JP2014119330A - 物理量センサ - Google Patents

物理量センサ Download PDF

Info

Publication number
JP2014119330A
JP2014119330A JP2012274204A JP2012274204A JP2014119330A JP 2014119330 A JP2014119330 A JP 2014119330A JP 2012274204 A JP2012274204 A JP 2012274204A JP 2012274204 A JP2012274204 A JP 2012274204A JP 2014119330 A JP2014119330 A JP 2014119330A
Authority
JP
Japan
Prior art keywords
film
physical quantity
quantity sensor
stress
mold resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012274204A
Other languages
English (en)
Other versions
JP6018903B2 (ja
Inventor
Noriyuki Sakuma
憲之 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012274204A priority Critical patent/JP6018903B2/ja
Priority to DE112013006033.7T priority patent/DE112013006033B4/de
Priority to US14/652,487 priority patent/US9851233B2/en
Priority to PCT/JP2013/077878 priority patent/WO2014097723A1/ja
Publication of JP2014119330A publication Critical patent/JP2014119330A/ja
Application granted granted Critical
Publication of JP6018903B2 publication Critical patent/JP6018903B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】 開口部を有するモールド樹脂により成型された熱式センサにおいて、開口部におけるモールド樹脂の残留応力のため、接着性の弱い界面で剥離が生じる課題があった。
【解決手段】 物理量センサを、検出部3を具備する半導体チップと、半導体チップが実装されるフレーム8aと、半導体チップとフレームとを封止し、検出部を外部に露出させる開口部を具備するモールド樹脂部10と、モールド樹脂部のうち開口部の端部と検出部に形成される配線層の間に設けられ、端部からの応力を吸収する金属材料からなる応力吸収層6を有する構成とする。
【選択図】 図2

Description

本発明は物理量センサに関し、特に、モールド樹脂により封止され、当該モールド樹脂に開口部を具備する物理量センサに関する。
現在、自動車などの内燃機関の電子制御燃料噴射装置に設けられ吸入空気量を測定する空気流量計に用いられる流体流量センサとしては、熱式のものが、質量空気量を直接検知できることから主流となってきている。
この中で特に半導体を用いたMEMS(Micro Electro Mechanical Systems:微小電気機械システム)技術により製造された熱式空気流量(エアフロー)センサ素子が、コストを低減でき且つ低電力で駆動することができることから注目されてきた。
このようなMEMSを用いたセンサにおいては、高価な金属やセラミック基板に組み立てていたものを樹脂封止することによって、低コスト化、小型化が図られるようになってきた。その際、計測するセンサ素子部のみ開口部を設けて、他の部分をモールド樹脂により封止するものも提案されている。
従来の一部開口部を持つ樹脂封止技術の例として、特許文献1には、凸部を有するモールド金型と、半導体素子が装着されたリードフレームとを型合わせすることで、半導体素子の検出部と電極部の間に凹溝部を設ける技術が記載されている。特許文献1では、この凹溝部にモールド樹脂を入り込ませることによってアンカー効果を得て、モールド樹脂の半導体素子の表面に対する接合強度を高め、その結果、開口部の周囲におけるモールド樹脂層の剥離や亀裂の発生を防止している。
また、特許文献2には、開口部外周のハウジングと接する領域に、バッファ層を設ける技術が記載されている。バッファ層には、開口部を形成する型が検出部を損傷するのを防止する働きと、集積回路と半導体電子素子の間の応力緩和層としての働きがある。バッファ層は、エポキシ樹脂等の樹脂材料や、シリコン・ゴム等の有機材料からなる。
特開2009−49298号公報 特開2010−50452号公報
特許文献1および2に記載の技術には、いずれも、開口部におけるモールド樹脂の残留応力のため、接着性の弱い界面で剥離が生じる課題がある。この詳細を、図10および11を用いて説明する。
図10は、配線4上の絶縁膜上に直接モールド樹脂を整形した場合の、モールド樹脂の残留応力について説明する図である。特許文献1のように凹溝部を設けた場合も、残留応力の影響は図10と同様であると考えて良い。図10に示したように、モールド成型時に約200℃で充填されたモールド樹脂には、室温に戻った際に全体が収縮しようとする残留応力F1が発生する。開口部のない通常のモールド成型では、モールド樹脂10の残留応力は均一に分散するため問題とならないが、開口部を持っている場合は、収縮しようとする残留応力が、モールド樹脂の開口部端部に集中してしまう。この場合、モールド樹脂10は熱式流体流量センサ1が接触する絶縁膜18などと接着力の良い材料であるため(さらに、特許文献1においては、凹溝部により接着力をより高めているため)、開口部の下部に位置し接着力が弱い界面である、配線4とその上部の絶縁膜16の界面、または、配線4とその下部の絶縁膜14の界面に応力が集中し易い。特に、温度サイクル試験など耐久試験を行うと、残留応力F1が助長され前記界面にて剥離が発生し、それに伴い配線4の抵抗値が変化して検出精度を悪くしてしまう。またこのまま放置するとさらに剥離が進み、剥離した配線4上の絶縁膜に亀裂が発生し、配線4が外気と触れ腐食して断線する故障が発生してしまう。
図11は、特許文献2のように、絶縁膜18上にポリイミド樹脂28を形成し、モールド樹脂10の端部が絶縁膜18に直接接触しない構造とした場合の、モールド樹脂の残留応力について説明する図である。この場合、モールド樹脂10の残留応力は図10と同様に、開口部端部に集中するが、ポリイミド樹脂28はヤング率が低いため残留応力F2をある程度緩和することができる。しかし、緩和した残留応力F2は、ポリイミド樹脂28界面および膜内部にとどまっており、耐久試験を行った場合にポリイミド樹脂28と下地絶縁膜18もしくはモールド樹脂9の界面に応力が集中し、界面で剥離が発生する。このポリイミド29と下地絶縁膜18との剥離が進むと界面に水分等が浸入しパッド部5が腐食して断線する故障が発生してしまう。なお、下地絶縁膜18と密着性が良いエポキシ樹脂をポリイミド膜28の代わりに用いた場合も、エポキシ樹脂などの表面が撥水性を持つためモールド樹脂の材料であるレジン等と接着性が悪いため、図11のような剥離が懸念される点で同様である。
以上を踏まえ、本発明の目的は、モールド成型後の残留応力の影響をより低減し、高感度、および高信頼性の物理量センサを提供することにある。
本願発明による課題を解決する手段のうち代表的なものを例示すれば、物理量センサであって、検出部を具備する半導体チップと、半導体チップが実装されるフレームと、半導体チップとフレームとを封止し、検出部を外部に露出させる開口部を具備するモールド樹脂部と、モールド樹脂部のうち開口部の端部と、検出部に形成される配線層との間に設けられ、端部からの応力を吸収する金属材料を含む応力吸収層と、を有することを特徴とする。
本発明によれば、より高感度、高信頼性の物理量センサを提供しうる。
本発明の実施例1による熱式流体流量センサの一例を示す要部平面図である。 本発明の実施例1による熱式流体流量センサの要部断面図である。 本発明の実施例1によるセンサ素子の半導体基板製造工程を示す要部断面図である。 本発明の実施例1によるセンサ素子の半導体基板製造工程を示す要部断面図である。 本発明の実施例1によるセンサ素子の半導体基板製造工程を示す要部断面図である。 本発明の実施例1によるセンサ素子の半導体基板製造工程を示す要部断面図である。 本発明の実施例1による熱式流体流量センサの製造工程を示す要部断面図である。 本発明の実施例1による熱式流体流量センサの製造工程を示す要部断面図である。 本発明の実施の形態1による自動車等の内燃機関の吸気通路に取り付けられた熱式流体流量センサを実装した熱式空気流量計の概略配置図である。 モールド樹脂による応力の影響を示す断面図である。 モールド樹脂による応力の影響を示す断面図である。 モールド樹脂による応力の影響を示す断面図である。 本発明の実施例2によるセンサ素子の半導体基板製造工程を示す要部断面図である。 本発明の実施例2によるセンサ素子の半導体基板製造工程を示す要部断面図である。 本発明の実施例2による熱式流体流量センサの要部断面図である。 本発明の実施例3によるセンサ素子を示す要部断面図である。
以下、本発明の実施例について、図面を参照しながら説明する。なお、以下の実施例においては、特に物理量センサの例として熱式流体流量センサを用いて説明するが、本願発明は、モールド樹脂により封止され、当該モールド樹脂が開口部を具備する他のセンサ、例えば湿度センサ、圧力センサなどおいても、同様に適用しうるものである。
また、以下の実施例において、「上方」とは、半導体基板の表面に垂直な向きのうち、検出部およびパッドが形成される向き(絶縁膜等が積層されていく向き)を指している。
<熱式流体流量センサの構成>
実施例1による熱式流体流量センサ1の要部平面図の一例を図1に示し、図1のA-A‘線における要部断面図を図2に示す。
図1および図2に示すように、リードフレーム8a上に搭載されたセンサ素子2には、流体の流量を検出する空気流量計測部3、ヒータやセンサなどの配線4、および外部への入出力用の電極5が形成されている。前記空気流量計測部3には、半導体基板の裏面が除去されたダイヤフラム構造7が設けられている。また、前記電極5とリードフレームの外部端子8bとは、ワイヤボンディング9を介して互いに接続されている。配線4は、これらの電極5および外部端子7を介して、外部から電源供給を受け、ヒータ温度およびセンサ信号を外部に出力している。なお、前記センサ素子2のうち、空気流量計測部3以外の部分は樹脂モールド10で覆われており、空気流量計測部3のモールド樹脂10の端部と配線4の間には、絶縁膜を介して応力吸収層6が形成されている。なお、図1ではダイヤフラム構造7の平面形状を正方形として図示しているが、ダイヤフラム構造の平面形状は特に限定されず、例えば図1の左右方向に長辺を有する長方形等、他の形状であっても良い。
<熱式流体流量センサの製造方法>
次に、実施例1に係る熱式流体流量センサの製造方法の一例を図3〜図6を用いて工程順に説明する。図3〜図6は、図1中のA−A線に対応する要部断面図である。
まず、図3に示すように、単結晶Siからなる半導体基板11を用意する。続いて、半導体基板11の主面上に絶縁膜12を形成し、さらに絶縁膜13、絶縁膜14を順次形成する。絶縁膜12は、例えば高温の炉体で形成する酸化シリコン膜であり、厚さは200nm程度である。絶縁膜13は、例えばCVD法を用いた窒化シリコン膜であり、厚さは100〜200nm程度である。絶縁膜14は、例えばCVD法を用いた酸化シリコン膜であり、膜厚は300〜500nm程度である。これら、絶縁膜12、13,14は、半導体基板11の裏面にも成膜される。
ここで、絶縁膜12、絶縁膜14は、圧縮応力を有する膜(第2の絶縁膜)であり、絶縁膜13は、引っ張り応力を有する膜(第1の絶縁膜)である。第1の絶縁膜の残留応力は、例えば700MPa〜1200MPa程度の引っ張り応力であり、第2の絶縁膜の残留応力は、例えば50MPa〜250MPa程度の圧縮応力である。また、絶縁膜15および絶縁膜17は、500MPa〜1200MPaの引っ張り応力を有する窒化アルミニウム膜としてもよい。これら絶縁膜形成後に各膜の応力を整えるため、窒素雰囲気中で約1000℃の熱処理を行ってもよい。また、この上にさらに引っ張り応力を有する絶縁膜や圧縮応力を有する絶縁膜を繰り返し形成し、積層しても良い。
次に、金属膜15として、例えばスパッタリング法でMo(モリブデン)膜を100〜200nm程度成膜する。この際、接着性向上および結晶性向上のため、Mo膜の堆積前にAr(アルゴン)ガスを用いたスパッタエッチング法により、下地の絶縁膜14を5nm〜20nm程度エッチングし、Mo膜堆積時の半導体基板2の温度を200℃〜500℃程度として形成する。また、Mo膜の結晶性をさらに高めるため、Mo膜成膜後に炉体またはランプ加熱装置において窒素雰囲気中で約1000℃の熱処理を施す。
次に、図4に示すように、フォトリソグラフィ法を用いたエッチングにより金属膜15のパターニングを行い、空気流量計測部3を形成する発熱抵抗体、発熱抵抗体用測温抵抗体、測温抵抗体、およびモールド樹脂内に配置された空気温度測温抵抗体、ヒータ温度制御用抵抗体および引き出しの配線4を形成する。その後、配線を保護する絶縁膜16として例えばCVD法またはTEOS(tetraethoxysilane)を原料としプラズマを用いた低温CVD法で堆積した酸化シリコン膜を約300〜600nm形成し、絶縁膜17および絶縁膜18を順次成膜する。絶縁膜17は、例えばCVD法またはプラズマを用いた低温CVD法で堆積した窒化シリコン膜であり、膜厚は150〜200nm程度とする。絶縁膜18は、例えばCVD法またはTEOSを原料としプラズマを用いた低温CVD法で堆積した酸化シリコン膜であり、膜厚は100〜500nm程度である。また、絶縁膜16、17、18は応力調整、および耐湿性が向上のため1000℃程度の熱処理を施してもよい。また、絶縁膜16を形成した後、CMP(Chemical Mechanical Polishing)を行うことにより、検出部のヒータ部とセンサ部の絶縁膜の膜厚を調整してもよい。
次に、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより、配線4の一部を露出させる接続孔を形成する。その後、金属膜として、例えば厚さ1μm程度のAl合金膜を成膜し接続孔を埋め込むように形成する。なお、金属膜の接触を良好にするため、形成前にAr(アルゴン)ガスにより接続孔内の配線4表面をスパッタエッチングしてもよい。さらに、その接触を確実なものとするため、Al合金膜の堆積前に第3の金属膜としてTiN(窒化チタン)膜等のバリア金属膜を成膜して、バリア金属膜とAl合金膜の積層膜を形成してもよい。また、バリア金属膜としてTiN膜を挙げたがTiW(チタンタングステン)膜、Ti(チタン)膜およびこれらの積層膜としてもよい。次に、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより前記金属膜をパターニングし、接続孔を介して配線4と電気的に接続されるパッド部5と、後にモールド樹脂の開口部端部が形成される領域の下部に設けられる応力吸収層6とを形成すると、図5に示す構造となる。
次に、図6に示すように、半導体基板11の裏面にフォリソグラフィ法によりフォトレジスト膜のパターン(図示は省略)を形成し、裏面に形成されている絶縁膜12、13および絶縁膜14をドライエッチング法またはウエットエッチング法により除去する。次いで、残された絶縁膜12、13、14をマスクとして半導体基板11を裏面からKOH(水酸化カリウム)、TMAH(Tetramethylammonium hydroxide)またはこれらを主成分とする水溶液でウエットエッチングし、ダイヤフラム構造7を形成する。
なお、上記の実施の形態では、発熱抵抗体などの配線4になる金属膜15をMoにより形成した熱式流体流量センサに関して説明したが、Mo以外の金属、金属窒化化合物、金属シリサイド化合物、多結晶シリコンあるいは不純物としてリンまたはホウ素がドープされた多結晶シリコンから形成してもよい。金属とした場合には、α−Ta(アルファタンタル)、Ti(チタン)、W(タングステン)、Co(コバルト)、Ni(ニッケル)、Fe(鉄)、Nb(ニオブ)、Hf(ハフニウム)、Cr(クロム)またはZr(ジルコニウム)等を主成分とする金属を例示できる。金属窒化化合物とした場合には、TaN(窒化タンタル)、MoN(窒化モリブデン)またはWN(窒化タングステン)などを例示できる。金属シリサイド化合物とした場合には、MoSi(モリブデンシリサイド)、CoSi(コバルトシリサイド)またはNiSi(ニッケルシリサイド)などを例示できる。さらに他の例として、燐もしくはボロンをドープしたポリシリコンなどを例示できる。
これに対しパッド部5および応力吸収層6の材料は、上記実施の形態ではAlとしたが、配線4になる金属膜15よりもヤング率の低い金属材料であれば良い。その具体例としては、Al(アルミニウム)、Cu(銅)、Au(金)、Ni(ニッケル)、Pt(白金)、Ag(銀)からなる金属群に対し、当該金属群に含まれるいずれかの元素、当該金属群に含まれるいずれかの元素を含む合金、当該金属群に含まれるいずれかの元素とSi(シリコン)の化合物が挙げられる。また、上述の通り、応力吸収層6を、これらの金属材料からなる金属膜と、TiN(窒化チタン)膜、TiW(チタンタングステン)膜、またはTi(チタン)膜の少なくとも1つとの積層構造としても良い。
<熱式流体流量計の構成>
図7は、実施例1に係る本実施例に係る熱式流体流量センサがリードフレーム8に実装された様子を示す。リードフレーム8a上にセンサ素子2は銀ペーストまたは樹脂の接着シールなどで固定し、その後ワイヤボンディング9により所望のパッド5と外部端子となるリードフレーム8bを接続する。
次に、図8は、図7で示したリードフレーム8a上に配置したセンサ素子2をモールド成型の金型21に装着し、その後空気流量計測部3を保護するシールド膜23を介して開口部形成のための入れ駒22を押し当て、モールド樹脂を注入する。その後、不要なリードフレームを切断し、図2に示す開口部を有するモールド成型した熱式流量センサを形成する。
図9は、自動車等の内燃機関の吸気通路24に取り付けられた熱式空気流量計25の概略配置図である。空気流量計25は、自動車を制御するECU(Engine Control Unit)との電源および電気信号を接続するコネクタを吸気通路外に設けており、空気流量計の内部配線26を通して、熱式流体流量センサ1の外部端子8bと接続する。また、熱式空気流量計25内に副通路27が設けられており、矢印の向きに空気が流れる。熱式流体流量センサ1の流量計測部3は前記副通路27の空気が通る場所に配置される。なお、吸気された空気は、内燃機関の条件によって、矢印で示された空気流れ28の方向、またはこれとは逆の方向に流れる場合があるが、その状態の空気流量も検知することが可能である。また、実際には、熱式流体流量センサ1の内部配線26、外部端子8b、および副通路27の上にはカバーがしてある。
<実施例1の特徴およびその効果>
このように、実施例1に係る物理量センサは、検出部3を具備する半導体チップと、半導体チップが実装されるフレーム8aと、半導体チップとフレームとを封止し、検出部を外部に露出させる開口部を具備するモールド樹脂部10と、モールド樹脂部のうち開口部の端部と検出部に形成される配線層4の間に設けられ、端部からの応力を吸収する金属材料からなる応力吸収層6を有することを特徴とする。以下、図12を用いて、実施例1に係る発明の効果を説明する。
この応力吸収層6は、塑性変形しやすく、モールド成型後、モールド樹脂10の収縮に合わせてスライドするため、モールド樹脂10の残留応力が、他の膜、例えば絶縁膜19やその下の配線に与える影響を非常に低減する。特に、空気流量計測部3への影響を確実に低減するためには、応力吸収層6を、半導体チップの基板表面と平行な面においてダイヤフラム7の外周よりも外側に設けることが望ましい。
また、Al膜は下地絶縁膜18ともモールド樹脂10とも相性が良く、さらに配線4となる金属膜15よりもヤング率の低い、すなわち、柔らかい膜であるため、膜が分裂して剥離が生じることもない。以上を踏まえ、図10から12までの残留応力を比較すると
F1 ≒ F2 > F3
となる。よって、モールド樹脂の開口部の端部における残留応力の影響を従来技術と比較して大きく低減し、耐久試験を行っても安定した特性を維持することができる。
また、応力吸収層6は、半導体基板11と接続し、前記半導体基板11をアースに接続することで接地電位とすることで、開口部に露出した部分の電荷を外部に逃がし、熱式センサの特性を安定させることができる。また、接地電極のパッドと応力吸収層6を結線するように配置しても良い。ただし、応力吸収層6は開口部に面しており腐食し易いため、その場合の配線幅は細くして、迂回させるなどパッドまでの距離を遠くする必要がある。また、応力吸収層6を接地すると集塵の効果もある。
応力調整層6を設ける位置は、モールド樹脂10と直接接触した場合とは限らない。実施例2では、モールド樹脂10を介して水分がパッド部5に到達する腐食を防止するため、応力調整層6とモールド樹脂9の間にカバー層を形成した構成について説明する。
図13〜14は、実施例2に係る熱式流体流量センサの要部断面図を形成する工程である。なお、図3、図4の工程までは実施例1と同一のため、その後の工程から説明する。
図4の工程後は、図13に示すように、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより、配線4の一部を露出させる接続孔を形成する。その後、金属膜として、例えば厚さ1μm程度のAl合金膜を成膜し接続孔を埋め込むように形成する。なお、金属膜の接触を良好にするため、形成前にAr(アルゴン)ガスにより接続孔内の配線4表面をスパッタエッチングしてもよい。さらに、その接触を確実なものとするため、Al合金膜の堆積前に第3の金属膜としてTiN(窒化チタン)膜等のバリア金属膜を成膜してバリア膜とAl合金膜の積層膜を形成してもよい。また、バリア金属膜としてTiN膜を挙げたがTiW(チタンタングステン)膜、Ti(チタン)膜およびこれらの積層膜としてもよく、この工程までは実施例と同じである。
次に、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより前記金属膜をパターニングし、パッド部5と応力吸収層6を形成する。この際実施例2では、ダイヤフラム7となる領域も含めて応力吸収層6を残す。次にカバー層29を形成する。カバー層29は、少なくともモールド樹脂10と応力吸収層6の間に設けられた絶縁膜であれば良く、例えばCVD法またはプラズマを用いた低温CVD法で堆積した窒化シリコン膜であり、膜厚は1000〜2000nm程度である。なお、カバー層29は、低温TEOSを原料としプラズマを用いた低温CVD法で堆積した酸化シリコン膜と前記窒化シリコン膜との積層膜であっても良く、窒化アルミニウム膜、炭化シリコン膜、またはこれらと酸化シリコン膜、窒化シリコン膜との積層膜であっても良い。係るカバー層29を設けることで、応力吸収層6の腐食を防止するだけでなく、モールド樹脂10と応力吸収層6の接着性をより向上することが可能となる。また、図14で後述する応力吸収層6の一部除去の際に、応力吸収層6には、カバー層29で覆われていない領域が生じてしまうが、この領域については絶縁膜30で覆われるので問題なく、カバー層29は、応力吸収層6の少なくとも一部を覆っていれば良い。
次に、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより、絶縁膜29を、下地の応力吸収層6およびパッド部5をエッチストップ層として用い、加工する。
次に、図14に示すように、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより、ダイヤフラム7より大きい領域の応力吸収層6を除去する。これは、そのまま残した場合、ダイヤフラム7をヒータ加熱した際に、Al膜は熱伝導が良いため、センサ配線に温度勾配ができなくなってしまうためであり、当該工程を行った結果、応力吸収層は、基板表面と平行な面において、少なくともダイヤフラム表面の外周よりも外側に設けられることとなる。
次に保護膜30として、絶縁膜、例えばポリイミド膜を塗布し、その後、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより、塗布した保護膜30のうち、パッド部5、モールド樹脂10の端部および必要に応じてダイヤフラム7の上部に位置する部分を除去する。最後に、裏面にフォトリソグラフィ法を用いてKOHやTMAHを含む液を用いて裏面Si基板をウエットエッチングし、ダイヤフラム7を形成する。保護膜30には、応力吸収層6の一部除去によりカバー層29で覆われていない部分を覆うことで、応力吸収層6の腐食防止効果をより向上する役割がある。
この際、モールド樹脂10の端部となる場所は、Al膜6であっても保護膜30であっても良い。その理由としては、モールド樹脂10の残留応力は保護膜30とカバー層29を介して応力吸収層6に加わり、応力吸収層6がスライドすることで、実施例1と同様に、下層の配線4に与える影響を大きく低減できるためである。
但し、保護膜30は、基板表面と平行な面においてモールド樹脂10の開口部端部よりも内側に位置することが望ましい。係る位置に保護膜30を設けることで、モールド樹脂10の開口部形成の際の、樹脂流れを防止する効果も奏するためである。
図15は、図14で示したセンサ素子2をモールド成型した熱式流体流量センサ1を示す。この図より、空気流量計測部3のモールド樹脂10端部下層には応力吸収層6が配置され、さらにその下層にヒータやセンサの配線4が配置された構造となっている。
図16は、実施例2においてコスト低減のためダイヤフラム7部に位置するカバー層29の除去工程を省き、パッド部5以外の全面が、カバー層29で覆われている構造である。この実施例3では、カバー層29の窒化シリコン膜の応力を調整し、ダイヤフラム7全体の膜応力を調整する必要がある。つまり、ダイヤフラム7のヒータが加熱された場合でも膜変形が非常に小さくなるように、絶縁膜29を200MPa以上の引っ張り応力とすることが望ましい。このためには、絶縁膜29の膜厚を、例えば1000nm以上とすればよい。この場合においても、モールド樹脂10端部の下層の残留応力は保護膜30とカバー層29を介して応力吸収層6に加わり、応力吸収層6がスライドすることで下層にヒータやセンサの配線4に与える影響を大きく低減し、実施例1と同様の効果が得られる。なお、本発明の効果は、上面から見てモールド樹脂10端部において少なくとも配線4上に応力吸収層6が配置されていれば良い。また、実施例3における応力吸収層6は腐食の影響を受けにくいため、抵抗値の変動が精度に影響しないようなグランド線など配線に用いてもよい。
1 物理量センサ
2 センサ素子
3 空気流量計測部
4 配線
5 パッド部
6 応力吸収層
7 ダイヤフラム
8a、8b リードフレーム
9 ワイヤボンディング
10 モールド樹脂
11 半導体基板
12、14、16、18 酸化シリコン膜
13、17、 窒化シリコン膜
15 金属膜
19 接続孔
21 モールド金型
22 入れ駒
23 シールド膜
24 吸気通路
25 空気流量計
26 内部配線
27 副通路
28 空気の流れ
29 カバー層
30 保護膜。

Claims (13)

  1. 検出部を具備する半導体チップと、
    前記半導体チップが実装されるフレームと、
    前記半導体チップと前記フレームとを封止し、前記検出部を外部に露出させる開口部を具備するモールド樹脂部と、
    前記モールド樹脂部のうち前記開口部の端部と、前記検出部に形成される配線層との間に設けられ、前記端部からの応力を吸収する金属材料を含む応力吸収層と、を有することを特徴とする物理量センサ。
  2. 請求項1において、
    前記金属材料は、前記配線層よりもヤング率の小さい材料であることを特徴とする物理量センサ。
  3. 請求項2において、
    アルミニウム、銅、金、ニッケル、白金および銀からなる金属群に対し、前記金属材料は、前記金属群に含まれるいずれかの元素、前記金属群に含まれるいずれかの元素を含む合金、または、前記金属群に含まれるいずれかの元素とシリコンの化合物であることを特徴とする物理量センサ。
  4. 請求項1において、
    前記応力吸収層は、前記金属材料からなる金属膜と、窒化チタン膜、チタンタングステン膜、またはチタン膜の少なくとも1つとの積層構造であることを特徴とする物理量センサ。
  5. 請求項1において、
    前記検出部は、ダイヤフラムを有することを特徴とする物理量センサ。
  6. 請求項5において、
    前記半導体チップの基板表面と平行な面において、前記応力吸収層は、前記ダイヤフラムの外周よりも外側に設けられることを特徴とする物理量センサ。
  7. 請求項1において、
    前記応力吸収層は、接地されていることを特徴とする物理量センサ。
  8. 請求項1において、
    前記モールド樹脂部と前記応力吸収層の間に設けられ、絶縁膜からなるカバー層をさらに有することを特徴とする物理量センサ。
  9. 請求項8において、
    前記カバー層は、酸化シリコン膜、窒化シリコン膜、窒化アルミニウム膜、炭化シリコン膜、またはこれらの積層膜であることを特徴とする物理量センサ。
  10. 請求項8において、
    前記検出部は、ダイヤフラムを有し、
    前記カバー層は、前記ダイヤフラムの上部を除いた位置に設けられることを特徴とする物理量センサ。
  11. 請求項8において、
    前記応力吸収層のうち、前記カバー層によって覆われていない領域を覆い、絶縁膜からなる保護膜をさらに有することを特徴とする物理量センサ。
  12. 請求項11において、
    前記半導体チップの基板表面と平行な面において、前記保護膜は前記端部よりも内側に位置することを特徴とする物理量センサ。
  13. 請求項1に置いて、
    前記物理量センサは、熱式流体流量センサであり、
    前記検出部は、発熱抵抗体および測温抵抗体を含み、
    前記配線層は、前記発熱抵抗体または前記測温抵抗体を構成する層であることを特徴とする物理量センサ。
JP2012274204A 2012-12-17 2012-12-17 物理量センサ Expired - Fee Related JP6018903B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012274204A JP6018903B2 (ja) 2012-12-17 2012-12-17 物理量センサ
DE112013006033.7T DE112013006033B4 (de) 2012-12-17 2013-10-15 Sensor für physikalische Größen
US14/652,487 US9851233B2 (en) 2012-12-17 2013-10-15 Physical quantity sensor
PCT/JP2013/077878 WO2014097723A1 (ja) 2012-12-17 2013-10-15 物理量センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274204A JP6018903B2 (ja) 2012-12-17 2012-12-17 物理量センサ

Publications (2)

Publication Number Publication Date
JP2014119330A true JP2014119330A (ja) 2014-06-30
JP6018903B2 JP6018903B2 (ja) 2016-11-02

Family

ID=50978073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274204A Expired - Fee Related JP6018903B2 (ja) 2012-12-17 2012-12-17 物理量センサ

Country Status (4)

Country Link
US (1) US9851233B2 (ja)
JP (1) JP6018903B2 (ja)
DE (1) DE112013006033B4 (ja)
WO (1) WO2014097723A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084664A1 (ja) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 熱式流量センサ
KR20170035173A (ko) * 2015-09-22 2017-03-30 엘지이노텍 주식회사 센서 패키지 및 이의 제조 방법
WO2017179397A1 (ja) * 2016-04-11 2017-10-19 日立オートモティブシステムズ株式会社 物理量検出装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675716B2 (ja) * 2012-06-29 2015-02-25 日立オートモティブシステムズ株式会社 熱式空気流量センサ
EP3176543B1 (en) * 2014-07-30 2020-11-18 Hitachi Automotive Systems, Ltd. Circuit board mounting structure and sensor using same
JP6295209B2 (ja) * 2015-01-09 2018-03-14 日立オートモティブシステムズ株式会社 熱式流体流量センサ
JP6436925B2 (ja) * 2016-02-22 2018-12-12 日立オートモティブシステムズ株式会社 熱式流量計
US20160230717A1 (en) * 2016-04-19 2016-08-11 Caterpillar Inc. Coating for engine
JP6561940B2 (ja) 2016-08-12 2019-08-21 株式会社デンソー 半導体センサ及びその製造方法
JP2019027881A (ja) * 2017-07-28 2019-02-21 アズビル株式会社 測定装置
CN111448653B (zh) * 2017-12-13 2024-05-24 三菱电机株式会社 半导体装置及电力转换装置
TWI679782B (zh) * 2017-12-19 2019-12-11 財團法人工業技術研究院 感測裝置及其製造方法
US11004700B2 (en) * 2019-08-21 2021-05-11 Infineon Technologies Ag Temporary post-assisted embedding of semiconductor dies
DE102020209542A1 (de) 2020-07-29 2022-02-03 Robert Bosch Gesellschaft mit beschränkter Haftung Sensor zum Erfassen einer physikalischen Größe
CN113097168A (zh) * 2021-03-26 2021-07-09 武汉新芯集成电路制造有限公司 半导体装置及其形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161721A (ja) * 2001-11-26 2003-06-06 Matsushita Electric Works Ltd 半導体イオンセンサとその製造方法
JP2004128399A (ja) * 2002-10-07 2004-04-22 Nec Electronics Corp 電子部品
JP2009049298A (ja) * 2007-08-22 2009-03-05 Denso Corp 半導体部品
JP2012202786A (ja) * 2011-03-25 2012-10-22 Hitachi Automotive Systems Ltd 熱式センサおよびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702221A3 (en) * 1994-09-14 1997-05-21 Delco Electronics Corp Sensor integrated on a chip
DE102005024215A1 (de) * 2004-06-03 2005-12-22 Denso Corp., Kariya Drucksensor
TWI341014B (en) * 2007-05-30 2011-04-21 Ind Tech Res Inst A device structure with preformed ring and method therefor
EP2154713B1 (en) 2008-08-11 2013-01-02 Sensirion AG Method for manufacturing a sensor device with a stress relief layer
JP5763575B2 (ja) 2012-03-19 2015-08-12 日立オートモティブシステムズ株式会社 流量センサおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161721A (ja) * 2001-11-26 2003-06-06 Matsushita Electric Works Ltd 半導体イオンセンサとその製造方法
JP2004128399A (ja) * 2002-10-07 2004-04-22 Nec Electronics Corp 電子部品
JP2009049298A (ja) * 2007-08-22 2009-03-05 Denso Corp 半導体部品
JP2012202786A (ja) * 2011-03-25 2012-10-22 Hitachi Automotive Systems Ltd 熱式センサおよびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084664A1 (ja) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 熱式流量センサ
JPWO2016084664A1 (ja) * 2014-11-28 2017-06-22 日立オートモティブシステムズ株式会社 熱式流量センサ
CN107003165A (zh) * 2014-11-28 2017-08-01 日立汽车系统株式会社 热式流量传感器
EP3225958A4 (en) * 2014-11-28 2018-07-18 Hitachi Automotive Systems, Ltd. Thermal-type flow rate sensor
KR20170035173A (ko) * 2015-09-22 2017-03-30 엘지이노텍 주식회사 센서 패키지 및 이의 제조 방법
KR102470098B1 (ko) * 2015-09-22 2022-11-24 엘지이노텍 주식회사 센서 패키지 및 이의 제조 방법
WO2017179397A1 (ja) * 2016-04-11 2017-10-19 日立オートモティブシステムズ株式会社 物理量検出装置
US10876872B2 (en) 2016-04-11 2020-12-29 Hitachi Automotive Systems, Ltd. Physical quantity detection device

Also Published As

Publication number Publication date
DE112013006033T5 (de) 2015-09-10
DE112013006033B4 (de) 2021-10-07
US9851233B2 (en) 2017-12-26
US20150330820A1 (en) 2015-11-19
WO2014097723A1 (ja) 2014-06-26
JP6018903B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6018903B2 (ja) 物理量センサ
US9379302B2 (en) Method of manufacturing the thermal fluid flow sensor
EP2204346B1 (en) Thermal fluid flow sensor and method of manufacturing the same
JP5202007B2 (ja) 熱式流体流量センサ
JP4894531B2 (ja) 熱式流量センサ
JP3863171B2 (ja) 半導体圧力センサ及びその製造方法
JP4952428B2 (ja) センサ装置
JP2011099757A (ja) 熱式流体流量センサおよびその製造方法
JP2008517288A (ja) 半導体チップを搭載するための方法および相応する半導体チップ装置
JP2009058230A (ja) センサ装置の製造方法及びセンサ装置
JP5768011B2 (ja) 熱式空気流量センサ
JP5093052B2 (ja) 熱式流量センサ
JP5243348B2 (ja) 流量検出装置
US6644113B2 (en) Flow-rate detecting device for heat-sensitive type flow sensor
US20090000372A1 (en) Thermal Flow Measurement Device
JPWO2003063258A1 (ja) 半導体装置
JP6215773B2 (ja) 流量センサおよびその製造方法
JP2006337378A (ja) 半導体圧力センサ及びその製造方法
JPH09116173A (ja) 半導体センサおよびその製造方法
JP4380196B2 (ja) センサ装置
WO2014030493A1 (ja) センサ装置
JP6990165B2 (ja) 熱式センサおよびその製造方法並びに半導体装置
JP6621434B2 (ja) Memsセンサ
JP4558421B2 (ja) 半導体センサ
JP2021061378A (ja) 半導体チップの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6018903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees