JP5703674B2 - p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法 - Google Patents

p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法 Download PDF

Info

Publication number
JP5703674B2
JP5703674B2 JP2010229913A JP2010229913A JP5703674B2 JP 5703674 B2 JP5703674 B2 JP 5703674B2 JP 2010229913 A JP2010229913 A JP 2010229913A JP 2010229913 A JP2010229913 A JP 2010229913A JP 5703674 B2 JP5703674 B2 JP 5703674B2
Authority
JP
Japan
Prior art keywords
type diffusion
diffusion layer
forming composition
layer forming
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010229913A
Other languages
English (en)
Other versions
JP2012084699A (ja
Inventor
鉄也 佐藤
鉄也 佐藤
吉田 誠人
誠人 吉田
野尻 剛
剛 野尻
香 岡庭
香 岡庭
洋一 町井
洋一 町井
岩室 光則
光則 岩室
木沢 桂子
桂子 木沢
修一郎 足立
修一郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010229913A priority Critical patent/JP5703674B2/ja
Publication of JP2012084699A publication Critical patent/JP2012084699A/ja
Application granted granted Critical
Publication of JP5703674B2 publication Critical patent/JP5703674B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池セルのp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法に関する。
従来の結晶シリコン太陽電池セルの製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、テクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って、基板に一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、表面のみならず、側面、裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチングを行う。また、裏面のn型拡散層はp型拡散層へ変換する必要があり、裏面にアルミペーストを印刷し、これを焼成して、n型層をp型層にするのと同時に、オーミックコンタクトを得ている。
しかしながら、アルミペーストは導電率が低く、シート抵抗を下げるためには、通常裏面全面に形成したアルミ層は焼成後において30μm以上の厚みを有していなければならない。さらに、このよう厚いアルミ層を形成すると、シリコンとアルミニウムでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、結晶粒界のダメージ、結晶欠陥増長及び反りの原因となる場合があった。
この問題を解決するために、ペースト組成物の塗布量を減らし、裏面電極層を薄くする方法がある。しかしながら、ペースト組成物の塗布量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不十分となる。その結果、所望のBSF(Back Surface Field)効果(p型層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。
そこで、例えば、アルミニウム粉末と、有機質ビヒクルと、熱膨張率がアルミニウムよりも小さく、かつ、溶融温度、軟化温度および分解温度のいずれかがアルミニウムの融点よりも高い無機化合物粉末とを含むペースト組成物が提案されている(例えば、特許文献1参照)。
特開2003−223813号公報
しかしながら、特許文献1に記載のペースト組成物を用いた場合でも、充分に反りを抑制することができない場合があった。
本発明は、以上の従来の問題点に鑑みなされたものであり、結晶シリコン基板を用いた太陽電池セルの製造工程において、シリコン基板中の内部応力、基板の反りの発生を抑制しつつ、所望の形状にp型拡散層を形成することが可能なp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法の提供を課題とする。
前記課題を解決する手段は以下の通りである。
<1> アクセプタ元素を含むガラス粉末と、分散媒と、を含有し、25℃における粘度が20Pa・s以上1000Pa・s以下であるp型拡散層形成組成物であり、
前記p型拡散層形成組成物を半導体基板上に塗布してp型拡散層形成組成物層を形成する工程と、前記p型拡散層形成組成物層が形成された半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、前記p型拡散層の表面に形成されるガラスを除去する工程と、を有するp型拡散層の製造方法に用いられるp型拡散層形成組成物
<2> 前記アクセプタ元素が、、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)から選択される少なくとも1種である前記<1>に記載のp型拡散層形成組成物。
<3> 前記ガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する前記<1>または<2>に記載のp型拡散層形成組成物。
<4> 前記<1>〜<3>のいずれか1項に記載のp型拡散層形成組成物を半導体基板上に塗布してp型拡散層形成組成物層を形成する工程と、
前記p型拡散層形成組成物層が形成された半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、
前記p型拡散層の表面に形成されるガラスを除去する工程と、
を有するp型拡散層の製造方法。
<5> 半導体基板上に、前記<1>〜<3>のいずれか1項に記載のp型拡散層形成組成を塗布してp型拡散層形成組成物層を形成する工程と、
前記p型拡散層形成組成物層が形成された半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、
前記p型拡散層の表面に形成されるガラスを除去する工程と、
を有する太陽電池セルの製造方法。
本発明によれば、結晶シリコン基板を用いた太陽電池セルの製造工程において、シリコン基板中の内部応力、基板の反りの発生を抑制しつつ、所望の形状にp型拡散層を形成することが可能なp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法の提供することができる。
まず、本発明のp型拡散層形成組成物について説明し、次にp型拡散層形成組成物を用いるp型拡散層及び太陽電池セルの製造方法について説明する。
尚、本明細書において「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
尚、本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
本発明のp型拡散層形成組成物は、少なくともアクセプタ元素を含むガラス粉末(以下、単に「ガラス粉末」と称する場合がある)と、分散媒と、を含有し、25℃における粘度が20Pa・s以上1000Pa・s以下である。また前記p型拡散層形成組成物は、更に塗布性などを考慮してその他の添加剤を必要に応じて含有してもよい。
ここで、p型拡散層形成組成物とはアクセプタ元素を含有し、例えば、シリコン基板に塗布した後に熱拡散処理(焼成)することでこのアクセプタ元素を熱拡散させてp型拡散層を形成することが可能な材料をいう。本発明のp型拡散層形成組成物を用いることで、p型拡散層形成工程とオーミックコンタクト形成工程とを分離でき、オーミックコンタクト形成のための電極材の選択肢が広がるとともに、電極の構造の選択肢も広がる。
例えば銀等の低抵抗材を電極に用いれば薄い膜厚で低抵抗が達成できる。また、電極も全面に形成する必要はなく、櫛型等の形状のように部分的に形成してもよい。以上のように薄膜あるいは櫛型形状等の部分的形状にすることで、シリコン基板中の内部応力、基板の反りの発生をより効果的に抑えながらp型拡散層を形成することが可能となる。
したがって、本発明のp型拡散層形成組成物を適用すれば、従来広く採用されている方法、つまりアルミペーストを印刷し、これを焼成してn型層をp型層にするのと同時にオーミックコンタクトを得る方法では発生してしまう場合がある基板中の内部応力及び基板の反りの発生が抑制される。
本発明のp型拡散層形成組成物は、25℃における粘度が20Pa・s以上1000Pa・s以下であるが、30Pa・s以上500Pa・s以下であることが好ましく、50Pa・s以上300Pa・s以下であることがより好ましい。
前記粘度が20Pa・s未満では、p型拡散層形成組成物をシリコン基板に塗布した後における塗布層の形状安定性が不十分で、だれ等が発生し、所望の部位及び形状にp型拡散層を形成できない場合がある。具体的には例えば、粘度が20Pa・s以上であることで、線幅aμmの線状パターンとなるようにp型拡散層形成組成物を塗布した場合に、乾燥後の線状パターンの線幅bを、b<1.5aの範囲に保持することができる。
一方、前記粘度が1000Pa・sを超えると、塗布性が不十分となり、均一なp型拡散層を形成できない場合がある。
本発明においてp型拡散層形成組成物の粘度は、後述するバインダーの重量平均分子量や配合量、溶剤の種類やその配合量等を適宜選択することで調整することができる。例えば、重量平均分子量の大きいバインダーを用いたり、バインダーの配合量を増やしたりすることで粘度を大きくして所望の粘度を達成することができる。また溶剤の配合量を増やすことで粘度を低下させて所望の粘度を達成することができる。
尚、本発明においてn型拡散層形成組成物の粘度は、25℃において、E型粘度計(東京計器社製)を用いて5rpmの回転速度で測定される。
本発明に係るアクセプタ元素を含むガラス粉末について、詳細に説明する。
アクセプタ元素とは、シリコン基板中にドーピングさせることによってp型拡散層を形成することが可能な元素である。アクセプタ元素としては第13族の元素が使用でき、例えばB(ほう素)、Al(アルミニウム)及びGa(ガリウム)等が挙げられる。
アクセプタ元素をガラス粉末に導入するために用いるアクセプタ元素含有物質としては、B、Al、及びGaが挙げられ、B、Al及びGaから選択される少なくとも1種を用いることが好ましい。
また、ガラス粉末は、必要に応じて成分比率を調整することによって、溶融温度、軟化点、ガラス転移点、化学的耐久性等を制御することが可能である。更に以下に記すガラス成分物質を含むことが好ましい。
ガラス成分物質としては、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、MoO、La、Nb、Ta、Y、TiO、GeO、TeO及びLu等が挙げられ、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種を用いることが好ましい。
アクセプタ元素を含むガラス粉末の具体例としては、B−SiO系、B−ZnO系、B−PbO系、Al−SiO系、B−Al系、Ga−SiO系、Ga−B系、B単独系などのガラスが挙げられる。
上記では1成分ガラスあるいは2成分を含む複合ガラスを例示したが、B−SiO−NaO等必要に応じて3種類以上の複合ガラスでもよい。
ガラス粉末中のアクセプタ元素含有物質の含有比率は、アクセプタ元素のシリコン基板中へのドーピング濃度、ガラス粉末の溶融温度、軟化点、ガラス転移点、化学的耐久性を考慮して、1質量%以上90質量%以下であることが好ましい。
ガラス粉末中のアクセプタ元素含有物質の含有比率を1質量%以上とすることで、アクセプタ元素のシリコン基板中へのドーピング濃度が充分に得られ、p型拡散層が充分に形成される。またアクセプタ元素含有物質の含有比率が90質量%以下であることで、アクセプタ元素含有物質が熱拡散処理中に揮散することが抑制され、アクセプタ元素の拡散が側面及び裏面にも及び、p型拡散層形成組成物を塗布した面のみならず、所望の部位以外の側面、裏面にもp型拡散層が形成されることが抑制される。
また、ガラス粉末中のガラス成分物質の含有比率は、溶融温度、軟化点、ガラス転移点、化学的耐久性を考慮して適宜設定することが望ましく、一般には、0.1質量%以上95質量%以下であることが好ましく、0.5質量%以上90質量%以下であることがより好ましい。
ガラス粉末の軟化点は、拡散処理時の拡散性、液だれの観点から、200℃〜1000℃であることが好ましく、300℃〜900℃であることがより好ましい。
ガラス粉末の粒径は、50μm以下であることが望ましい。50μm以下の粒径を有するガラス粉末を用いた場合には、平滑な塗膜が得られやすい。更に、ガラス粉末の粒径は10μm以下であることがより望ましい。
アクセプタ元素を含むガラス粉末は、以下の手順で作製される。
最初に原料を秤量し、るつぼに充填する。るつぼの材質としては白金、白金−ロジウム、イリジウム、アルミナ、石英、炭素等が挙げられるが、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選ばれる。
次に、電気炉でガラス組成に応じた温度で加熱し均一な融液とする。このとき融液が均一となるよう攪拌することが望ましい。
続いて均一になった融液をジルコニア基板やカーボン基板等の上に流し出して融液をガラス化する。
最後にガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
p型拡散層形成組成物中のアクセプタ元素を含むガラス粉末の含有比率は、塗布性、アクセプタ元素の拡散性等を考慮し決定される。一般には、p型拡散層形成組成物中のガラス粉末の含有比率は、0.1質量%以上95質量%以下であることが好ましく、1質量%以上90質量%以下であることがより好ましい。
次に、分散媒について説明する。
分散媒とは、p型拡散層形成組成物中において上記ガラス粉末を分散させる媒体である。具体的に分散媒としては、バインダーや溶剤などを含んで構成される。
本発明のp型拡散層形成組成物においては、分散媒の構成を適宜選択することで、p型拡散層形成組成物の粘度を所望の範囲に調整することができる。
バインダーとしては、例えば、ジメチルアミノエチル(メタ)アクリレートポリマー、ポリビニルアルコール、ポリアクリルアミド類、ポリビニルアミド類、ポリビニルピロリドン、ポリ(メタ)アクリル酸類、ポリエチレンオキサイド類、ポリスルホン酸、アクリルアミドアルキルスルホン酸、セルロースエーテル類、セルロース誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ゼラチン、澱粉及び澱粉誘導体、アルギン酸ナトリウム類、キサンタン、グア及びグア誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、アクリル酸樹脂、アクリル酸エステル樹脂、ブタジエン樹脂、スチレン樹脂、及びこれらの共重合体、並びに二酸化珪素などを適宜選択しうる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
前記バインダーの重量平均分子量は特に制限されず、p型拡散層形成組成物としての粘度が、20Pa・s以上1000Pa・s以下となるように適宜選択することができる。具体的には例えば、重量平均分子量を100000〜300000とすることができ、140000〜200000であることが好ましい。
またp型拡散層形成組成物におけるバインダーの含有率は特に制限されず、p型拡散層形成組成物としての粘度が、20Pa・s以上1000Pa・s以下となるように適宜選択することができる。バインダーの種類によって、組成物全体に対する好ましい含有率は異なるが、具体的には例えば、エチルセルロース等をバインダーとして用いた場合に、p型拡散層形成組成物中に2〜17質量%とすることができ、3〜11質量%であることが好ましい。
溶剤としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−iso−プロピルケトン、メチル−n−ブチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、γ−ブチロラクトン、γ−バレロラクトン等のケトン系溶剤、ジエチルエーテル、メチルエチルエーテル、メチル−n−ジ−n−プロピルエーテル、ジ−iso−プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル等のエーテル系溶剤、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル等のエステル系溶媒、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコール−n−ブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールエチルエーテルアセテート等のエーテルアセテート系溶剤、アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、テルピネオール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤、水等が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
p型拡散層形成組成物中の溶剤の含有比率は特に制限されず、p型拡散層形成組成物としての粘度が、20Pa・s以上1000Pa・s以下となるように適宜選択することができる。溶剤の種類によって、組成物全体に対する好ましい含有率は異なるが、具体的には例えば、テルピネオール等を溶剤として用いた場合に、p型拡散層形成組成物中に53〜68質量%とすることができ、59〜67質量%であることが好ましい。
次に、本発明のp型拡散層及び太陽電池セルの製造方法について説明する。
まず、p型半導体基板である結晶シリコンにアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
詳細には、インゴットからスライスした際に発生するシリコン表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、テクスチャー構造を形成する。太陽電池セルは、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
次に、オキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って一様にn型拡散層を形成する。このとき、オキシ塩化リン雰囲気を用いた方法では、リンの拡散は側面及び裏面にも及び、n型拡散層は表面のみならず、側面、裏面にも形成される。そのために、側面のn型拡散層を除去するために、サイドエッチングが施される。
そして、p型半導体基板の裏面すなわち受光面ではない面のn型拡散層の上に、上記p型拡散層形成組成物を塗布する。本発明では、塗布方法には制限がないが、例えば、印刷法、スピン法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法などがある。
上記n型拡散層形成組成物の塗布量としては特に制限はないが、例えば、固形分塗布量として0.05g/m〜1.05g/mとすることができ、0.065g/m〜0.02g/mであることが好ましい。
尚、p型拡散層形成組成物の固形分とは、p型拡散層形成組成物に含まれる揮発性の成分を除いた残分を意味する。
なお、p型拡散層形成組成物の組成によっては、塗布後に、組成物中に含まれる溶剤を揮発させるための乾燥工程が必要な場合がある。この場合には、80〜300℃程度の温度で、ホットプレートを使用する場合は1〜10分、乾燥機などを用いる場合は10〜30分程度で乾燥させる。この乾燥条件は、p型拡散層形成組成物の溶剤組成に依存しており、本発明では特に上記条件に限定されない。
上記p型拡散層形成組成物を塗布した半導体基板を、600〜1200℃で熱拡散処理する。この熱拡散処理により、半導体基板中へアクセプタ元素が拡散し、p型拡散層が形成される。熱拡散処理には公知の連続炉、バッチ炉等が適用できる。また、熱拡散処理時の炉内雰囲気は、空気、酸素、窒素等に適宜調整することもできる。
熱拡散処理時間は、p型拡散層形成組成物に含まれるアクセプタ元素の含有率などに応じて適宜選択することができる。例えば、1〜60分間とすることができ、2〜30分間であることがより好ましい。
形成されたp型拡散層の表面には、ガラス層が形成されているため、このガラス層をエッチングにより除去する。エッチングとしては、ふっ酸等の酸に浸漬する方法、苛性ソーダ等のアルカリに浸漬する方法など公知の方法が適用できる。
また、従来の製造方法では、裏面にアルミペーストを印刷し、これを焼成してn型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。しかしながら、アルミペーストは導電率が低く、シート抵抗を下げるために、通常裏面全面に形成したアルミ層は焼成後において30μm以上の厚みを有していなければならない。さらに、このように厚いアルミ層を形成すると、シリコンとアルミでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、反りの原因となる。
この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池セルの搬送や、タブ線と呼ばれる銅線との接続において、セルを破損させ易くしていた。近年では、スライス加工技術の向上から、結晶シリコン基板の厚みが薄型化されつつあり、更にセルが割れ易い傾向にある。
しかし本発明の製造方法によれば、上記本発明のp型拡散層形成組成物によってn型拡散層をp型拡散層に変換した後、別途このp型拡散層の上に電極を設ける。そのため裏面の電極に用いる材料はアルミニウムに限定されず、例えばAg(銀)やCu(銅)などを適用することができ、裏面の電極の厚さも従来のものよりも薄く形成することが可能となり、さらに全面に形成する必要もなくなる。そのため焼成および冷却の過程で発生するシリコン基板中の内部応力及び反りを低減できる。
上記形成したn型拡散層の上に反射防止膜を形成する。反射防止膜は公知の技術を適用して形成される。例えば、反射防止膜がシリコン窒化膜の場合には、SiHとNHの混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、シリコン原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
より具体的には、上記混合ガス流量比NH/SiHが0.05〜1.0、反応室の圧力が0.1〜2Torr、成膜時の温度が300〜550℃、プラズマの放電のための周波数が100kHz以上の条件下で形成される。
表面(受光面)の反射防止膜上に、表面電極用金属ペーストをスクリーン印刷法で印刷塗布乾燥させ、表面電極を形成する。表面電極用金属ペーストは、金属粒子とガラス粒子とを必須成分とし、必要に応じて樹脂バインダー、その他の添加剤などを含む。
次いで、上記裏面のp型拡散層上にも裏面電極を形成する。前述のように、本発明では裏面電極の材質や形成方法は特に限定されない。例えば、アルミニウム、銀、又は銅などの金属を含む裏面電極用ペーストを塗布し、乾燥させて、裏面電極を形成してもよい。このとき、裏面にも、モジュール工程におけるセル間の接続のために、一部に銀電極形成用銀ペーストを設けてもよい。
上記電極を焼成して、太陽電池セルを完成させる。600〜900℃の範囲で数秒〜数分間焼成すると、表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜が溶融し、更にシリコン表面も一部溶融して、ペースト中の金属粒子(例えば銀粒子)がシリコン基板と接触部を形成し凝固する。これにより、形成した表面電極とシリコン基板とが導通される。これはファイアースルーと称されている。
表面電極の形状について説明する。表面電極は、バスバー電極、及び該バスバー電極と交差しているフィンガー電極で構成される。
このような表面電極は、例えば、上述の金属ペーストのスクリーン印刷、又は電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着などの手段により形成することができる。バスバー電極とフィンガー電極とからなる表面電極は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。
なお上述のp型拡散層及び太陽電池セルの製造方法では、p型半導体基板である結晶シリコンにn型拡散層を形成するのに、オキシ塩化リン(POCl)、窒素および酸素の混合ガスを用いているが、n型拡散層形成組成物を用いてn型拡散層を形成してもよい。n型拡散層形成組成物にはP(リン)やSb(アンチモン)などの第15族の元素がドナー元素として含有される。
n型拡散層の形成にn型拡散層形成組成物を用いる方法では、まず、p型半導体基板の表面である受光面にn型拡散層形成組成物を塗布し、裏面に本発明のp型拡散層形成組成物を塗布し、600〜1200℃で熱拡散処理する。この熱拡散処理により、表面ではp型半導体基板中へドナー元素が拡散してn型拡散層が形成され、裏面ではアクセプタ元素が拡散してp型拡散層が形成される。この工程以外は上記方法と同様の工程により、太陽電池セルが作製される。
以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。
またn型拡散層形成組成物の粘度は、25℃において、E型粘度計(東京計器社製)を用いて5rpmの回転速度で測定した。
[実施例1]
−SiO系ガラス粉末3gと、バインダーとしてエチルセルロース(重量平均分子量140000)0.3g、溶剤としてテルピネオール6.7gを混合してペースト化し、p型拡散層形成組成物1を調製した。
得られたp型拡散層形成組成物の粘度を測定したところ、20Pa・sであった。
上記で調製したp型拡散層形成組成物をスクリーン印刷によってp型シリコン基板表面に100μm幅の線状パターンに固形分塗布量0.065g/mで塗布し、150℃のホットプレート上で5分間乾燥させた。塗布・乾燥により形成された線状パターンの線幅は149μmとなっていた。
続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため、ふっ酸に30分間浸漬し、流水洗浄を行った。その後、乾燥を行った。
p型拡散層形成組成物を塗布した線状パターン部分のシート抵抗は47Ω/□であり、B(ホウ素)が拡散してp型拡散層が形成されていた。一方、p型拡散層形成組成物を塗布しなかった非塗布面部分のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は形成されていなかった。
[実施例2]
実施例1において、p型拡散層形成組成物の粘度が40Pa・sとなるように、バインダーの量を増加し、溶剤の量を減少して粘度を調整した以外は実施例1と同様に線状パターンを形成した。塗布・乾燥により形成された線状パターンの線幅は120μmとなっていた。
次いで実施例1と同様にしてp型拡散層形成を行った。
p型拡散層形成組成物を塗布した側の線状パターン部分のシート抵抗は43Ω/□であり、B(ホウ素)が拡散してp型拡散層が形成されていた。一方、p型拡散層形成組成物を塗布しなかった非塗布面部分のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は形成されていなかった。
[実施例3]
実施例1において、p型拡散層形成組成物の粘度が70Pa・sとなるように、バインダーの量を増加し、溶剤の量を減少して粘度を調整した以外は実施例1と同様に線状パターンを形成した。塗布・乾燥により形成された線状パターンの線幅は110μmとなっていた。
次いで実施例1と同様にしてp型拡散層形成を行った。
p型拡散層形成組成物を塗布した側の線状パターン部分のシート抵抗は50Ω/□であり、B(ホウ素)が拡散してp型拡散層が形成されていた。一方、p型拡散層形成組成物を塗布しなかった非塗布面部分のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は形成されていなかった。
[実施例4]
実施例1において、p型拡散層形成組成物の粘度が200Pa・sとなるように、バインダーの量を増加し、溶剤の量を減少して粘度を調整した以外は実施例1と同様に線状パターンを形成した。塗布・乾燥により形成された線状パターンの線幅は104μmとなっていた。
次いで実施例1と同様にしてp型拡散層形成を行った。
p型拡散層形成組成物を塗布した側の線状パターン部分のシート抵抗は51Ω/□であり、B(ホウ素)が拡散しp型拡散層が形成されていた。一方、p型拡散層形成組成物を塗布しなかった非塗布面部分のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は形成されていなかった。
[実施例5]
実施例1において、p型拡散層形成組成物の粘度が900Pa・sとなるように、バインダーの量を増加し、溶剤の量を減少して粘度を調整した以外は実施例1と同様に線状パターンを形成した。塗布・乾燥により形成された線状パターンの線幅は102μmとなっていた。
次いで実施例1と同様にしてp型拡散層形成を行った。
p型拡散層形成組成物を塗布した側の線状パターン部分のシート抵抗は49Ω/□であり、B(ホウ素)が拡散してp型拡散層が形成されていた。しかし、塗布した面でシート抵抗の値が僅かに不均一であった。一方、p型拡散層形成組成物を塗布しなかった非塗布面部分のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は形成されていなかった。
[比較例1]
実施例1において、p型拡散層形成組成物の粘度が5Pa・sとなるように、バインダーの量を減少し、溶剤の量を増加して粘度を調整した以外は実施例1と同様に線状パターンを形成した。塗布・乾燥により形成された線状パターンの線幅は410μmとなっていた。
次いで実施例1と同様にしてp型拡散層形成を行った。
p型拡散層形成組成物を塗布した側の線状パターン部分のシート抵抗は55Ω/□であり、B(ホウ素)が拡散しp型拡散層が形成されていた。一方、p型拡散層形成組成物を塗布しなかった非塗布面部分にも形成した線状パターンが広がっており、特定の部分へp型拡散層を所望の形状に形成することはできなかった。
[比較例2]
実施例1において、p型拡散層形成組成物の粘度が12Pa・sとなるように、バインダーの量を減少し、溶剤の量を増加して粘度を調整した以外は実施例1と同様に線状パターンを形成した。塗布・乾燥により形成された線状パターンの線幅は227μmとなっていた。
次いで実施例1と同様にしてp型拡散層形成を行った。
p型拡散層形成組成物を塗布した側の線状パターン部分のシート抵抗は58Ω/□であり、B(ホウ素)が拡散しp型拡散層が形成されていた。一方、p型拡散層形成組成物を塗布しなかった非塗布面部分にも形成した線状パターンが広がっており、特定の部分へp型拡散層を所望の形状に形成することはできなかった。
[比較例3]
実施例1において、p型拡散層形成組成物の粘度が1020Pa・sとなるように、バインダーの量を増加し、溶剤の量を減少して粘度を調整した以外は実施例1と同様に線状パターンを形成した。塗布・乾燥により形成された線状パターンの線幅は102μmとなっていた。しかし、塗布性が不十分であり、不均一に塗布されていたため線状パターンが完全に形成できなかった。
次いで実施例1と同様にしてp型拡散層形成を行った。
p型拡散層形成組成物を塗布した側の線状パターン部分のシート抵抗は46Ω/□であり、B(ホウ素)が拡散しp型拡散層が形成されていた。しかし、塗布面内のシート抵抗値のばらつきは大きく、均一なp型拡散層は形成できていなかった。

Claims (5)

  1. アクセプタ元素を含むガラス粉末と、分散媒と、を含有し、25℃における粘度が20Pa・s以上1000Pa・s以下であるp型拡散層形成組成物であり、
    前記p型拡散層形成組成物を半導体基板上に塗布してp型拡散層形成組成物層を形成する工程と、前記p型拡散層形成組成物層が形成された半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、前記p型拡散層の表面に形成されるガラスを除去する工程と、を有するp型拡散層の製造方法に用いられるp型拡散層形成組成物
  2. 前記アクセプタ元素が、B(ホウ素)、Al(アルミニウム)およびGa(ガリウム)から選択される少なくとも1種である、請求項1に記載のp型拡散層形成組成物。
  3. 前記ガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する請求項1または請求項2に記載のp型拡散層形成組成物。
  4. 請求項1〜請求項3のいずれか1項に記載のp型拡散層形成組成物を半導体基板上に塗布してp型拡散層形成組成物層を形成する工程と、
    前記p型拡散層形成組成物層が形成された半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、
    前記p型拡散層の表面に形成されるガラスを除去する工程と、
    を有するp型拡散層の製造方法。
  5. 半導体基板上に、請求項1〜請求項3のいずれか1項に記載のp型拡散層形成組成を塗布してp型拡散層形成組成物層を形成する工程と、
    前記p型拡散層形成組成物層が形成された半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、
    前記p型拡散層の表面に形成されるガラスを除去する工程と、
    を有する太陽電池セルの製造方法。
JP2010229913A 2010-10-12 2010-10-12 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法 Expired - Fee Related JP5703674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229913A JP5703674B2 (ja) 2010-10-12 2010-10-12 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229913A JP5703674B2 (ja) 2010-10-12 2010-10-12 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法

Publications (2)

Publication Number Publication Date
JP2012084699A JP2012084699A (ja) 2012-04-26
JP5703674B2 true JP5703674B2 (ja) 2015-04-22

Family

ID=46243273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229913A Expired - Fee Related JP5703674B2 (ja) 2010-10-12 2010-10-12 p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法

Country Status (1)

Country Link
JP (1) JP5703674B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107206A (ja) * 2010-10-26 2012-06-07 Daicel Corp 印刷用溶剤又は溶剤組成物
RU2534386C2 (ru) * 2012-12-18 2014-11-27 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Способ формирования p-области

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710879B2 (ja) * 2007-01-03 2015-04-30 ナノグラム・コーポレイションNanoGram Corporation シリコン/ゲルマニウムによるナノ粒子インク、ドーピングされた粒子、印刷法、及び半導体用途のためのプロセス
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells
WO2009060761A1 (ja) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. ドーパントホストおよびその製造方法
JP5522900B2 (ja) * 2008-02-22 2014-06-18 東京応化工業株式会社 電極形成用導電性組成物及び太陽電池の形成方法
JP2010056465A (ja) * 2008-08-29 2010-03-11 Shin-Etsu Chemical Co Ltd 拡散用ボロンペースト及びそれを用いた太陽電池の製造方法

Also Published As

Publication number Publication date
JP2012084699A (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
JP4868079B1 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5447397B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP5626339B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
WO2011162394A1 (ja) 不純物拡散層形成組成物、n型拡散層形成組成物、n型拡散層の製造方法、p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026579A (ja) p型拡散層の製造方法及び太陽電池素子の製造方法
JP5803080B2 (ja) p型拡散層形成組成物、p型拡散層形成組成物の製造方法、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP5703674B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP2014099660A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP5625538B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP5625537B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP2013026578A (ja) n型拡散層の製造方法及び太陽電池素子の製造方法
JP5703673B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5541359B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP5673694B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5691268B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
JP5626340B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2013026471A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP5333564B2 (ja) 太陽電池セルの製造方法
JP5691269B2 (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5728868B2 (ja) n型拡散層形成組成物、n型拡散層形成組成物の製造方法、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP2013026476A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2016021589A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2012231012A (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法
JP2016006893A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法
JP2012231013A (ja) n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

LAPS Cancellation because of no payment of annual fees