコーティング液を液切りする下側多孔質樹脂とを備えるものである。
本発明によれば、熱交換体表面に防汚コーティング膜を形成する際に、熱交換体にコーティング液を供給する上側多孔質樹脂を熱交換体の上側端面に接触させるとともに、熱交換体内のコーティング液の余剰分を吸収する下側多孔質樹脂を熱交換体の下側端面に接触させてコーティング液を熱交換体に塗布する塗布工程と、上側多孔質樹脂を熱交換体の上側端面から取り除くとともに、下側多孔質樹脂を熱交換体の下側端面に接触させた状態を維持して熱交換体内のコーティング液を液切りする液切工程とを有することにより、簡易な装置により、優れた外観特性及び防汚特性を有する防汚コーティング膜を、熱交換体の表面にムラなく均一に形成することができる熱交換体の表面処理方法及び熱交換体の表面処理装置を得ることができる。
本発明の実施の形態1における、コーティング液の塗布工程の概略を示す説明図である。 本発明の実施の形態1における、コーティング液の液切工程の概略を示す説明図である。 本発明の実施の形態1における、熱交換体の表面処理方法のフローチャートである。 本発明の実施の形態2における、コーティング液の乾燥工程の概略を示す説明図である。 本発明の実施の形態2における、複数の領域に塗り分けられて形成されたコーティング膜の例示図である。 本発明の実施の形態2における、熱交換体の表面処理方法のフローチャートである。
以下、本発明における、熱交換体の表面処理方法及び熱交換体の表面処理装置の好適な実施の形態について図面を用いて説明する。なお、各図において同一、または相当する部分については、同一符号を付して説明する。
実施の形態1.
図1は、本発明の実施の形態1における、コーティング液の塗布工程の概略を示す説明図である。図1に示す熱交換体1の表面処理装置は、上側多孔質樹脂2及び下側多孔質樹脂3を備えて構成される。このとき、熱交換体1に塗布されるコーティング液4は、上側多孔質樹脂2から供給され、熱交換体1内のコーティング液4の余剰分は、下側多孔質樹脂3によって吸収される。
また、本発明の実施の形態1における熱交換体の表面処理方法及び熱交換体の表面処理装置の適用対象となる熱交換体1は、伝熱管11及び金属製フィン12を備えて構成される。
ここで、伝熱管11は、熱交換体1と熱源との間で冷媒を循環させるためのものである。また、金属製フィン12は、冷媒の熱を放出させるためのものであり、通常は、放熱効率を高めるために、金属製のフィン(放熱板)を一定の間隔で積み重ねた配列構造となっている。
なお、伝熱管11及び金属製フィン12は、熱伝導性が高い銅製またはアルミ製であることが好ましい。以下の説明では、銅製の伝熱管11及びアルミ製の金属製フィン12を仮定するが、本発明の適用対象となる伝熱管11及び金属製フィン12は、銅製及びアルミ製に限定されるものではない。例えば、熱伝導率の高い他の金属、合金、及びセラミック部材を用いることもできる。
先に述べたように、熱交換体1に防汚コーティング膜をムラなく均一に形成するためには、コーティング液4を塗り残しがないように、狭い伝熱管11及び金属製フィン12の隙間に回り込ませるように供給する塗布工程と、コーティング液4の成分を適切に残して吸収乾燥する液切工程及び乾燥工程が重要となる。
例えば、熱交換体1の表面にコーティング膜を形成させる際に、伝熱管11周辺にコーティング液4の余剰分が堆積したままの状態でエアブローにより乾燥されると、膜ムラや凹凸が生じて不均一な膜が形成される。特に、車冷用など多数の伝熱管11が連なる大型の熱交換体1のコーティングでは、このコーティング液4の余剰分が生じやすい。
そこで、本実施の形態1における熱交換体の表面処理方法では、図1に示すように、熱交換体1の上下端面に、それぞれ上側多孔質樹脂2及び下側多孔質樹脂3を接触させることにより、熱交換体1に対するコーティング液4の塗布工程を実施する。
具体的には、予めコーティング液4で飽和状態にした上側多孔質樹脂2を、熱交換体1の上側端面に接触させ、飽和したコーティング液4を、金属製フィン12表面を伝って拡散させることにより、熱交換体1の表面にコーティング液4を塗り残しがないように塗布する。
このとき、上側多孔質樹脂2に接触している金属製フィン12は、高い親水性を有するため、コーティング液4が金属製フィン12の上方側から下方側へと均一に塗布される。この結果、コーティング液4の未塗布部分の発生や塗布ムラの抑制が実現できる。
なお、コーティング液4は、予め上側多孔質樹脂2に飽和状態にしておく代わりに、上側多孔質樹脂2を熱交換体1に接触させた後に散布してもよい。この場合でも同等の効果が得られる。
更に、塗布時間を短縮するためには、上側多孔質樹脂2の全面を一定の圧力で押圧してもよい。但し、上側多孔質樹脂2の全面に接触して一定の圧力で押圧できる金属板やプラスチック板を用いることが好ましい。
このように、コーティング液4を供給する上側多孔質樹脂2を、熱交換体1の上側端面に接触させることにより、金属製フィン12表面にコーティング液4を効率よく塗布することができる。また、コーティング液4の塗布量を管理することができる。
図2は、本発明の実施の形態1における、コーティング液4の液切工程の概略を示す説明図である。この図2は、先の図1に示す熱交換体の表面処理装置の塗布工程から、上側多孔質樹脂2を取り除いたものに相当する。
本実施の形態1における熱交換体の表面処理方法では、図2に示すように、下側多孔質樹脂3を熱交換体1の下側端面に接触させることにより、金属製フィン12表面に多量に存在するコーティング液4の余剰分を、効率よく吸収して液切りする。
この結果、コーティング液4は、自重により金属製フィン12表面を上方側から下方側へ流れ、下側多孔質樹脂3は、熱交換体1内に多量に存在するコーティング液4の余剰分を吸収して液切りすることができる。
また、金属製フィン12間でブリッジングが生じても、下側多孔質樹脂3によって吸収される。これにより、コーティング液4が溜まりやすい伝熱管11周りや端面などにも薄く均一に存在する状態が達成され、乾燥後に形成されたコーティング膜は均一で薄膜になり、品質が安定する。
更に、この方法では、従来技術でのエアブローや上下振動により生じていたコーティング液4の飛散がないため、清掃や装置メンテ等に労力を要しないという利点もある。また、大型のエアブローや遠心分離機が必要ないため、簡易な装置構成となり、低コストで実現できる。
このように、コーティング液4を吸収する下側多孔質樹脂3を、熱交換体1の下側端面に接触させることにより、コーティング液4が均一に存在する状態になり、厚さが均一なコーティング膜が形成され、品質が安定する。
なお、多孔質樹脂の気孔率は、60%以上90%以下であることが好ましい。60%未満の気孔率では多孔質樹脂の吸水性能が低下し、コーティング液4が十分吸収されず残留するなどの不具合が生じるため好ましくない。一方、90%を超える気孔率の多孔質樹脂は製造が困難であるため、材料コストが上昇し好ましくない。
また、多孔質樹脂の平均孔径は、50μm以上200μm以下であることが好ましい。50μm未満の平均孔径では十分な吸収性能が得られないため好ましくない。一方、200μmを超える平均孔径の多孔質樹脂は、孔径にばらつきが生じて製造が困難になるため好ましくない。
また、多孔質樹脂の厚みは、50mm以上150mm以下であることが好ましい。50mm未満の厚みではコーティング液4を吸収した際に、多孔質樹脂の硬度が低下して、多孔質樹脂が変形しやすくなるため好ましくない。一方、150mmを超える厚みでは吸水性が劣ることになる。また、製造コストが上昇する点からも好ましくない。
また、多孔質樹脂の材質としては、例えば、吸水性高分子繊維、コットン、再生セルロース繊維、ポリエステル、PVA等が使用できる。特に、表面のぬれ性・吸水性に優れるポリウレタンが、より好ましい。ポリウレタンは、高硬度品の作製も可能であり、また、導電性を付与したものも、作製可能である。
ポリウレタンは、他の材料に比べて製造コストが高くなるが、樹脂自体に親水性が付与されているため、劣化が生じにくい。また、耐薬品性は、ポリエステルなどと比較して劣るが、耐熱性(130℃)及び耐加水分解性が、実使用に耐えうるという好ましい性能を有している。
このように、上側多孔質樹脂2及び下側多孔質樹脂3として、例えば、気孔率が60%以上90%以下であり、かつ、平均孔径が50μm以上200μm以下の多孔質樹脂を使用することにより、効率的なコーティング液4の散布及び液切吸収が可能となる。
図3は、本発明の実施の形態1における、熱交換体1の表面処理方法のフローチャートである。以下、図3のフローチャートを用いて、本実施の形態1における熱交換体1の表面処理方法を説明する。
まず、ステップS101の塗布工程において、予めコーティング液4で飽和状態にした上側多孔質樹脂2を、熱交換体1の上側端面に接触させ、飽和したコーティング液4を、金属製フィン12表面を伝って拡散させる。同時に、下側多孔質樹脂3を熱交換体1の下側端面に接触させ、熱交換体1内のコーティング液4の余剰分を吸収する。
次に、ステップS102の液切工程において、上側多孔質樹脂2を取り除き、熱交換体1の下側端面に接触させた下側多孔質樹脂3によって、金属製フィン12表面に多量に存在するコーティング液4の余剰分を、効率よく吸収して液切りする。
以上のように、実施の形態1では、熱交換体表面に防汚コーティング膜を形成する際に、熱交換体にコーティング液を供給する上側多孔質樹脂を熱交換体の上側端面に接触させるとともに、熱交換体内のコーティング液の余剰分を吸収する下側多孔質樹脂を熱交換体の下側端面に接触させて、コーティング液を熱交換体に塗布する塗布工程を有している。また、上側多孔質樹脂を熱交換体の上側端面から取り除くとともに、下側多孔質樹脂を熱交換体の下側端面に接触させた状態を維持して熱交換体内のコーティング液を液切りする液切工程を有している。この結果、簡易な装置により、優れた外観特性及び防汚特性を有する防汚コーティング膜を、熱交換体の表面にムラなく均一に形成することができる熱交換体の表面処理方法及び熱交換体の表面処理装置を得ることができる。
実施の形態2.
本実施の形態2では、先の実施の形態1で説明したコーティング液4の液切工程の後に、更に乾燥工程を加えることにより、熱交換体1の表面に、よりムラのない均一な防汚コーティング膜を形成する方法を説明する。また、熱交換体1のコーティング膜を複数の領域に塗り分ける方法を説明する。
図4は、本発明の実施の形態2における、コーティング液4の乾燥工程の概略を示す説明図である。本実施の形態2における熱交換体の表面処理方法では、液切工程の後に乾燥工程を設け、図4に示すように、ブロア装置5を用いてエア等の乾燥媒体6を送風することより、熱交換体1の下側端面等に残留したコーティング液4の余剰分を乾燥除去する。
また、図2に示す乾燥工程は、熱交換体1内のコーティング液4の余剰分を乾燥除去する他にも、特に、コーティング液4が親水性粒子を含む場合において、コーティング液4中の親水性粒子と金属製フィン12とを強固に密着させる効果もある。また、水性媒体の残留による臭いの吸着及びカビ発生を防止する効果もある。
なお、乾燥媒体6の温度は、60℃以上80℃以下であることが好ましい。60℃未満の温度では、熱交換体1内のコーティング液4の余剰分が完全に乾燥除去されずに残留してしまう。一方、80℃を超える温度では、コーティング液4が熱交換体1表面から吹き飛ぶ前に乾燥してしまい、膜厚にムラが生じる。更に、形成したコーティング膜の性能を低下させる恐れがある。
乾燥媒体6の風速は、20m/s以上40m/s以下であることが好ましく、25m/s以上35m/s以下であることがより好ましい。また、乾燥媒体6は、エアの他にも、窒素やアルゴン等の気体を用いてもよい。更に、温風、赤外線、加熱炉を用いることも可能である。
このように、液切工程の後に乾燥工程を設けて、乾燥媒体6を送風することによって、熱交換体1の表面に、更にムラなく均一に防汚コーティング膜を形成することができる。更に、乾燥時間の短縮ができる。また、更に、コーティング膜の密着性を向上する効果もある。
図5は、本発明の実施の形態2における、複数の領域に塗り分けられて形成されたコーティング膜の例示図である。図5に示す熱交換体1のコーティング膜は、金属製フィン12の配列に対して平行な方向に(各金属製フィン12平面に垂直な方向に)均等に3つのコーティング膜部分13a〜13cに塗り分けられて形成されている。
ルームエアコンなどにおいては、金属製フィン12の配列に対して平行な方向に、粉塵の種類が変化するような場合が多く、かつ、中央部と両端部で粉塵の種類が違う場合が多い。このような場合は、均等に3つの膜部分に塗り分けすることで高い防汚効果が得られる。
熱交換体1のコーティング膜を、図5に示すように塗り分けるためには、上側多孔質樹脂2に予め散布するコーティング液4を、コーティング膜部分13a〜13cの各領域毎に、異なる種類のコーティング液4を用いるようにして、塗布工程を実施すればよい。
或いは、上側多孔質樹脂2を3つに分割し、それぞれの上側多孔質樹脂2a〜2cに散布するコーティング液4の種類を変えてもよい。また、各コーティング膜部分13a〜13cを、異なる種類のコーティング液4を用いるようにして、順番に、1領域ずつ作成することもできる。
なお、コーティング膜部分13a〜13cの塗りわけの領域数は必ずしも3つである必要はなく、また、各領域の面積も必ずしも均等である必要はない。例えば、熱交換体1の左右でのみ汚れの粒子径や種類が異なる環境においては、領域を2つに分ければよい。また、更に、汚れの粒子径や種類が連続的に変化するような環境においては、コーティング膜も、汚れの種類に応じて連続的に変化させて形成させればよい。
このように、熱交換体1のコーティング膜を、想定される汚れの種類に応じて、最適な領域数及び面積に塗り分けることにより、様々な汚れ環境に対して高い防汚効果が得られる。
本発明に用いるコーティング液4は、シリカ微粒子、フッ素樹脂粒子、並びに塩化ジルコニウム若しくは塩化ジルコニルを含有する水系コーティング組成物である。この水系コーティング液4は、物品表面に塗布し乾燥することで、親水性、防汚性に優れる無機微粒子膜を形成することができる。
形成される無機微粒子膜は、親水性のシリカ薄膜上に疎水性のフッ素樹脂粒子が点在する表面を有する。このような表面は、疎水性部分が存在するものの親水性部分が連続した構成となっているため、水滴付着時にはこれが拡がりやすく、膜全体として見た場合には高い親水性を有することになる。
また、形成される無機微粒子膜は、親水性と疎水性が微細に入り混じった構成であるため、親水性の粉塵、または疎水性の粉塵いずれかが無機微粒子膜に付着しようとしても、相反する性質の表面に接することになり安定に付着することができない。この結果、形成されるコーティング膜は、幅広い粉塵汚染に対し高い防汚特性を示すことになる。
また、塩化ジルコニウム或いは塩化ジルコニルを含有することにより、金属イオンによる反応や腐食による固着に対して、高い耐久性や防汚特性を示すことができる。この結果、金属粒子等が付着しやすい環境においても優れた性能が得られる。更に、塩化ジルコニウム或いは塩化ジルコニルは、シリカ表面の水酸基等と結合を形成するなどして、形成される被膜の表面を保護する効果がある。
また、金属粒子から発生する鉄イオン等の金属イオンは、シリカ表面の水酸基と結合することで、着色や金属粒子の固着を引き起こすが、添加したジルコニウム化合物が保護基として働くことで、このような現象を抑制できると考えられる。
シリカ微粒子としては、コロイダルシリカが好ましい。特に、平均粒径が15nm以下のシリカ微粒子であれば、コーティング膜により反射する光の散乱が小さくなるため、コーティング膜の透明性が向上する。この結果、被コーティング物の色調や風合いの変化を抑え、被コーティング物の色調や風合いを損なわないようにすることができる。ここで、「平均粒径」とは、レーザー光散乱式または動的光散乱式の粒度分布計で測定した時の無機微粒子の一次粒子の平均粒径の値を意味する。
コロイダルシリカの濃度は、0.05質量%以上5質量%以下であることが好ましく、0.1質量%以上2.5質量%以下であることがより好ましい。5質量%を超える濃度では、形成された表面の凹凸が大きくなり、粉塵等が引っ掛かりやすくなる。この結果、防汚特性が劣ることになりやすい。一方、0.05質量%未満では、無機微粒子膜が薄くなりすぎ、十分な親水性、粉塵付着抑制効果が得られない。
また、本発明に用いるフッ素樹脂粒子は、粒径が100〜500nmのものである。このようなフッ素樹脂粒子としては、例えば、PTFE(ポリテトラフルオロエチレン)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、ETFE(エチレン・テトラフルオロエチレン共重合体)、ECTFE(エチレン・クロロトリフルオロエチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PCTFE(ポリクロロトリフルオロエチレン)、PVF(ポリフッ化ビニル)、フルオロエチレン・ビニルエーテル共重合体、フルオロエチレン・ビニルエステル共重合体、これらの共重合体及び混合物、並びにこれらのフッ素樹脂に他の樹脂を混合したもの等から形成されたフッ素樹脂粒子が挙げられる。
フッ素樹脂粒子の濃度は、特に限定されないが、無機微粒子とフッ素樹脂粒子の質量比は、50:50〜90:10であることが好ましく、70:30〜85:15であることがより好ましい。フッ素樹脂粒子の質量比が上記範囲よりも大きすぎると、無機微粒子膜の親水性が低くなりすぎることがある。この結果、フッ素樹脂粒子に起因する疎水性部分が表面に多く露出してしまい、親油性汚れが付着し易くなることがある。
一方、フッ素樹脂粒子の質量比が上記範囲よりも小さすぎると、フッ素樹脂粒子に起因する疎水性部分が無機微粒子膜の表面に十分に露出せず、親水性汚れが付着し易くなり、所望の防汚特性が得られないことがある。なお、ここでの粒子の質量比は、分散液を乾燥し、120℃で乾燥して水分を除去して測定した値を示している。
塩化ジルコニウム或いは塩化ジルコニルの添加量は、無機微粒子の固形分重量に対し、重量比で、1%以上80%以下であることが好ましく、5%以上50%以下であることがより好ましい。1%未満の添加量では、金属粉末の影響抑制効果が十分に得られない。一方、80%を超える添加量では、形成される無機微粒子膜が混入するジルコニウムの影響で緻密になりすぎ、防汚特性が低下する恐れがあるため好ましくない。
熱交換体1に形成される無機微粒子膜の厚さは、特に限定されないが、0.05μm以上0.5μm以下であることが好ましい。0.05μm未満の厚さでは、所望の粉塵付着抑制効果が得られないことがある。一方、0.5μmを超える厚さでは、膜にクラックやボイドなどの欠陥が生じ易く、汚れが捕捉され易い凹凸が表面に形成される。この結果、所望の粉塵付着抑制効果が得られないことがある。
このような、コーティング液4の組成内容とすることにより、親水性のシリカをベースとし、疎水性のフッ素樹脂を含むため、鉄粉を含む親水性、疎水性の多様な粉塵付着を抑制できる。また、塩化ジルコニウム或いは塩化ジルコニルを少量添加することで、鉄粉が付着し腐食した場合においても、その固着を抑制することできる。
更に、塩化ジルコニウム或いは塩化ジルコニルは、被膜中での高い反応性を有しながら、水溶液中での安定性に優れるため、コーティング液4としての安定性も確保できる(塩化ジルコニウムは水溶液中で塩化ジルコニルとなる)。
図6は、本発明の実施の形態2における、熱交換体1の表面処理方法のフローチャートである。以下、図6のフローチャートを用いて、本実施の形態2における熱交換体1の表面処理方法を説明する。
まず、ステップS201において、先の実施の形態1の図3におけるステップS101と同様の手順にて、コーティング液4の塗布工程を実施する。ここで、熱交換体1のコーティング膜を複数の領域に塗り分ける場合は、例えば、上側多孔質樹脂2を3つに分割し、それぞれの上側多孔質樹脂2a〜2cに散布するコーティング液4の種類を変化させて塗布工程を実施すればよい。
次に、ステップS202において、先の実施の形態1の図3におけるステップS102と同様の手順にて、コーティング液4の液切工程を実施する。
次に、ステップS203の乾燥工程において、熱交換体1の下側端面等に残留したコーティング液4を、ブロア装置5からの乾燥媒体6により乾燥除去する。
以上のように、実施の形態2では、熱交換体表面に防汚コーティング膜を形成する際に、熱交換体にコーティング液を供給する上側多孔質樹脂を熱交換体の上側端面に接触させるとともに、熱交換体内のコーティング液の余剰分を吸収する下側多孔質樹脂を熱交換体の下側端面に接触させて、コーティング液を熱交換体に塗布する塗布工程を有している。また、上側多孔質樹脂を熱交換体の上側端面から取り除くとともに、下側多孔質樹脂を熱交換体の下側端面に接触させた状態を維持して熱交換体内のコーティング液を液切りする液切工程を有している。また、熱交換体内のコーティング液の余剰分を乾燥除去する乾燥工程を有している。また、更に、上側多孔質樹脂に散布するコーティング液の種類を変えることにより、コーティング膜を複数のコーティング膜部分に塗り分けて形成している。この結果、簡易な装置により、更に優れた外観特性及び様々な環境における防汚特性を有する防汚コーティング膜を、熱交換体の表面にムラなく均一に形成することができる熱交換体の表面処理方法及び熱交換体の表面処理装置を得ることができる。
ここからは、具体的な実施例、比較例、及びこれらの評価結果を示すことにより本発明の効果を明らかにする。特に、本発明に係る熱交換体の表面処理方法及び熱交換体の表面処理装置を用いることによって、優れた外観特性及び様々な環境における防汚特性を有する防汚コーティング膜が、熱交換体1の表面にムラなく均一に形成できることを示す。
以下に示す実施例1〜4及び比較例1〜2では、熱交換体1として、多数の伝熱管11を有するアルミニウム製の車冷用熱交換体1を使用した。また、上側多孔質樹脂2及び下側多孔質樹脂3のための多孔質樹脂と、コーティング液4のための水系コーティング組成物として、下記のものを使用した。また、ブロア装置5として(BOSCH社製)を使用し、乾燥媒体6としてエアを用いた。
第1の多孔質樹脂:気孔率80% イノアックコーポレーション社製MAPS−AQL
第2の多孔質樹脂:気孔率30% 旭化成ケミカル社製サンファインAQ
第1の水系コーティング組成物:以下に示す3種の材料を純水に溶かして撹拌混合した後、更に非イオン系界面活性剤(ポリオキシエチレンラウリルアルキルエステル)を0.1質量%加えて撹拌混合することにより調製した。
・材料1:平均粒径5nmのシリカ微粒子を含むコロイダルシリカ(日産化学工業株式会社製カタロイドSI−550) 2.0質量%
・材料2:平均粒径250nmのPTFEディスパージョン 2.0質量%
・材料3:塩化ジルコニウム 0.2質量%
第2の水系コーティング組成物:以下に示す4種の材料を純水に溶かして撹拌混合した後、更に非イオン系界面活性剤(ポリオキシエチレンラウリルアルキルエステル)を0.1質量%加えて撹拌混合することにより調製した。
・材料1〜3:第1の水系コーティング組成物と同じ。
・材料4:平均粒径25nmのシリカ微粒子を含むコロイダルシリカ(日産化学工業株式会社製カタロイドSI−50) 1.0質量%
次に、実施例1〜4及び比較例1〜2における、実施方法の詳細を示す。
実施例1.
まず、図1に示す塗布工程を下記の条件で実施して1分間保持した。次に、上側多孔質樹脂2を取り除いて、図2に示す液切工程を下記の条件で実施して10分間保持した。更に、ブロア装置5を用い、エアの風速を25m/s、温度を60℃として、図4に示す乾燥工程を実施した。
・上側多孔質樹脂2及び下側多孔質樹脂3:第1の多孔質樹脂
・コーティング液4:第1の水系コーティング組成物
実施例2.
まず、上側多孔質樹脂2を、金属製フィン12の配列に対して平行な方向に(各金属製フィン12平面に垂直な方向に)、順に、上側多孔質樹脂2a〜2cとして均等に3分割し、塗布工程を下記の条件で実施して1分間保持した。次に、液切工程と乾燥工程を実施例1と同じ条件で実施した。
・上側多孔質樹脂2a〜2c及び下側多孔質樹脂3:第1の多孔質樹脂
・上側多孔質樹脂2aに散布するコーティング液4:第2の水系コーティング組成物
・上側多孔質樹脂2bに散布するコーティング液4:第1の水系コーティング組成物
・上側多孔質樹脂2cに散布するコーティング液4:第2の水系コーティング組成物
実施例3.
まず、塗布工程と液切工程を実施例1と同じ条件で実施した。次に、ブロア装置5を用い、エアの風速を25m/s、温度を45℃として、乾燥工程を実施した。
実施例4.
まず、塗布工程を、実施例1で用いた第1の多孔質樹脂の代わりに第2の多孔質樹脂を用いて実施して1分間保持した。次に、上側多孔質樹脂2を取り除いて、図2に示す液切工程を実施して10分間保持した。更に、乾燥工程を実施例1と同じ条件で実施した。
比較例1.
まず、塗布工程を、上側多孔質樹脂2及び下側多孔質樹脂3を用いずに、スプレーを用いて、第1の水系コーティング組成物を散布することにより実施した。次に、液切工程を、下側多孔質樹脂3を用いずに実施して10分間保持した。更に、ブロア装置5を用い、エアの風速を25m/s、温度を80℃として、乾燥工程を実施した。
比較例2.
まず、塗布工程を、下側多孔質樹脂3を用いずに、下記の条件で実施して1分間保持した。次に、液切工程と乾燥工程を比較例1と同じ条件で実施した。
・上側多孔質樹脂2:第1の多孔質樹脂
・コーティング液4:第1の水系コーティング組成物
実施例1〜4及び比較例1〜2における、実施条件の概略を表1に纏めた。また、その評価結果を表2に纏めた。
Figure 2014152934
Figure 2014152934
表2に示すコーティング膜の外観特性は目視によって評価した。また、防汚特性はカーボンブラック粉塵及び鉄粉のコーティング膜に対する付着性を以下のようにして評価した。
評価は、熱交換体1にコーティング膜を形成してから1日放置後に実施した。まず、カーボンブラック粉塵または鉄粉を、エアにより熱交換体1に吹き付けた後、金属製フィン12端面付近に付着した粉塵をメンディングテープ(住友スリーエム株式会社製)により採取した。
採取は、熱交換体1に形成されたコーティング膜の左側、中央、右側と3箇所(実施例2では、コーティング膜部分13a〜13cの各領域に相当する)で行い、これを、分光光度計(島津製作所株式会社製UV−3100PC)を用いて吸光度(波長550nm)を測定した。そして、測定された吸光度の値の平均値を算出し、以下のように5段階評価した。
1:吸光度が0.1未満のもの
2:吸光度が0.1以上0.2未満のもの
3:吸光度が0.2以上0.3未満のもの
4:吸光度が0.3以上0.4未満のもの
5:吸光度が0.4以上のもの
実施例1では、図6に示すフローチャートに従って、コーティング液4の塗布工程、液切工程、及び乾燥工程を実施し、熱交換体1にコーティング膜を塗り分けずに形成した。この結果、優れた外観特性及び防汚特性を有する防汚コーティング膜が、熱交換体1表面にムラなく均一に形成されていることが確認できた。
実施例2では、同様に図6に示すフローチャートに従って、コーティング液4の塗布工程、液切工程、及び乾燥工程を実施し、熱交換体1にコーティング膜を3つの領域に塗り分けて形成した。この結果、より優れた防汚特性を有する防汚コーティング膜が、熱交換体1表面にムラなく均一に形成されていることが確認できた。
更に、実施例2でのコーティング膜の外観特性は、目視でも透明な膜であり、汚れ付着防止も最も良好であることを確認できた。このことから、熱交換体1のコーティング膜を複数の領域に塗り分けることが効果的であることが分かる。
実施例3では、エアの温度を、実施例1の60℃と比較して46℃と低くした。この結果、乾燥工程において、コーティング液4の余剰分を乾燥しきれずに、粉塵付着が僅かに多くなる結果となった。このことから、乾燥工程において、適切な温度の乾燥媒体6を用いることが重要であることが分かる。
実施例4では、下側多孔質樹脂3の気孔率を、実施例1の80%と比較して30%と低くした。この結果、乾燥工程によりコーティング液4を定着させた際に、液切工程において液切れできずに残留した不均一な部位が微白濁膜になった。また、防汚特性にも劣る結果となっている。このことから、適切な気孔率を有する多孔質樹脂を用いることが重要であることが分かる。
比較例1では、塗布工程を、上側多孔質樹脂2及び下側多孔質樹脂3を用いずに、スプレーを用いることによって実施した。この結果、コーティング液4が多量に残留した状態で乾燥工程を実施することになり、残留した箇所が厚膜になり白浮きのある白濁膜となってしまった。膜ムラでカーボンブラックや関東ローム等が引っ掛かりやすくなるため付着防止性も確保できないと思われる。
比較例2では、上側多孔質樹脂2は設置したが、下側多孔質樹脂3は設置しなかった。この結果、液切工程における液切が十分でなかったため、外観特性にも防汚特性にも劣る結果となった。このことから、優れた外観特性及び防汚特性を有する防汚コーティング膜を得るためには、下側多孔質樹脂3を設置して液切工程を実施することが重要であることが分かる。
1 熱交換体、2、2a〜2c 上側多孔質樹脂、3 下側多孔質樹脂、4 コーティング液、5 ブロア装置、6 乾燥媒体、11 伝熱管、12 金属製フィン、13a〜13c コーティング膜部分。

Claims (8)

  1. 伝熱管及び金属製フィンを備えた熱交換体にコーティング膜を形成するための熱交換体の表面処理方法において、
    前記熱交換体にコーティング液を供給する上側多孔質樹脂を前記熱交換体の上側端面に接触させるとともに、前記熱交換体内の前記コーティング液の余剰分を吸収する下側多孔質樹脂を前記熱交換体の下側端面に接触させて、前記コーティング液を前記熱交換体に塗布する塗布工程と、
    前記上側多孔質樹脂を前記熱交換体の上側端面から取り除くとともに、前記下側多孔質樹脂を前記熱交換体の下側端面に接触させた状態を維持して前記熱交換体内の前記コーティング液を液切りする液切工程と
    を有する熱交換体の表面処理方法。
  2. 請求項1に記載の熱交換体の表面処理方法において、
    前記塗布工程において、前記熱交換体と接する面において前記上側多孔質樹脂を複数の領域に分け、それぞれの前記領域毎に、異なる種類のコーティング液を散布することにより、前記複数の領域に応じて前記異なる種類のコーティング液を前記熱交換体に塗布する
    熱交換体の表面処理方法。
  3. 請求項1または2に記載の熱交換体の表面処理方法において、
    前記液切工程の後に、前記熱交換体内の前記コーティング液の余剰分を乾燥除去する乾燥工程を更に有する
    熱交換体の表面処理方法。
  4. 請求項1から3のいずれか1項に記載の熱交換体の表面処理方法において、
    前記上側多孔質樹脂及び前記下側多孔質樹脂は、
    気孔率が60%以上90%以下であり、
    かつ、平均孔径が50μm以上200μm以下である
    熱交換体の表面処理方法。
  5. 請求項2に記載の熱交換体の表面処理方法において、
    前記コーティング膜を、前記金属製フィン配列に対して平行に、第1のコーティング膜部分、第2のコーティング膜部分、及び第3のコーティング膜部分に塗り分けて形成する
    熱交換体の表面処理方法。
  6. 請求項3に記載の熱交換体の表面処理方法において、
    前記乾燥工程において、60℃以上80℃以下の乾燥媒体を用いる
    熱交換体の表面処理方法。
  7. 請求項1から6のいずれか1項に記載の熱交換体の表面処理方法において、
    前記コーティング液は、
    平均粒径が15nm以下のシリカ微粒子と、
    平均粒径が100〜500nmのフッ素樹脂粒子と、
    塩化ジルコニウムまたは塩化ジルコニルと
    を含有する水系コーティング組成物を含む
    熱交換体の表面処理方法。
  8. 伝熱管及び金属製フィンを備えた熱交換体にコーティング膜を形成するための熱交換体の表面処理装置であって、
    前記熱交換体の上側端面に接触させてコーティング液を前記熱交換体に供給する上側多孔質樹脂と、
    前記熱交換体の下側端面に接触させて前記上側多孔質樹脂から前記熱交換体に供給された前記コーティング液の余剰分を吸収するとともに、前記上側多孔質樹脂を取り除いた後に前記熱交換体の下側端面に接触させた状態を維持することで前記熱交換体内の前記コーティング液を液切りする下側多孔質樹脂と
    を備える熱交換体の表面処理装置。
JP2013019848A 2013-02-04 2013-02-04 熱交換体の表面処理方法及び熱交換体の製造方法 Active JP5888703B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019848A JP5888703B2 (ja) 2013-02-04 2013-02-04 熱交換体の表面処理方法及び熱交換体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019848A JP5888703B2 (ja) 2013-02-04 2013-02-04 熱交換体の表面処理方法及び熱交換体の製造方法

Publications (2)

Publication Number Publication Date
JP2014152934A true JP2014152934A (ja) 2014-08-25
JP5888703B2 JP5888703B2 (ja) 2016-03-22

Family

ID=51574982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019848A Active JP5888703B2 (ja) 2013-02-04 2013-02-04 熱交換体の表面処理方法及び熱交換体の製造方法

Country Status (1)

Country Link
JP (1) JP5888703B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184095A (ja) * 1990-11-13 1992-07-01 Matsushita Refrig Co Ltd 熱交換器
WO2001053427A1 (fr) * 2000-01-17 2001-07-26 Nihon Parkerizing Co., Ltd. Agent de traitement conferant des qualites hydrophiles et une resistance a la corrosion, et fluide et procede d'hydrophilisation
JP2002500958A (ja) * 1998-01-27 2002-01-15 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 装置のろう接法
JP2002301417A (ja) * 2001-04-09 2002-10-15 Konica Corp 塗布装置および塗布方法
JP2006205159A (ja) * 2004-12-28 2006-08-10 Asukurin:Kk コーティング用アプリケータ
JP2008253985A (ja) * 2007-03-13 2008-10-23 Fujifilm Corp 親水性部材およびその製造方法
JP2009229040A (ja) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp 熱交換器および熱交換器の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184095A (ja) * 1990-11-13 1992-07-01 Matsushita Refrig Co Ltd 熱交換器
JP2002500958A (ja) * 1998-01-27 2002-01-15 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 装置のろう接法
WO2001053427A1 (fr) * 2000-01-17 2001-07-26 Nihon Parkerizing Co., Ltd. Agent de traitement conferant des qualites hydrophiles et une resistance a la corrosion, et fluide et procede d'hydrophilisation
JP2002301417A (ja) * 2001-04-09 2002-10-15 Konica Corp 塗布装置および塗布方法
JP2006205159A (ja) * 2004-12-28 2006-08-10 Asukurin:Kk コーティング用アプリケータ
JP2008253985A (ja) * 2007-03-13 2008-10-23 Fujifilm Corp 親水性部材およびその製造方法
JP2009229040A (ja) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp 熱交換器および熱交換器の製造方法

Also Published As

Publication number Publication date
JP5888703B2 (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
EP2112207B1 (en) Coating composition, coating method, heat exchanger and air conditioner
US10591228B2 (en) Antifouling coating, heat exchanger provided with same, and method for manufacturing heat exchanger
JP2012187529A (ja) 撥水性部材及びその製造方法、並びに空調機室外機
JP2009229040A (ja) 熱交換器および熱交換器の製造方法
JP6338702B2 (ja) コーティング材、その製造方法、および、表面構造
WO2016060165A1 (ja) 透明部材、透明部材の製造方法および透明部材の表面の汚れ具合の評価方法
JP2011208937A (ja) 空気調和機及びコーティング組成物
JP2013180221A (ja) 撥水性被膜の形成方法、撥水性部材及び熱交換器
JP5888703B2 (ja) 熱交換体の表面処理方法及び熱交換体の製造方法
JP6381483B2 (ja) コーティング組成物、防汚性部材、空気調和機及び換気扇
JP5425010B2 (ja) 防汚性被膜の形成方法及び防汚性部材
WO2016143297A1 (ja) コーティング膜付きガラス板及びその製造方法
JP5888711B2 (ja) コーティング組成物及びその製造方法、並びに撥水性部材及び換気扇の製造方法
JP6625262B2 (ja) コーティング組成物、その製造方法及びコーティング膜の形成方法
JP2010270952A (ja) 撥水性アルミニウム部材の製造方法
JP5665720B2 (ja) 熱交換体の塗装方法、及び熱交換体
JP2011184606A (ja) コーティング組成物、コーティング膜、熱交換器および空気調和機
JP2015155512A (ja) コーティング組成物及びその製造方法、並びに撥水性部材及び換気扇
JP5436481B2 (ja) 熱交換器及びその製造方法
JPH0885186A (ja) 含フッ素樹脂親水性構造物及びその製造方法
JP2011161322A (ja) 撥水性部材及びその製造方法
JP3403906B2 (ja) 高親水性塗料の製造方法
WO2016063777A1 (ja) 表面処理剤
JP2014172933A (ja) 撥水性膜の形成方法および撥水性膜が形成された物品
JP6097252B2 (ja) 非粘着性皮膜構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R150 Certificate of patent or registration of utility model

Ref document number: 5888703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250