JP2013189579A - 熱硬化性樹脂組成物、およびこれを用いたプリプレグ、積層板 - Google Patents
熱硬化性樹脂組成物、およびこれを用いたプリプレグ、積層板 Download PDFInfo
- Publication number
- JP2013189579A JP2013189579A JP2012058015A JP2012058015A JP2013189579A JP 2013189579 A JP2013189579 A JP 2013189579A JP 2012058015 A JP2012058015 A JP 2012058015A JP 2012058015 A JP2012058015 A JP 2012058015A JP 2013189579 A JP2013189579 A JP 2013189579A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- compound
- reaction
- weight
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
【解決手段】(1)末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個のシアネート基を有する化合物(b)と、1分子中に少なくとも2個のエポキシ基を有する化合物(c)とを、反応触媒の有機金属塩(d)を用いて、反応させることにより得られる相容化樹脂、(2)N−フェニル−3−アミノプロピルトリメトキシシラン化合物により表面処理(湿式処理)された溶融シリカ、(3)分子構造中にイミダゾール構造を含有する化合物を必須成分とする熱硬化性樹脂組成物である。
【選択図】なし
Description
積層板材料には近年の高密度化や高信頼性への要求から、高い銅箔接着性や耐熱性、良好な低熱膨張性等が必要とされるが、微細配線形成のため銅箔接着性は、銅箔引き剥がし強さが1.0kN/m以上であることが望ましく、1.2kN/m以上であることがより望ましい。
また、高密度化のためビルドアップ材等を用いてより高多層化することも必要であり、高いリフロー耐熱性が必要であるが、リフロー耐熱性評価の指針となる銅付き耐熱性(T−300)は、30分以上ふくれ等が生じないことが望ましい。
さらに、高密度化に伴い基材はより薄型化される方向にあり、熱処理時における基材のそりが小さいことが必要となる。低そり化のためには基材の面方向が低熱膨張性であることが有効であり、その熱膨張係数は7ppm/℃以下であることが望ましく、5ppm/℃以下であることがより望ましい。
さらに、高速応答性の要求も増え続けており、基材の比誘電率は4.7以下、さらには4.5以下であること、また誘電正接は0.010以下、好ましくは0.009以下.さらには0.008以下であることが望ましい。
このような状況の中、鋭意研究により以下に説明する発明に至った。
式(III)で示されるノボラック型シアネート樹脂の平均繰り返し数:mは、特に限定されないが、0.1〜30が好ましい。これより少ないと結晶化しやすくなり取り扱いが困難となる場合がある。また、これより多いと硬化物が脆くなる場合がある。
これらの中で、溶解性が良好であることや、揮発性が高く残溶剤として残りにくい点、反応触媒の作用を阻害しにくい点からトルエン、キシレン、メシチレン等の芳香族系溶剤の使用が好ましい。
その平均粒子径は0.1〜10μmであることが好ましく、0.3〜8μmであることがより好ましい。該溶融球状シリカの平均粒子径を0.1μm以上にすることで、樹脂に高充填した際の流動性を良好に保つことができ、さらに10μm以下にすることで、粗大粒子の混入確率を減らし粗大粒子起因の不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
また、成分(3)のイミダゾール化合物の配合量は、固形物換算の熱硬化性の相容化樹脂(1)100質量部に対し、0.1〜5質量部が好ましい。0.1質量部以上とすることにより良好な硬化性が得られ、5質量部以下とすることにより良好な保存安定性が得られる。
熱可塑性樹脂の例としては、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂等が挙げられる。
エラストマーの例としては、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリル等が挙げられる。
有機充填剤の例としては、シリコーンパウダー、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、並びにポリフェニレンエーテル等の有機物粉末等が挙げられる。
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、下記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):200.0gと、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186):200.0gと、トルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8wt%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(1−1)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率が68%であった。また、約10.9分付近、及び8.0〜10.0付近に出現する熱硬化性の相容化樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合重量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(1−1)が製造されていることを確認した。また、得られた樹脂が相容化しているものであることの確認は、樹脂の溶液を、熱風乾燥機で170℃、15分乾燥させることで得られる樹脂硬化物を目視で評価し、樹脂硬化物が透明であり分離が生じていないことを確認することにより行った。
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ノボラック型シアネート樹脂(ロンザジャパン社製;商品名Primaset PT−15,重量平均分子量500〜1,000):800.0gと、下記式(VI)に示すシロキサン樹脂(信越化学社製;商品名KF−6003、水酸基当量;2800):100.0gと、ナフトールアラルキル・クレゾール共重合型エポキシ樹脂(日本化薬社製;商品名NC−7000L、エポキシ当量;230):100.0gと、トルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8wt%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(1−2)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.1分付近に出現する合成原料のノボラック型シアネート樹脂のピーク面積が、反応開始時のノボラック型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率が43%であった。また、約10.9分付近、及び8.0〜10.0付近に出現する熱硬化性の相容化樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合重量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(1−2)が製造されていることを確認した。
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ジシクロペンタジエン型シアネート樹脂(ロンザジャパン社製;商品名Primaset DT−4000,重量平均分子量500〜1,000):400.0gと、下記式(VII)に示すシロキサン樹脂(信越化学社製;商品名X−22−160AS、水酸基当量;500):100.0gと、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製;商品名NC−3000H、エポキシ当量;280):500.0gと、メシチレン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8wt%ミネラルスピリット溶液を0.30g添加し、約110℃で4時間反応を行った。その後、室温に冷却し、相容化樹脂(1−3)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.0分付近に出現する合成原料のジシクロペンタジエン型シアネート樹脂のピーク面積が、反応開始時のジシクロペンタジエン型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率が43%であった。また、約10.9分付近、及び8.0〜10.0付近に出現する熱硬化性の相容化樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合重量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(1−3)が製造されていることを確認した。
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):400.0gと、上記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):500.0gと、ナフタレン型エポキシ樹脂(大日本インキ化学社製;商品名エピクロンHP−4032、エポキシ当量;150):100.0gと、トルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8wt%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(1−4)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率が55%であった。また、約10.9分付近、及び8.0〜10.0付近に出現する熱硬化性の相容化樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合重量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(1−4)が製造されていることを確認した。
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、溶融シリカ(アドマテックス社製;商品名SO−25R、粒径0.5μm、球状):700.0gと、プロピレングリコールモノメチルエーテル:1000.0gを配合し、攪拌しながらN−フェニル−3−アミノプロピルトリメトキシシラン(信越化学社製;商品名KBM−573):7.0gを添加した。次いで80℃に昇温し、80℃で1時間反応を行い溶融シリカの表面処理(湿式処理)を行った後、室温に冷却し、N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理(湿式処理)された溶融シリカ(2−1)の分散液を得た。
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、上記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):200.0gと、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186):200.0gと、トルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8wt%ミネラルスピリット溶液を0.01g添加し、約110℃で1時間反応を行った。その後、室温に冷却し(比較1)の反応溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率が18%であった。また、この溶液は翌日結晶化により沈殿物が生じた。
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、上記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):200.0gと、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186):200.0gと、トルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8wt%ミネラルスピリット溶液を0.01g添加し、約120℃で6時間反応を行った。その後、室温に冷却し(比較2)の反応溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率が76%であった。
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、上記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):200.0gと、トルエン:800.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8wt%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し(比較3)の反応溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率が53%であった。
製造例1〜4により得られた成分(1)の相容化樹脂、及び比較製造例1〜3で得られた樹脂、製造例5又は商業的に入手した成分(2)の溶融シリカ、成分(3)の分子構造中にイミダゾール構造を含有する化合物、また、必要により成分(4)の無機充填剤、難燃助剤、硬化促進剤、及び希釈溶剤にメチルエチルケトンを使用して、表1と表2に示した配合割合(重量部)で混合して樹脂分60wt%の均一なワニスを得た。
次に、上記ワニスを厚さ0.2mmのSガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量55重量%のプリプレグを得た。次に、このプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力25kg/cm2、温度185℃で90分間プレスを行って、銅張積層板を得た。このようにして得られた銅張積層板を用いて、銅箔接着性(銅箔ピール強度)、ガラス転移温度、はんだ耐熱性、線熱膨張係数、難燃性、比誘電率(1GHz)、誘電正接(1GHz)について以下の方法で測定・評価し、表3と表4に評価結果を示した。
銅張積層板を銅エッチング液に浸漬することにより1cm幅の銅箔を形成して評価基板を作製し、引張り試験機を用いて銅箔の接着性(90°ピール強度)を測定した。
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の熱膨張特性を観察することにより評価した。
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の30℃〜100℃の線熱膨張率を測定した。
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5cm角の評価基板を作製し、平山製作所(株)製プレッシャー・クッカー試験装置を用いて、121℃、2atmの条件で4時間までプレッシャー・クッカー処理を行った後、温度288℃のはんだ浴に、評価基板を20秒間浸漬した後、外観を観察することによりはんだ耐熱性を評価した。
銅張積層板から5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、300℃で評価基板の膨れが発生するまでの時間を測定することにより評価した。
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板から、長さ127mm、幅12.7mmに切り出した試験片を作製し、UL94の試験法(V法)に準じて評価した。
得られた銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板を作製し、Hewllet・Packerd社製比誘電率測定装置(製品名:HP4291B)を用いて、周波数1GHzでの比誘電率及び誘電正接を測定した。
*1:溶融シリカに対し1.0wt%のN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(アドマテック社製;商品名SC−2050KNK、粒径0.5μm、球状、希釈溶剤;メチルイソブチルケトン)
*2:溶融シリカに対し1.0wt%のN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(アドマテック社製;商品名SC−2050HNK、粒径0.5μm、球状、希釈溶剤;シクロヘキサノン)
*3:ベーマイト型水酸化アルミニウム(河合石灰社製;商品名BMT−3L,熱分解温度:400℃)
*4:モリブデン酸亜鉛をタルクに担持した無機難燃助剤(シャーウィン・ウィリアムス社製;商品名 ケムガード1100)
*5:ナフテン酸亜鉛の8wt%ミネラルスピリット溶液
*6:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186)
*7:溶融シリカ(アドマテック社製;商品名SO−25R)
を意味する。
Claims (3)
- (1)下記式(I)で示される末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個のシアネート基を有する化合物(b)と、1分子中に少なくとも2個のエポキシ基を有する化合物(c)とを、反応触媒として有機金属塩(d)を用い、(a)と(b)と(c)の総和100重量部あたりの(a)の使用量を10〜50重量部の範囲とし、(b)の使用量を40〜80重量部の範囲とし、(c)の使用量を10〜50重量部の範囲として、反応させ、(b)のシアネート基を有する化合物の反応率が30〜70mol%である相容化樹脂と、
(2)下記式(II)で示されるトリメトキシシラン化合物により表面処理された溶融シリカと、
を必須成分として含有する熱硬化性樹脂組成物。 - 請求項1記載の熱硬化性樹脂組成物を用いて形成されたプリプレグ。
- 請求項2記載のプリプレグを用いて積層形成された積層板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012058015A JP2013189579A (ja) | 2012-03-14 | 2012-03-14 | 熱硬化性樹脂組成物、およびこれを用いたプリプレグ、積層板 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012058015A JP2013189579A (ja) | 2012-03-14 | 2012-03-14 | 熱硬化性樹脂組成物、およびこれを用いたプリプレグ、積層板 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013189579A true JP2013189579A (ja) | 2013-09-26 |
Family
ID=49390174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012058015A Pending JP2013189579A (ja) | 2012-03-14 | 2012-03-14 | 熱硬化性樹脂組成物、およびこれを用いたプリプレグ、積層板 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013189579A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114127197A (zh) * | 2019-09-04 | 2022-03-01 | 三星Sdi株式会社 | 硬化性树脂组成物、由其形成的硬化膜及具有硬化膜的电子装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002309084A (ja) * | 2001-04-12 | 2002-10-23 | Hitachi Chem Co Ltd | シロキサン変性シアネート樹脂組成物、ならびにそれを用いる接着フィルム、樹脂付き金属箔および多層プリント配線板 |
JP2003268136A (ja) * | 2002-03-20 | 2003-09-25 | Sumitomo Bakelite Co Ltd | プリプレグおよび積層板 |
JP2004307761A (ja) * | 2003-04-10 | 2004-11-04 | Hitachi Chem Co Ltd | 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、印刷配線板 |
WO2012018126A1 (ja) * | 2010-08-06 | 2012-02-09 | 日立化成工業株式会社 | 相容化樹脂の製造法、熱硬化性樹脂組成物、プリプレグ及び積層板 |
-
2012
- 2012-03-14 JP JP2012058015A patent/JP2013189579A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002309084A (ja) * | 2001-04-12 | 2002-10-23 | Hitachi Chem Co Ltd | シロキサン変性シアネート樹脂組成物、ならびにそれを用いる接着フィルム、樹脂付き金属箔および多層プリント配線板 |
JP2003268136A (ja) * | 2002-03-20 | 2003-09-25 | Sumitomo Bakelite Co Ltd | プリプレグおよび積層板 |
JP2004307761A (ja) * | 2003-04-10 | 2004-11-04 | Hitachi Chem Co Ltd | 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、印刷配線板 |
WO2012018126A1 (ja) * | 2010-08-06 | 2012-02-09 | 日立化成工業株式会社 | 相容化樹脂の製造法、熱硬化性樹脂組成物、プリプレグ及び積層板 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114127197A (zh) * | 2019-09-04 | 2022-03-01 | 三星Sdi株式会社 | 硬化性树脂组成物、由其形成的硬化膜及具有硬化膜的电子装置 |
JP2022532683A (ja) * | 2019-09-04 | 2022-07-15 | サムスン エスディアイ カンパニー,リミテッド | 硬化型樹脂組成物、それから形成された硬化膜、および前記硬化膜を有する電子装置 |
JP7285343B2 (ja) | 2019-09-04 | 2023-06-01 | サムスン エスディアイ カンパニー,リミテッド | 硬化型樹脂組成物、それから形成された硬化膜、および前記硬化膜を有する電子装置 |
CN114127197B (zh) * | 2019-09-04 | 2023-09-26 | 三星Sdi株式会社 | 硬化性树脂组成物、硬化膜及电子装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5857514B2 (ja) | 熱硬化性樹脂組成物、及びこれを用いたプリプレグ、積層板 | |
CN107254144B (zh) | 树脂组合物和使用其的预浸料以及层压板 | |
JP2013216884A (ja) | 熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP5589470B2 (ja) | ビスマレイミド誘導体とその製造方法、並びに熱硬化性樹脂組成物、プリプレグ及び積層板 | |
TW201940589A (zh) | 樹脂組合物、預浸料、層壓板、覆金屬箔層壓板以及印刷電路板 | |
JP2014122339A (ja) | 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板、及び実装基板、並びに熱硬化性樹脂組成物の製造方法 | |
JP6028349B2 (ja) | 熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP6106931B2 (ja) | 相容化樹脂、及びこれを用いた熱硬化性樹脂組成物、プリプレグ、積層板 | |
JP6163804B2 (ja) | 相容化樹脂の製造法、熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP2017179310A (ja) | カルボジイミド化合物、樹脂組成物、プリプレグ、樹脂シート及び積層板 | |
JP2012236908A (ja) | 熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP2013237844A (ja) | 熱硬化性樹脂組成物、及びこれを用いたプリプレグ、積層板 | |
JP5909916B2 (ja) | 樹脂の製造法、熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP6221203B2 (ja) | 樹脂組成物、これを用いたプリプレグ及び積層板 | |
JP6353633B2 (ja) | 相容化樹脂、熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP5447268B2 (ja) | 熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP6194603B2 (ja) | 熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP2013108067A (ja) | 相溶化樹脂の製造方法、相溶化樹脂、熱硬化性樹脂組成物、プリプレグ及び積層板 | |
JP2013189579A (ja) | 熱硬化性樹脂組成物、およびこれを用いたプリプレグ、積層板 | |
JP6408752B2 (ja) | 相溶化樹脂、およびそれを用いたプリプレグ、積層板 | |
JP2015063608A (ja) | 熱硬化性樹脂組成物、これを用いたプリプレグ及びそれを用いた積層板 | |
JP2010106149A (ja) | 熱硬化性樹脂組成物、及びこれを用いたプリプレグ,積層板 | |
JP6183081B2 (ja) | 相容化樹脂の製造方法、熱硬化性樹脂組成物、プリプレグ、積層板、及びプリント配線板 | |
JP2015063613A (ja) | プリプレグ及び、それを用いた積層板、プリント配線板 | |
JP2014012762A (ja) | 有機繊維基材を用いたプリプレグ及びその製造方法、並びにそれを用いた積層板、金属箔張積層板及び配線板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160328 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160802 |