JP2014099660A - p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法 - Google Patents

p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法 Download PDF

Info

Publication number
JP2014099660A
JP2014099660A JP2014035733A JP2014035733A JP2014099660A JP 2014099660 A JP2014099660 A JP 2014099660A JP 2014035733 A JP2014035733 A JP 2014035733A JP 2014035733 A JP2014035733 A JP 2014035733A JP 2014099660 A JP2014099660 A JP 2014099660A
Authority
JP
Japan
Prior art keywords
diffusion layer
type diffusion
forming composition
layer forming
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014035733A
Other languages
English (en)
Inventor
Yoichi Machii
洋一 町井
Masato Yoshida
誠人 吉田
Takeshi Nojiri
剛 野尻
Kaoru Okaniwa
香 岡庭
Mitsunori Iwamuro
光則 岩室
Shuichiro Adachi
修一郎 足立
Tetsuya Sato
鉄也 佐藤
Keiko Kizawa
桂子 木沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014035733A priority Critical patent/JP2014099660A/ja
Publication of JP2014099660A publication Critical patent/JP2014099660A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】シリコン基板を用いた太陽電池素子の製造工程において、シリコン基板中の内部応力、基板の反りの発生を抑制しつつp型拡散層を形成することが可能なp型拡散層形成組成物であって、これにより得られたp型拡散層を有する基板においてキャリアのライフタイムが大きく低下しないp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法の提供。
【解決手段】本発明のp型拡散層形成組成物は、アクセプタ元素を含みライフタイムキラー元素の総量が1000ppm以下であるガラス粉末と、分散媒と、を含有する。このp型拡散層形成組成物を塗布し熱拡散処理を施すことで、p型拡散層、及びp型拡散層を有する太陽電池素子が製造される。
【選択図】なし

Description

本発明は、太陽電池素子のp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法に関するものであり、更に詳しくは、半導体基板であるシリコン基板の内部応力を低減し、結晶粒界のダメージ抑制、結晶欠陥増長抑制及び反り抑制可能なp型拡散層形成技術に関するものである。
従来のシリコン太陽電池素子の製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、テクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って、基板に一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、表面のみならず、側面、裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチングを行う。また、裏面のn型拡散層はp型拡散層へ変換する必要があり、裏面にアルミペーストを印刷し、これを焼成して、n型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。
しかしながら、アルミペーストから形成されるアルミ層は導電率が低く、シート抵抗を下げるためには、通常裏面全面に形成したアルミ層は焼成後において10〜20μmほどの厚みを有していなければならない。さらに、このように厚いアルミ層を形成すると、シリコンとアルミニウムでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、結晶粒界のダメージ、結晶欠陥増長及び反りの原因となる場合があった。
この問題を解決するために、ペースト組成物の塗布量を減らし、裏面電極層を薄くする方法がある。しかしながら、ペースト組成物の塗布量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不十分となる。その結果、所望のBSF(Back Surface Field)効果(p型拡散層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。
そこで、例えば、特許文献1には、アルミニウム粉末と、有機質ビヒクルと、熱膨張率がアルミニウムよりも小さく、かつ、溶融温度、軟化温度および分解温度のいずれかがアルミニウムの融点よりも高い無機化合物粉末とを含むペースト組成物が提案されている。
特開2003−223813号公報
しかしながら、特許文献1に記載のペースト組成物を用いた場合でも、充分に反りを抑制することができない場合があった。
本発明は、以上の従来の問題点に鑑みなされたものであり、シリコン基板を用いた太陽電池素子の製造工程において、シリコン基板中の内部応力、基板の反りの発生を抑制しつつp型拡散層を形成することが可能なp型拡散層形成組成物であって、これにより得られたp型拡散層を有する基板においてキャリアのライフタイムが大きく低下しないp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法の提供を課題とする。
前記課題を解決する手段は以下の通りである。
<1> アクセプタ元素を含みライフタイムキラー元素の総量が1000ppm以下であるガラス粉末と、分散媒と、を含有するp型拡散層形成組成物。
<2> 前記アクセプタ元素が、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)から選択される少なくとも1種である前記<1>に記載のp型拡散層形成組成物。
<3> 前記アクセプタ元素を含むガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する前記<1>又は<2>に記載のp型拡散層形成組成物。
<4> 前記ライフタイムキラー元素が、Fe(鉄)、Cu(銅)、Ni(ニッケル)、Mn(マンガン)、Cr(クロム)、W(タングステン)、及びAu(金)から選択される少なくとも1種である<1>〜<3>のいずれか1項に記載のp型拡散層形成組成物。
<5> 前記<1>〜<4>のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、熱拡散処理を施す工程と、を有するp型拡散層の製造方法。
<6> 半導体基板上に、前記<1>〜<4>のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、熱拡散処理を施してp型拡散層を形成する工程と、形成された前記p型拡散層上に電極を形成する工程と、を有する太陽電池素子の製造方法。
本発明によれば、シリコン基板を用いた太陽電池素子の製造工程において、シリコン基板中の内部応力、基板の反りを抑制しつつp型拡散層を形成することが可能となり、p型拡散層を形成した基板におけるキャリアのライフタイムが大きく低下しない。
まず、本発明のp型拡散層形成組成物について説明し、次にp型拡散層形成組成物を用いるp型拡散層及び太陽電池素子の製造方法について説明する。
尚、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
また、本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
さらに本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本発明のp型拡散層形成組成物は、少なくともアクセプタ元素を含みライフタイムキラー元素の総量が1000ppm以下であるガラス粉末(以下、単に「ガラス粉末」と称する場合がある)と、分散媒と、を含有し、更に塗布性などを考慮してその他の添加剤を必要に応じて含有してもよい。
ここで、p型拡散層形成組成物とはアクセプタ元素を含有し、例えば、シリコン基板に塗布した後に熱拡散処理(焼成)することでこのアクセプタ元素を熱拡散させてp型拡散層を形成することが可能な材料をいう。本発明のp型拡散層形成組成物を用いることで、p型拡散層形成工程とオーミックコンタクト形成工程とを分離でき、オーミックコンタクト形成のための電極材の選択肢が広がるとともに、電極の構造の選択肢も広がる。例えば銀等の低抵抗材を電極に用いれば薄い膜厚で低抵抗が達成できる。また、電極も全面に形成する必要はなく、櫛型等の形状のように部分的に形成してもよい。以上のように薄膜あるいは櫛型形状等の部分的形状にすることで、シリコン基板中の内部応力、基板の反りの発生を抑えながらp型拡散層を形成することが可能となる。
したがって、本発明のp型拡散層形成組成物を適用すれば、従来広く採用されている方法、つまりアルミペーストを印刷し、これを焼成してn型拡散層をp型拡散層にするのと同時にオーミックコンタクトを得る方法では発生してしまう基板中の内部応力及び基板の反りの発生が抑制される。
さらにガラス粉末中のアクセプタ成分は焼成中でも揮散しにくいため、揮散ガスの発生によって所望の領域以外にまでp型拡散層が形成されるということが抑制される。この理由として、アクセプタ成分がガラス粉末中の元素と結合しているか、又はガラス中に取り込まれているため、揮散しにくいものと考えられる。
更に、本発明のp型拡散層形成粗組成物は、これに含まれるガラス粉末中のライフタイムキラー元素の総量が1000ppm以下であるため、p型拡散層が形成された基板におけるキャリアのライフタイムは大きく低下することがない。ライフタイムキラー元素の詳細は後述する。
本発明に係るアクセプタ元素を含むガラス粉末について、詳細に説明する。
アクセプタ元素とは、シリコン基板中にドーピングさせることによってp型拡散層を形成することが可能な元素である。アクセプタ元素としては第13族の元素が使用でき、例えばB(ほう素)、Al(アルミニウム)及びGa(ガリウム)等が挙げられる。
アクセプタ元素をガラス粉末に導入するために用いるアクセプタ元素含有物質としては、B、Al、及びGaが挙げられ、B、Al及びGaから選択される少なくとも1種を用いることが好ましい。
また、ガラス粉末は、必要に応じて成分比率を調整することによって、溶融温度、軟化点、ガラス転移点、化学的耐久性等を制御することが可能である。更に以下に記す成分を含むことが好ましい。
ガラス成分物質としては、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、V、SnO、ZrO、MoO、La、Nb、Ta、Y、TiO、GeO、TeO及びLu等が挙げられ、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種を用いることが好ましい。
アクセプタ元素を含むガラス粉末の具体例としては、前記アクセプタ元素含有物質と前記ガラス成分物質の双方を含む系が挙げられ、B−SiO系(アクセプタ元素含有物質−ガラス成分物質の順で記載、以下同様)、B−ZnO系、B−PbO系、B単独系等のアクセプタ元素含有物質としてBを含む系、Al−SiO系等のアクセプタ元素含有物質としてAlを含む系、Ga−SiO系等のアクセプタ元素含有物質としてGaを含む系などのガラス粉末が挙げられる。
また、Al−B系、Ga−B系等のように、2種類以上のアクセプタ元素含有物質を含むガラス粉末でもよい。
上記では1成分ガラスあるいは2成分を含む複合ガラスを例示したが、B−SiO−NaO系、B−SiO−CeO系等のように、3成分以上の物質を含むガラス粉末でもよい。
キャリアのライフタイムを低下させる元素(ライフタイムキラー元素)のガラス粉末中での総量は1000ppm以下であり、500ppm以下が好ましく、100pm以下がより好ましく、50ppm以下が更に好ましい。
ライフタイムキラー元素として、Fe、Cu,Ni、Mn、Cr、W及びAuが挙げられる。これらの元素量はICP質量分析装置、ICP発光分析装置、原子吸光分析装置で分析できる。また、キャリアのライフタイムはマイクロ波光導電減衰法(μ−PCD法)により測定できる。
ガラス粉末中のガラス成分物質の含有比率は、溶融温度、軟化温度、ガラス転移温度、化学的耐久性を考慮して適宜設定することが望ましく、一般には、0.1質量%以上95質量%以下であることが好ましく、0.5質量%以上90質量%以下であることがより好ましい。
ガラス粉末の軟化温度は、拡散処理時の拡散性、液だれの観点から、200℃〜1000℃であることが好ましく、300℃〜900℃であることがより好ましい。ガラス粉末の軟化温度は公知の示差熱分析装置(DTA)によって、その吸熱ピークから測定することができる。
ガラス粉末の形状としては、略球状、扁平状、ブロック状、板状、および鱗片状等が挙げられ、n型拡散層形成組成物とした場合の基板への塗布性や均一拡散性の点から略球状、扁平状、または板状であることが望ましい。
ガラス粉末の粒径は、50μm以下であることが望ましい。50μm以下の粒径を有するガラス粉末を用いた場合には、平滑な塗膜が得られやすい。更に、ガラス粉末の粒径は10μm以下であることがより望ましい。なお、下限は特に制限されないが、0.01μm以上であることが好ましい。
ここで、ガラスの粒径は、平均粒子径を表し、レーザー散乱回折法粒度分布測定装置等により測定することができる。
アクセプタ元素を含むガラス粉末は、以下の手順で作製される。
最初に原料を秤量し、るつぼに充填する。るつぼの材質としては白金、白金−ロジウム、イリジウム、アルミナ、石英、炭素等が挙げられるが、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選ばれる。
次に、電気炉でガラス組成に応じた温度で加熱し融液とする。このとき融液が均一となるよう攪拌することが望ましい。
続いて得られた融液をジルコニア基板やカーボン基板等の上に流し出して融液をガラス化する。
最後にガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
p型拡散層形成組成物中のアクセプタ元素を含むガラス粉末の含有比率は、塗布性、アクセプタ元素の拡散性等を考慮し決定される。一般には、p型拡散層形成組成物中のガラス粉末の含有比率は、0.1質量%以上95質量%以下であることが好ましく、1質量%以上90質量%以下であることがより好ましい。
次に、分散媒について説明する。
分散媒とは、組成物中において上記ガラス粉末を分散させる媒体である。具体的に分散媒としては、バインダーや溶剤などが採用される。
バインダーとしては、例えば、ジメチルアミノエチル(メタ)アクリレートポリマー、ポリビニルアルコール、ポリアクリルアミド類、ポリビニルアミド類、ポリビニルピロリドン、ポリ(メタ)アクリル酸類、ポリエチレンオキサイド類、ポリスルホン酸、アクリルアミドアルキルスルホン酸、セルロースエーテル類、セルロース誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ゼラチン、澱粉及び澱粉誘導体、アルギン酸ナトリウム類、キサンタン、グア及びグア誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、アクリル酸樹脂、アクリル酸エステル樹脂、ブタジエン樹脂、スチレン樹脂、及びこれらの共重合体、並びに二酸化珪素などを適宜選択しうる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
バインダーの分子量は特に制限されず、組成物としての所望の粘度を鑑みて適宜調整することが望ましい。
溶剤としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−iso−プロピルケトン、メチル−n−ブチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル−n−プロピルエーテル、ジ−iso−プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコール−n−ブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールエチルエーテルアセテート、γ−ブチロラクトン、γ−バレロラクトン等のエステル系溶剤;アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α−テルピネン、α−テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水等が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
p型拡散層形成組成物とした場合、基板への塗布性の観点から、α−テルピネオール、ジエチレングリコールモノ−n−ブチルエーテル、酢酸2−(2−ブトキシエトキシ)エチルが好ましい溶剤として挙げられる。
p型拡散層形成組成物中の分散媒の含有比率は、塗布性、アクセプタ濃度を考慮し決定される。
p型拡散層形成組成物の粘度は、塗布性を考慮して、10mPa・S以上1000000mPa・S以下であることが好ましく、50mPa・S以上500000mPa・S以下であることがより好ましい。
なお、前記ガラス粉末中におけるライフタイムキラー元素の総量が1000ppm以下の場合には、p型拡散層形成粗組成物中におけるライフタイムキラー元素の総量は、概ね1100ppm以下となる。よって、前記p型拡散層形成粗組成物中におけるライフタイムキラー元素の総量は500ppm以下であることが好ましく、100ppm以下であることがより好ましい。
次に、本発明のp型拡散層及び太陽電池素子の製造方法について説明する。
まず、p型半導体基板であるシリコン基板にアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
詳細には、インゴットからスライスした際に発生するシリコン表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、テクスチャー構造を形成する。太陽電池素子は、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
次に、オキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って一様にn型拡散層を形成する。このとき、オキシ塩化リン雰囲気を用いた方法では、リンの拡散は側面及び裏面にも及び、n型拡散層は表面のみならず、側面、裏面にも形成される。そのために、側面のn型拡散層を除去するために、サイドエッチングが施される。
そして、p型半導体基板の裏面すなわち受光面とは反対側の面のn型拡散層の上に、上記p型拡散層形成組成物を塗布して、p型拡散層形成組成物層を形成する。本発明では、塗布方法には制限がないが、例えば、印刷法、スピンコート法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法などがある。
上記p型拡散層形成組成物の塗布量としては特に制限はない。例えば、ガラス粉末量として0.01g/m〜100g/mとすることができ、0.1g/m〜10g/mであることが好ましい。
なお、p型拡散層形成組成物の組成によっては、塗布後に、組成物中に含まれる溶剤を揮発させるための乾燥工程を設けてもよい。この場合には、80〜300℃程度の温度で、ホットプレートを使用する場合は1分〜10分、乾燥機などを用いる場合は10分〜30分程度で乾燥させる。この乾燥条件は、n型拡散層形成組成物の溶剤組成に依存しており、本発明では特に上記条件に限定されない。
上記p型拡散層形成組成物を塗布した半導体基板を、600〜1200℃で熱拡散処理する。この熱拡散処理により、半導体基板中へアクセプタ元素が拡散し、p型拡散層が形成される。熱拡散処理には公知の連続炉、バッチ炉等が適用できる。また、熱拡散処理時の炉内雰囲気は、空気、酸素、窒素等に適宜調整することもできる。
熱拡散処理時間は、p型拡散層形成組成物に含まれるアクセプタ元素の含有率などに応じて適宜選択することができる。例えば、1分間〜60分間とすることができ、5分間〜30分間であることがより好ましい。
形成されたp型拡散層の表面には、ガラス層が形成されているため、このガラス層をエッチングにより除去する。エッチングとしては、ふっ酸等の酸に浸漬する方法、苛性ソーダ等のアルカリに浸漬する方法など公知の方法が適用できる。
また、従来の製造方法では、裏面にアルミペーストを印刷し、これを焼成してn型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。しかしながら、アルミペーストから形成されるアルミ層は導電率が低く、シート抵抗を下げるために、通常裏面全面に形成したアルミ層は焼成後において10〜20μmほどの厚みを有していなければならない。さらに、このように厚いアルミ層を形成すると、シリコンとアルミでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、反りの原因となる。
この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池素子の搬送や、タブ線と呼ばれる銅線との接続において、太陽電池素子を破損させ易くしていた。近年では、スライス加工技術の向上から、シリコン基板の厚みが薄型化されつつあり、更に太陽電池素子が割れ易い傾向にある。
しかし本発明の製造方法によれば、上記本発明のp型拡散層形成組成物によってn型拡散層をp型拡散層に変換した後、別途このp型拡散層の上に電極を設ける。そのため裏面の電極に用いる材料はアルミニウムに限定されず、例えばAg(銀)やCu(銅)などを適用することができ、裏面の電極の厚さも従来のものよりも薄く形成することが可能となり、さらに全面に形成する必要もなくなる。そのため焼成および冷却の過程で発生するシリコン基板中の内部応力及び反りを低減できる。
上記形成したn型拡散層の上に反射防止膜を形成する。反射防止膜は公知の技術を適用して形成される。例えば、反射防止膜がシリコン窒化膜の場合には、SiHとNHの混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、シリコン原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
より具体的には、上記混合ガス流量比NH/SiHが0.05〜1.0、反応室の圧力が0.1〜2Torr、成膜時の温度が300〜550℃、プラズマの放電のための周波数が100kHz以上の条件下で形成される。
表面(受光面)の反射防止膜上に、表面電極用金属ペーストをスクリーン印刷法で印刷塗布乾燥させ、表面電極を形成する。表面電極用金属ペーストは、金属粒子とガラス粒子とを必須成分とし、必要に応じて樹脂バインダー、その他の添加剤などを含む。
次いで、上記裏面のp型拡散層上にも裏面電極を形成する。前述のように、本発明では裏面電極の材質や形成方法は特に限定されない。例えば、アルミニウム、銀、又は銅などの金属を含む裏面電極用ペーストを塗布し、乾燥させて、裏面電極を形成してもよい。このとき、裏面にも、モジュール工程におけるセル間の接続のために、一部に銀電極形成用銀ペーストを設けてもよい。
上記電極を焼成して、太陽電池素子を完成させる。600〜900℃の範囲で数秒〜数分間焼成すると、表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜が溶融し、更にシリコン表面も一部溶融して、ペースト中の金属粒子(例えば銀粒子)がシリコン基板と接触部を形成し凝固する。これにより、形成した表面電極とシリコン基板とが導通される。これはファイアースルーと称されている。
表面電極の形状について説明する。表面電極は、バスバー電極、及び該バスバー電極と交差しているフィンガー電極で構成される。
このような表面電極は、例えば、上述の金属ペーストのスクリーン印刷、又は電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着などの手段により形成することができる。バスバー電極とフィンガー電極とからなる表面電極は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。
なお上述のp型拡散層及び太陽電池素子の製造方法では、p型半導体基板であるシリコン基板にn型拡散層を形成するのに、オキシ塩化リン(POCl)、窒素および酸素の混合ガスを用いているが、n型拡散層形成組成物を用いてn型層を形成してもよい。n型拡散層形成組成物にはP(リン)やSb(アンチモン)などの第15族の元素がドナー元素として含有される。
n型拡散層の形成にn型拡散層形成組成物を用いる方法では、まず、p型半導体基板の表面である受光面にn型拡散層形成組成物を塗布し、裏面に本発明のp型拡散層形成組成物を塗布し、600〜1200℃で熱拡散処理する。この熱拡散処理により、表面ではp型半導体基板中へドナー元素が拡散してn型拡散層が形成され、裏面ではアクセプタ元素が拡散してp型拡散層が形成される。この工程以外は上記方法と同様の工程により、太陽電池素子が作製される。
なお、日本出願2010−100223の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「mol%」を意味する。
なお、以下に示す「キャリアのライフタイム」は、B含有塗布液をn型シリコン基板に塗布し熱拡散処理してp型拡散層を形成したn型シリコン基板のキャリアのライフタイムに対する、実施例又は比較例で作製したp型拡散層を有するn型シリコン基板のキャリアのライムタイムを相対値で示している。キャリアのライフタイムは、実用の観点から70%以上を合格とする。
[実施例1]
粒子形状が略球状で、平均粒子径が3.3μmのSiO−B系ガラス(SiO:50mol%、B:50mol%、ライフタイムキラー元素980ppm)粉末20gとエチルセルロース3g、酢酸2−(2−ブトキシエトキシ)エチル77gとを自動乳鉢混練装置を用いて混合してペースト化し、p型拡散層形成組成物を調製した。
なお、ガラス粉末中のライフタイムキラー元素は高周波誘導結合プラズマ発光分光分析装置及び高周波誘導結合プラズマ質量分析装置により、その含有量および元素の種類を分析した。以下実施例において同様である。ガラス粉末中には、ライフタイムキラー元素として、Fe、Cu、Niが含まれていた。
また、ガラス粒子形状は、(株)日立ハイテクノロジーズ製TM−1000型走査型電子顕微鏡を用いて観察して判定した。ガラスの平均粒子径はベックマン・コールター(株)製LS 13 320型レーザー散乱回折法粒度分布測定装置(測定波長:632nm)を用いて算出した。
次に、調製したペースト(p型拡散層形成組成物)をスクリーン印刷によって、n型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄を行い、その後、乾燥を行った。
p型拡散層形成組成物を塗布した側の表面のシート抵抗は80Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は実質的に形成されていないと判断された。また、キャリアのライフタイムは74%であった。更に、基板の反りは発生していなかった。
[実施例2]
使用したガラス粉末をSiO−B系ガラス粉末(SiO:50mol%、B:50mol%、ライフタイムキラー元素530ppm、略球状、平均粒子径3.8μm)に代えた以外は実施例1と同様にp型拡散層形成を行った。ガラス粉末中には、ライフタイムキラー元素として、Fe、Cu、Niが含まれていた。
p型拡散層形成組成物を塗布した側の表面のシート抵抗は82Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は実質的に形成されていないと判断された。また、キャリアのライフタイムは82%であった。更に、基板の反りは発生していなかった。
[実施例3]
使用したガラス粉末をSiO−B系ガラス粉末(SiO:50mol%、B:50mol%、ライフタイムキラー元素470ppm、略球状、平均粒子径3.3μm)に代えた以外は実施例1と同様にp型拡散層形成を行った。ガラス粉末中には、ライフタイムキラー元素として、Fe、Cu、Niが含まれていた。
p型拡散層形成組成物を塗布した側の表面のシート抵抗は78Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は実質的に形成されていないと判断された。また、キャリアのライフタイムは87%であった。更に、基板の反りは発生していなかった。
[実施例4]
使用したガラス粉末をSiO−B系ガラス粉末(SiO:50mol%、B:50mol%、ライフタイムキラー元素120ppm、略球状、平均粒子径3.7μm)に代えた以外は実施例1と同様にp型拡散層形成を行った。ガラス粉末中には、ライフタイムキラー元素として、Fe、Cu、Niが含まれていた。
p型拡散層形成組成物を塗布した側の表面のシート抵抗は81Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は実質的に形成されていないと判断された。また、キャリアのライフタイムは91%であった。更に、基板の反りは発生していなかった。
[実施例5]
使用したガラス粉末をSiO−B系ガラス粉末(SiO:50mol%、B:50mol%、ライフタイムキラー元素85ppm、略球状、平均粒子径3.5μm)に代えた以外は実施例1と同様にp型拡散層形成を行った。ガラス粉末中には、ライフタイムキラー元素として、Fe、Cu、Niが含まれていた。
p型拡散層形成組成物を塗布した側の表面のシート抵抗は80Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は実質的に形成されていないと判断された。また、キャリアのライフタイムは95%であった。更に、基板の反りは発生していなかった。
[実施例6]
使用したガラス粉末をSiO−B系ガラス粉末(SiO:50mol%、B:50mol%、ライフタイムキラー元素20ppm、略球状、平均粒子径3.2μm)とした以外は実施例1と同様にp型拡散層形成を行った。ガラス粉末中には、ライフタイムキラー元素として、Fe、Cu、Niが含まれていた。
p型拡散層形成組成物を塗布した側の表面のシート抵抗は85Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は実質的に形成されていないと判断された。また、キャリアのライフタイムは98%であった。更に、基板の反りは発生していなかった。
[実施例7]
使用したガラス粉末をSiO−B系ガラス粉末(SiO:50mol%、B:50mol%、ライフタイムキラー元素8ppm、略球状、平均粒子径3.5μm)とした以外は実施例1と同様にp型拡散層形成を行った。ガラス粉末中には、ライフタイムキラー元素として、Fe、Cu、Niが含まれていた。
p型拡散層形成組成物を塗布した側の表面のシート抵抗は81Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は実質的に形成されていないと判断された。また、キャリアのライフタイムは100%であった。更に、基板の反りは発生していなかった。
[比較例1]
粒子形状が略球状で、平均粒子径が3.3μmのSiO−B系ガラス(SiO:50mol%、B:50mol%、ライフタイムキラー元素1180ppm)粉末20gとエチルセルロース3g、酢酸2−(2−ブトキシエトキシ)エチル77gを混合してペースト化し、p型拡散層形成組成物を調製した。ガラス粉末中には、ライフタイムキラー元素として、Fe、Cu、Niが含まれていた。
次に、調製したペースト(p型拡散層形成組成物)をスクリーン印刷によってp型シリコン基板表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄を行い、その後、乾燥を行った。
p型拡散層形成組成物を塗布した側の表面のシート抵抗は80Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は形成されていなかった。しかしながら、キャリアのライフタイムは68%と低かった。

Claims (6)

  1. アクセプタ元素を含み、ライフタイムキラー元素の総量が1000ppm以下であるガラス粉末と、分散媒と、を含有するp型拡散層形成組成物。
  2. 前記アクセプタ元素が、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)か
    ら選択される少なくとも1種である請求項1に記載のp型拡散層形成組成物。
  3. 前記アクセプタ元素を含むガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する請求項1又は請求項2に記載のp型拡散層形成組成物。
  4. 前記ライフタイムキラー元素が、Fe(鉄)、Cu(銅)、Ni(ニッケル)、Mn(マンガン)、Cr(クロム)、W(タングステン)及びAu(金)から選択される少なくとも1種である請求項1〜請求項3のいずれか1項に記載のp型拡散層形成組成物。
  5. 請求項1〜請求項4のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、熱拡散処理を施す工程と、を有するp型拡散層の製造方法。
  6. 半導体基板上に、請求項1〜請求項4のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、
    熱拡散処理を施してp型拡散層を形成する工程と、
    形成された前記p型拡散層上に電極を形成する工程と、
    を有する太陽電池素子の製造方法。
JP2014035733A 2010-04-23 2014-02-26 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法 Pending JP2014099660A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014035733A JP2014099660A (ja) 2010-04-23 2014-02-26 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010100223 2010-04-23
JP2010100223 2010-04-23
JP2014035733A JP2014099660A (ja) 2010-04-23 2014-02-26 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012511720A Division JP5573946B2 (ja) 2010-04-23 2011-04-22 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法

Publications (1)

Publication Number Publication Date
JP2014099660A true JP2014099660A (ja) 2014-05-29

Family

ID=44834292

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012511720A Expired - Fee Related JP5573946B2 (ja) 2010-04-23 2011-04-22 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2014035733A Pending JP2014099660A (ja) 2010-04-23 2014-02-26 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012511720A Expired - Fee Related JP5573946B2 (ja) 2010-04-23 2011-04-22 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法

Country Status (7)

Country Link
US (3) US20130071968A1 (ja)
EP (2) EP2562793B1 (ja)
JP (2) JP5573946B2 (ja)
KR (1) KR101868163B1 (ja)
CN (1) CN102859659B (ja)
TW (2) TWI548102B (ja)
WO (1) WO2011132778A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814558B2 (ja) * 2010-06-30 2015-11-17 株式会社神戸製鋼所 酸化物半導体薄膜の評価方法、及び酸化物半導体薄膜の品質管理方法
JP6645470B2 (ja) * 2017-04-17 2020-02-14 株式会社村田製作所 外部電極用導電性ペーストおよびその外部電極用導電性ペーストを用いて製造する電子部品の製造方法
CN111977982B (zh) * 2020-09-11 2022-04-22 南通天盛新能源股份有限公司 一种n型银铝浆用玻璃粉及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2794846A (en) * 1955-06-28 1957-06-04 Bell Telephone Labor Inc Fabrication of semiconductor devices
US4891331A (en) * 1988-01-21 1990-01-02 Oi-Neg Tv Products, Inc. Method for doping silicon wafers using Al2 O3 /P2 O5 composition
JPH02177569A (ja) * 1988-12-28 1990-07-10 Sharp Corp 太陽電池の製造方法
JP2002539615A (ja) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 半導体にp、p+およびn、n+領域を形成するためのドーパント・ペースト
WO2008085806A1 (en) * 2007-01-03 2008-07-17 Nanogram Corporation Nanoparticle inks based on silicon/germanium, doped particles, printing and processes for semiconductor applications
WO2009060761A1 (ja) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. ドーパントホストおよびその製造方法
JP2009200276A (ja) * 2008-02-22 2009-09-03 Tokyo Ohka Kogyo Co Ltd 電極形成用導電性組成物及び太陽電池の形成方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628250B2 (ja) * 1988-07-18 1994-04-13 古河機械金属株式会社 砒素拡散剤とその成形物の製法およびこれを使用した半導体装置の製造方法
JPH06105696B2 (ja) * 1988-12-15 1994-12-21 シャープ株式会社 半導体装置の製造方法
KR920005467B1 (ko) * 1990-05-04 1992-07-04 한국과학기술연구원 저온 소성용 세라믹스 소재 및 그의 제조 방법
CA2088661C (en) 1990-08-31 2001-12-18 Gerard F. Barry Glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthases
DE69109026T2 (de) * 1990-09-07 1995-12-07 Mitsubishi Chem Corp Silica-Glas Pulver und Verfahren seiner Herstellung und daraus hergestellter Silica-Glasgegenstand.
JPH054827A (ja) * 1990-09-07 1993-01-14 Mitsubishi Kasei Corp シリカガラス粉末及びその製法並びにこれを用いたシリカガラス成形体
JPH04158514A (ja) * 1990-10-22 1992-06-01 Sumitomo Chem Co Ltd 半導体基板への不純物拡散方法
JPH04174517A (ja) * 1990-11-07 1992-06-22 Canon Inc ダイヤモンド半導体の製造方法
DE19508712C2 (de) * 1995-03-10 1997-08-07 Siemens Solar Gmbh Solarzelle mit Back-Surface-Field und Verfahren zur Herstellung
JP4726354B2 (ja) * 2001-08-22 2011-07-20 東洋アルミニウム株式会社 ペースト組成物およびそれを用いた太陽電池
JP3910072B2 (ja) 2002-01-30 2007-04-25 東洋アルミニウム株式会社 ペースト組成物およびそれを用いた太陽電池
JP4761706B2 (ja) * 2003-12-25 2011-08-31 京セラ株式会社 光電変換装置の製造方法
US8076570B2 (en) * 2006-03-20 2011-12-13 Ferro Corporation Aluminum-boron solar cell contacts
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells
JP2009117729A (ja) * 2007-11-09 2009-05-28 Nippon Electric Glass Co Ltd ドーパントホストおよびその製造方法
JP5382606B2 (ja) * 2007-12-25 2014-01-08 日本電気硝子株式会社 半導体用ホウ素ドープ材の製造方法
CN102176412B (zh) * 2007-11-09 2013-12-25 日本电气硝子株式会社 掺杂剂源及其制造方法
TW201007770A (en) 2008-06-06 2010-02-16 Du Pont Glass compositions used in conductors for photovoltaic cells
JP5476849B2 (ja) * 2008-08-20 2014-04-23 日本電気硝子株式会社 ドーパントホスト
JP2010100223A (ja) 2008-10-24 2010-05-06 Toyota Motor Corp サスペンション装置
KR20110105382A (ko) 2008-12-10 2011-09-26 어플라이드 머티어리얼스, 인코포레이티드 스크린 프린팅 패턴 정렬을 위한 향상된 비젼 시스템
US8710355B2 (en) * 2008-12-22 2014-04-29 E I Du Pont De Nemours And Company Compositions and processes for forming photovoltaic devices
TWI390005B (zh) * 2008-12-31 2013-03-21 Eternal Chemical Co Ltd 無溶劑導電膠組成物及使用該組成物之太陽能電池元件
WO2010118209A1 (en) * 2009-04-09 2010-10-14 E. I. Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
CN101635317A (zh) * 2009-05-26 2010-01-27 珈伟太阳能(武汉)有限公司 一种背面铝扩散n型太阳能电池及制作背电极方法
JP2015511205A (ja) * 2011-12-22 2015-04-16 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー 低抵抗接点の太陽電池ペースト

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2794846A (en) * 1955-06-28 1957-06-04 Bell Telephone Labor Inc Fabrication of semiconductor devices
US4891331A (en) * 1988-01-21 1990-01-02 Oi-Neg Tv Products, Inc. Method for doping silicon wafers using Al2 O3 /P2 O5 composition
JPH02177569A (ja) * 1988-12-28 1990-07-10 Sharp Corp 太陽電池の製造方法
JP2002539615A (ja) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 半導体にp、p+およびn、n+領域を形成するためのドーパント・ペースト
WO2008085806A1 (en) * 2007-01-03 2008-07-17 Nanogram Corporation Nanoparticle inks based on silicon/germanium, doped particles, printing and processes for semiconductor applications
WO2009060761A1 (ja) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. ドーパントホストおよびその製造方法
JP2009200276A (ja) * 2008-02-22 2009-09-03 Tokyo Ohka Kogyo Co Ltd 電極形成用導電性組成物及び太陽電池の形成方法

Also Published As

Publication number Publication date
JP5573946B2 (ja) 2014-08-20
TWI495118B (zh) 2015-08-01
EP2930740A1 (en) 2015-10-14
KR101868163B1 (ko) 2018-06-15
CN102859659A (zh) 2013-01-02
JPWO2011132778A1 (ja) 2013-07-18
EP2562793A4 (en) 2013-09-11
KR20130098142A (ko) 2013-09-04
US20150214418A1 (en) 2015-07-30
US9520529B2 (en) 2016-12-13
EP2562793A1 (en) 2013-02-27
US20140065761A1 (en) 2014-03-06
EP2562793B1 (en) 2017-08-30
WO2011132778A1 (ja) 2011-10-27
CN102859659B (zh) 2017-07-28
TW201138128A (en) 2011-11-01
TW201448237A (zh) 2014-12-16
TWI548102B (zh) 2016-09-01
US20130071968A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5573945B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP5447397B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP2012084830A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5958485B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP5573946B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026579A (ja) p型拡散層の製造方法及び太陽電池素子の製造方法
JP5803080B2 (ja) p型拡散層形成組成物、p型拡散層形成組成物の製造方法、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP2014146811A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP5842431B2 (ja) n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026578A (ja) n型拡散層の製造方法及び太陽電池素子の製造方法
JP5703674B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP5625538B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP5541359B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP5842432B2 (ja) p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2016027665A (ja) p型拡散層の製造方法、及び太陽電池素子の製造方法
JP5626340B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026476A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026471A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2016021589A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2012231012A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2016036034A (ja) n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2016006893A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2012231013A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026477A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607