JP2014111918A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2014111918A
JP2014111918A JP2012266609A JP2012266609A JP2014111918A JP 2014111918 A JP2014111918 A JP 2014111918A JP 2012266609 A JP2012266609 A JP 2012266609A JP 2012266609 A JP2012266609 A JP 2012266609A JP 2014111918 A JP2014111918 A JP 2014111918A
Authority
JP
Japan
Prior art keywords
amount
urea water
exhaust
nox
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012266609A
Other languages
English (en)
Other versions
JP6003600B2 (ja
Inventor
Tatsuhiro Hashida
達弘 橋田
Yoshie Kato
美江 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012266609A priority Critical patent/JP6003600B2/ja
Publication of JP2014111918A publication Critical patent/JP2014111918A/ja
Application granted granted Critical
Publication of JP6003600B2 publication Critical patent/JP6003600B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration

Abstract

【課題】NOx触媒の下流の排ガスセンサの結露水による被水割れを回避しつつ、その使用可能時間を長く確保可能な内燃機関の制御装置を提供する。
【解決手段】NOxセンサ24の内蔵ヒータに対する通電は、壁温Twall>露点Tureaとなった場合に開始される。排気温度上昇制御を実行すれば、該制御の非実行時に比して排気温度を短時間で上昇できる。排気温度が上昇すれば壁温Twallも上昇するので、排気温度を短時間で上昇できれば、壁温Twallも短時間で上昇できる。従って、壁温Twallが露点Tureaを上回るまでの所要時間をtからtへと短縮できる。よって、上記内蔵ヒータに対する通電を早期に開始できる。
【選択図】図3

Description

この発明は内燃機関の制御装置に関する。より具体的には、排気中の窒素酸化物(NOx)を触媒により浄化する内燃機関の制御装置に関する。
従来、内燃機関から排出される排気中のNOxを無害化するために、SCR(Selective Catalytic Reduction)システムを採用することが公知である。SCRシステムは、一般に、NOxを窒素に還元するNOx触媒と、該NOx触媒の上流側から尿素水を添加する尿素水添加手段とを備えている。SCRシステムによれば、排気中のNOxをNOx触媒に吸着させつつ、添加尿素の加水分解により生ぜしめたアンモニアと反応させて還元浄化できる。
また、SCRシステムの採用に際しては、上記NOx触媒の上下流の2つのNOxセンサを用いて、上記尿素水添加手段からの尿素水添加量のフィードバック制御を行うことも公知である。このようなNOxセンサの多くは内蔵ヒータを備えており、センサ素子部を該内蔵ヒータによって加熱して活性温度に保持した状態で使用される。しかしながら、該センサ素子部にはセラミック材料が使用されており、内蔵ヒータによる加熱中に排気通路内で生じた結露水がセンサ素子部に付着すると、熱衝撃によって破損するという所謂被水割れの問題がある。
SCRシステムでは、上記還元反応で水が生じるので、上記NOx触媒の下流のNOxセンサ(下流側NOxセンサ)において、上記被水割れが特に起こり易い。下流側NOxセンサの被水割れに関し、特許文献1には、NOx触媒の上下流に2つのNOxセンサを設けたSCRシステムにおいて、下流側NOxセンサの上流にて生じる結露水の量を算出し、算出した量の結露水が気化し終えたと判断した場合に、内蔵ヒータに通電する制御手法が開示されている。この制御手法において、結露水量は、燃料の燃焼により生じる水蒸気量に、尿素水添加時に上記還元反応で生じる水蒸気量を加味して算出される。従って、特許文献1の制御手法によれば、尿素水を添加する場合においても、下流側NOxセンサの被水割れを予防できる。
特開2010−174657号公報 特開2010−071110号公報 特開2012−036839号公報 特開2010−116858号公報
ところで、上記特許文献1において、尿素水の添加量は排気ガス中のNOx濃度に応じて設定される。また、この排気ガス中のNOx濃度は、上記2つのNOxセンサからの検出値に基づいて算出される。また、これらの検出値は上記2つのNOxセンサの活性化の完了を前提としている。つまり、上記特許文献1においては、燃料の燃焼により生じる水蒸気量から算出した結露水量が気化し終えたと判断した場合に、内蔵ヒータへの通電を開始し、上記2つのNOxセンサの活性化の完了後に初めて尿素水の添加量を設定していると考えられる。また、尿素水の添加開始後は、上記還元反応で生じる水蒸気量を、燃料の燃焼により生じる水蒸気量に加味して結露水の気化終了を判断していると考えられる。
しかしながら、尿素水の添加を開始すれば、上記還元反応で生じる水蒸気量分だけ結露水量の算出値が増加する。結露水量の算出値が増加すれば、結露水が生じる可能性が高まる。結露水が生じる状況となれば、下流側NOxセンサの内蔵ヒータへの通電を一時停止して結露水の気化を待つケースが生じ得る。その結果、排ガスセンサを利用可能な時間が短くなることが予想される。また、尿素水添加中に、内蔵ヒータの通電の一時停止が繰り返される状況は、NOxセンサの劣化防止や消費電力低減の観点からも好ましいものではない。
本発明は、上述の課題に鑑みてなされたものである。即ち、NOx触媒の下流の排ガスセンサの結露水による被水割れを回避しつつ、その使用可能時間を長く確保可能な内燃機関の制御装置を提供することを目的とする。
本発明は、上記の目的を達成するため、内燃機関の制御装置であって、
内燃機関の排気通路に設けられ、排気中の窒素酸化物を窒素に還元するNOx触媒と、
前記排気通路の前記NOx触媒よりも上流側から尿素水を添加する尿素水添加手段と、
前記排気通路の前記NOx触媒よりも下流側に設けられ、素子部と該素子部を加熱する加熱手段とを備え、排気中の特定成分を検出する排気センサと、
前記尿素水添加手段からの尿素水添加が許可された場合、前記加熱手段による前記素子部の加熱前に、前記排気センサ設置箇所を流れる排気温度を上昇させる加熱前排気温度上昇制御手段と、
を備えることを特徴とする。
また、第2の発明は、第1の発明において、
前記尿素水添加手段からの尿素水添加が許可された場合、前記加熱手段による前記素子部の加熱前に、前記排気センサ設置箇所を流れる排気量を増加させる加熱前排気量増加制御手段を更に備えることを特徴とする。
また、第3の発明は、第1または第2の発明において、
前記尿素水添加手段からの尿素水添加が許可された場合、前記NOx触媒に吸着したアンモニア量と設定量との差分に基づいて、前記尿素水添加手段からの尿素水添加量を設定する添加量算出手段を更に備えることを特徴とする。
また、第4の発明は、第3の発明において、
前記添加量算出手段は、前記アンモニア量が前記設定量よりも少ない場合、前記差分に応じて前記尿素水添加量を設定し、前記アンモニア量が前記設定量よりも多い場合、前記尿素水添加量をゼロ以上かつ前記差分に応じて設定する尿素水添加量の最小値以下に設定することを特徴とする。
内燃機関の排気通路の内壁等の温度が排気中の水蒸気の露点温度よりも低いと、結露水が発生し易い。また、上述したように、SCRシステムにおいては、尿素水添加時に排気中の水蒸気量が増加する。そのため、SCRシステムにおいて、例えば冷間始動後に尿素水添加が行われる状況においては、結露水が特に発生し易い。この点、第1の発明によれば、上記尿素水添加手段からの尿素水添加が許可された場合、上記加熱手段による上記素子部の加熱前に、上記排気センサ設置箇所を流れる排気温度を上昇させるので、上述した結露水が発生し易い状況においても、上記排気センサ設置箇所を含む上記排気通路の内壁等の温度を強制的に上昇させて短時間で露点温度以上とすることができる。上記排気通路の内壁等の温度を短時間で露点温度以上に上昇できれば、上記加熱手段により上記素子部を早期に加熱できることになるので、結果的に上記排ガスセンサを長時間利用できる。よって、第1の発明によれば、NOx触媒の下流の排ガスセンサの結露水による被水割れを回避しつつ、その使用可能時間を長く確保できる。
また、第2の発明によれば、上記尿素水添加手段からの尿素水添加が許可された場合、上記加熱手段による上記素子部の加熱前に、上記排気センサ設置箇所を流れる排気量を増加させるので、上記排気センサ設置箇所を流れる排気中の水分濃度を強制的に減少させて、露点温度自体を低下させることができる。露点温度を低下できれば、上記排気通路の内壁等の温度を短時間で露点温度以上とできる。よって、第2の発明によれば、上記第1の発明同様、NOx触媒の下流の排ガスセンサの結露水による被水割れを回避しつつ、その使用可能時間を長く確保できる。
上記尿素水添加手段から添加された尿素は加水分解反応によってアンモニアとなり、上記NOx触媒に吸着してNOx還元反応に供される。ここで、上記NOx触媒に吸着したアンモニア量と上記NOx触媒でのNOx浄化率とは相関を有する。具体的に、上記NOx浄化率は、上記アンモニア量が設定量となるまでは単調増加し、上記アンモニア量が該設定量を超えると略一定となる。この点、第3の発明によれば、上記アンモニア量と上記設定量との差分に基づいて上記尿素水添加量を設定できるので、上記NOx触媒に吸着しているアンモニアを有効活用したNOx浄化が可能となる。
第4の発明によれば、上記アンモニア量が上記設定量よりも少ない場合、上記差分に応じて上記尿素水添加量を設定し、上記アンモニア量が上記設定量よりも多い場合、上記尿素水添加量をゼロに設定するので、上記NOx触媒に吸着しているアンモニアを有効活用してNOxを浄化できる。
実施の形態1におけるシステム構成図である。 露点Tbaseと露点Tureaとの関係を示した図である。 機関始動直後の排気温度の推移を示した図である。 実施の形態1において、ECU30により実行されるヒータ通電制御の処理ルーチンを示すフローチャートである。 機関始動直後の露点の推移を示した図である。 実施の形態2において、ECU30により実行されるヒータ通電制御処理ルーチンを示すフローチャートである。 NOx触媒上のアンモニア吸着量ANH3と、NOx浄化率との関係を示した図である。 実施の形態3において、ECU30により実行される尿素水噴射量フィードバック制御の処理ルーチンを示すフローチャートである。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。
実施の形態1.
[実施の形態1の構成の説明]
先ず、図1乃至図4を参照しながら、本発明の実施の形態1について説明する。図1は、実施の形態1におけるシステム構成図である。図1に示す内燃機関10は、車両等に搭載される直列4気筒エンジンであるが、気筒数およびその配置はこれに限定されない。
内燃機関10の排気通路12には、上流側から順に、酸化触媒14と、DPF(Diesel Particulate Filter)16と、NOx触媒18とが直列に設けられている。酸化触媒14は、内燃機関10から排出される一酸化炭素(CO)および炭化水素(HC)を酸化すると共に、窒素酸化物(NOx)を還元するものである。DPF16は、排気ガス中の粒子状物質(PM)を捕集して燃焼除去するためのフィルタである。NOx触媒18は、尿素の加水分解反応により生じたアンモニアを還元剤として、排気ガス中のNOxを選択的に浄化する触媒である。
排気通路12において、DPF16とNOx触媒18との間には、通路内に尿素を噴射するための尿素噴射弁20が設けられている。尿素噴射弁20は、内部に尿素水を蓄える尿素水タンクと供給ポンプ(何れも図示しない)を介して接続されている。尿素水タンク内の尿素水は、この供給ポンプを駆動することで、尿素噴射弁20からNOx触媒18に向かって噴射供給されるものとする。尿素噴射弁20は、NOx触媒18、上記尿素タンクや供給ポンプ、後述するECU30と共にSCRシステムを構成する。
また、排気通路12には2つのNOxセンサ22,24が設けられている。具体的に、NOxセンサ22は、尿素噴射弁20よりも上流の排気通路12に、NOxセンサ24は、NOx触媒18よりも下流の排気通路12に、それぞれ設けられている。NOxセンサ22,24は、その設置箇所周囲の排気ガス中のNOx濃度を検出する機能を有している。NOxセンサ22,24は、セラミック材料で形成されたセンサ素子部と、内蔵ヒータとを備えており、NOx濃度の検出に際しては、該内蔵ヒータへの通電により該センサ素子部が所定の活性温度域(700℃〜800℃程度)に維持される。
また、本実施形態のシステムは、制御装置としてのECU(Electronic Control Unit)30を備えている。ECU30の入力側には、NOxセンサ22,24の他、内燃機関10の制御に必要な各種センサ(例えば、エンジン回転数を検出するクランク角センサ、吸入空気量を検出するエアフロメータ、スロットルバルブの開度を検出するスロットルセンサ等)が電気的に接続されている。他方、ECU30の出力側には、尿素噴射弁20、上記供給ポンプの他、内燃機関10の各気筒に設けられたインジェクタや、可変動弁機構といった各種アクチュエータが電気的に接続されている。ECU30は、各種センサからの入力情報に基づいて所定のプログラムを実行し、各種アクチュエータ等を作動させることにより、内燃機関10の運転に関する種々の制御を実行する。
[実施の形態1の特徴的制御]
ECU30が行う制御のひとつに、NOxセンサ22,24の内蔵ヒータに対する通電開始時期を制御するヒータ通電制御がある。ヒータ通電制御は、排気通路12で生じた凝結水がNOxセンサ22,24のセンサ素子部へ付着することで生じる被水割れを防止する目的で行われ、冷間始動直後といった凝結水が生じ易い環境において、排気通路12内の水分が無くなったことを判定し上記内蔵ヒータに対する通電を開始するものである。
ヒータ通電制御においては、具体的に、NOxセンサ22の内蔵ヒータに対する通電は、NOxセンサ22,24の設置箇所付近の排気通路12の壁温Twallが、露点Tbaseよりも高温となった場合に開始される。他方、NOxセンサ24の内蔵ヒータに対する通電は、同壁温Twallが、露点Tureaよりも高温となった場合に開始される。
本実施形態において、壁温Twallは、吸気温、排気温、外気温および車速に基づいて推定される。吸気温、排気温、外気温および車速と、壁温Twallとの関係は、予めシミュレーション等によって求められ、マップや演算式の形式でECU30内に記憶されているものとする。ECU30は、各種センサによって検出等される吸気温、排気温、外気温および車速をこの関係に適用して、壁温Twallを推定する。
また、露点Tbaseは、尿素噴射弁20よりも上流の排気通路12を流れる排気中の水分量W[g/cm]が飽和水蒸気量Wbaseと等しくなる温度である。この水分量Wは、燃料の燃焼により生じる水分量と、吸気中の水分量とを用いて算出される。燃料の燃焼により生じる水分量は、空燃比、排気圧から推定される。吸気中の水分量は吸気の湿度から算出される。吸気湿度、空燃比および排気圧と水分量Wとの関係は、予めシミュレーション等によって求められ、マップや演算式の形式でECU30内に記憶されているものとする。ECU30は、各種センサによって検出等される吸気湿度、空燃比および排気圧をこの関係に適用して水分量Wを算出し、露点Tbaseを推定する。
また、露点Tureaは、尿素水噴射時にNOx触媒18よりも下流の排気通路12を流れる排気中の水分量W[g/cm]が飽和水蒸気量Wureaと等しくなる温度である。この水分量Wの算出手法に関し、図2を参照しながら説明する。図2は、露点Tbaseと露点Tureaとの関係を示した図である。図2に示すように、露点Tbaseと露点Tureaの関係は、露点Turea>露点Tbaseとなる。この理由は、尿素水には約67.5wt%の水が含まれており、また、尿素水を噴射すれば、尿素の加水分解により生じたアンモニアがNOx触媒18上でNOxと反応して水が生成するためである。
この点を勘案し、水分量Wは、尿素水噴射時の排気中の水分変動量ΔW[g/cm]と、水分量Wとを用いて算出される。水分変動量ΔWは、尿素水に含まれる水、アンモニアおよびNOxとの還元反応時に生成する水と、尿素の加水分解反応時に消費される水とを考慮した次式(1)により算出される。
水分変動量ΔW=尿素水噴射量U×(1−α)×β×γ/排気流量V・・・(1)
上記式(1)において、尿素水噴射量Uは尿素噴射弁20から噴射した尿素水の噴射量[g/sec]であり、排気流量VはNOx触媒18を通過する排気の流量[cm/sec]である。また、α、βおよびγは尿素濃度、加水分解効率およびNOx浄化率に応じて設定される係数である。ECU30はその内部に上記式(1)を記憶しており、各種センサによって検出等される尿素水噴射量Uおよび排気流量Vと、上記式(1)とから水分変動量ΔWを算出する。そして、算出した水分変動量ΔWを水分量Wに加算することで水分量Wを算出し、露点Tureaを推定する。
ところで、ECU30が行う別の制御に、尿素水噴射量Uをフィードバックする尿素水噴射量フィードバック制御がある。尿素水噴射量フィードバック制御は、NOxセンサ22,24の検出値に基づいて行われるものであり、NOxセンサ22,24の他、NOx触媒18の活性化が前提となる。ここで、NOx触媒18の活性化は排気により行われ、約180℃以上でNOx触媒18が活性化する。NOx触媒18が活性化すれば、尿素噴射弁20からの尿素水噴射が許可される。
一方、上述したように、NOxセンサ22,24の活性化は上記内蔵ヒータによる加熱により行われ、上記所定活性温度域においてNOxセンサ22,24が活性化する。そのため、内燃機関10の始動後、尿素噴射弁20からの尿素水噴射が許可されているにも関わらず、NOxセンサ22,24の活性化が完了していないケースが生じる。尿素水噴射量フィードバック制御では、このような場合、尿素水噴射量Uを一時的に最大値Umaxに設定して尿素水噴射を開始し、NOxセンサ22,24の活性化を待つこととしている。しかしながら、最大値Umaxでの噴射を行えば上記式(1)で算出されるΔWが増加する。その結果、ヒータ通電制御によるNOxセンサ24の内蔵ヒータに対する通電開始が極端に遅延してしまう。
そこで、本実施形態のヒータ通電制御においては、上記の場合、排気温度を上昇させる排気温度上昇制御を実行することとしている。排気温度上昇制御は、具体的に、噴射回数の変更、圧縮上死点近傍で行われる主噴射の噴射時期を遅くするといった噴射タイミングのリタード、または、メイン噴射の後の膨張行程の初期にアフター噴射を追加するポスト噴射といった上記インジェクタの制御により行われる。即ち、メイン噴射を遅角して後燃え期間を長くし、または、噴射される合計の燃料量を増加することにより排気温度を上昇させる。
図3は、機関始動直後の排気温度の推移を示した図である。排気温度上昇制御の実行時が同図の実線に、非実行時が同図の破線に、それぞれ対応している。なお、排気温度上昇制御の実行は、図中に示す時刻tから開始されるものとする。図3に示すように、排気温度上昇制御を実行すれば、非実行時に比して排気温度を短時間で上昇できる。ここで、排気温度が上昇すれば壁温Twallも上昇するので、排気温度を短時間で上昇できれば、壁温Twallも短時間で上昇できる。従って、図3に示すように、壁温Twallが露点Tureaを上回るまでの所要時間をtからtへと短縮できる。よって、NOxセンサ24の内蔵ヒータに対する通電開始の極端な遅延を解消できる。
[実施の形態1における具体的処理]
次に、図4を参照しながら、上述した機能を実現するための具体的な処理について説明する。図4は、実施の形態1において、ECU30により実行されるヒータ通電制御の処理ルーチンを示すフローチャートである。なお、図4に示すルーチンは、内燃機関10の始動から停止までの間、定期的に繰り返して実行されるものとする。
図4のルーチンにおいて、先ずECU30は、壁温Twallおよび露点Tbaseを算出する(ステップ102、104)。壁温Twallおよび露点Tbaseの算出手法は、既述のとおりである。
次に、ECU30は、壁温Twall>露点Tbaseの成否を判定する(ステップ106)。本ステップにおいて、壁温Twallおよび露点Tbaseには、ステップ102およびステップ104でそれぞれ算出した値が用いられる。本ステップにおいて、壁温Twall≦露点Tbaseと判定された場合、排気通路12全体に結露水が生じている可能性があると判断できる。そのため、ECU30は、今回の処理を終了する。一方、壁温Twall>露点Tbaseと判定された場合、尿素噴射弁20よりも上流の排気通路12内の水分が無くなったと判断できる。そのため、ECU30は、NOxセンサ22の内蔵ヒータへの通電を開始し、ステップ108に進む。
ステップ108において、ECU30は、尿素噴射要求の有無を判定する。具体的に、ECU30は、NOx触媒18の活性化が完了したか否かを判定する。本ステップにおいて、NOx触媒18の活性化が未完了と判定された場合、ECU30は、今回の処理を終了する。一方、NOx触媒18の活性化が完了したと判定された場合、尿素噴射弁20からの尿素水噴射が許可されていると判断できる。そのため、ECU30は、ステップ110に進み、排気温度上昇制御を実行する。排気温度上昇制御の具体的内容については、既述のとおりである。
ステップ110に続いて、ECU30は、露点Tureaを算出する(ステップ112)。露点Tureaの算出手法は、既述のとおりである。
次に、ECU30は、壁温Twall>露点Tureaの成否を判定する(ステップ114)。本ステップにおいて、壁温Twallおよび露点Tureaには、ステップ102およびステップ112でそれぞれ算出した値が用いられる。本ステップにおいて、壁温Twall≦露点Tureaと判定された場合、NOx触媒18の下流の排気通路12内に結露水が生じる可能性があると判断できる。そのため、ECU30は、排気温度上昇制御の実行を一旦中止して今回の処理を終了する。一方、壁温Twall>露点Tureaと判定された場合、NOx触媒18の下流の排気通路12内の水分が無くなったと判断できる。そのため、ECU30は、ステップ116に進み、NOxセンサ24の内蔵ヒータへの通電を開始する。
以上、図4に示したルーチンによれば、壁温Twall>露点Tbaseと判定された場合にNOxセンサ22の内蔵ヒータへの通電を開始できる。そのため、NOxセンサ22のセンサ素子部への凝結水付着による被水割れを防止することができる。また、NOx触媒18の活性化が完了したと判定された場合、排気温度上昇制御を実行できる。そのため、壁温Twallを上昇させて露点Tureaを上回るまでの時間を短縮できる。従って、NOxセンサ24のセンサ素子部への凝結水付着による被水割れを防止しつつ、その内蔵ヒータに対する通電開始の遅延を解消できる。
ところで、上記実施の形態1においては、NOxセンサ24を例に説明を行った。しかし、センサ素子部にセラミック材料を用いる排気センサ(PMセンサ、空燃比センサ等)であって、NOx触媒18よりも下流の排気通路12に設けられるものであれば、上記ヒータ通電制御の実行により、NOxセンサ24と同様の効果を得ることができる。よって、上記実施の形態1は、このような排気センサに対しても適用できる。なお、本変形例は後述する実施の形態2、3においても同様に適用が可能である。
また、上記実施の形態1においては、壁温Twallを吸気温、排気温等に基づいて推定したが、NOxセンサ22,24の設置箇所付近の排気通路12に温度センサを別途設けて直接検出してもよい。なお、本変形例は後述する実施の形態2、3においても同様に適用が可能である。
なお、上記実施の形態1においては、NOx触媒18が上記第1の発明における「NOx触媒」に、尿素噴射弁20が同発明における「尿素水添加手段」に、NOxセンサ24が同発明における「排気センサ」に、NOxセンサ24のセンサ素子部が同発明の「素子部」に、NOxセンサ24の内蔵ヒータが同発明の「加熱手段」に、それぞれ相当する。
また、上記実施の形態1においては、ECU30が図4のステップ108,110の処理を実行することにより上記第1の発明における「加熱前排気温度上昇制御手段」が実現されている。
実施の形態2.
次に、図5乃至図6を参照しながら、本発明の実施の形態2について説明する。
本実施形態の特徴は、上記実施の形態1のシステムにEGR(Exhaust Gas Recirculation)システムを追加したシステム構成において、図6に示すヒータ通電制御処理ルーチンを実行する点にある。そのため、以下においては、この特徴部分についての説明を行い、上記実施の形態1との重複部分についてはその説明を省略する。また、EGRシステムについては公知であるため、その詳細な説明については省略する。
[実施の形態2のヒータ通電制御]
上記実施の形態1においては、尿素噴射弁20からの尿素水噴射が許可されている場合であって、NOxセンサ22,24の活性化が完了していないときに、排気温度を上昇させる排気温度上昇制御を実行した。本実施形態においては、この排気温度上昇制御の代わりに、NOx触媒18の下流を流れる排気量を増加させる排気量増加制御を実行する。排気量増加制御は、具体的に、スロットルバルブを開く、または、EGRバルブを閉じるといったアクチュエータの制御により行われる。
図5は、機関始動直後の露点の推移を示した図である。なお、排気量増加制御の実行は、排気温度上昇制御同様、図中に示す時刻tから開始されるものとする。排気量増加制御を実行すれば、図2等で説明した水分量Wを減少させることができる。水分量Wを減少できれば、露点そのものをTureaからT’ureaへと低下させることができる。従って、図5に示すように、壁温Twallが露点を上回るまでの所要時間をtからtへと短縮できる。よって、NOxセンサ24の内蔵ヒータに対する通電開始の極端な遅延を解消できる。
[実施の形態2における具体的処理]
次に、図6を参照しながら、上述した機能を実現するための具体的な処理について説明する。図6は、実施の形態2において、ECU30により実行されるヒータ通電制御処理ルーチンを示すフローチャートである。なお、図6に示すルーチンは、内燃機関10の始動から停止までの間、定期的に繰り返して実行されるものとする。
図6のルーチンにおいて、先ずECU30は、ステップ122〜128の処理を実行する。これらのステップの処理は、図4のステップ102〜108の処理と同一である。
ステップ128において、NOx触媒18の活性化が未完了と判定された場合、ECU30は、今回の処理を終了する。NOx触媒18の活性化が完了したと判定された場合、尿素噴射弁20からの尿素水噴射が許可されていると判断できる。そのため、ECU30は、ステップ130に進み、排気量増加制御を実行する。排気量増加制御の具体的内容については、既述のとおりである。
ステップ110に続いて、ECU30は、露点T’ureaを算出する(ステップ132)。露点T’ureaは、露点Tureaの算出手法に準じて算出される。具体的に、ECU30は、先ず、ステップ130の処理後に検出等される吸気湿度、空燃比および排気圧を、内部に記憶しておいたマップ等に適用して、水分量Wを算出する。次に、ECU30は、ステップ130の処理後の排気流量Vを上記式(1)に適用してΔWを算出する。最後に、ECU30は、算出した水分量WにΔWを加算して水分量Wを算出し、露点T’ureaを算出する。
次に、ECU30は、壁温Twall>露点T’ureaの成否を判定する(ステップ134)。本ステップにおいて、壁温Twallおよび露点T’ureaには、ステップ102およびステップ112でそれぞれ算出した値が用いられる。本ステップにおいて、壁温Twall≦露点Tureaと判定された場合、NOx触媒18の下流の排気通路12内に結露水が生じる可能性があると判断できる。そのため、ECU30は、排気量増加制御の実行を一旦中止して今回の処理を終了する。一方、壁温Twall>露点T’ureaと判定された場合、NOx触媒18の下流の排気通路12内の水分が無くなったと判断できる。そのため、ECU30は、ステップ136に進み、NOxセンサ24の内蔵ヒータへの通電を開始する。
以上、図6に示したルーチンによれば、NOx触媒18の活性化が完了したと判定された場合、排気量増加制御を実行できる。そのため、露点をTureaからT’ureaへと低下させて、壁温Twallが露点T’ureaを上回るまでの時間を短縮できる。従って、NOxセンサ24のセンサ素子部への凝結水付着による被水割れを防止しつつ、その内蔵ヒータに対する通電開始の遅延を解消できる。
なお、上記実施の形態2においては、ECU30が図6のステップ128,130の処理を実行することにより上記第2の発明における「加熱前排気量増加制御手段」が実現されている。
実施の形態3.
次に、図7乃至図8を参照しながら、本発明の実施の形態3について説明する。
本実施形態の特徴は、上記実施の形態1のシステム構成において、図8に示す尿素水噴射量フィードバック制御処理ルーチンを実行する点にある。そのため、以下においては、この特徴部分についての説明を行い、上記実施の形態1との重複部分についてはその説明を省略する。
[実施の形態3の尿素水噴射量フィードバック制御]
上記実施の形態1の尿素水噴射量フィードバック制御においては、尿素噴射弁20からの尿素水噴射が許可されている場合であって、NOxセンサ22,24の活性化が完了していないときは、尿素水噴射量Uを一時的に最大値Umaxに設定して噴射を開始する。この理由は、尿素水噴射量のフィードバック制御よりも、NOx触媒18でのNOx浄化を優先するためである。しかしながら、最大値Umaxでの噴射は、上述したΔWの増加の他、NOx触媒18の劣化速度や、尿素水タンク内の尿素水の消費速度を上昇させるという問題がある。
ところで、NOx触媒の浄化能力は、このNOx触媒に吸着しているアンモニアの量と相関がある。図7は、NOx触媒上のアンモニア吸着量ANH3と、NOx浄化率との関係を示した図である。図7に示すように、NOx浄化率は、吸着量ANH3の増加とともに上昇するものの、ある吸着量Aを境に大幅に変化し概ね一定となる。つまり、吸着量ANH3が特定量Ath(Ath≧A)以上であれば、NOx浄化率は変わらない。そこで、本実施形態の尿素水噴射量フィードバック制御においては、NOx触媒18上のアンモニアの吸着量ANH3が上記特定量Ath以上の場合、尿素水噴射の許可を取り消すこととした。
尿素水噴射の許可を取り消せばNOx触媒18への尿素水噴射が禁止され、尿素水タンク内の尿素水も消費されない。従って、本実施形態の尿素水噴射量フィードバック制御によれば、NOx触媒18に吸着しているアンモニアを有効活用してNOx浄化率を高水準に保ちながら、上述したΔWの増加等の問題を解消できる。なお、上記特定量Athについては、予めシミュレーション等によって求められ、ECU30内に記憶されているものとする。
本実施形態において、吸着量ANH3は、尿素水噴射中にNOx触媒18に吸着したもののNOxと反応せずに残留した残留アンモニアと、上記尿素水噴射の禁止中にNOxと反応して残留アンモニアとの収支を考慮して算出される。具体的に、内燃機関10のk回目の始動の際にNOx触媒18に吸着しているアンモニアの吸着量ANH3(k)[g]は、次式(2)により表される。
Figure 2014111918
上記式(2)において、T(k−1),T(k−2)は、内燃機関10のk−1回目,k−2回目の始動から停止までの間における噴射許可期間[sec]である。また、T(k−2)は、内燃機関10のk−2回目の始動から停止までの間における噴射禁止期間[sec]である。また、尿素水噴射量U、α、βおよびγは上記式(1)と同一である。ECU30はその内部に上記式(2)を記憶しており、各種センサによって検出等される尿素水噴射量U、噴射許可期間Tおよび噴射禁止期間Tと、上記式(2)とから吸着量ANH3を推定する。
また、本実施形態の尿素水噴射量フィードバック制御においては、NOxセンサ22,24の活性化が完了したときに、上記尿素水噴射の禁止が解除される。上記尿素水噴射の禁止を解除すれば尿素水噴射が許可される。そして、NOxセンサ22,24の検出値に基づいて算出された尿素水量がNOx触媒18に噴射され、排気中のNOx濃度が目標NOx濃度範囲内に収められる。
[実施の形態3における具体的処理]
次に、図8を参照しながら、上述した機能を実現するための具体的な処理について説明する。図8は、実施の形態3において、ECU30により実行される尿素水噴射量フィードバック制御の処理ルーチンを示すフローチャートである。なお、図8に示すルーチンは、内燃機関10の始動から停止までの間、定期的に繰り返して実行されるものとする。
図8のルーチンにおいて、先ずECU30は、尿素噴射要求の有無を判定する(ステップ142)。本ステップの処理は、図4のステップ108の処理と同一である。
ステップ142において、NOx触媒18の活性化が未完了と判定された場合、ECU30は、今回の処理を終了する。一方、NOx触媒18の活性化が完了したと判定された場合、ECU30は、噴射許可信号を発する(ステップ144)。本ステップの処理により、尿素噴射弁20からの尿素水噴射が許可(ON)される。
次に、ECU30は、吸着量ANH3を算出する(ステップ146)。吸着量ANH3の算出手法は、既述のとおりである。
次に、ECU30は、吸着量ANH3>特定量Athの成否を判定する(ステップ148)。本ステップにおいて、吸着量ANH3にはステップ146で算出した値が、特定量AthにはECU30内部に記憶されていた値が、それぞれ用いられる。本ステップにおいて、吸着量ANH3>特定量Athと判定された場合、NOx触媒18の浄化能力に余裕があると判断できる。そのため、ECU30は、噴射禁止信号を発する(ステップ150)。本ステップの処理により、尿素噴射弁20からの尿素水噴射が禁止(OFF)される。
一方、ステップ148において、吸着量ANH3≦特定量Athと判定された場合、ECU30は、尿素水噴射量Uを最大値Umaxとする噴射開始信号を発する(ステップ152)。本ステップの処理により、最大値Umaxでの尿素水噴射が開始される。
ステップ150に続いて、ECU30は、NOxセンサ22,24の活性化が完了したか否かを判定する(ステップ154)。本ステップにおいて、NOxセンサ22,24の活性化が未完了と判定された場合、ECU30は、今回の処理を終了する。一方、NOxセンサ22,24の活性化が完了したと判定された場合、噴射許可信号を発する(ステップ156)。本ステップの処理により、尿素水噴射の禁止が解除され、尿素噴射弁20からの尿素水噴射が許可(ON)される。
以上、図8に示したルーチンによれば、吸着量ANH3>特定量Athと判定された場合は、NOxセンサ22,24の活性化が完了したと判定されるまで、尿素水噴射が禁止される。従って、NOx触媒18に吸着しているアンモニアを有効活用してNOx浄化率を高水準に保ちながら、上述したΔWの増加等の問題を解消できる。
ところで、上記実施の形態3においては、特定量Athを閾値とし、吸着量ANH3>特定量Athの場合に尿素水噴射の許可を取り消したが、尿素水噴射の許可を取り消さずに、最大値Umaxよりも少ない尿素水噴射量Uで尿素水噴射を行ってもよい。同様に、吸着量ANH3≦特定量Athの場合に、最大値Umaxよりも少ない尿素水噴射量Uで尿素水噴射を行ってもよい。この理由は、図7で説明したように、吸着量ANH3は吸着量Aを境にNOx浄化率が変化するためである。即ち、吸着量ANH3と吸着量Aとの差ΔAに基づいた尿素水噴射量Uでの尿素水噴射であれば、上記実施の形態3同様の効果を得ることができる。なお、この尿素水噴射量Uの設定に際しては、吸着量ANH3>吸着量Aの場合と、吸着量ANH3≦吸着量Aの場合とで場合分けすることが望ましい。例えば、吸着量ANH3>吸着量Aの場合は差ΔAに応じた尿素水噴射量UΔAとし、吸着量ANH3≦吸着量Aの場合は尿素水噴射量UΔA以下の量(≧0)とすることが望ましい。
なお、上記実施の形態3においては、ECU30が図8のステップ142〜152の処理を実行することにより上記第3の発明における「添加量算出手段」が実現されている。
10 内燃機関
12 排気通路
18 NOx触媒
20 尿素噴射弁
22,24 NOxセンサ
30 ECU

Claims (4)

  1. 内燃機関の排気通路に設けられ、排気中の窒素酸化物を窒素に還元するNOx触媒と、
    前記排気通路の前記NOx触媒よりも上流側から尿素水を添加する尿素水添加手段と、
    前記排気通路の前記NOx触媒よりも下流側に設けられ、素子部と該素子部を加熱する加熱手段とを備え、排気中の特定成分を検出する排気センサと、
    前記尿素水添加手段からの尿素水添加が許可された場合、前記加熱手段による前記素子部の加熱前に、前記排気センサ設置箇所を流れる排気温度を上昇させる加熱前排気温度上昇制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記尿素水添加手段からの尿素水添加が許可された場合、前記加熱手段による前記素子部の加熱前に、前記排気センサ設置箇所を流れる排気量を増加させる加熱前排気量増加制御手段を更に備えることを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記尿素水添加手段からの尿素水添加が許可された場合、前記NOx触媒に吸着したアンモニア量と設定量との差分に基づいて、前記尿素水添加手段からの尿素水添加量を設定する添加量算出手段を更に備えることを特徴とする請求項1または2に記載の内燃機関の制御装置。
  4. 前記添加量算出手段は、前記アンモニア量が前記設定量よりも少ない場合、前記差分に応じて前記尿素水添加量を設定し、前記アンモニア量が前記設定量よりも多い場合、前記尿素水添加量をゼロ以上かつ前記差分に応じて設定する尿素水添加量の最小値以下に設定することを特徴とする請求項3に記載の内燃機関の制御装置。
JP2012266609A 2012-12-05 2012-12-05 内燃機関の制御装置 Expired - Fee Related JP6003600B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012266609A JP6003600B2 (ja) 2012-12-05 2012-12-05 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012266609A JP6003600B2 (ja) 2012-12-05 2012-12-05 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2014111918A true JP2014111918A (ja) 2014-06-19
JP6003600B2 JP6003600B2 (ja) 2016-10-05

Family

ID=51169194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266609A Expired - Fee Related JP6003600B2 (ja) 2012-12-05 2012-12-05 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP6003600B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121561A (ja) * 2014-12-24 2016-07-07 株式会社豊田自動織機 ディーゼルエンジンの制御装置
CN106014566A (zh) * 2015-03-31 2016-10-12 通用汽车环球科技运作有限责任公司 用于控制内燃发动机的方法
DE102016006829A1 (de) 2015-06-02 2016-12-08 Ngk Spark Plug Co., Ltd. Ammoniakeinschluss-mengenabschätzvorrichtung und -verfahren, und reinigungssteuergerät
JP2016223291A (ja) * 2015-05-27 2016-12-28 いすゞ自動車株式会社 排気浄化装置
JP2016223445A (ja) * 2015-06-02 2016-12-28 日本特殊陶業株式会社 アンモニア吸蔵量推定装置、浄化制御装置、アンモニア吸蔵量推定方法および浄化制御方法
JP2018119497A (ja) * 2017-01-26 2018-08-02 トヨタ自動車株式会社 内燃機関の制御装置
CN111164280A (zh) * 2017-09-26 2020-05-15 维特思科科技有限责任公司 用于操作内燃发动机的催化剂布置的方法和催化剂布置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232213A (ja) * 2002-02-08 2003-08-22 Toyota Motor Corp 内燃機関
JP2005002925A (ja) * 2003-06-12 2005-01-06 Hino Motors Ltd 排気浄化装置
JP2007255210A (ja) * 2006-03-20 2007-10-04 Toyota Motor Corp 内燃機関の制御装置
JP2008014235A (ja) * 2006-07-06 2008-01-24 Toyota Motor Corp 排気センサのヒータ制御装置
JP2009257242A (ja) * 2008-04-18 2009-11-05 Denso Corp 内燃機関の制御装置
JP2009281294A (ja) * 2008-05-22 2009-12-03 Denso Corp 内燃機関の排気浄化装置
JP2010071110A (ja) * 2008-09-16 2010-04-02 Toyota Motor Corp 内燃機関の制御装置
JP2010116858A (ja) * 2008-11-13 2010-05-27 Mitsubishi Fuso Truck & Bus Corp 排気ガス処理装置及び排気ガス処理方法
JP2010174657A (ja) * 2009-01-27 2010-08-12 Toyota Motor Corp 排気成分センサーのヒーター駆動制御方法
JP2011241686A (ja) * 2010-05-14 2011-12-01 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011247135A (ja) * 2010-05-25 2011-12-08 Isuzu Motors Ltd Scrシステム
JP2012036839A (ja) * 2010-08-06 2012-02-23 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232213A (ja) * 2002-02-08 2003-08-22 Toyota Motor Corp 内燃機関
JP2005002925A (ja) * 2003-06-12 2005-01-06 Hino Motors Ltd 排気浄化装置
JP2007255210A (ja) * 2006-03-20 2007-10-04 Toyota Motor Corp 内燃機関の制御装置
JP2008014235A (ja) * 2006-07-06 2008-01-24 Toyota Motor Corp 排気センサのヒータ制御装置
JP2009257242A (ja) * 2008-04-18 2009-11-05 Denso Corp 内燃機関の制御装置
JP2009281294A (ja) * 2008-05-22 2009-12-03 Denso Corp 内燃機関の排気浄化装置
JP2010071110A (ja) * 2008-09-16 2010-04-02 Toyota Motor Corp 内燃機関の制御装置
JP2010116858A (ja) * 2008-11-13 2010-05-27 Mitsubishi Fuso Truck & Bus Corp 排気ガス処理装置及び排気ガス処理方法
JP2010174657A (ja) * 2009-01-27 2010-08-12 Toyota Motor Corp 排気成分センサーのヒーター駆動制御方法
JP2011241686A (ja) * 2010-05-14 2011-12-01 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011247135A (ja) * 2010-05-25 2011-12-08 Isuzu Motors Ltd Scrシステム
JP2012036839A (ja) * 2010-08-06 2012-02-23 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121561A (ja) * 2014-12-24 2016-07-07 株式会社豊田自動織機 ディーゼルエンジンの制御装置
CN106014566A (zh) * 2015-03-31 2016-10-12 通用汽车环球科技运作有限责任公司 用于控制内燃发动机的方法
JP2016223291A (ja) * 2015-05-27 2016-12-28 いすゞ自動車株式会社 排気浄化装置
DE102016006829A1 (de) 2015-06-02 2016-12-08 Ngk Spark Plug Co., Ltd. Ammoniakeinschluss-mengenabschätzvorrichtung und -verfahren, und reinigungssteuergerät
JP2016223445A (ja) * 2015-06-02 2016-12-28 日本特殊陶業株式会社 アンモニア吸蔵量推定装置、浄化制御装置、アンモニア吸蔵量推定方法および浄化制御方法
US10094261B2 (en) 2015-06-02 2018-10-09 Ngk Spark Plug Co., Ltd. Ammonia occlusion amount estimation device and method, and purification control apparatus and method
JP2018119497A (ja) * 2017-01-26 2018-08-02 トヨタ自動車株式会社 内燃機関の制御装置
CN111164280A (zh) * 2017-09-26 2020-05-15 维特思科科技有限责任公司 用于操作内燃发动机的催化剂布置的方法和催化剂布置
JP2020533522A (ja) * 2017-09-26 2020-11-19 ヴィテスコ テクノロジーズ ゲー・エム・ベー・ハーVitesco Technologies GmbH 内燃機関の触媒装置を作動させる方法および触媒装置
CN111164280B (zh) * 2017-09-26 2022-02-01 维特思科科技有限责任公司 用于操作内燃发动机的催化剂系统的方法和催化剂系统

Also Published As

Publication number Publication date
JP6003600B2 (ja) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6003600B2 (ja) 内燃機関の制御装置
JP6614187B2 (ja) 内燃機関の排気浄化装置
RU2668593C2 (ru) Способ и система снижения выброса оксидов азота при работе двигателя (варианты)
US8240136B2 (en) SCR catalyst heating control
US9512764B2 (en) Ammonia storage management for SCR catalyst
EP1898061A1 (en) Exhaust gas purification system and method for internal combustion engine
EP2172627A1 (en) Exhaust purification apparatus
US8397489B2 (en) Engine idling duration control
AU2017268543B2 (en) Exhaust gas control apparatus for internal combustion engine
WO2013183153A1 (ja) エンジンシステム
JP2007071175A (ja) 燃料添加装置
JP2008163856A (ja) 内燃機関の排気浄化装置
JP2010261320A (ja) 内燃機関の排気浄化装置
JP6015753B2 (ja) 内燃機関の排気浄化装置
US9464554B2 (en) Exhaust gas purification system for internal combustion engine
JP4781151B2 (ja) 内燃機関の排気浄化システム
US8020375B2 (en) Exhaust gas purification system for internal combustion engine
JPH11270329A (ja) 内燃機関の還元剤供給装置
KR101907685B1 (ko) Nh3 슬립 방지 시스템 및 방법
JP4893493B2 (ja) 内燃機関の排気浄化装置
JP2013253540A (ja) 内燃機関の排気浄化システム
JP2013234608A (ja) 排気浄化装置の昇温制御システム
US8096113B2 (en) Exhaust purification system for internal combustion engine
JP2014202077A (ja) 排気ガス浄化装置の制御装置
JP2016173037A (ja) 排出ガス浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees