JP2014146012A - パターン形成方法及び装置 - Google Patents

パターン形成方法及び装置 Download PDF

Info

Publication number
JP2014146012A
JP2014146012A JP2013016211A JP2013016211A JP2014146012A JP 2014146012 A JP2014146012 A JP 2014146012A JP 2013016211 A JP2013016211 A JP 2013016211A JP 2013016211 A JP2013016211 A JP 2013016211A JP 2014146012 A JP2014146012 A JP 2014146012A
Authority
JP
Japan
Prior art keywords
light beam
lens
pattern forming
shape
lens elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013016211A
Other languages
English (en)
Inventor
Tomoaki Hayashi
知明 林
Hidekazu Tezuka
秀和 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013016211A priority Critical patent/JP2014146012A/ja
Publication of JP2014146012A publication Critical patent/JP2014146012A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】光ビームの走査領域内の照度分布を均一にし、形成されるパターンの形状を均一とし、描画パターン間の差異を低減し描画品質を向上させるパターン形成方法と装置を提供する。
【解決手段】光ビーム照射装置20のDMD28は、複数のミラーを直交する二方向に配列して構成されており、DMD駆動回路2Aにより光ビーム照射装置から照射される光ビームを基板1上に照射する。レーザー光源ユニット21からの光ビームを光ファイバー22で導入し、レンズアレイ部24で分割し、コンデンサレンズ25を介してDMDに入射することで、DMDに入射される光ビームの照度分布を均一化する。レンズアレイ部は、アレイ状に配置されているレンズエレメント間の境界部の形状が境界部を通過する光ビームをランダムに拡散するような形状にて構成されているため、境界部を通過する光ビームは一箇所に集光されなくなり、DMDの使用領域内において均一な照度となる。
【選択図】図4

Description

本発明は、特定の波長の光によって重合や硬化などの化学反応を起こす樹脂材の塗布された基材へ光ビームを照射し、光ビームにより基材を走査して、基材に所定のパターンを描画するパターン形成方法及び装置に関する。
表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基材やカラーフィルタ基材、プラズマディスプレイパネル用基材、有機EL(Electroluminescence)表示パネル用基材等の製造は、露光装置を用いて、フォトリソグラフィ技術により基材上にパターンを描画形成して行われる。露光装置としては、従来、レンズ又は鏡を用いてマスクのパターンを基材上に投影するプロジェクション方式と、マスクと基材との間に微小な間隙(プロキシミティギャップ)を設けてマスクのパターンを基材へ転写するプロキシミティ方式がある。
近年、フォトレジストが塗布された基材へ光ビームを照射し、光ビームにより基材を走査して、基材にパターンを描画する露光装置が開発されている。光ビームにより基材を走査して、基材にパターンを直接描画するため、高価なマスクが不要となる。また、描画データ及び走査のプログラムを変更することにより、さまざまな種類の表示用パネル基材に対応することができる。このような露光装置として、例えば、特許文献1〜3に記載のものがある。
特開2003−332221号公報 特開2005−353927号公報 特開2007−219011号公報
光ビームにより基材にパターンを描画する際、光ビームの変調には、DMD(Digital Micromirror Device)等の空間的光変調器が用いられる。DMDは、光ビームを反射する複数の微小なミラーを直交する二方向に配列して構成され、各ミラーの角度を変更することにより、基材へ照射する光ビームを変調する。現在市販されているDMDは、各ミラーの寸法が10〜15[μm]角程度であり、隣接するミラー間には1[μm]程度の隙間が設けられている。DMDを光ビームによる基材の走査方向と平行に配置すると、各ミラーの配列方向(直交する二方向)が基材の走査方向と平行及び垂直になるので、隣接するミラー間の間隙と基材とが相対的に平行に移動し、この間隙に対応する箇所ではパターンの描画ができない。そのため、DMDは、特許文献1に記載のように光ビームによる基材の走査方向に対して所定角度傾けて使用されている。また、走査方向に対してDMDを傾けることにより、特許文献2,3に記載のように2次元に空間変調された光により高解像度で高速に適切なパターンを描画することができる。
DMDにより変調された光ビームは、光ビーム照射装置の照射光学系を含むヘッド部から、基材へ照射される。そのため、光ビーム照射装置の照射光学系から空間的変調器に照射される光ビームの照度分布により、基材に照射される光ビームの照度分布が変化し、光ビームによる基材の走査領域内において、形成されるパターンの形状に差異が生じる。これらの多くは、変化量が微小であり、形成されるパターンの寸法精度に対しての影響は少ない。しかしながら、人間の目で見た場合には、これらの微小な差異が複雑な光学現象を介して濃淡などが不揃いとなるムラとなって映り、結果として製品の品質が低下する。特に、複数回の光ビームによる走査をした場合、各走査領域の境界部は光ビームの照度分布の変化に連続性が無くなるため、ムラを視認し易くなる。
一般的に、光ビームの照度分布の均一化には、フライアイレンズ等のレンズアレイを複数枚使用する。レンズアレイによる光ビームの必要分割数は、レンズアレイに入射する光ビームの照度分布により決定される。しかしながら、レンズアレイに入射する光ビームの光束径は実用上有限であり、分割数を増やす必要がある場合は、レンズアレイを構成する各レンズエレメントのサイズをより小さくする必要がある。小型のレンズアレイとして、近年フォトリソグラフィ等により製作されたマイクロレンズアレイがあるが、レンズエレメント間の形状によっては照度分布が悪化する可能性がある。
本発明は、上述の点に鑑みなされたものであり、光ビームの走査領域内の照度分布を均一にし、形成されるパターンの形状を均一とし、描画パターン間の差異を低減し描画品質を向上することのできるパターン形成方法及び装置を提供することを目的とする。
本発明に係るパターン形成方法の第1の特徴は、二方向に配列された複数のミラー群を描画データに基づいて駆動する空間的光変調器を用いて光ビームを変調し、樹脂膜の塗布された基材を保持するステージ手段を相対的に走査方向に移動させながら前記光ビームを照射することによって前記基材の前記樹脂膜に前記描画データに基づいたパターンを形成するパターン形成方法であって、アレイ状に配置された複数のレンズエレメント間の境界部の形状が前記境界部を通過する光ビームをランダムに拡散するような形状にて構成されたレンズアレイを、前記光ビームを照射する光学系の光路内に1以上設けることによって前記空間的変調器へ照射される光ビームの照度分布を均一化させたことにある。
これは、空間的光変調器により変調された光ビームを照射する照射光学系の光路内に、複数のレンズエレメント間の境界部の形状が境界部を通過する光ビームをランダムに拡散するような形状にて構成されたレンズアレイを1以上設けるようにしたものである。この照射光学系においては、光源となるレーザダイオードからの光ビームを光ファイバーによって導入し、コリメート後にレンズアレイへ入射する。レンズアレイへ入射した光ビームは、通過するレンズアレイの枚数に分割され、分割された数の光原点として後段のコンデンサレンズにより再度合成され、空間的光変調器に照射される。このとき、この発明では、レンズアレイの複数のレンズエレメント間の境界部が平面とはなっておらず、複数のレンズエレメント間の境界部の形状が境界部を通過する光ビームをランダムに拡散することで、通過する光ビームはレンズエレメントの有効範囲外(境界部)で、光ビームがランダムに散乱するようになる。これによって、空間的変調器は均一な照度分布の光ビームを入射することができるようになる。
本発明に係るパターン形成方法の第2の特徴は、前記第1の特徴に記載のパターン形成方法において、前記レンズエレメント間の境界部の形状が前記レンズエレメントの曲率半径よりも小さく、連続的に変化している曲率半径の円弧状を成していることにある。この発明は、レンズエレメント間の境界部の形状を円弧状とすることによって、この部分を通過する光ビームが円弧状の境界部に従ってランダムに拡散するようになるので、これによってレンズアレイ通過後の光ビームの照度分布を均一化することができる。
本発明に係るパターン形成方法の第3の特徴は、前記第1の特徴に記載のパターン形成方法において、前記レンズエレメント間の境界部の形状が連続的に変化する鋸歯状又は三角形状を成していることにある。これは、各レンズエレメント間の境界部の形状を連続的に変化する鋸歯状又は三角形状としたものである。これによって、レンズエレメントの曲率半径の有効領域以外の部分の形状が安定しなくなり、境界部を通過する光ビームがランダムに拡散するようになるので、これによってレンズアレイ通過後の光ビームの照度分布を均一化することができる。
本発明に係るパターン形成方法の第4の特徴は、前記第1、第2又は第3の特徴に記載のパターン形成方法において、前記レンズアレイが円筒形状レンズエレメントの複数配置によって構成され、前記円筒形状レンズエレメントの長手方向が互いに直交するように組み合わせた2枚の前記レンズアレイを前記光路内に1以上設けることにある。これは、円筒形状のレンズエレメントの長手方向を互いに直交するように組み合わせることによって構成された2枚のレンズアレイの組を光路内に1以上設け、光ビームの照度分布を均一化するようにしたものである。
本発明に係るパターン形成装置の第1の特徴は、二方向に配列された複数のミラー群を描画データに基づいて駆動する空間的光変調器を用いて光ビームを変調し、樹脂膜の塗布された基材を保持するステージ手段を相対的に走査方向に移動させながら前記光ビームを照射することによって前記基材の前記樹脂膜に前記描画データに基づいたパターンを形成するパターン形成装置であって、アレイ状に配置された複数のレンズエレメント間の境界部の形状が前記境界部を通過する光ビームをランダムに拡散するような形状にて構成されたレンズアレイを、前記光ビームを照射する光学系の光路内に1以上設けることによって前記空間的変調器へ照射される光ビームの照度分布を均一化させたことにある。これは、前記パターン形成方法の第1の特徴に記載のものを実現したパターン形成装置の発明である。
本発明に係るパターン形成装置の第2の特徴は、前記第1の特徴に記載のパターン形成装置において、前記レンズエレメント間の境界部の形状が前記レンズエレメントの曲率半径よりも小さく、連続的に変化している曲率半径の円弧状を成していることにある。これは、前記パターン形成方法の第2の特徴に記載のものを実現したパターン形成装置の発明である。
本発明に係るパターン形成装置の第3の特徴は、前記第1の特徴に記載のパターン形成装置において、前記レンズエレメント間の境界部の形状が連続的に変化する鋸歯状又は三角形状を成していることにある。これは、前記パターン形成方法の第3の特徴に記載のものを実現したパターン形成装置の発明である。
本発明に係るパターン形成装置の第4の特徴は、前記第1、第2又は第3の特徴に記載のパターン形成装置において、前記レンズアレイが円筒形状レンズエレメントの複数配置によって構成され、前記円筒形状レンズエレメントの長手方向が互いに直交するように組み合わせた2枚の前記レンズアレイを前記光路内に1以上設けることにある。これは、前記パターン形成方法の第4の特徴に記載のものを実現したパターン形成装置の発明である。
本発明によれば、光ビームの走査領域内の照度分布を均一にし、形成されるパターンの形状を均一とし、描画パターン間の差異を低減し描画品質を向上することができるという効果がある。
本発明の一実施の形態による露光装置の概略構成を示す図である。 本発明の一実施の形態による露光装置の側面図である。 本発明の一実施の形態による露光装置の正面図である。 光ビーム照射装置の概略構成を示す図である。 光ビーム照射装置の照射光学系の概略構成を示す図である。 各レンズエレメント間の境界部に平面部の存在するレンズアレイを光ビームが通過する様子を示す図である。 各レンズエレメント間の境界部に平面部の存在するレンズアレイにて構成されたレンズアレイを図5の照射光学系に応用した場合の光ビームの通過の様子を示す図である。 レンズアレイを構成する各レンズエレメント間の境界部に平面が存在する場合のDMD位置における照度分布光学シミュレーション結果及び実測値を示す図である。 プレス成形にて製作されたレンズアレイを光ビームが通過する様子を示す図である。 プレス成形にて製作されたレンズアレイの変形例に対して光ビームが通過する様子を示す図である。 図9及び図10に示すようなプレス成形にて製作されたレンズアレイで構成されるレンズアレイ部を使用し、DMDの位置において照度分布を実測した結果を示す図である。 光ビームに係る基板の走査を説明する1番目の図である。 光ビームに係る基板の走査を説明する2番目の図である。 光ビームに係る基板の走査を説明する3番目の図である。 光ビームに係る基板の走査を説明する4番目の図である。 液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。 液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。
以下、図面に基づいて本発明の実施の形態を説明する。この実施の形態では、パターン形成装置の一例として露光装置を例に説明する。図1は、本発明の一実施の形態に係る露光装置の概略構成を示す図である。図2は、図1に示す露光装置の側面図、図3は、図2に示す露光装置の正面図である。露光装置は、ベース3、Xガイド4、Xステージ5、Yガイド6、Yステージ7、θステージ8、チャック10、ゲート11、光ビーム照射装置20、リニアスケール31,33、エンコーダ32,34、レーザー測長システム制御装置40、ステージ駆動回路60、及び主制御装置70を含んで構成されている。なお、図2及び図3では、レーザー測長システムのレーザー光源41、レーザー測長システム制御装置40、ステージ駆動回路60、及び主制御装置70を省略している。露光装置は、これらの他に、基材としての基板1をチャック10へ搬入し、また基板1をチャック10から搬出する基板搬送ロボット、装置内の温度管理を行う温度制御ユニット等を備えているが、これらの図示も省略している。なお、図1〜図3における実施の形態では、X方向及びY方向は例示であって、これらのX方向とY方向とを互いに入れ替えてもよいことは言うまでもない。
図1〜図3に示すように、チャック10は、基板1の受け渡しを行う受け渡し位置にある。受け渡し位置において、図示しない基板搬送ロボットにより基板1がチャック10へ搬入され、また図示しない基板搬送ロボットにより基板1がチャック10から搬出される。チャック10は、基板1の裏面を真空吸着して支持する。基板1の表面には、フォトレジストなどの紫外線硬化樹脂である樹脂膜が塗布されている。
基板1の露光を行う露光位置の上空に、ベース3を跨ぐようにゲート11が設けられている。ゲート11には、複数の光ビーム照射装置20が搭載されている。なお、この実施の形態は、8つの光ビーム照射装置20を用いた露光装置の例を示しているが、光ビーム照射装置の数はこれに限らず、1つ又は2つ以上の光ビーム照射装置を用いた露光装置に適用される。
図4は、光ビーム照射装置の概略構成を示す図である。光ビーム照射装置20は、レーザー光源ユニット21、光ファイバー22、コリメータレンズ23、レンズアレイ部24、コンデンサレンズ25、ミラー26、プリズム27、DMD(Digital Micromirror Device)28、投影レンズ29、及びDMD駆動回路2Aを含んで構成されている。光ファイバー22は、レーザー光源ユニット21から発生された紫外線光ビームを、照射位置におけるコリメータレンズ23まで導入する。光ファイバー22から射出された光ビームは、コリメータレンズ23によってコリメートされ、レンズアレイ部24に入射される。
レンズアレイ部24によって照度分布の均一化された光ビームは、コンデンサレンズ25、ミラー26及びプリズム27を介して、DMD28へ照射される。DMD28は、光ビームを反射する複数の微小なミラーを直交する二方向に配列して構成された空間的光変調器であり、各ミラーの角度を変更して光ビームを変調する。DMD28により変調された光ビームは、プリズム27を介して投影レンズ29を含むヘッド部20aに導入され、基板1の表面に照射される。DMD駆動回路2Aは、主制御装置70から供給される描画データに基づいて、DMD28の各ミラーの角度を変更する。なお、図4において、プリズム27の詳細については、特開2010−273042号にて出願済の技術である。
図1〜図3に示すように、チャック10は、θステージ8の上側に搭載されている。θステージ8の下側にはXステージ5及びYステージ7が設けられている。Xステージ5は、ベース3の上面に設けられた4本のLMガイドからなるXガイド4上に搭載され、Xガイド4に沿ってX方向へ移動するようになっている。Yステージ7は、Xステージ5の上面に設けられた2本のLMガイドからなるYガイド6上に搭載され、Yガイド6に沿ってY方向へ移動するようになっている。θステージ8は、Yステージ7上に搭載され、チャック10をθ方向へ回転制御している。Xステージ5、Yステージ7及びθステージ8には、ボールねじ及びモータや、リニアモータ等の図示しない駆動機構がそれぞれ設けられており、各駆動機構は、図1のステージ駆動回路60によって駆動制御されている。
θステージ8がチャック10をθ方向へ回転することによって、チャック10に搭載された基板1は、それぞれの直交する二辺がX方向及びY方向へ合致するように回転制御される。Xステージ5は、X方向へ移動することによって、チャック10を受け渡し位置と露光位置との間で移動させる。露光位置において、Xステージ5がX方向へ移動することによって、各光ビーム照射装置20のヘッド部20aから照射される光ビームが、基板1の表面をX方向へ走査することになる。また、Yステージ7がY方向へ移動することによって、各光ビーム照射装置20のヘッド部20aから照射される光ビームのX方向の操作領域がY方向へ移動することになる。図1に示すように、主制御装置70は、ステージ駆動回路60に制御信号を出力し、ステージ駆動回路60を制御することによって、θステージ8のθ方向の回転量及び回転位置、Xステージ5のX方向の移動量及び移動位置、及びYステージ7のY方向の移動量及び移動位置の制御を行なう。
なお、この実施の形態では、チャック10はXステージ5と共にX方向へ移動することによって、光ビーム照射装置20からの光ビームを用いた基板1の走査が行なわれているが、光ビーム照射装置20を移動することによって、光ビーム照射装置20からの光ビームを用いた基板1の走査が行なわれるようにしてもよい。また、チャック10及び光ビーム照射装置20の両方をX方向に移動するようにしてもよい。同様に、チャック10はYステージ7と共にY方向へ移動することによって、光ビーム照射装置20からの光ビームを用いた基板1の走査領域が変更されるようにしているが、光ビーム照射装置20を移動することによって、光ビーム照射装置20からの光ビームを用いた基板1の走査領域の変更が行なわれるようにしてもよい。この場合も同様に、チャック10及び光ビーム照射装置20の両方をY方向へ移動するようにしてもよい。
図1〜図3に示すように、ベース3の側縁部上には、X方向へ伸びるリニアスケール31が設置されている。リニアスケール31は、Xステージ5のX方向への移動量を検出するためのエンコーダ32用の目盛を備えている。また、Xステージ5の側縁部上には、Y方向へ伸びるリニアスケール33が設置されている。リニアスケール33は、Yステージ7のY方向への移動量を検出するためのエンコーダ34用の目盛を備えている。
図1〜図3に示すように、Xステージ5の一側面には、リニアスケール31の目盛に対向して、エンコーダ32が取り付けられている。エンコーダ32は、リニアスケール31の目盛を検出し、その検出パルス信号を主制御装置70へ出力する。Yステージ7の一側面には、リニアスケール33の目盛に対向して、エンコーダ34が取り付けられている。エンコーダ34は、リニアスケール33の目盛を検出し、その検出パルス信号を主制御装置70へ出力する。主制御装置70は、エンコーダ32,34からのパルス信号をカウントして、Xステージ5のX方向及びYステージ7のY方向の移動量を検出し、その位置を特定する。
図5は、図4における光ビーム照射装置の照射光学系の概略構成を示す図である。図5(A)は、照射光学系の側面を、図5(B)は照射光学系の中のレンズアレイのみの上面をそれぞれ示す。図中のDMD28は、ミラー26及びプリズム27を省略した設計上のDMD28の位置を示している。レーザー光源ユニット21から発生された光ビームは、光ファイバー22を介して照射光学系へ導入される。導入された光ビームは、コリメータレンズ23によりコリメートされ、レンズアレイ部24へ入射する。レンズアレイ部24は、円筒形状のレンズエレメントとなるため、DMD28の使用領域の縦横比に合わせて曲率を決定し、各々2枚を1組としてそれぞれ直交するように配置してある。この実施の形態では、レンズアレイ24a,24bとの組み合わせたものと、レンズアレイ24c,24dとの組み合わせたもので構成されている。レンズアレイ24a,24cとレンズアレイ24b,24dとは、円筒形状のレンズエレメントの長手方向が互いに直交するように配置されている。レンズアレイ部24を構成する各レンズアレイ24a〜24dは、プレス成形にて製作されたものである。この実施の形態では、レンズアレイ部24にシリンドリカルレンズアレイを採用しているが、レンズエレメント形状が球面であるフライアイレンズエレメント形状としても良い。
レンズアレイがフォトリソグラフィ等により作成されている場合、その製法上の制約からレンズアレイを構成する各レンズエレメント間の境界部に平面部が存在する場合がある。図6は、各レンズエレメント間の境界部に平面部の存在するレンズアレイを光ビームが通過する様子を示す図である。図6に示すように、各レンズエレメント間の境界部に平面部の存在するレンズアレイの配列ピッチPに対して、設計されたレンズエレメントの曲率半径Rの有効領域Rd以外の部分では、光ビームが設計上で期待する屈折をすることなく、さらに平面部では直進するようになる。図7は、各レンズエレメント間の境界部に平面部の存在するレンズアレイにて構成されたレンズアレイを図5の照射光学系に応用した場合の光ビームの通過の様子を示す図である。なお、図7において、図5と同じ構成のものには同一の符号が付してあるので、その説明は省略する。図7において、図5と異なる点は、レンズアレイ部35が図6に示した各レンズエレメント間の境界部に平面部の存在するレンズアレイ35a〜35dで構成されている点である。図7に示すように、レンズアレイ部35の各レンズアレイ35a〜35dの平面部を直進通過した光ビームは、後段のコンデンサレンズ25に入射し、DMD28の位置において光軸付近に集光されるようになる。
図8は、レンズアレイを構成する各レンズエレメント間の境界部に平面が存在する場合のDMD位置における照度分布光学シミュレーション結果及び実測値を示す図である。図8(A)は、照度分布光学シミュレーション結果を示し、図8(B)は、実測値を示す。図8(A)に示す照度分布光学シミュレーションでは、便宜上、DMD28の長手方向の使用領域を19.6[mm]と設定している。図8に示すように、各レンズアレイを構成する各レンズエレメント間の平面部を通過し、コンデンサレンズ25によって集光された光ビームは、DMD28の位置において、光軸付近に集光されていることが理解できる。照度分布のグラフ両端部は、境界部で散乱した光ビームがコンデンサレンズ25に入射し集光されるため、結果として周囲よりも照度が高くなっているが、設計上でDMD28の使用範囲外となる様に設定されている。また、図8(B)に示すように、実際に各レンズエレメント間の境界部に平面部の存在するレンズアレイ35a〜35dで構成されるシリンドリカルのレンズアレイ部35を使用してその照度分布を実測した場合、照度分布光学シミュレーションと同様の結果が得られている。
図9は、プレス成形にて製作されたレンズアレイを光ビームが通過する様子を示す図である。プレス成形にてレンズアレイ24aを製作することによって、金型のエッジ部の形状に応じて各レンズエレメント間の境界部の形状を連続的に変化させることができる。従って、図9に示すように、レンズアレイ24aの各レンズエレメントの配列ピッチPに対して、レンズエレメントの曲率半径Rの有効領域Rd以外の部分の形状が安定しなくなる。これはプレス成形の製法上、境界部に平面部の存在する可能性は少なくなるからである。すなわち、レンズアレイ24aの各レンズエレメント間の境界部の形状が上述の曲率半径Rよりも小さく、連続的に変化している曲率半径の円弧状を成している。従って、この境界部では、通過する光ビームがこの円弧状に従ってランダムに拡散するようになる。そして、後段のコンデンサレンズ25に入射した場合でも、図7に示すように一箇所に集光されることがなくなり、照度分布に与える影響を少なくすることが可能となる。
図10は、プレス成形にて製作されたレンズアレイの変形例に対して光ビームが通過する様子を示す図である。図10のレンズアレイ24eが図9のものと異なる点は、金型のエッジ部の形状に応じて各レンズエレメント間の境界部の形状を図示のように連続的に変化する鋸歯状又は三角形状に変化させた点である。従って、図10に示すように、レンズアレイ24eの各レンズエレメントの配列ピッチPに対して、レンズエレメントの曲率半径Rの有効領域Rd以外の部分の形状が安定しなくなる。この境界部では、通過する光ビームが図示のようにランダムに拡散するようになる。その結果、後段のコンデンサレンズ25に入射した場合でも、図7に示すように一箇所に集光されることがなくなり、照度分布に対する影響を少なくすることが可能となる。なお、図10では、各レンズエレメント間の境界部の形状が先端の鋭角に尖った連続的に変化する鋸歯状又は三角形状に形成された場合を示しているが、プレス成形の製法上、鋸歯状又は三角形状の各先端部及び窪み部が丸くアール状となることもあるが、十分に同様の効果を達成することが可能である。
図11は、図9及び図10に示すようなプレス成形にて製作されたレンズアレイ24a〜24dで構成されるレンズアレイ部24を使用し、DMD28の位置において照度分布を実測した結果を示す図である。DMD28の使用領域の範囲内において、上述のレンズアレイ35a〜35dで構成されるレンズアレイ部35よりも照度分布のばらつきが少なくなり、良好な結果となっていることが分かる。フォトリソグラフィ製法等の複雑な工程を必要としないプレス成形にて製作されたレンズアレイを使用することで、コスト面からも有利となる。
上述のような、パターン形成装置を露光装置に用いることにより、DMDに照射される光ビームの照度分布を均一にすることが可能となり、その結果、光ビームによる基板の走査領域内において、形成されるパターンの形状を均一にすることが可能となり、描画品質が向上するので、高品質な表示用パネル基板を製造することができるようになる。
図12〜図15は、光ビームに係る基板の走査を説明する図である。図12〜図15は、8つの光ビーム照射装置20からの8本の光ビームにより、基板1のX方向の走査を4回行って、基板1全体を走査する例を示している。図12〜図15においては、各光ビーム照射装置20のヘッド部20aが破線で示されている。各光ビーム照射装置20のヘッド部20aから照射された光ビームは、Y方向にバンド幅Wを有し、Xステージ5のX方向への移動によって、基板1を矢印で示す方向へ走査する。
図12は、1回目の走査を示し、X方向への1回目の走査により、図12に灰色で示す走査領域でパターンの描画が行われる。1回目の走査が終了すると、Yステージ7のY方向への移動により、基板1がY方向へバンド幅Wと同じ距離だけ移動される。図13は、2回目の走査を示し、X方向への2回目の走査により、図13に灰色で示す走査領域でパターンの描画が行われる。2回目の走査が終了すると、Yステージ7のY方向への移動により、基板1がY方向へバンド幅Wと同じ距離だけ移動される。図14は、3回目の走査を示し、X方向への3回目の走査により、図14に灰色で示す走査領域でパターンの描画が行われる。3回目の走査が終了すると、Yステージ7のY方向への移動により、基板1がY方向へバンド幅Wと同じ距離だけ移動される。図15は、4回目の走査を示し、X方向への4回目の走査により、図15に灰色で示す走査領域でパターンの描画が行われ、基板1全体の走査が終了する。
複数の光ビーム照射装置20からの複数の光ビームにより基板1の走査を並行して行うことにより、基板1全体の走査に掛かる時間を短くすることができ、タクトタイムを短縮することができる。なお、図12〜図15では、基板1のX方向の走査を4回行って、基板1全体を走査する例を示したが、走査の回数はこれに限らず、基板1のX方向の走査を3回以下又は5回以上行って、基板1全体を走査してもよい。
以上説明した実施の形態によれば、光ビーム照射装置による光ビームの走査領域内の照度分布を均一にすることが可能となり、走査領域内に形成されるパターンの形状の差異が低減されることによって、より描画品質を向上させることができる。さらに、光ビームによる走査領域内に形成されるパターン形状の差異が低減することにより、複数回の光ビームによる走査をした場合でも、隣接する走査領域の境界部におけるパターンの差異が低減され、高品質なパターンを描画することができ、高品質な表示用パネル基板を製造することができるという効果がある。
例えば、図16は、液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。薄膜形成工程(ステップS191)では、スパッタ法やプラズマ化学気相成長(CVD)法等により、基板上に液晶駆動用の透明電極となる導電体膜や絶縁体膜等の薄膜を形成する。レジスト塗布工程(ステップS192)では、ロール塗布法等によりフォトレジストを塗布して、薄膜形成工程(ステップS191)で形成した薄膜上にフォトレジスト膜を形成する。露光工程(ステップS193)では、露光装置を用いて、フォトレジスト膜にパターンを形成する。現像工程(ステップS194)では、シャワー現像法等により現像液をフォトレジスト膜上に供給して、フォトレジスト膜の不要部分を除去する。エッチング工程(ステップS195)では、ウエットエッチングにより、薄膜形成工程(ステップS191)で形成した薄膜の内、フォトレジスト膜でマスクされていない部分を除去する。剥離工程(ステップS196)では、エッチング工程(ステップS195)でのマスクの役目を終えたフォトレジスト膜を、剥離液によって剥離する。これらの各工程の前又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。これらの工程を数回繰り返して、基板上にTFTアレイが形成される。
また、図17は、液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。ブラックマトリクス形成工程(ステップS201)では、レジスト塗布、露光、現像、エッチング、剥離等の処理により、基板上にブラックマトリクスを形成する。着色パターン形成工程(ステップS202)では、染色法や顔料分散法等により、基板上に着色パターンを形成する。この工程を、R、G、Bの着色パターンについて繰り返す。保護膜形成工程(ステップS203)では、着色パターンの上に保護膜を形成し、透明電極膜形成工程(ステップS204)では、保護膜の上に透明電極膜を形成する。これらの各工程の前、途中又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。
図16に示したTFT基板の製造工程では、露光工程(ステップS193)において、図17に示したカラーフィルタ基板の製造工程では、ブラックマトリクス形成工程(ステップS201)及び着色パターン形成工程(ステップS202)の露光処理において、本発明の露光装置又は露光方法を適用することができる。
なお、上述の実施の形態では、レンズアレイをプレス成形にて製作する場合について説明したが、特開2011−53441号公報に記載のような、レンズアレイの各レンズエレメントをフォトリソグラフィ技術にて形成し、各レンズエレメント間の境界部の形状として、各レンズエレメントの曲率よりも曲率が大きくなるようなレンズアレイを用いてもよい。上述の実施の形態では、円筒状のレンズエレメントにてレンズアレイを構成する場合について説明したが、これに限定されるものではなく、レンズエレメントとして屈折率分布型レンズを用いたものでもよい。
上述の実施の形態では、紫外線硬化樹脂の塗布された基板としてTFT基板やカラーフィルタ基板を例に説明したが、これ以外に光硬化樹脂の塗布された基板上に、光ビームを空間的光変調器を用いて変調照射することによって光硬化樹脂に所定のパターンを描画するものに適用することが可能である。
なお、本明細書中において、基材とは、その表面又は内部にパターンが形成されるものであって、板状(通常基板と呼ばれるもの)やフィルム状のものを含む概念である。また、特定の波長の光によって重合や硬化などの化学反応を起こす樹脂とは、フォトレジストなどの紫外線硬化樹脂、スクリーン印刷等の製版に使用される樹脂、ホログラフィーの記録媒体用樹脂、ラピッドプロトタイピングの樹脂などの感光性樹脂を含むものである。
この実施の形態に係るパターン形成方法及び装置は、印刷(プリンタブル)技術によってフレキシブル基板などに、表示回路あるいは電子部品を作成するプリンタブルエレクトロニクス分野で使用される印刷技術によって基材(基板、フィルムなどの樹脂性のものを含む)に印刷用の版(マスク)をパターンニングする技術分野に応用可能である。また、画像データに応じて変調された光を感光層上に結像させて、該感光層を露光し、パッケージ基材を含むプリント配線基材分野あるいは半導体分野における高精細な永久パターン(保護膜、層間絶縁膜、及びソルダーレジストパターン)を効率よく形成するパターン形成装置にも応用可能である。このような印刷技術で作成される回路としては、例えば、電子ペーパ、電子看板、プリンタブルTFTなどがある。
この実施の形態に係るパターン形成方法は、特定の波長の光によって重合や硬化などの化学反応を起こす樹脂を用いた基材の表面改質の分野にも応用可能である。また、半導体のSi貫通電極(through−silicon via、TSV)のチップ間の(リペア)配線などのパターンを形成する分野にも応用可能である。
さらに、これ以外にも、印刷の版を作成する装置、輪転機の版作成装置、リソグラフやプリポート等のステンシル印刷又は孔版印刷装置などにも応用可能である。スクリーン印刷等の製版装置、半導体装置のリペア方法及び装置、パッケージ基材を含むプリント配線基材製造装置、フラットパネルディスプレイやプリント基材などの微細な電極パターン、あるいは露光用マスクのパターン作成装置にも応用可能である。
基材には、ウエハ、プリント基材、フラットパネルディスプレイ、マスク、レチクルなど、さらには雑誌、新聞、本の複写に用いられる板型、これらをフィルム状にしたものなどが含まれる。
1…基板
10…チャック
11…ゲート
20…光ビーム照射装置
20a…ヘッド部
21…レーザー光源ユニット
22…光ファイバー
23…コリメータレンズ
24…レンズアレイ部
24a〜24e…レンズアレイ
25…コンデンサレンズ
26…ミラー
27…プリズム
28…DMD(Digital Micromirror Device)
29…投影レンズ
2A…DMD駆動回路
2a…露光領域
3…ベース
31,33…リニアスケール
32,34…エンコーダ
35…レンズアレイ部
35a〜35d…レンズアレイ
4…Xガイド
40…レーザー測長システム制御装置
41…レーザー光源
5…Xステージ
6…Yガイド
60…ステージ駆動回路
7…Yステージ
70…主制御装置
8…θステージ

Claims (8)

  1. 二方向に配列された複数のミラー群を描画データに基づいて駆動する空間的光変調器を用いて光ビームを変調し、樹脂膜の塗布された基材を保持するステージ手段を相対的に走査方向に移動させながら前記光ビームを照射することによって前記基材の前記樹脂膜に前記描画データに基づいたパターンを形成するパターン形成方法であって、
    アレイ状に配置された複数のレンズエレメント間の境界部の形状が前記境界部を通過する光ビームをランダムに拡散するような形状にて構成されたレンズアレイを、前記光ビームを照射する光学系の光路内に1以上設けることによって前記空間的変調器へ照射される光ビームの照度分布を均一化させたことを特徴とするパターン形成方法。
  2. 請求項1に記載のパターン形成方法において、前記レンズエレメント間の境界部の形状が前記レンズエレメントの曲率半径よりも小さく、連続的に変化している曲率半径の円弧状を成していることを特徴とするパターン形成方法。
  3. 請求項1に記載のパターン形成方法において、前記レンズエレメント間の境界部の形状が連続的に変化する鋸歯状又は三角形状を成していることを特徴とするパターン形成方法。
  4. 請求項1、2又は3に記載のパターン形成方法において、前記レンズアレイが円筒形状レンズエレメントの複数配置によって構成され、前記円筒形状レンズエレメントの長手方向が互いに直交するように組み合わせた2枚の前記レンズアレイを前記光路内に1以上設けることを特徴とするパターン形成方法。
  5. 二方向に配列された複数のミラー群を描画データに基づいて駆動する空間的光変調器を用いて光ビームを変調し、樹脂膜の塗布された基材を保持するステージ手段を相対的に走査方向に移動させながら前記光ビームを照射することによって前記基材の前記樹脂膜に前記描画データに基づいたパターンを形成するパターン形成装置であって、
    アレイ状に配置された複数のレンズエレメント間の境界部の形状が前記境界部を通過する光ビームをランダムに拡散するような形状にて構成されたレンズアレイを、前記光ビームを照射する光学系の光路内に1以上設けることによって前記空間的変調器へ照射される光ビームの照度分布を均一化させたことを特徴とするパターン形成装置。
  6. 請求項5に記載のパターン形成装置において、前記レンズエレメント間の境界部の形状が前記レンズエレメントの曲率半径よりも小さく、連続的に変化している曲率半径の円弧状を成していることを特徴とするパターン形成装置。
  7. 請求項5に記載のパターン形成装置において、前記レンズエレメント間の境界部の形状が連続的に変化する鋸歯状又は三角形状を成していることを特徴とするパターン形成装置。
  8. 請求項5、6又は7に記載のパターン形成装置において、前記レンズアレイが円筒形状レンズエレメントの複数配置によって構成され、前記円筒形状レンズエレメントの長手方向が互いに直交するように組み合わせた2枚の前記レンズアレイを前記光路内に1以上設けることを特徴とするパターン形成装置。
JP2013016211A 2013-01-30 2013-01-30 パターン形成方法及び装置 Pending JP2014146012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016211A JP2014146012A (ja) 2013-01-30 2013-01-30 パターン形成方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016211A JP2014146012A (ja) 2013-01-30 2013-01-30 パターン形成方法及び装置

Publications (1)

Publication Number Publication Date
JP2014146012A true JP2014146012A (ja) 2014-08-14

Family

ID=51426281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016211A Pending JP2014146012A (ja) 2013-01-30 2013-01-30 パターン形成方法及び装置

Country Status (1)

Country Link
JP (1) JP2014146012A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352062A (ja) * 2004-06-09 2005-12-22 Nikon Corp マイクロレンズおよび露光装置
JP2008083685A (ja) * 2006-08-30 2008-04-10 Hitachi Maxell Ltd バックライト装置に用いられるマイクロレンズアレイシート及びマイクロレンズアレイシートを製造するためのロール版
JP2011166158A (ja) * 2010-02-09 2011-08-25 Carl Zeiss Smt Gmbh マイクロリソグラフィ投影露光装置の光学ラスタ要素、光学インテグレータ、及び照明系
JP2012123128A (ja) * 2010-12-07 2012-06-28 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352062A (ja) * 2004-06-09 2005-12-22 Nikon Corp マイクロレンズおよび露光装置
JP2008083685A (ja) * 2006-08-30 2008-04-10 Hitachi Maxell Ltd バックライト装置に用いられるマイクロレンズアレイシート及びマイクロレンズアレイシートを製造するためのロール版
JP2011166158A (ja) * 2010-02-09 2011-08-25 Carl Zeiss Smt Gmbh マイクロリソグラフィ投影露光装置の光学ラスタ要素、光学インテグレータ、及び照明系
JP2012123128A (ja) * 2010-12-07 2012-06-28 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法

Similar Documents

Publication Publication Date Title
JP2009537324A (ja) 移動する基板上の薄膜をパターニングするための方法およびツール
JP6395352B2 (ja) インプリント装置およびインプリント方法、それを用いた物品の製造方法
KR101375886B1 (ko) 노광장치, 노광방법 및 표시용 패널기판의 제조방법
JP2014056167A (ja) パターニング装置、パターニング方法及び表示用パネル基板の製造方法
JP2014071349A (ja) パターン形成方法及び装置、露光装置並びに表示用パネル製造方法
JP5433524B2 (ja) 露光装置及び露光方法並びに表示用パネル基板製造装置及び表示用パネル基板の製造方法
JP5219982B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2014146012A (ja) パターン形成方法及び装置
JP2014168040A (ja) パターン形成方法及び装置、露光装置並びに表示用パネル製造方法
JP2011123383A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2014066870A (ja) パターン形成方法及び装置、露光装置並びに表示用パネル製造方法
JP2012123127A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2014059410A (ja) パターン形成方法及び装置、露光装置並びに表示用パネル製造方法
JP5416867B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5456607B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5253037B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2014071350A (ja) パターン形成方法及び装置、露光装置並びに表示用パネル製造方法
JP5349163B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
TWI715056B (zh) 用於空間光調變器的減少資料串流的方法
JP2014071351A (ja) パターン形成方法及び装置、露光装置並びに表示用パネル製造方法
JP2012008243A (ja) 露光装置及び露光方法並びに表示用パネル基板製造装置及び表示用パネル基板製造方法
JP2011007975A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5636315B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2024076150A (ja) 成形装置、成形方法、および物品の製造方法
JP2013197568A (ja) 露光装置及び露光方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018