WO2016143297A1 - コーティング膜付きガラス板及びその製造方法 - Google Patents

コーティング膜付きガラス板及びその製造方法 Download PDF

Info

Publication number
WO2016143297A1
WO2016143297A1 PCT/JP2016/001106 JP2016001106W WO2016143297A1 WO 2016143297 A1 WO2016143297 A1 WO 2016143297A1 JP 2016001106 W JP2016001106 W JP 2016001106W WO 2016143297 A1 WO2016143297 A1 WO 2016143297A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
glass plate
coating
film according
fine particles
Prior art date
Application number
PCT/JP2016/001106
Other languages
English (en)
French (fr)
Inventor
史佳 近藤
武司 籔田
山本 透
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to US15/555,878 priority Critical patent/US10800700B2/en
Priority to JP2017504853A priority patent/JP6805127B2/ja
Publication of WO2016143297A1 publication Critical patent/WO2016143297A1/ja
Priority to US17/011,818 priority patent/US20200399170A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10706Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer being photo-polymerized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10733Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing epoxy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/118Deposition methods from solutions or suspensions by roller-coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a glass plate with a coating film and a method for producing the same.
  • a functional coating film is formed on the surface of a substrate such as glass or ceramic for the purpose of improving the function of the substrate.
  • a low-reflective coating film is formed on the surface of the substrate in order to transmit more light to the substrate or prevent glare due to reflection.
  • a glass plate provided with a low-reflection coating film is used for vehicle glass, show windows, photoelectric conversion devices, and the like.
  • a thin-film solar cell that is a type of photoelectric conversion device, a photoelectric conversion layer composed of a base film, a transparent conductive film, amorphous silicon, and the like, and a back surface thin-film electrode are laminated in this order on one main surface of a glass substrate. Furthermore, a low-reflection coating film is formed on the other main surface opposite to one main surface of the glass plate.
  • a so-called crystalline solar cell which is another type of photoelectric conversion device, a cover glass is installed on the sunlight incident side, and a low reflection coating film is formed on the surface of the cover glass.
  • a low-reflection coating film is formed on the surface on the sunlight incident side in this way, so that more sunlight is guided to the photoelectric conversion layer or the solar cell element and the power generation thereof. The amount will be improved.
  • the most commonly used low-reflective coating film is a dielectric film formed by vacuum deposition, sputtering, chemical vapor deposition (CVD) or the like, but a fine particle-containing film containing fine particles such as silica fine particles is a low-reflective coating.
  • a fine particle-containing film containing fine particles such as silica fine particles is a low-reflective coating.
  • the fine particle-containing film is formed by applying a coating liquid containing fine particles on a transparent substrate by dipping, flow coating, spraying, or the like.
  • Patent Document 1 a reflection suppressing film containing fine particles and a binder is formed on a glass plate having surface irregularities, and a single layer of silica fine particles is formed on the top of the surface irregularities, and A cover glass for a photoelectric conversion device is disclosed which is uniformly arranged so that the filling rate is within a predetermined range. With the antireflection film applied to the cover glass, the average transmittance of light having a wavelength of 380 to 1100 nm can be improved by at least 2.37%.
  • the average transmittance of the glass plate on which the coating film is provided is an increment relative to the average transmittance of the glass plate before the coating film is provided.
  • the defined transmittance gain is an important performance when the glass plate is used in a photoelectric conversion device. As the transmittance gain is higher, the amount of light transmitted through the glass plate is increased, and the efficiency of the photoelectric conversion device is improved.
  • the cover glass described in Patent Document 1 has room for further improving the transmittance gain.
  • a photoelectric conversion element is sandwiched between the glass plate with the low reflection coating film and another plate-like body, and an intermediate film made of a thermoplastic resin is used. To form a laminated glass structure.
  • the photoelectric conversion element is effectively protected from the external environment, and durability and weather resistance as the photoelectric conversion element are improved.
  • the low reflection coating film is disposed on the outside, that is, the side not in contact with the intermediate film.
  • the thermoplastic resin used for the production of the intermediate film may unintentionally adhere to the low reflection coating film.
  • the cover glass described in Patent Document 1 since there is a difference in appearance between a portion where the thermoplastic resin is unintentionally attached and a portion where the thermoplastic resin is not attached, it is considered that the appearance is poor as it is.
  • the attached thermoplastic resin penetrates deep into the fine particle layer and is very difficult to remove, resulting in a decrease in yield in the manufacturing process due to poor appearance. There was a problem of letting it go.
  • the present invention can easily remove deposits such as unintentionally attached thermoplastic resin in a glass plate with a coating film in which a coating film is formed on the main surface of the glass plate, It aims at obtaining the glass plate with a coating film which can implement
  • the present invention A glass plate, A coating film having a smooth surface provided on at least one main surface of the glass plate; A glass plate with a coating film containing The coating film includes isolated closed pores included in the film and a matrix, The coating film has substantially no open pores that are open on the surface of the coating film, From the average transmittance when light with a wavelength of 380 to 1100 nm is incident on the glass plate with the coating film from the surface on the coating film side, the light with the wavelength is incident on the glass plate on which the coating film is not provided. The transmittance gain obtained by subtracting the average transmittance is 2.5% or more. A glass plate with a coating film is provided.
  • the coating film has substantially no open vacancies open on the surface of the coating film” means that the number of the open vacancies on the surface of the coating film.
  • the density is less than 5 / ⁇ m 2 , preferably less than 0.2 / ⁇ m 2 .
  • the present invention is also a method for producing the glass plate with a coating film of the present invention, wherein (i) a coating liquid containing a matrix raw material and a pore-forming agent is applied on one main surface of the glass plate. Forming a coating film, (Ii) drying the coating film; (Iii) firing the dried coating film; The manufacturing method of the glass plate with a coating film containing this is provided.
  • the coating film has a smooth surface, and the coating film is substantially free of open pores opened on the surface of the coating film. Therefore, even when, for example, a thermoplastic resin or the like adheres to the surface of the coating film, the attached matter can be easily removed. Furthermore, in the glass plate with a coating film of the present invention, since the coating film has a porous structure including closed pores isolated inside, a high transmittance gain of 2.5% or more is realized. As described above, according to the present invention, it is possible to provide a glass plate with a coating film that can easily remove deposits such as a thermoplastic resin that has been unintentionally attached, and that can achieve higher light transmittance.
  • FIG. 3 is a diagram showing the results of observation of a glass plate with a coating film of Example 1 with a field emission scanning electron microscope (FE-SEM). It is a figure which shows the result of having observed the glass plate with a coating film of the comparative example 1 with the field emission scanning electron microscope (FE-SEM). It is a figure which shows the result observed by the field emission type
  • FIG. It is a figure which shows the result of having observed the field emission type
  • FIG. It is a figure which shows the
  • the glass plate with a coating film of the present embodiment includes a glass plate and a coating film provided on at least one main surface of the glass plate.
  • the glass plate is not particularly limited, but a glass plate having excellent microscopic surface smoothness is preferable in order to smooth the surface of the coating film provided on the main surface.
  • the glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less.
  • the glass plate may be a glass plate in which another coating including a transparent conductive film is applied to the main surface opposite to the main surface on which the coating film specified in the present embodiment is provided in the float plate glass.
  • the arithmetic average roughness Ra in the present specification is a value defined in JIS B0601-1994.
  • the glass plate may be a template glass having macroscopic irregularities of a size that can be confirmed with the naked eye.
  • the macroscopic unevenness means unevenness having an average interval Sm of about millimeter order, which is confirmed when the evaluation length in the roughness curve is set to centimeter order.
  • the average interval Sm of the unevenness on the surface of the template glass is preferably 0.3 mm or more, more preferably 0.4 mm or more, particularly preferably 0.45 mm or more, 2.5 mm or less, further 2.1 mm or less, particularly It is preferably 2.0 mm or less, particularly 1.5 mm or less.
  • the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line.
  • the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 ⁇ m to 10 ⁇ m, particularly 1 ⁇ m to 8 ⁇ m, together with the average interval Sm in the above range.
  • the average interval Sm and the maximum height Ry in the present specification are values defined in JIS (Japanese Industrial Standards) B0601-1994.
  • the arithmetic average roughness Ra can satisfy several nm or less, for example, 1 nm or less. Therefore, even if it is a template glass, it can be used suitably for the glass plate of the glass plate with a coating film of this embodiment as a glass plate excellent in microscopic surface smoothness.
  • the surface roughness of the template glass plate is 0.3 ⁇ m to 5.0 ⁇ m, especially 0.4 ⁇ m to 2.0 ⁇ m, and further 0.5 ⁇ m to 1.2 ⁇ m, with the average interval Sm and the maximum height Ry in the above range It is preferable to have an average roughness Ra.
  • a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible.
  • the content of iron oxide which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
  • the coating film has a smooth surface.
  • the smooth surface here refers to a surface having a 2.5 ⁇ m square field of view by AFM, and an evaluation length of 300 nm is given to the opening of open pores having a diameter of 5 nm or more and a portion where no particulate matter is confirmed. It is set and the arithmetic average roughness Ra in the evaluation length is 5 nm or less, preferably 3 nm or less.
  • the coating film includes isolated closed pores included in the film and a matrix. From another point of view, the closed vacancies in the coating film can be said to be vacancies isolated within the film by being surrounded by the matrix, and it is considered that air exists inside the closed vacancies. It is done. By including such closed pores in the film, the effective refractive index of the coating film is reduced, so that a low reflection effect by the coating film can be obtained. Thereby, the glass plate with a coating film of this embodiment implement
  • the transmittance gain here refers to the average transmittance when light with a wavelength of 380 to 1100 nm is incident on the glass plate with the coating film from the surface on the coating film side, and the coating film is not provided on the surface (provided) It is a value obtained by subtracting the average transmittance when light having the above wavelength is incident on the glass plate (before being obtained).
  • the transmittance gain can be increased to 2.6% or more by adjusting the shape and size of the closed pores and the porosity of the coating film to an appropriate range according to the following description. It can be increased to 9% or more.
  • the glass plate with a coating film according to the present embodiment can realize the above-described transmittance gain and the increase rate of transmittance, and thus can have high light transmittance.
  • the coating film does not substantially have pores (open pores) opened on the surface of the film.
  • the coating film substantially does not have open pores means that the surface density of the number of open pores on the surface of the coating film is less than 5 / ⁇ m 2 , preferably 0.2 / It means less than ⁇ m 2 , preferably less than 0.16 / ⁇ m 2 , more preferably less than 0.01 / ⁇ m 2 .
  • the coating film preferably has no open pores.
  • the surface density of the number of open vacancies means that the number of open vacancies is measured by observing with a scanning electron microscope (SEM) at a field of view of 2.5 ⁇ m square on the surface of the coating film. It is a value obtained by dividing by the area.
  • SEM scanning electron microscope
  • the coating film does not contain open vacancies means that the open vacancies are not confirmed when the surface of the coating film is observed 3 times with a visual field of 2.5 ⁇ m square while changing the visual field within the same sample.
  • the open hole is a hole having an opening having a diameter of 5 nm or more, which is confirmed when the surface of the coating film is observed with an SEM.
  • the closed hole may have a substantially elliptical shape when observed in a cross section along the thickness direction of the coating film.
  • the closed hole is formed by connecting two or more substantially elliptical holes and a first closed hole which is a substantially elliptical isolated hole when observed in the cross section. A second closed hole.
  • the first closed holes and the substantially elliptic holes forming the second closed holes have, for example, a major axis length of 30 to 80 nm and a minor axis length of 20 to 30 nm.
  • the major axis length is the longest diameter of the substantially elliptical hole observed in the cross section
  • the minor axis length is the length of the diameter in the direction perpendicular to the major axis.
  • the major axis length may be 20 to 80 nm or 30 to 70 nm.
  • the minor axis length may be 10 to 40 nm or 15 to 30 nm.
  • the first closed hole and each of the substantially elliptic holes forming the second closed hole may be arranged so that the long axis is substantially along the film surface of the coating film. That is, in this case, the three-dimensional shape of the first closed hole and the three-dimensional shape of each of the substantially elliptical holes forming the second closed hole are flat, substantially spheroids and rotate. It can be considered that the axis is along the film thickness direction of the coating film.
  • the coating film has a porous structure including closed pores inside the film. Since the apparent refractive index of the coating film decreases as the porosity of the coating film increases, the reflectance of the glass plate with the coating film can be reduced. However, if the porosity exceeds the limit, the durability of the coating film decreases. For these reasons, the porosity of the coating film is preferably 10 to 40%, more preferably 15 to 30%.
  • the film thickness of the coating film is, for example, 50 to 300 nm, preferably 100 to 250 nm.
  • the coating film may have particulates on the film surface. However, if there are too many particulates on the surface of the film, the light transmittance of the glass plate with a coating film may be reduced, or the removability of deposits may be reduced. Therefore, when the coating film is observed by SEM from the surface side, it is preferable that the number of particles having a diameter of 20 to 100 nm confirmed on the surface of the coating film is 100 / ⁇ m 2 or less, and 75 / ⁇ m 2 or less. More preferably, it is particularly preferably 50 / ⁇ m 2 or less. Further, when the coating film is observed from the surface side by SEM, the number of granular materials having a diameter of 20 to 100 nm confirmed on the surface of the coating film may be, for example, 10 particles / ⁇ m 2 or more.
  • the surface roughness of the surface of the coating film with an evaluation length of 300 nm and excluding the open portion of the open pores (the portion excluding the granular material when the above-mentioned granular material is present) is 3 nm, for example. It has the following arithmetic average roughness Ra.
  • the coating film contains a matrix as described above.
  • the matrix can contain a metal oxide containing an element such as silicon, titanium, aluminum, zirconium and / or tantalum, but preferably contains a silicon oxide (particularly silica) as a main component.
  • the main component of a matrix here is a component contained most in a matrix.
  • the coating film Since silica has an excellent affinity with a glass plate containing silicon oxide as a main component, the durability of the coating film can be increased. Further, since silica has a low refractive index, the apparent refractive index of the coating film can be further reduced, which contributes to further improvement in transmittance gain. As will be described later, the matrix may contain a metal compound other than an oxide of silicon in order to exhibit effects such as further improvement in durability.
  • a hydrolyzable metal compound typified by silicon alkoxide can be used as a matrix supply source (matrix raw material).
  • the hydrolyzable metal compound can form a matrix by hydrolysis and condensation polymerization by a so-called sol-gel method.
  • the matrix of the coating film contains silica
  • a hydrolyzable silicon compound is used as the matrix raw material. That is, in this case, the silica forming the matrix is derived from the hydrolysis condensation product of the hydrolyzable silicon compound.
  • the hydrolyzable silicon compound for example, silicon alkoxide is used.
  • the silicon alkoxide includes a silicon alkoxide in which one or two organic groups are directly bonded to a silicon atom because it is easy to obtain a coating film having the above structural characteristics.
  • the organic alkoxide is composed of silicon alkoxide in which one or two organic groups are directly bonded to a silicon atom.
  • the organic group is preferably hydrophobic. In other words, a silicon alkoxide having 1 or 2 non-hydrolyzable functional groups is preferably used.
  • the hydrolyzable silicon compound is made of silicon alkoxide in which one or two organic groups are directly bonded to silicon atoms, so that the coating film effectively forms a porous structure including closed pores inside the film. It is because it can produce.
  • the organic group directly bonded to the silicon atom is, for example, a linear alkyl group having 1 to 5 carbon atoms.
  • Specific examples of such silicon alkoxide include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, and dimethyldiethoxysilane.
  • the hydrolyzable condensation product of the hydrolyzable silicon compound contains an organic group derived from a non-hydrolyzable functional group.
  • the matrix in the coating film may contain an organic group, but preferably the matrix does not contain an organic group. This is because the matrix containing no organic group has better durability and wear resistance.
  • the matrix of the coating film is mainly composed of silica
  • the matrix may further contain an oxide of at least one element selected from the group consisting of aluminum, titanium, and zirconium.
  • the matrix further contains these oxides, the durability of the coating film is improved.
  • water-soluble inorganic compounds such as a metal chloride and an oxychloride, are added to a matrix raw material.
  • the matrix of the coating film preferably contains 90 to 100% by mass of silica, more preferably 94 to 100% by mass.
  • the matrix of the coating film contains an oxide of at least one element selected from the group consisting of aluminum, titanium and zirconium, the oxide is preferably contained in the coating film in an amount of 2 to 7% by mass. More preferably 3 to 6% by mass is contained.
  • the coating film may contain, for example, solid fine particles in addition to the closed vacancies, the open vacancies and the matrix.
  • solid fine particles When the coating film contains solid fine particles, the durability of the coating film is improved.
  • Solid particulates are fixed by a matrix.
  • the solid fine particles have an average particle diameter of, for example, 10 to 100 nm, and even if they are substantially spherical primary particles having a particle size in this range, the secondary particles having a particle size in this range are aggregated by smaller primary particles. Secondary particles may also be used. The larger the average particle size, the better from the viewpoint of improving the durability of the coating film.
  • silica fine particles can be used as the solid fine particles.
  • the average particle size of the solid fine particles is determined by observing the cross section of the coating film using SEM. Specifically, for any 50 particles that can observe the entire particle, the maximum and minimum diameters are measured and the average value is taken as the particle size of each particle, and the average value of the particle size of the 50 particles is “Average particle size”.
  • the closed vacancies included in the coating film and the open vacancies that may be included may be formed by any method, but are included in the coating liquid for forming the coating film as a vacancy generating agent and It is preferably derived from fine particles that disappear by heat treatment above the temperature. Such fine particles are used as a so-called template, and finally disappear by heat treatment, so that the portions occupied by the fine particles remain in the coating film as pores.
  • the hole formed in this way becomes a closed hole or an open hole.
  • fine particles used as the pore-generating agent fine particles that disappear due to volatilization, thermal decomposition, or burning by heat treatment at 400 ° C. or higher, preferably 600 ° C. or higher can be used.
  • the fine particles used as the pore generating agent are, for example, organic polymer fine particles.
  • the organic polymer fine particles preferably have a polar group on the surface thereof.
  • polar groups are hydrophilic groups, and examples thereof include hydroxy groups, carbonyl groups, and carboxyl groups.
  • Other examples of polar groups include, but are not limited to, acryloyl groups and (meth) acryloyl groups (collectively methacryloyl groups).
  • This preferable organic polymer fine particle is difficult to separate in the coating liquid, and is suitable for effectively producing a porous coating film having closed pores inside the film.
  • the average particle diameter of the organic polymer fine particles is preferably 10 to 200 nm, more preferably 20 to 150 nm, and particularly preferably 30 to 100 nm.
  • the average particle size of the organic polymer fine particles is a value determined by light scattering particle size distribution measurement.
  • the glass plate with a coating film of this embodiment may further include a contact angle improving film provided on the coating film.
  • the contact angle improving film is a film having a high contact angle when a liquid adheres. By providing this film on the coating film, the water repellency and oil repellency of the surface of the glass plate with the coating film are improved as compared with the case where the film is not provided. Therefore, the glass plate with a coating film provided with the contact angle improving film has excellent dirt removal properties, and for example, dirt attached to the surface during processing can be easily removed. As a result, problems such as poor appearance due to the adhesion of dirt can be solved, and the yield in the manufacturing process can be improved.
  • the contact angle improving film may be any film that can increase the contact angle of the liquid on the surface of the coating film, and its material is not particularly limited.
  • hydrolyzable silicon having a hydrophobic group directly bonded to silicon A hydrolyzate of the compound is preferably used.
  • the number of hydrophobic groups bonded to silicon is 1 or 2, and the hydrolyzable group is preferably an alkoxyl group, an acetone group, an alkenyloxy group, an amino group, or a halogen group.
  • the hydrophobic group an alkyl group, a fluoroalkyl group and an alkenyl group are preferable, and the carbon number thereof is preferably 1 to 30, more preferably 1 to 6.
  • the hydrophobic group is preferably a methyl group, an ethyl group or a vinyl group, and the hydrolyzable group is preferably a methoxy group or an ethoxy group.
  • it is marketed as a fluorine-type surface antifouling processing agent, A fluoroalkyl group containing silane compound and a perfluoro polyether containing silane compound can be mentioned.
  • the thickness of the contact angle improving film is preferably determined as appropriate according to the function of the material used, such as water repellency, but can be, for example, 1 nm to 50 nm.
  • the contact angle of the contact angle improving film is not particularly limited as long as it has a higher contact angle than the coating film surface.
  • the contact angle of water is 50 to 110 °, preferably the contact angle of water. 70 to 110 °.
  • the glass plate with a coating film of this embodiment is, for example, (I) a step of applying a coating liquid containing a matrix raw material and a pore-forming agent on one main surface of the glass plate to form a coating film; (Ii) drying the coating film; (Iii) firing the dried coating film; It can manufacture with the manufacturing method containing.
  • the pore-forming agent contained in the coating liquid is as described above.
  • the matrix material is a hydrolyzable metal compound that can be hydrolyzed and polycondensed by a so-called sol-gel method to form a matrix, and details thereof are as described above.
  • the organic polymer fine particles are 12 to 12 parts per 100 parts by mass of the hydrolytic condensation product of the hydrolyzable silicon compound.
  • the amount is preferably 38 parts by mass, more preferably 15 to 35% by mass, and particularly preferably 17 to 25% by mass.
  • the coating liquid may appropriately contain other components such as a hydrolysis catalyst, a leveling agent, a surfactant and a solvent in addition to the matrix raw material and the pore generating agent.
  • the hydrolysis catalyst is used to promote hydrolysis of a hydrolyzable metal compound that is a matrix raw material.
  • the leveling agent and the surfactant are used for improving the leveling property of a coating film formed by applying the coating solution, improving the wettability of the coating solution to the glass plate, and reducing coating coating unevenness.
  • the solid content concentration of the coating liquid is not particularly limited. No coating unevenness of the coating liquid occurs, no defects such as cracks occur in the coating film in the drying and baking processes, and the solid content concentration is such that the coating film can have a thickness within a predetermined range.
  • the coating solution can be prepared by appropriately diluting with a solvent.
  • the coating liquid contains a hydrolyzable metal compound as a matrix material
  • the coating liquid contains a hydrolysis product of the hydrolyzable metal compound. Therefore, in a state where the hydrolyzable metal compound and the pore-generating agent are mixed, the hydrolyzable metal compound may be hydrolyzed to prepare a coating liquid containing the hydrolyzate, or the hydrolyzable metal A hydrolyzed liquid obtained by previously hydrolyzing the compound may be prepared, and the hydrolyzed liquid and the pore-generating agent may be mixed to prepare a coating liquid.
  • the coating liquid as described above is applied to a predetermined thickness on one main surface of the glass plate to form a coating film.
  • the method for applying the coating liquid is not particularly limited, and a known application method can be appropriately used. Among known coating methods, a roll coater and a spray coat are preferable for mass production reasons.
  • the hydrolyzable metal compound contained in the coating liquid is composed of a hydrolyzable silicon compound having one or two hydrophobic organic groups directly bonded to silicon atoms, and is also included as a pore-generating agent.
  • the surface has a hydrophilic group
  • rearrangement of the hydrolyzable silicon compound and the organic polymer fine particles occurs in the coating film, and the rearranged structure is fixed by drying.
  • the hydrolysis product since the hydrolysis product has a hydrophobic group, it gathers in the vicinity of the opposite side of the strongly hydrophilic glass plate (that is, the free surface side of the coating film) and forms a smooth surface due to the surface tension.
  • the organic polymer fine particles have a hydrophilic group, they tend to collect on the surface of the glass plate and hardly protrude on the free surface of the coating film. Thereby, the porous structure which does not have an open void
  • the drying temperature and drying time of the coating film are not particularly limited, but can be held in a heating furnace set at 300 to 400 ° C. for 20 to 120 seconds, for example. At this time, the surface temperature of the coating film reaches 100 to 150 ° C. In this drying step, it is considered that most of the pore forming agent remains without disappearing.
  • the coating film obtained in the drying process is baked.
  • the pore-forming agent disappears due to volatilization, thermal decomposition or burning, and voids are formed.
  • the firing temperature and firing time are not particularly limited, and examples include firing at 400 to 500 ° C. for 1 to 5 minutes. Another example is firing at 600 ° C. or higher for 1 minute or longer.
  • the pore-forming agent disappears, but most of the organic groups contained in the matrix remain without disappearing.
  • the baking of the latter example since the pore-generating agent and the organic group of the matrix disappear together, a matrix containing no organic group is obtained, and the coating film has high durability and wear resistance.
  • the heating conditions of the glass plate at the time of carrying out air-cooling strengthening of a commercially available soda-lime glass plate are mentioned.
  • the coating film may be held in a heating furnace set at 640 to 780 ° C. for 1 to 3 minutes. At this time, the surface temperature of the coating film reaches 630 to 690 ° C.
  • the coating film shrinks in the film thickness direction, and the holes already formed at that time also shrink in the film thickness direction, thereby forming the first closed void and the second closed void. It is considered that the holes are formed so as to have a substantially elliptical shape as described above.
  • the glass plate with a coating film of this embodiment can be manufactured.
  • the contact angle improving film When the contact angle improving film is further formed on the coating film, it can be produced by applying a treatment liquid containing a material for forming the contact angle improving film on the surface of the coating film of the glass plate with the coating film.
  • the treatment liquid can be prepared by adding a solvent or the like to the material forming the contact angle improving film.
  • Adhesive removal 1 A commercially available laminated glass interlayer film for solar cells (ethylene / vinyl alcohol copolymer, EVA SKY, manufactured by Bridgestone Corporation) is cut into 20 ⁇ 30 mm, and placed on a coating film of a glass plate with a coating film at 150 ° C. It was put into the oven set to, and held for 5 minutes. Thereafter, the glass plate with the coating film was taken out of the oven and allowed to cool to room temperature, and the intermediate film was peeled off.
  • EVA SKY ethylene / vinyl alcohol copolymer
  • the portion of the glass plate with the coating film that was placed on the intermediate film was rubbed with ethanol-impregnated cellulose-based nonwoven fabric (Bencot (R), manufactured by Asahi Kasei Fibers Co., Ltd.) and adhered to the coating film when peeled off.
  • the remaining interlayer film material was wiped off. With this wiping, the intermediate film material remaining on the surface of the coating film can be removed, but the intermediate film material soaked into the coating film cannot be removed.
  • Adhesive removal 2 Except that the intermediate film was placed on the coating film of the glass plate with the coating film and was put in an oven set at 150 ° C. and the holding time was changed to 30 minutes, the above “removability of deposits 1 The removal property of the deposits was tested in the same manner as ".” The criteria for evaluating the adhesion dirtiness were also the same as the above “deposit removal property 1”.
  • salt water resistance In order to evaluate the salt water resistance of the coating film, a salt spray test (salt spray test) was performed. For the glass plate with a coating film, the average transmittance is measured in the same manner as in the case of the evaluation of (Transmittance gain) above, and then the coating film is sprayed with salt water under the conditions in accordance with JIS C8917: 2005 appendix 4. After that, the average transmittance was further measured. The absolute value of the value obtained by subtracting the average transmittance before spraying salt water from the average transmittance after spraying salt water was defined as salt water resistance.
  • the salt water spray was performed by spraying the coating film for 96 hours in the form of a mist of an aqueous NaCl solution having a temperature of 35 ° C. and a concentration of 5% by mass, and then washing the surface of the coating film with running water. .
  • the coating film was observed with a field emission scanning electron microscope (S-4500, manufactured by Hitachi, Ltd.). The surface of the coating film is observed with a FE-SEM at a field of view of 2.5 ⁇ m square, the number of openings with a diameter of 5 nm or more confirmed on the surface is measured, and the number of open pores is divided by the area of one field of view. The surface density (pieces / ⁇ m 2 ) was determined. In addition, when the surface of the coating film was observed three times with a visual field of 2.5 ⁇ m square while changing the visual field within the same sample, it was determined that “open vacancies were not included” when no open vacancies were observed.
  • the surface of the coating film is observed with an AFM (SPF-400, manufactured by SII Nano Technology Co., Ltd.) with a 2.5 ⁇ m square field of view, and the open pores with a diameter of 5 nm or more and the part where no particulate matter is observed
  • An evaluation length of 300 nm was set to the arithmetic average roughness Ra of the evaluation length, and the analysis software attached to the AFM apparatus (“Nano Navi” manufactured by SII Nanotechnology Inc.) was used.
  • Example 1 methyltriethoxysilane (MTES) was used as a matrix material for the coating film. Therefore, first, an MTES hydrolyzate was prepared. Isopropyl alcohol (solvent) 64.38 g, purified water 8.05 g, 1N nitric acid (hydrolysis catalyst) 1.00 g, MTES 26.57 g were weighed into a glass bottle and subjected to a hydrolysis reaction at 40 ° C. for 8 hours to obtain a solid concentration. A 10 mass% hydrolyzed liquid (MTES hydrolyzed liquid) was obtained.
  • solvent solvent
  • purified water 8.05 g
  • 1N nitric acid (hydrolysis catalyst) 1.00 g
  • MTES 26.57 g were weighed into a glass bottle and subjected to a hydrolysis reaction at 40 ° C. for 8 hours to obtain a solid concentration.
  • a 10 mass% hydrolyzed liquid (MTES hydrolyzed liquid) was obtained.
  • the mass part of the pore-generating agent refers to the mass part of the pore-generating agent when the mass of the matrix raw material contained in the coating liquid is 100 parts by mass.
  • the mass% of isopropyl alcohol, 3-methoxy-1-butanol and water means the mass% of each component added in the preparation of the coating liquid with respect to the mass of the coating liquid. Alcohol and water produced as by-products are not included.
  • Example 1 the template glass was used as the glass plate.
  • This template glass is composed of a normal soda lime silicate composition, the arithmetic average roughness Ra of the surface irregularities evaluated at an evaluation length of 1 cm is 0.76 ⁇ m, the average interval Sm is 1120 ⁇ m (based on the provisions of JIS B0601-1994), It is made by Nippon Sheet Glass Co., Ltd. with a thickness of 3.2 mm.
  • This template glass is cut into 100 ⁇ 100 mm, immersed in an alkaline solution (KOH 25 wt% aqueous solution), washed with an ultrasonic cleaner, washed with deionized water, and dried at room temperature to form a coating film.
  • KOH 25 wt% aqueous solution alkaline solution
  • washed with an ultrasonic cleaner washed with deionized water, and dried at room temperature to form a coating film.
  • the average transmittance was 91.7%.
  • the coating liquid was applied by a spin coating method.
  • the prepared glass plate was held horizontally on a spin coater, 0.17 cc of the coating solution was dropped on the center of the glass plate, the glass plate was rotated at a rotation speed of 600 rpm, and the rotation speed was maintained for 10 seconds. After that, the rotation of the glass plate was stopped. Thereby, the coating film was formed on one main surface of the glass plate.
  • the solvent was removed from the coating film and dried. Drying was performed by holding the glass plate with the coating film formed on one main surface in an electric furnace set at 350 ° C. for 60 seconds, then removing it from the electric furnace and allowing it to cool to room temperature. Next, the dried coating film was baked. Firing was performed by holding the coating film in an electric furnace set at 760 ° C. for 5 minutes. At this time, the surface temperature of the coating film reached 665 ° C.
  • FIG. 1 shows an FE-SEM photograph of the obtained coating film.
  • Example 2 In the preparation of the coating liquid, instead of “Eposter MX-050”, “Eposter MX-030” (manufactured by Nippon Shokubai Co., Ltd., average particle size of 0.03 to 0.05 ⁇ m, solid content) The coating of Example 2 was carried out in the same manner as in Example 1 except that 0.53 g (concentration of 10.0% by mass) was used, and that the number of revolutions of the glass plate during application of the coating liquid was changed to 550 rpm. A glass plate with a film was prepared.
  • Example 3 A glass plate with a coating film of Example 3 was produced in the same manner as in Example 1 except that in the preparation of the coating liquid, the addition amount of the organic polymer fine particle dispersion was changed to 0.45 g.
  • Example 4 A glass plate with a coating film of Example 4 was produced in the same manner as in Example 1 except that in the preparation of the coating liquid, the addition amount of the organic polymer fine particle dispersion was changed to 1.05 g.
  • Comparative Example 1 tetraethoxysilane (TEOS) was used as a matrix material for the coating film. Therefore, a TEOS hydrolyzate was first prepared. Isopropyl alcohol (solvent) 52.33 g, purified water 12.00 g, 1N nitric acid (hydrolysis catalyst) 1.00 g, and TEOS 34.67 g were weighed in a glass bottle and subjected to a hydrolysis reaction at 40 ° C. for 8 hours to obtain a solid concentration. A 10 mass% hydrolyzate was obtained.
  • Comparative Example 3 A glass plate with a coating film of Comparative Example 3 was produced in the same manner as in Comparative Example 2, except that the amount of the organic polymer fine particle dispersion added was changed to 1.20 g.
  • the surface of the coating film is smooth, and the opening of open pores is within a 2.5 ⁇ m square field of view on the surface of the coating film. Not observed.
  • These glass plates with coating films of Examples 1 to 4 were excellent in removal of deposits, and also excellent in salt water resistance.
  • the glass plates with coating films of Examples 1 to 4 contained closed pores inside the coating film as confirmed by SEM photographs, and had a transmittance gain of 2.5% or more.
  • the surface of the coating film of Comparative Example 1 was not smooth, and the number of open holes opened on the surface of the coating film was 10 / ⁇ m 2 or more. Therefore, the glass plate with a coating film of Comparative Example 1 was inferior in the removal of deposits.
  • the coating film of Comparative Example 2 has a low transmittance gain because the amount of organic polymer fine particles added at the time of preparation of the coating film is too small, and sufficient closed pores are not formed inside the coating film. It was.
  • the amount of the organic polymer fine particles added at the time of producing the coating film was too large, so that too many closed vacancies were formed inside the coating film. It has become low.
  • Example 5 is an example in which the coating liquid was applied using a roll coater and then subjected to an air cooling strengthening step. In other words, immediately after the heating corresponding to the firing in Example 1 is performed, a step of quickly cooling by blowing air is added, and the glass plate with a coating film to be manufactured is an tempered glass. This will be specifically described below.
  • Example 1 the same coating solution as in Example 1 was prepared, and the same glass plate as in Example 1 was prepared.
  • the coating liquid was applied using a roll coater so that the thickness of the coating film was 1 ⁇ m to 5 ⁇ m, and a coating film was formed on one main surface of the glass plate.
  • the temperature of the glass plate at the start of coating was adjusted to be between 20 and 25 ° C.
  • Drying following the coating was performed by passing a glass plate having a coating film formed on one main surface through a continuous conveyance heating furnace. When it came out of the heating furnace, the surface temperature of the coating film reached 140 ° C. Thereafter, the glass plate was allowed to cool to room temperature.
  • the air cooling strengthening treatment was carried out by holding the glass plate in an electric furnace set at 700 ° C. for 180 seconds and then rapidly cooling the glass plate taken out of the electric furnace by blowing air at room temperature. When removed from the electric furnace, the surface temperature of the glass plate reached 650 ° C.
  • the cooling rate in this rapid cooling was 80 to 100 ° C./second in the temperature range of 650 to 550 ° C.
  • a surface compressive stress in the range of 90 to 110 MPa was applied to the obtained tempered glass plate.
  • FIG. 4 and FIG. 5 show FE-SEM photographs of two randomly selected fields of view of the obtained coating film.
  • the surface of the coating film is smooth, but on the surface of the coating film, the portion where the opening of the open holes is not observed within the 2.5 ⁇ m square field (FIG. 4); The observed part (FIG. 5) was mixed.
  • the number of open holes was 4 / ⁇ m 2 .
  • the smoothness of the coating film was 4.75 nm in terms of arithmetic average roughness Ra.
  • Example 6 is an example in which a fluorine-based water repellent was further applied as a contact angle improver on the coating film of the glass plate with the coating film of Example 5 to form a contact angle improving film.
  • Example 7 is an example in which methyltriethoxysilane was applied as the contact angle improver in Example 6 instead of the fluorine-based water repellent.
  • a treatment solution was obtained in the same manner as in Example 6 except that 0.22 g of methyltriethoxysilane was used instead of 1.3 g of tridecafluorooctyltriethoxysilane.
  • Example 8 is an example in which a commercially available fluorine-based water repellency imparting agent was applied as another example of the contact angle improver in Example 6.
  • O.D O.D.
  • a 1 wt% solution was prepared.
  • a glass plate with a coating film of Example 8 was obtained in the same manner as in Example 7 using this treatment liquid.
  • Example 9 the coating film of the glass plate with a coating film produced in Example 1 was further provided with a contact angle improving film prepared using the following coating liquid for forming a contact angle improving film. A glass plate was produced.
  • MTES hydrolyzate having a solid content concentration of 3% by mass, 8.83 g of IPA, 0.26 g of a 1% by mass aqueous solution of zirconium oxychloride octahydrate (ZrOCl 2 .8H 2 O), aluminum chloride hexahydrate 0.24 g of a 1% by weight aqueous solution of Japanese (AlCl 3 .6H 2 O) was mixed to obtain a coating liquid for forming a contact angle enhancement film.
  • ZrOCl 2 .8H 2 O zirconium oxychloride octahydrate
  • AlCl 3 .6H 2 O Japanese
  • the same glass plate with a coating film as the glass plate with a coating film of Example 1 was prepared.
  • the prepared glass plate with a coating film is held horizontally on a spin coater, and a coating liquid for forming a contact angle film is dropped on the center of the coating film, and the glass plate is rotated at a rotation speed of 1000 rpm for 10 seconds. After maintaining the number of rotations, the rotation of the glass plate was stopped. Thereby, the coating film for contact angle improvement film
  • the solvent was removed from the coating film for forming a contact angle improving film and dried. The drying was performed by holding the glass plate with the coating film on which the coating film for forming the contact angle improving film was formed in an electric furnace set at 350 ° C. for 60 seconds, and then taking it out from the electric furnace and allowing to cool to room temperature. .
  • the glass plate with a coating film of the present invention can easily remove deposits and can realize higher light transmission, so that it can be used in various fields such as glass for vehicles, glass windows for show windows or glass plates for photoelectric conversion devices. Available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 本発明のコーティング膜付きガラス板は、ガラス板と、前記ガラス板の少なくとも一方の主面上に設けられた、平滑な表面を有するコーティング膜と、を含む。前記コーティング膜は、当該膜の内部に含まれる孤立した閉鎖空孔と、マトリクスとを含んでいる。前記コーティング膜は、前記コーティング膜の前記表面に開口している開放空孔を実質的に有していない。本発明のコーティング膜付きガラス板では、前記コーティング膜側の面から前記コーティング膜付きガラス板に波長380~1100nmの光を入射したときの平均透過率から、前記コーティング膜が表面に設けられていない前記ガラス板に前記波長の光を入射したときの平均透過率を差し引いた透過率ゲインが2.5%以上である。

Description

コーティング膜付きガラス板及びその製造方法
 本発明は、コーティング膜付きガラス板及びその製造方法に関する。
 ガラス及びセラミックなどの基材の表面には、その基材の用途における機能改善を目的として、機能性コーティング膜が形成される。例えば、基材により多くの光を透過させるため又は反射による眩惑を防止するために、基材の表面に低反射コーティング膜が形成される。
 低反射コーティング膜を備えたガラス板は、車両用ガラス、ショーウィンドウ又は光電変換装置などに利用される。光電変換装置の一種である薄膜型太陽電池では、下地膜、透明導電膜及びアモルファスシリコンなどからなる光電変換層と、裏面薄膜電極とを、ガラス基板の一方の主面上にこの順で積層し、さらにガラス板の一方の主面と対向する他方の主面上に、低反射コーティング膜が形成される。また、他の種類の光電変換装置である、いわゆる結晶系太陽電池では、太陽光の入射側にカバーガラスが設置され、このカバーガラスの表面に低反射コーティング膜が形成される。太陽電池に用いられるガラス板では、このように太陽光の入射側の表面に低反射コーティング膜が形成されることから、より多くの太陽光が光電変換層又は太陽電池素子に導かれ、その発電量が向上することになる。
 最もよく用いられる低反射コーティング膜は、真空蒸着法、スパッタリング法又は化学蒸着法(CVD法)などにより形成される誘電体膜であるが、シリカ微粒子などの微粒子を含む微粒子含有膜が低反射コーティング膜として用いられることもある。微粒子含有膜は、微粒子を含むコーティング液を、ディッピング法、フローコート法又はスプレー法などによって透明基体上に塗布することにより成膜される。
 例えば、特開2014-032248号公報(特許文献1)には、表面凹凸を有するガラス板に微粒子とバインダとを含む反射抑制膜が形成され、表面凹凸の頂部においてシリカ微粒子が1層で、且つその充填率が所定範囲内になるように均一に配置されている、光電変換装置用カバーガラスが開示されている。このカバーガラスに施された反射抑制膜によって、波長380~1100nmの光の平均透過率を少なくとも2.37%向上させることができる。
特開2014-032248号公報
 ところで、低反射コーティング膜が形成されたコーティング膜付きガラス板において、当該コーティング膜が設けられているガラス板の平均透過率の、当該コーティング膜が設けられる前のガラス板の平均透過率に対する増分として定義される透過率ゲインは、そのガラス板が光電変換装置に用いられる際に重要な性能である。この透過率ゲインが高いほど、ガラス板を透過する光線量が増加し、光電変換装置の効率が向上する。しかしながら、特許文献1に記載のカバーガラスは、透過率ゲインをさらに向上させる余地があった。
 また、低反射コーティング膜付きガラス板を光電変換装置に用いる際、当該低反射コーティング膜付きガラス板と他の板状体との間に光電変換素子を挟み込み、熱可塑性樹脂製の中間膜を用いて封止し、合せガラス構造を形成することがある。この合せガラス構造によって、当該光電変換素子は外部環境から効果的に保護され、光電変換素子としての耐久性及び耐候性が向上する。
 この合せガラス構造においては、低反射コーティング膜は外側、すなわち中間膜と接しない側に配置される。しかし、この合せガラス構造を形成する工程において、中間膜の作製に用いられる熱可塑性樹脂が、意図せず低反射コーティング膜に付着することがある。たとえば特許文献1に記載のカバーガラスでは、意図せず熱可塑性樹脂が付着した部分と、付着していない部分とで外観に差があるので、そのままでは外観不良であると見做されてしまう。一方、付着した熱可塑性樹脂を除去しようとしても、付着した熱可塑性樹脂は微粒子層の奥まで浸透してしまい、除去することがとても困難なので、結果的に外観不良により製造工程での歩留まりを低下させてしまうという課題があった。
 本発明は、かかる事情に鑑み、ガラス板の主面上にコーティング膜が形成されたコーティング膜付きガラス板において、意図せず付着した熱可塑性樹脂など付着物を容易に除去することができ、さらに高い光透過性を実現できるコーティング膜付きガラス板を得ることを目的とする。
 本発明は、
 ガラス板と、
 前記ガラス板の少なくとも一方の主面上に設けられた、平滑な表面を有するコーティング膜と、
を含むコーティング膜付きガラス板であって、
 前記コーティング膜は、当該膜の内部に含まれる孤立した閉鎖空孔と、マトリクスとを含んでおり、
 前記コーティング膜は、前記コーティング膜の前記表面に開口している開放空孔を実質的に有しておらず、
 前記コーティング膜側の面から前記コーティング膜付きガラス板に波長380~1100nmの光を入射したときの平均透過率から、前記コーティング膜が表面に設けられていない前記ガラス板に前記波長の光を入射したときの平均透過率を差し引いた透過率ゲインが2.5%以上である、
コーティング膜付きガラス板を提供する。ここで、「前記コーティング膜が、前記コーティング膜の前記表面に開口している開放空孔を実質的に有していない」とは、前記コーティング膜の前記表面における前記開放空孔の数の面密度が5個/μm2未満であること、好ましくは0.2個/μm2未満であることをいう。
 また、本発明は、上記本発明のコーティング膜付きガラス板を製造する方法であって、(i)ガラス板の一方の主面上に、マトリクス原料及び空孔生成剤を含むコーティング液を塗布して塗膜を形成する工程と、
(ii)前記塗膜を乾燥させる工程と、
(iii)乾燥させた前記塗膜を焼成する工程と、
を含む、コーティング膜付きガラス板の製造方法を提供する。
 本発明のコーティング膜付きガラス板では、コーティング膜が平滑な表面を有しており、且つコーティング膜には、当該コーティング膜の表面に開口している開放空孔が実質的に存在しない。したがって、コーティング膜の表面に例えば熱可塑性樹脂などが付着してしまった場合でも、その付着物を容易に除去することができる。さらに、本発明のコーティング膜付きガラス板では、コーティング膜が内部に孤立した閉鎖空孔を含む多孔質構造を有しているので、2.5%以上という高い透過率ゲインを実現する。このように、本発明によれば、意図せず付着した熱可塑性樹脂など付着物を容易に除去することができ、さらに高い光透過性を実現できるコーティング膜付きガラス板を提供できる。
実施例1のコーティング膜付きガラス板の電界放射型走査型電子顕微鏡(FE-SEM)で観察した結果を示す図である。 比較例1のコーティング膜付きガラス板の電界放射型走査型電子顕微鏡(FE-SEM)で観察した結果を示す図である。 比較例2のコーティング膜付きガラス板の電界放射型走査型電子顕微鏡(FE-SEM)で観察した結果を示す図である。 実施例5のコーティング膜付きガラス板の電界放射型走査型電子顕微鏡(FE-SEM)で観察した結果を示す図である。 実施例5のコーティング膜付きガラス板の電界放射型走査型電子顕微鏡(FE-SEM)で観察した結果を示す図である。
 以下、本発明の実施形態について、詳細に説明する。
 本実施形態のコーティング膜付きガラス板は、ガラス板と、そのガラス板の少なくとも一方の主面上に設けられたコーティング膜とを含んでいる。
 ガラス板は、特に限定されないが、その主面上に設けられるコーティング膜の表面を平滑にするために、微視的な表面の平滑性が優れているものが好ましい。たとえば、ガラス板は、その主面の算術平均粗さRaがたとえば1nm以下、好ましくは0.5nm以下の平滑性を有するフロート板ガラスであってもよい。また、ガラス板は、フロート板ガラスにおいて本実施形態で特定するコーティング膜が設けられる主面とは反対側の主面に、透明導電膜を含む別のコーティングが施されているガラス板であってもよい。ここで、本明細書における算術平均粗さRaは、JIS B0601-1994に規定された値である。
 一方で、ガラス板は、その表面に、肉眼で確認できるサイズの巨視的な凹凸を有する型板ガラスであってもよい。なお、ここでいう巨視的な凹凸とは、粗さ曲線における評価長さをセンチメートルオーダーとした際に確認される、平均間隔Smがミリメートルオーダー程度の凹凸のことである。本実施形態では、型板ガラスの表面における凹凸の平均間隔Smは0.3mm以上、さらに0.4mm以上、特に0.45mm以上であることが好ましく、2.5mm以下、さらに2.1mm以下、特に2.0mm以下、とりわけ1.5mm以下であることが好ましい。ここで、平均間隔Smは、粗さ曲線が平均線と交差する点から求めた山谷一周期の間隔の平均値を意味する。さらに、型板ガラス板の表面凹凸は、上記範囲の平均間隔Smとともに、0.5μm~10μm、特に1μm~8μmの最大高さRyを有することが好ましい。ここで、本明細書における平均間隔Sm及び最大高さRyは、JIS(日本工業規格) B0601-1994に規定された値である。なお、このような型板ガラスであっても、微視的には(例えば原子間力顕微鏡(AFM)観察のような、粗さ曲線における評価長さが数100nmである表面粗さ測定では)、算術平均粗さRaが数nm以下、例えば1nm以下を満たすことが可能である。したがって、型板ガラスであっても、微視的な表面の平滑性に優れるガラス板として、本実施形態のコーティング膜付きガラス板のガラス板に好適に使用できる。
 また、型板ガラス板の表面凹凸は、上記範囲の平均間隔Sm、最大高さRyとともに、0.3μm~5.0μm、特に0.4μm~2.0μm、さらに0.5μm~1.2μmの算術平均粗さRaを有することが好ましい。上述の型板ガラスであれば、表面凹凸により防眩効果が充分に得られるが、他方、これら粗度が大きすぎると、面内で反射色調に色ムラが現れやすい。
 なお、ガラス板は、通常の型板ガラスや建築用板ガラスと同様の組成であってよいが、着色成分を極力含まないことが好ましい。ガラス板において、代表的な着色成分である酸化鉄の含有率は、Fe23に換算して、0.06質量%以下、特に0.02質量%以下が好適である。
 次に、本実施形態におけるコーティング膜について説明する。
 コーティング膜は、平滑な表面を有している。なお、ここでいう平滑な表面とは、AFMで2.5μm角の視野で表面を観察し、直径5nm以上の開放空孔の開口部及び粒状物が確認されない部分に、300nmの評価長さを設定し、その評価長さにおける算術平均粗さRaが5nm以下であること、好ましくは3nm以下であることをいう。
 コーティング膜は、当該膜の内部に含まれる孤立した閉鎖空孔と、マトリクスとを含んでいる。別の観点から、コーティング膜における閉鎖空孔は、マトリクスに囲まれることによって膜内部で孤立している空孔であるということができ、閉鎖空孔の内部には空気が存在していると考えられる。このような閉鎖空孔が膜内部に含まれていることにより、コーティング膜の実効屈折率が減少するので、コーティング膜による低反射効果が得られる。これにより、本実施形態のコーティング膜付きガラス板は、表面が凹凸形状を有していなくても、2.5%以上という高い透過率ゲインを実現する。なお、ここでいう透過率ゲインとは、コーティング膜側の面からコーティング膜付きガラス板に波長380~1100nmの光を入射したときの平均透過率から、コーティング膜が表面に設けられていない(設けられる前の)ガラス板に上記波長の光を入射したときの平均透過率を差し引いた値である。なお、閉鎖空孔の形状及び大きさ、さらにコーティング膜の空孔率などを以下の記載に従って適切な範囲に調整することにより、透過率ゲインを2.6%以上に高めることもでき、さらに2.9%以上に高めることもできる。
 本実施形態のコーティング膜付きガラス板は、上記のような透過率ゲイン及び透過率の増加率を実現できるので、高い光透過性を有することができる。
 コーティング膜は、当該膜の表面に開口している空孔(開放空孔)を実質的に有していない。なお、コーティング膜が開放空孔を実質的に有していないとは、コーティング膜の表面における開放空孔の数の面密度が5個/μm2未満であること、好ましくは0.2個/μm2未満であることをいい、好ましくは0.16個/μm2未満、より好ましくは0.01個/μm2未満であることである。コーティング膜は、開放空孔を有していないことが好ましい。なお、開放空孔の数の面密度とは、コーティング膜の表面において視野2.5μm角で走査型電子顕微鏡(SEM)で観察して開放空孔の数を測定し、その測定値を1視野の面積で除して求められる値である。また、コーティング膜が開放空孔を含まないとは、コーティング膜の表面を視野2.5μm角で、同一サンプル内で視野を変えて3回観察した場合に、開放空孔が確認されないことをいう。ここで、開放空孔とは、コーティング膜の表面をSEMで観察した際に確認される直径5nm以上の開口を有する空孔のことである。コーティング膜の表面に開口している開放空孔の数の面密度を上記範囲内とすることにより、たとえ樹脂などの付着物が表面に付着した場合でも、それを容易に除去することが可能となる。したがって、製造工程での付着物の付着による歩留り低下を抑制できる。
 閉鎖空孔は、コーティング膜の厚さ方向に沿った断面において観察された場合に、略楕円形状を有していてもよい。例えば、閉鎖空孔は、上記断面において観察された場合、略楕円形の孤立した空孔である第1閉鎖空孔と、略楕円形の空孔が2つ以上連結することによって形成されている第2閉鎖空孔とを含む。
 第1閉鎖空孔と、第2閉鎖空孔を形成している略楕円形の各空孔とは、例えば、長軸長さ30~80nm、及び、短軸長さ20~30nmを有している。なお、長軸長さとは、上記断面において観察される略楕円形の空孔の最長径であり、短軸長さとは長軸に直交する方向の径の長さのことである。長軸長さは、20~80nmであってもよく、30~70nmであってもよい。短軸長さは、10~40nmであってもよく、15~30nmであってもよい。
 第1閉鎖空孔と、第2閉鎖空孔を形成している略楕円形の各空孔とは、長軸がコーティング膜の膜面にほぼ沿うように配列されていてもよい。すなわちこの場合、第1閉鎖空孔の立体的形状、及び、第2閉鎖空孔を形成している略楕円形の各空孔の立体的形状は、扁平な略回転楕円体であって、回転軸がコーティング膜の膜厚方向に沿っているとみなすことができる。
 上記のように、コーティング膜は、膜内部に閉鎖空孔を含む多孔質構造を有している。コーティング膜の空孔率が高いほどコーティング膜のみかけの屈折率が低くなるので、コーティング膜付きガラス板の反射率を低減することができる。しかし、空孔率が限度を超えて高くなると、コーティング膜の耐久性が低下する。これらの理由から、コーティング膜の空孔率は10~40%が好ましく、15~30%がより好ましい。
 コーティング膜の膜厚は、例えば50~300nmであり、好ましくは100~250nmである。
 コーティング膜は、膜表面に粒状物が存在していてもよい。ただし、膜表面に存在する粒状物が多すぎると、コーティング膜付きガラス板の光透過性が低下したり、付着物の除去性が低下したりする場合がある。したがって、コーティング膜を表面側からSEMで観察した場合に、コーティング膜の表面に確認される直径20~100nmの粒状物が100個/μm2以下であることが好ましく、75個/μm2以下であることがより好ましく、50個/μm2以下であることが特に好ましい。また、コーティング膜を表面側からSEMで観察した場合に、コーティング膜の表面に確認される直径20~100nmの粒状物は、例えば10個/μm2以上であってよい。
 コーティング膜の表面において、評価長さ300nmで、開放空孔の開口部分を除いた部分(表面に上記の粒状物が存在する場合はその粒状物も除いた部分)の表面粗さは、例えば3nm以下の算術平均粗さRaを有する。
 コーティング膜は、上述のとおりマトリクスを含んでいる。このマトリクスは、シリコン、チタン、アルミニウム、ジルコニウム及び/又はタンタルなどの元素を含む金属酸化物を含むことができるが、シリコンの酸化物(特にシリカ)を主成分として含むことが好ましい。なお、ここでいうマトリクスの主成分とは、マトリクスに最も多く含まれる成分のことである。
 シリカは、酸化ケイ素を主成分として含有するガラス板との親和性が優れているため、コーティング膜の耐久性を高めることができる。また、シリカは屈折率が低いため、コーティング膜の見かけの屈折率をさらに低減することができ、さらなる透過率ゲインの向上にも寄与する。後述するが、マトリクスには、さらなる耐久性の向上などの効果を発揮させるために、シリコンの酸化物以外の金属化合物を含んでいてもよい。
 マトリクスの供給源(マトリクス原料)としては、シリコンアルコキシドに代表される加水分解性金属化合物を用いることができる。加水分解性金属化合物は、いわゆるゾルゲル法により加水分解及び縮重合することにより、マトリクスを形成し得る。
 コーティング膜のマトリクスがシリカを含む場合は、マトリクス原料として加水分解性シリコン化合物が用いられる。すなわち、この場合、マトリクスを形成するシリカは、加水分解性シリコン化合物の加水分解縮合生成物に由来する。
 加水分解性シリコン化合物としては、例えばシリコンアルコキシドが用いられる。本実施形態では、上記のような構造的特徴を有するコーティング膜を得やすいという理由から、シリコンアルコキシドが、1又は2の有機基がシリコン原子に直接結合しているシリコンアルコキシドを含むことが好ましく、さらに、1又は2の有機基がシリコン原子に直接結合しているシリコンアルコキシドからなっていることがより好ましい。またこの有機基は、疎水性であることが好ましい。換言すれば、非加水分解性の官能基の数が1又は2であるシリコンアルコキシドが好適に用いられる。後述するように、加水分解性シリコン化合物が、1又は2の有機基がシリコン原子に直接結合したシリコンアルコキシドからなることによって、コーティング膜が膜内部に閉鎖空孔を含む多孔質構造を効果的に作製することができるからである。シリコン原子に直接結合している有機基は、例えば炭素数1~5の直鎖アルキル基である。このようなシリコンアルコキシドの具体例として、例えばメチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン及びジメチルジエトキシシランが挙げられる。この場合、加水分解性シリコン化合物の加水分解性縮合生成物は、非加水分解性の官能基に由来する有機基を含む。
 コーティング膜におけるマトリクスは有機基を含有してもよいが、好ましくはマトリクスが有機基を含有しないことである。有機基を含有しないマトリクスは、より優れた耐久性及び耐摩耗性を有するからである。
 コーティング膜のマトリクスがシリカを主成分とする場合に、当該マトリクスが、アルミニウム、チタン及びジルコニウムからなる群から選ばれた少なくともいずれか1種の元素の酸化物をさらに含んでいてもよい。マトリクスがこれらの酸化物をさらに含むことにより、コーティング膜の耐久性が向上する。なお、コーティング膜のマトリクスがこれらの金属酸化物を含む場合は、金属塩化物及びオキシ塩化物など水溶性の無機化合物がマトリクス原料に添加されることが好ましい。
 コーティング膜のマトリクスは、シリカを90~100質量%含んでいることが好ましく、94~100質量%含んでいることがより好ましい。コーティング膜のマトリクスがアルミニウム、チタン及びジルコニウムからなる群から選ばれた少なくともいずれか1種の元素の酸化物を含む場合、当該酸化物はコーティング膜に2~7質量%含まれていることが好ましく、3~6質量%含まれていることがより好ましい。
 コーティング膜は、閉鎖空孔、開放空孔及びマトリクス以外に、例えば中実微粒子などを含んでいてもよい。コーティング膜が中実微粒子を含むことにより、コーティング膜の耐久性が向上する。中実微粒子は、マトリクスによって固定される。中実微粒子は、平均粒径が例えば10~100nmであり、この範囲の粒径をもつ略球状の一次粒子であっても、より小さな一次粒子が凝集することでこの範囲の粒径をもつ二次粒子であってもよい。平均粒径が大きいほど、コーティング膜の耐久性を向上させる観点からは好ましい。しかし、平均粒径が大きすぎると、コーティング膜の表面に存在する粒状物が多くなり、コーティング膜に付着した付着物を除去することが困難になるため好ましくない。中実微粒子としては、例えばシリカ微粒子を用いることができる。なお、中実微粒子の平均粒径とは、SEMを用いてコーティング膜の断面を観察することによって求められる。具体的に、粒子の全体を観察できる任意の50個の粒子について、その最大径及び最小径を測定してその平均値を各粒子の粒径とし、50個の粒子の粒径の平均値を「平均粒径」とする。
 コーティング膜に含まれる閉鎖空孔、及び、含まれる場合がある開放空孔は、任意の方法で形成され得るが、コーティング膜を形成するためのコーティング液に空孔生成剤として含まれ、且つ所定温度以上の熱処理によって消失する微粒子に由来することが好ましい。このような微粒子は、いわゆる鋳型として用いられ、最終的には熱処理によって消失することにより、当該微粒子が占めていた部分が孔としてコーティング膜内に残留する。このように形成される孔が、閉鎖空孔や開放空孔となる。空孔生成剤として用いられる微粒子として、例えば400℃以上、好ましくは600℃以上の熱処理によって、揮発、熱分解又は焼失によって消失する微粒子を用いることができる。
 空孔生成剤として用いられる微粒子は、例えば有機ポリマー微粒子である。有機ポリマー微粒子は、その表面に極性基を有することが好ましい。極性基の例としては、親水性基であり、その例としてヒドロキシ基、カルボニル基及びカルボキシル基を例示できる。極性基の別の例としては、アクリロイル基や(メタ)アクリロイル基(総称してメタクリロイル基)が例示できるが、これらに限られない。この好ましい有機ポリマー微粒子は、コーティング液中で分離しにくく、また、膜内部に閉鎖空孔を有する多孔質構造のコーティング膜を効果的に作製するのに適している。この有機ポリマー微粒子の平均粒径は、好ましくは10~200nmであり、より好ましくは20~150nmであり、特に好ましくは30~100nmである。なお、有機ポリマー微粒子の平均粒径とは、光散乱式粒度分布測定によって求められる値である。
 本実施形態のコーティング膜付きガラス板は、コーティング膜上に設けられた接触角向上膜をさらに含んでいてもよい。接触角向上膜は、液体が付着したときに高い接触角を有する膜である。この膜がコーティング膜上に設けられることにより、設けられていない場合と比較して、コーティング膜付きガラス板の表面の撥水性及び撥油性が向上する。したがって、接触角向上膜が設けられたコーティング膜付きガラス板は、優れた汚れ落ち性を有し、例えば加工時に表面に付着した汚れも簡単に除去できる。その結果、汚れの付着による外観不良などの問題を解決でき、製造工程での歩留りを向上させることも可能となる。
 接触角向上膜は、コーティング膜表面の液体の接触角を高めることができる膜であればよいため、その材料は特には限定されないが、例えば、シリコンに直接結合した疎水基を有する加水分解性シリコン化合物の加水分解物が好適に用いられる。該化合物においては、シリコンに結合する疎水基の数は1又は2であり、加水分解性基としては、アルコキシル基、アセトン基、アルケニルオキシ基、アミノ基及びハロゲン基が好ましい。疎水基としては、アルキル基、フルオロアルキル基及びアルケニル基が好ましく、その炭素数は好ましくは1~30、より好ましくは1~6である。具体的には、疎水基としてはメチル基、エチル基及びビニル基が好ましく、加水分解性基としてはメトキシ基及びエトキシ基が好ましい。また、別の例としては、フッ素系表面防汚処理剤として市販されているものであり、フルオロアルキル基含有シラン化合物や、パーフルオロポリエーテル含有シラン化合物を挙げることができる。
 接触角向上膜の厚さは、用いられる材料の撥水性などの機能に応じて適宜決定されることが好ましいが、例えば1nm~50nmとすることができる。
 接触角向上膜の接触角は、コーティング膜表面よりも高い接触角を有していればよいため特には限定されないが、例えば水の接触角で50~110°であり、好ましくは水の接触角で70~110°である。
 本実施形態のコーティング膜付きガラス板は、例えば、
(i)ガラス板の一方の主面上に、マトリクス原料及び空孔生成剤を含むコーティング液を塗布して塗膜を形成する工程と、
(ii)前記塗膜を乾燥させる工程と、
(iii)乾燥させた前記塗膜を焼成する工程と、
を含む製造方法によって製造することができる。
 コーティング液に含まれる空孔生成剤は、上述したとおりである。また、マトリクス原料とは、いわゆるゾルゲル法により加水分解及び縮重合してマトリクスを形成し得る加水分解性金属化合物であり、その詳細は上述のとおりである。
 コーティング液がマトリクス原料として加水分解性シリコン化合物を含み、かつ空孔生成剤として有機ポリマー微粒子を含む場合、加水分解性シリコン化合物の加水分解縮合生成物100質量部に対し、有機ポリマー微粒子は12~38質量部であることが好ましく、15~35質量%がより好ましく、17~25質量%が特に好ましい。コーティング液が有機ポリマー微粒子をこのような割合で含むことにより、透過率ゲイン2.5%以上を実現できるように閉鎖空孔をコーティング膜内部に形成することが容易となる。
 コーティング液は、マトリクス原料及び空孔生成剤の他に、加水分解触媒、レベリング剤、界面活性剤及び溶媒などの他の成分を適宜含んでいてもよい。加水分解触媒は、マトリクス原料である加水分解性金属化合物の加水分解を促進させるために用いられる。レベリング剤及び界面活性剤は、コーティング液を塗布して形成される塗膜のレベリング性向上、コーティング液のガラス板への濡れ性向上及びコーティング液の塗布ムラの低減のために用いられる。
 コーティング液の固形分濃度は、特には限定されない。コーティング液の塗布ムラが生じず、乾燥及び焼成工程で塗膜にクラックなどの欠陥が生じず、さらにコーティング膜を所定範囲内の厚さとすることができるような適切な固形分濃度となるように、コーティング液を溶媒で適宜希釈して調製することができる。
 コーティング液がマトリクス原料として加水分解性金属化合物を含む場合、コーティング液にはその加水分解性金属化合物の加水分解生成物が含まれることになる。そのため、加水分解性金属化合物と空孔生成剤とが混合された状態で、加水分解性金属化合物を加水分解して加水分解生成物を含むコーティング液を調製してもよいし、加水分解性金属化合物を予め加水分解させた加水分解液を調製しておき、その加水分解液と空孔生成剤とを混合してコーティング液を調製してもよい。
 上記のようなコーティング液を、ガラス板の一方の主面上に所定厚さに塗布して、塗膜を形成する。コーティング液を塗布する方法は、特には限定されず、公知の塗布方法を適宜用いることができる。公知の塗布方法の中でも、量産性の理由から、ロールコータやスプレーコートが好ましい。
 次に、得られた塗膜を乾燥させる。コーティング液に含まれる加水分解性金属化合物が、シリコン原子に直接結合する疎水性の有機基の数が1又は2の加水分解性シリコン化合物からなり、また、空孔生成剤として含まれる有機ポリマー微粒子がその表面に親水性基を有する場合、塗膜内で加水分解性シリコン化合物と有機ポリマー微粒子との再配列が起こり、乾燥によりその再配列された構造が固定される。この再配列において、加水分解生成物は疎水性基を有するので、親水性の強いガラス板の反対側(すなわち塗膜の自由表面側)の近傍に集まり、表面張力により平滑な表面を形成する。一方、有機ポリマー微粒子は親水性基を有するので、ガラス板表面に集まろうとし、塗膜の自由表面上に突出することがほとんどない。これにより、開放空孔を有さない多孔質構造を効果的に形成することができる。この乾燥工程によって、塗膜中の溶媒を揮発させて、且つ加水分解生成物を縮合させる。塗膜の乾燥温度及び乾燥時間は、特には限定されないが、例えば300~400℃に設定した加熱炉に、20~120秒間保持することができる。このとき、塗膜の表面温度は100~150℃に達している。なお、この乾燥工程においては、空孔生成剤のほとんどは、消失せずに残っていると考えられる。
 次に、乾燥工程で得られた塗膜を焼成する。この焼成工程により、空孔生成剤が揮発、熱分解又は焼失によって消失して、空孔が形成される。焼成温度及び焼成時間は、特には限定されないが、一例としては、400~500℃で1~5分間の焼成を挙げることができる。他の例として、600℃以上で1分間以上の焼成を挙げることができる。前者の例の焼成では、空孔生成剤は消失するが、マトリクスに含有される有機基はその多くが消失せずに残存する。一方、後者の例の焼成では、空孔生成剤及びマトリクスの有機基が共に消失するため、有機基を含まないマトリクスが得られ、コーティング膜が高い耐久性及び耐摩耗性を有する。好適な焼成条件として、市販のソーダ石灰ガラス板を風冷強化する際のガラス板の加熱条件が挙げられる。例えば、640~780℃に設定した加熱炉に塗膜を1~3分間保持すればよい。このとき、塗膜の表面温度は630~690℃に達している。この焼成工程で塗膜が膜厚方向に収縮し、さらにそのとき既に形成されている空孔もまた膜厚方向に収縮することにより、第1閉鎖空と、第2閉鎖空孔を形成する各空孔とが、上記のような略楕円形を有するように形成されると考えられる。
 以上の方法によれば、本実施形態のコーティング膜付きガラス板を製造することができる。
 コーティング膜上に接触角向上膜をさらに形成する場合は、コーティング膜付きガラス板のコーティング膜の表面上に、接触角向上膜を形成する材料を含む処理液を塗布することによって製造することができる。処理液は、接触角向上膜を形成する材料に溶剤などを添加することによって準備することができる。
 以下、本発明について実施例を用いてさらに詳細に説明するが、本発明は、本発明の要旨を超えない限り、以下の実施例に限定されるものではない。
 まず、各実施例及び各比較例で作製したコーティング膜付きガラス板の各特性の評価方法を説明する。
 (透過率ゲイン)
 分光光度計(島津製作所製 紫外可視分光光度計UV-3100)を用い、コーティング膜の形成前後におけるガラス板の透過率曲線(透過スペクトル)をそれぞれ測定した。平均透過率は、波長380~1100nmにおける透過率を平均化して算出した。コーティング膜が設けられたガラス板の平均透過率の、当該コーティング膜が設けられる前のガラス板の平均透過率に対する増分を透過率ゲインとした。
 (付着物の除去性1)
 市販の太陽電池用合せガラス中間膜(エチレン・ビニルアルコール共重合体、EVA SKY、株式会社ブリヂストン製)を20×30mmに切断し、それをコーティング膜付きガラス板のコーティング膜上に置き、150℃に設定したオーブン中へ投入し5分間保持した。その後、コーティング膜付きガラス板をオーブンから取り出して室温まで放冷し、中間膜を剥ぎ取った。
 コーティング膜付きガラス板において中間膜を載せていた箇所を、エタノールを染み込ませたセルロース系不織布(ベンコット(R)、旭化成せんい株式会社製)で擦り、剥ぎ取った際にコーティング膜上に付着して残っていた中間膜材料を拭き取った。この拭き取りでは、コーティング膜の表面に残留する中間膜材料を除去することができるが、コーティング膜の膜中に染み込んだ中間膜材料を除去することができない。
 コーティング膜において、拭き取った後の中間膜材料が付着していた箇所(付着部)と、中間膜を置かなかった箇所(未付着部)との反射色調の違いを目視で確認し、下記の判断基準で付着汚れ性を評価した。
◎:付着部と未付着部との反射色の差が、ほとんど認められない。
○:付着部と未付着部との反射色の差が認められるが、その差はわずかである。
×:付着部と未付着部との反射色の差が、明らかに認められる。
 (付着物の除去性2)
 中間膜をコーティング膜付きガラス板のコーティング膜上に置いて、150℃に設定したオーブン中に投入して保持する時間を30分に変更した点を除いて、上記の「付着物の除去性1」と同じ方法で付着物の除去性の試験を行った。付着汚れ性の評価の判断基準も、上記の「付着物の除去性1」と同じとした。
 (耐塩水性)
 コーティング膜の耐塩水性を評価するため、塩水噴霧試験(ソルトスプレーテスト)を実施した。コーティング膜付きガラス板について、上記の(透過率ゲイン)の評価の場合と同様に平均透過率を測定し、その後JIS C8917:2005付属書4に準拠する条件でコーティング膜に対して塩水噴霧を行なった後に、さらに平均透過率を測定した。塩水噴霧後の平均透過率から塩水噴霧前の平均透過率を差し引いた値の絶対値を耐塩水性とした。具体的には、塩水噴霧は、温度35℃、濃度5質量%のNaCl水溶液をミスト状にしてコーティング膜に96時間噴霧し、その後にコーティング膜の表面を流水にて洗浄することによって実施された。
 (開放空孔数の面密度)
 コーティング膜を電界放射型走査型電子顕微鏡(S-4500、株式会社日立製作所製)によって観察した。コーティング膜の表面を視野2.5μm角でFE-SEMで観察し、表面に確認される直径5nm以上の開口の数を測定し、測定値を1視野の面積で除することによって開放空孔数の面密度(個/μm2)を求めた。また、コーティング膜の表面を視野2.5μm角で、同一サンプル内で視野を変えて3回観察した場合に開放空孔が確認されない場合は、「開放空孔が含まれない」と判断した。
 (コーティング膜の表面の平滑性)
 AFM(エスアイアイ・ナノテクノロジー株式会社製、「SPF-400」)で2.5μm角の視野でコーティング膜の表面を観察し、直径5nm以上の開放空孔の開口部及び粒状物が確認されない部分に300nmの評価長さを設定し、その評価長さにおける算術平均粗さRaを、AFM装置付属の解析ソフトウェア(エスアイアイ・ナノテクノロジー株式会社製、「Nano Navi」)を用いて求めた。
 (実施例1)
<コーティング膜形成用のコーティング液の調製>
 実施例1では、コーティング膜のマトリクス原料として、メチルトリエトキシシラン(MTES)を用いた。したがって、まずMTES加水分解液を調製した。イソプロピルアルコール(溶媒)64.38g、精製水8.05g、1N硝酸(加水分解触媒)1.00g、MTES26.57gをガラス瓶に秤量し、40℃にて8時間加水分解反応を行い、固形分濃度10質量%の加水分解液(MTES加水分解液)を得た。次に、このMTES加水分解液3.00g、イソプロピルアルコール(溶媒)6.25g、3-メトキシー1-ブタノール(溶媒)0.30g、有機ポリマー微粒子分散液(空孔生成剤)(ポリメタクリル酸メチル系架橋物、株式会社日本触媒製「エポスターMX-050」、微粒子の平均粒子径0.05~0.10μm、固形分濃度10.0質量%)0.75gをガラス製容器に入れ、コーティング液を得た。コーティング液において、表1に示されているマトリクス原料の質量%とは、そのマトリクス原料として用いた材料の加水分解縮合生成物の質量の、コーティング液の質量に対する質量%のことである。また空孔生成剤の質量部とは、コーティング液に含まれるマトリクス原料の質量を100質量部としたときの空孔生成剤の質量部のことである。また、イソプロピルアルコール、3-メトキシー1-ブタノール及び水の質量%は、コーティング液の調製において添加した各々の成分の質量の、コーティング液の質量に対する質量%のことであり、したがって、加水分解縮合反応で副生するアルコール及び水は含まれない。
<ガラス板の準備>
 実施例1では、型板ガラスをガラス板として用いた。この型板ガラスは、通常のソーダライムシリケート組成からなり、評価長さ1cmで評価した表面凹凸の算術平均粗さRaが0.76μm、平均間隔Smが1120μm(JIS B0601-1994の規定に基づく)、厚さ3.2mmの日本板硝子株式会社製である。この型板ガラスを100×100mmに切断し、アルカリ溶液(KOH 25wt%水溶液)に浸漬して超音波洗浄機を用いて洗浄し、脱イオン水で水洗したのち常温で乾燥させてコーティング膜を形成するためのガラス板とした。コーティング膜を形成する前のこのガラス板の透過特性を前述のとおり評価したところ、平均透過率91.7%であった。
<コーティング膜の作製>
 コーティング液の塗布は、スピンコート法で行なった。準備された上記ガラス板をスピンコート装置上で水平に保持し、ガラス板の中央部にコーティング液を0.17cc滴下し、ガラス板を回転数600rpmで回転させ、10秒間その回転数を保持した後、ガラス板の回転を停止させた。これにより、ガラス板の一方の主面上に塗膜が形成された。次いで、この塗膜から溶媒を除去して乾燥させた。乾燥は、塗膜が一方の主面上に形成されたガラス板を、350℃に設定した電気炉内で60秒間保持した後電気炉から取り出し、室温まで放冷することで行なった。次に、乾燥させた塗膜を焼成した。焼成は、塗膜を760℃に設定した電気炉内で5分間保持することによって行った。このとき、塗膜の表面温度は665℃に達していた。図1に、得られたコーティング膜のFE-SEM写真を示す。
 (実施例2)
 コーティング液の調製において、有機ポリマー微粒子分散液として、「エポスターMX-050」の代わりに「エポスターMX-030」(株式会社日本触媒製、微粒子の平均粒子径0.03~0.05μm、固形分濃度10.0質量%)を0.53g用いた点、さらに、コーティング液の塗布時のガラス板の回転数を550rpmに変更した点以外は、実施例1と同様の方法で実施例2のコーティング膜付きガラス板を作製した。
 (実施例3)
 コーティング液の調製において、有機ポリマー微粒子分散液の添加量を0.45gに変更した点以外は、実施例1と同様の方法で実施例3のコーティング膜付きガラス板を作製した。
 (実施例4)
 コーティング液の調製において、有機ポリマー微粒子分散液の添加量を1.05gに変更した点以外は、実施例1と同様の方法で実施例4のコーティング膜付きガラス板を作製した。
 (比較例1)
<コーティング膜形成用のコーティング液の調製>
 比較例1では、コーティング膜のマトリクス原料として、テトラエトキシシラン(TEOS)を用いた。したがって、まずTEOS加水分解液を調製した。イソプロピルアルコール(溶媒)52.33g、精製水12.00g、1N硝酸(加水分解触媒)1.00g、TEOS34.67gをガラス瓶に秤量し、40℃にて8時間加水分解反応を行い、固形分濃度10質量%の加水分解物を得た。次に、このTEOS加水分解液2.00g、イソプロピルアルコール(溶媒)6.70g、精製水0.50g、3-メトキシー1-ブタノール(溶媒)0.30g、有機ポリマー微粒子分散液(空孔生成剤)(株式会社日本触媒製「エポスターMX-050」、微粒子の平均粒子径0.05~0.10μm、固形分濃度10.0質量%)0.50gをガラス製容器に入れ、コーティング液を得た。図2に、得られたコーティング膜のFE-SEM写真を示す。
 比較例1におけるガラス板の準備及びコーティング膜の作製は、実施例1と同様であった。
 (比較例2)
<コーティング膜形成用のコーティング液の調製>
 MTES加水分解液3.00g、イソプロピルアルコール6.40g、3-メトキシー1-ブタノール0.30g、有機ポリマー微粒子分散液(株式会社日本触媒製「エポスターMX-050」、微粒子の平均粒子径0.05~0.10μm、固形分濃度10.0質量%)0.30gをガラス製容器に入れ、コーティング液を得た。なお、比較例2で用いたMTES加水分解液は、実施例1と同様の方法で調製されたものである。
 比較例2におけるガラス板の準備及びコーティング膜の作製は、実施例1と同様であった。
 (比較例3)
 有機ポリマー微粒子分散液の添加量を1.20gに変更した点以外は、比較例2と同様の方法で比較例3のコーティング膜付きガラス板を作製した。
 表1に示すとおり、実施例1~4のコーティング膜付きガラス板は、コーティング膜の表面が平滑であって、さらに、コーティング膜の表面において2.5μm角の視野内に開放空孔の開口が観察されなかった。これら実施例1~4のコーティング膜付きガラス板は、付着物の除去性が良好であり、さらに耐塩水性にも優れていた。また、実施例1~4のコーティング膜付きガラス板は、SEM写真でも確認できるようにコーティング膜の内部に閉鎖空孔を含んでおり、2.5%以上の透過率ゲインを有していた。これに対し、比較例1のコーティング膜は、その表面が平滑でなく、さらにコーティング膜の表面に開口している開放空孔の数が10個/μm2以上であった。したがって、比較例1のコーティング膜付きガラス板は、付着物の除去性が劣っていた。また、比較例2のコーティング膜は、コーティング膜の作製時に添加した有機ポリマー微粒子の量が少な過ぎたこともあり、コーティング膜内部に閉鎖空孔が十分に形成されずに、透過率ゲインが低かった。一方、比較例3のコーティング膜は、コーティング膜の作製時に添加した有機ポリマー微粒子の量が多過ぎたこともあり、コーティング膜内部に閉鎖空孔が多く形成され過ぎてしまい、却って透過率ゲインが低くなってしまった。
 (実施例5)
 実施例5は、コーティング液の塗布をロールコータを用いて行い、その後風冷強化工程を施した例である。つまり、実施例1の焼成に相当する加熱を施した直後、空気を吹き付けて急冷する工程を追加して、作製されるコーティング膜付きガラス板を強化ガラスとした例である。以下に具体的に説明する。
 まず、実施例1と同じコーティング液を準備し、実施例1と同じガラス板を準備した。コーティング液の塗布を、ロールコータを用い、塗膜の厚さが1μm~5μmになるように塗布して、ガラス板の一方の主面上に塗膜を形成した。塗布開始時のガラス板の温度を、20~25℃の間になるように調節した。
 塗布に続く乾燥は、塗膜が一方の主面上に形成されたガラス板を、連続搬送式の加熱炉を通過させることで行った。加熱炉から出てきたとき、塗膜の表面温度は140℃に達していた。この後、ガラス板を室温まで放冷した。
 その後、乾燥膜が形成されているガラス板に、風冷強化処理を施した。風冷強化処理は、ガラス板を700℃に設定した電気炉内に180秒間保持した後、電気炉から取り出したガラス板に常温の空気を吹きつけて急冷することによって実施した。電気炉から取り出したとき、ガラス板の表面温度は650℃に達していた。
 この急冷における冷却速度は、650~550℃の温度範囲で80~100℃/秒であった。得られた強化ガラス板には、90~110MPaの範囲内の表面圧縮応力が印加されていた。
 得られたコーティング膜について、ランダムに選択した2視野でのFE-SEM写真を図4及び図5に示す。実施例5のコーティング膜付きガラス板は、コーティング膜の表面は平滑であるが、コーティング膜の表面において、開放空孔の開口が2.5μm角の視野内に観察されない部分(図4)と、観察される部分(図5)とが混在していた。開放空孔の開口が観察される部分では、開放空孔の数は4個/μm2であった。コーティング膜の平滑性は、算術平均粗さRaで4.75nmであった。
 開放空孔や平滑性の差が、風冷による急冷の有無に起因するのか否かは現時点で不明である。しかし、実施例5のコーティング膜の透過率ゲインは2.80%、耐塩水性は0.03%であり、それらの観点からは優秀な性能を示していた。
 (実施例6)
 実施例6は、実施例5のコーティング膜付きガラス板のコーティング膜上に、さらに接触角向上剤としてフッ素系撥水剤を塗布して接触角向上膜を形成した例である。
 フッ素系撥水剤の1種である、トリデカフルオロオクチルトリエトキシシラン〔CF3(CF2524Si(OC253〕1.05gをエタノール40.6gに溶解し、1時間攪拌を行った後、イオン交換水0.8g及び0.1N塩酸を1.0g添加し、更に1時間攪拌し、処理液を得た。
 この処理液3mLを綿布につけ、実施例5のコーティング膜付きガラス板のコーティング膜面に塗り込んだ後、過剰に付着した処理剤をエタノールを含ませた新しい綿布で拭き取り、実施例6のコーティング膜付きガラス板を得た。
 (実施例7)
 実施例7は、実施例6において接触角向上剤としてフッ素系撥水剤の代りにメチルトリエトキシシランを塗布した例である。
 トリデカフルオロオクチルトリエトキシシラン1.3gの代りに、メチルトリエトキシシラン0.22gとした以外は、実施例6と同様にして処理液を得た。
 この処理液3mLを綿布につけ、実施例5のコーティング膜付きガラス板のコーティング膜面に塗り込んだ後、過剰に付着した処理剤を、何も含ませていない乾いた新しい綿布で乾拭きして拭き取り、実施例7のコーティング膜付きガラス板を得た。
 (実施例8)
 実施例8は、実施例6において接触角向上剤の別例として、市販のフッ素系撥水付与剤を塗布した例である。
 ガラス用指紋付着防止剤として市販されている「オプツールDSX」(ダイキン工業株式会社製、フッ化炭素系化合物のパーフルオロヘキサンでの20%希釈液)を、さらにパーフルオロヘキサンで希釈して0.1wt%溶液を調製した。この処理液を用いて実施例7と同様の方法で、実施例8のコーティング膜付きガラス板を得た。
 接触角向上膜が形成された実施例6~8のコーティング膜は、実施例5のコーティング膜と比較し、付着物の除去性が明確に改善されていた。
 (実施例9)
 実施例9では、実施例1で作製したコーティング膜付きガラス板のコーティング膜上に、以下の接触角向上膜形成用コーティング液を用いて作製された接触角向上膜がさらに設けられたコーティング膜付きガラス板を作製した。
<接触角向上膜形成用コーティング液の調製>
 実施例1で多孔質層形成用コーティング液を調製する際に用いたMTES加水分解液と同じMTES加水分解液(固形分濃度10質量%)を調製し、このMTES加水分解液をIPAで固形分濃度が3質量%となるように希釈した。得られた固形分濃度3質量%のMTES加水分解液0.67g、IPA8.83g、オキシ塩化ジルコニウム八水和物(ZrOCl2・8H2O)の1質量%水溶液0.26g、塩化アルミニウム六水和物(AlCl3・6H2O)の1質量%水溶液0.24gを混合し、接触角向上膜形成用コーティング液を得た。
<接触角向上膜の作製>
 実施例1のコーティング膜付きガラス板と同じコーティング膜付きガラス板を準備した。準備されたコーティング膜付きガラス板をスピンコート装置上で水平に保持し、コーティング膜上の中央部に接触角向上膜形成用コーティング液を滴下し、ガラス板を回転数1000rpmで回転させ、10秒間その回転数を保持した後、ガラス板の回転を停止させた。これにより、コーティング膜上に接触角向上膜形成用塗膜が形成された。次いで、この接触角向上膜形成用塗膜から溶媒を除去して乾燥させた。乾燥は、接触角向上膜形成用塗膜が形成されたコーティング膜付きガラス板を、350℃に設定した電気炉内で60秒間保持した後電気炉から取り出し、室温まで放冷することで行った。
Figure JPOXMLDOC01-appb-T000001
 本発明のコーティング膜付きガラス板は、付着物を容易に除去することができ、さらに高い光透過性を実現できるので、例えば車両用ガラス、ショーウィンドウ又は光電変換装置用ガラス板などのあらゆる分野に利用できる。

Claims (27)

  1.  ガラス板と、
     前記ガラス板の少なくとも一方の主面上に設けられた、平滑な表面を有するコーティング膜と、
    を含むコーティング膜付きガラス板であって、
     前記コーティング膜は、当該膜の内部に含まれる孤立した閉鎖空孔と、マトリクスとを含んでおり、
     前記コーティング膜は、前記コーティング膜の前記表面に開口している開放空孔を実質的に有しておらず、
     前記コーティング膜側の面から前記コーティング膜付きガラス板に波長380~1100nmの光を入射したときの平均透過率から、前記コーティング膜が表面に設けられていない前記ガラス板に前記波長の光を入射したときの平均透過率を差し引いた透過率ゲインが2.5%以上である、
    コーティング膜付きガラス板。
  2.  前記閉鎖空孔が、前記コーティング膜の厚さ方向に沿った断面で観察された場合に、略楕円形の孤立した空孔である第1閉鎖空孔と、略楕円形の空孔が2つ以上連結することによって形成されている第2閉鎖空孔とを含んでいる、
    請求項1に記載のコーティング膜付きガラス板。
  3.  前記第1閉鎖空孔と、前記第2閉鎖空孔を形成している前記略楕円形の各空孔とが、長軸長さ30~80nm、及び、短軸長さ20~30nmを有しており、且つ
     前記長軸が前記コーティング膜の膜面に沿うように配列されている、
    請求項2に記載のコーティング膜付きガラス板。
  4.  前記コーティング膜が、50~300nmの膜厚を有し、且つ10~40%の空孔率を有する、
    請求項1に記載のコーティング膜付きガラス板。
  5.  前記コーティング膜が、100~250nmの膜厚を有する、
    請求項4に記載のコーティング膜付きガラス板。
  6.  前記コーティング膜上に設けられた接触角向上膜をさらに含む、
    請求項1に記載のコーティング膜付きガラス板。
  7.  前記コーティング膜が前記表面側から観察された場合に、前記コーティング膜の前記表面に直径20~100nmの粒状物が存在し、且つ前記粒状物の数の面密度が10~100個/μm2である、
    請求項1に記載のコーティング膜付きガラス板。
  8.  前記コーティング膜の前記表面において、評価長さ300nmで、前記開放空孔の開口部分と、前記表面に粒状物が存在する場合は当該粒状物とを除いた部分の表面が3nm以下の算術平均粗さRaを有する、
    請求項1に記載のコーティング膜付きガラス板。
  9.  前記コーティング膜の前記マトリクスは、シリカを主成分として含む、
    請求項1に記載のコーティング膜付きガラス板。
  10.  前記シリカは、加水分解性シリコン化合物の加水分解縮合生成物に由来する、
    請求項9に記載のコーティング膜付きガラス板。
  11.  前記加水分解性シリコン化合物は、シリコンアルコキシドである、
    請求項10に記載のコーティング膜付きガラス板。
  12.  前記シリコンアルコキシドは、1又は2の有機基がシリコン原子に直接結合しているシリコンアルコキシドを含む、
    請求項11に記載のコーティング膜付きガラス板。
  13.  前記有機基は、炭素数1~5の直鎖アルキル基である、
    請求項12に記載のコーティング膜付きガラス板。
  14.  前記コーティング膜の前記マトリクスは、アルミニウム、チタン及びジルコニウムからなる群から選ばれた少なくともいずれか1種の元素の酸化物をさらに含む、
    請求項9に記載のコーティング膜付きガラス板。
  15.  前記閉鎖空孔及び前記開放空孔が、前記コーティング膜を形成するためのコーティング液に空孔生成剤として含まれ、且つ所定温度以上の熱処理によって消失する微粒子に由来する、
    請求項1に記載のコーティング膜付きガラス板。
  16.  前記微粒子は、有機ポリマー微粒子である、
    請求項15に記載のコーティング膜付きガラス板。
  17.  前記有機ポリマー微粒子の平均粒径が10~200nmである、
    請求項16に記載のコーティング膜付きガラス板。
  18.  前記コーティング液が、加水分解性シリコン化合物をさらに含んでおり、
     前記コーティング液において、前記加水分解性シリコン化合物の加水分解縮合生成物100質量部に対し、前記微粒子が12~38質量部である、
    請求項15に記載のコーティング膜付きガラス板。
  19.  請求項1に記載のコーティング膜付きガラス板を製造する方法であって、
    (i)ガラス板の一方の主面上に、マトリクス原料及び空孔生成剤を含むコーティング液を塗布して塗膜を形成する工程と、
    (ii)前記塗膜を乾燥させる工程と、
    (iii)乾燥させた前記塗膜を焼成する工程と、
    を含む、コーティング膜付きガラス板の製造方法。
  20.  前記コーティング液が、前記マトリクス原料として加水分解性シリコン化合物を含み、前記加水分解性シリコン化合物を加水分解縮合させることにより前記コーティング膜の前記マトリクスを形成する、
    請求項19に記載のコーティング膜付きガラス板の製造方法。
  21.  前記加水分解性シリコン化合物は、シリコンアルコキシドである、
    請求項20に記載のコーティング膜付きガラス板の製造方法。
  22.  前記シリコンアルコキシドは、1又は2の有機基がシリコン原子に直接結合しているシリコンアルコキシドを含む、
    請求項21に記載のコーティング膜付きガラス板の製造方法。
  23.  前記有機基は、炭素数1~5の直鎖アルキル基である、
    請求項22に記載のコーティング膜付きガラス板の製造方法。
  24.  前記空孔生成剤が、所定温度以上の熱処理によって消失する微粒子である、
    請求項19に記載のコーティング膜付きガラス板の製造方法。
  25.  前記微粒子は、有機ポリマー微粒子である、
    請求項24に記載のコーティング膜付きガラス板の製造方法。
  26.  前記有機ポリマー微粒子の平均粒径が10~200nmである、
    請求項25に記載のコーティング膜付きガラス板の製造方法。
  27.  前記コーティング液が、前記マトリクス原料として加水分解性シリコン化合物を含み、前記空孔形成剤として所定温度以上の熱処理によって消失する微粒子を含んでおり、
     前記コーティング液において、前記加水分解性シリコン化合物の加水分解縮合生成物100質量部に対し、前記微粒子が12~38質量部である、
    請求項19に記載のコーティング膜付きガラス板の製造方法。
     
PCT/JP2016/001106 2015-03-06 2016-03-01 コーティング膜付きガラス板及びその製造方法 WO2016143297A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/555,878 US10800700B2 (en) 2015-03-06 2016-03-01 Coated glass sheet and method for producing same
JP2017504853A JP6805127B2 (ja) 2015-03-06 2016-03-01 コーティング膜付きガラス板及びその製造方法
US17/011,818 US20200399170A1 (en) 2015-03-06 2020-09-03 Coated glass sheet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015044860 2015-03-06
JP2015-044860 2015-03-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/555,878 A-371-Of-International US10800700B2 (en) 2015-03-06 2016-03-01 Coated glass sheet and method for producing same
US17/011,818 Continuation US20200399170A1 (en) 2015-03-06 2020-09-03 Coated glass sheet and method for producing same

Publications (1)

Publication Number Publication Date
WO2016143297A1 true WO2016143297A1 (ja) 2016-09-15

Family

ID=56879984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001106 WO2016143297A1 (ja) 2015-03-06 2016-03-01 コーティング膜付きガラス板及びその製造方法

Country Status (3)

Country Link
US (2) US10800700B2 (ja)
JP (1) JP6805127B2 (ja)
WO (1) WO2016143297A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101277A1 (ja) * 2016-11-30 2018-06-07 富士フイルム株式会社 塗布組成物、反射防止膜、積層体及び積層体の製造方法、並びに、太陽電池モジュール
WO2019065772A1 (ja) * 2017-09-29 2019-04-04 富士フイルム株式会社 塗布組成物、積層体及び太陽電池モジュール、並びに積層体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056405A1 (ja) * 2015-10-01 2017-04-06 日本板硝子株式会社 コーティング膜付きガラス板及びその製造方法
CN111943525B (zh) * 2020-07-04 2023-01-10 上海博迪装饰材料有限公司 一种防尘钢化玻璃的制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509175A (ja) * 2006-11-14 2010-03-25 サン−ゴバン グラス フランス 多孔性層、その製造方法およびその用途
US20120237676A1 (en) * 2011-03-14 2012-09-20 Intermolecular, Inc. Sol-gel based formulations and methods for preparation of hydrophobic ultra low refractive index anti-reflective coatings on glass
JP2014079920A (ja) * 2012-10-15 2014-05-08 Asahi Glass Co Ltd 物品およびその製造方法
JP2014214063A (ja) * 2013-04-26 2014-11-17 旭硝子株式会社 シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063Y2 (ja) * 1988-09-12 1994-01-05 吉田工業株式会社 コンパクト容器
JP4622472B2 (ja) * 2004-11-16 2011-02-02 コニカミノルタオプト株式会社 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板及び表示装置
EP2657011A4 (en) * 2010-12-24 2016-01-13 Asahi Glass Co Ltd ARTICLE WITH A LIGHT REFLECTIVE LAYER
CN104395258B (zh) * 2012-04-20 2018-10-12 肖特股份有限公司 设置有装饰性涂层的玻璃或玻璃陶瓷基板及其制备方法
JP6039962B2 (ja) 2012-08-01 2016-12-07 日本板硝子株式会社 光電変換装置用カバーガラス
JP2016001199A (ja) 2012-10-15 2016-01-07 旭硝子株式会社 シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法
EP2990838B1 (en) * 2013-04-24 2018-12-12 AGC Inc. Substrate having antireflective layer
WO2017056405A1 (ja) * 2015-10-01 2017-04-06 日本板硝子株式会社 コーティング膜付きガラス板及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509175A (ja) * 2006-11-14 2010-03-25 サン−ゴバン グラス フランス 多孔性層、その製造方法およびその用途
US20120237676A1 (en) * 2011-03-14 2012-09-20 Intermolecular, Inc. Sol-gel based formulations and methods for preparation of hydrophobic ultra low refractive index anti-reflective coatings on glass
JP2014079920A (ja) * 2012-10-15 2014-05-08 Asahi Glass Co Ltd 物品およびその製造方法
JP2014214063A (ja) * 2013-04-26 2014-11-17 旭硝子株式会社 シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101277A1 (ja) * 2016-11-30 2018-06-07 富士フイルム株式会社 塗布組成物、反射防止膜、積層体及び積層体の製造方法、並びに、太陽電池モジュール
CN109923183A (zh) * 2016-11-30 2019-06-21 富士胶片株式会社 涂布组合物、防反射膜、层叠体及层叠体的制造方法、以及太阳能电池模块
JPWO2018101277A1 (ja) * 2016-11-30 2019-10-24 富士フイルム株式会社 塗布組成物、反射防止膜、積層体及び積層体の製造方法、並びに、太陽電池モジュール
WO2019065772A1 (ja) * 2017-09-29 2019-04-04 富士フイルム株式会社 塗布組成物、積層体及び太陽電池モジュール、並びに積層体の製造方法
JPWO2019065772A1 (ja) * 2017-09-29 2020-04-09 富士フイルム株式会社 塗布組成物、積層体及び太陽電池モジュール、並びに積層体の製造方法

Also Published As

Publication number Publication date
JPWO2016143297A1 (ja) 2017-12-14
JP6805127B2 (ja) 2020-12-23
US20180050956A1 (en) 2018-02-22
US10800700B2 (en) 2020-10-13
US20200399170A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US20200399170A1 (en) Coated glass sheet and method for producing same
JP7242720B2 (ja) コーティング膜付きガラス板及びその製造方法
US9221076B2 (en) Composition for forming an optically transparent, superhydrophobic coating
JP6989650B2 (ja) 低反射コーティング付ガラス基板、低反射コーティング付ガラス基板を製造する方法、及び光電変換装置
CN102464901B (zh) 增透的超亲水自清洁SiO2防雾涂层及其制备方法
US11578215B2 (en) Coating and coating formulation
Wahab et al. Fundamentals of antifogging strategies, coating techniques and properties of inorganic materials; a comprehensive review
JP2017177683A (ja) 撥水性被膜付基材およびその製造方法
Deng et al. Transparent superhydrophilic composite coating with anti-fogging and self-cleaning properties
US20140182670A1 (en) Light trapping and antireflective coatings
Nomeir et al. Recent progress on transparent and self-cleaning surfaces by superhydrophobic coatings deposition to optimize the cleaning process of solar panels
US8354165B2 (en) Substrates supplied with a dust and aerosol-repellent coating, method for the production thereof and materials for this purpose
WO2016002223A1 (ja) 低反射コーティング付きガラス板
JP5989808B2 (ja) 低反射コーティング付きガラス板の製造方法とそれに用いるコーティング液
JP6487933B2 (ja) 低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、光電変換装置、及び低反射コーティングを製造する方法
JP2016087561A (ja) 水性塗布液、膜及びその製造方法、積層体、並びに太陽電池モジュール
JP7213177B2 (ja) 被膜付き透明基板、被膜付き透明基板の被膜を形成するための塗工液及び被膜付き透明基板の製造方法
WO2019225593A1 (ja) ガラス積層体
EP3867318A1 (en) Coating and coating formulation
WO2018198936A1 (ja) 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504853

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555878

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761274

Country of ref document: EP

Kind code of ref document: A1