JP2013157221A - ケイ素含有炭素系複合材料 - Google Patents

ケイ素含有炭素系複合材料 Download PDF

Info

Publication number
JP2013157221A
JP2013157221A JP2012017368A JP2012017368A JP2013157221A JP 2013157221 A JP2013157221 A JP 2013157221A JP 2012017368 A JP2012017368 A JP 2012017368A JP 2012017368 A JP2012017368 A JP 2012017368A JP 2013157221 A JP2013157221 A JP 2013157221A
Authority
JP
Japan
Prior art keywords
group
silicon
composite material
based composite
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012017368A
Other languages
English (en)
Inventor
Hiroshi Fukui
弘 福井
Kiyoshi Kanemura
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Tokyo Metropolitan Public University Corp
Original Assignee
Dow Corning Toray Co Ltd
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd, Tokyo Metropolitan Public University Corp filed Critical Dow Corning Toray Co Ltd
Priority to JP2012017368A priority Critical patent/JP2013157221A/ja
Priority to PCT/JP2013/051686 priority patent/WO2013115114A1/en
Publication of JP2013157221A publication Critical patent/JP2013157221A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】蓄電デバイス、特にナトリウム又はナトリウムイオン二次電池の電極に好適な複合材料、当該複合材料からなる電極活物質、該活物質を用いてなる電極、及び、該電極を備える蓄電デバイスを提供すること。
【解決手段】(A)芳香族基を有する架橋性有機化合物、及び(B)(A)成分を架橋可能な含ケイ素化合物を含む硬化物を熱処理することで得られるケイ素含有炭素系複合材料を使用する。
【選択図】なし

Description

本発明は、ケイ素含有炭素系複合材料、当該複合材料からなる電極活物質、該電極活物質を含む電極、及び、該電極を備える蓄電デバイス、特に、ナトリウム又はナトリウムイオン二次電池に関する。
高エネルギー密度の二次電池としてリチウムイオン電池が民生用途で多方面にわたって使用されている。また、最近では自動車用途へも普及し始めており、リチウムイオン電池の市場拡大が今後も予想されている。
リチウムイオン電池は通常、負極にはグラファイト等炭素材料、正極にはリチウムを含む遷移金属酸化物が使用されている。充放電中、リチウムを含む電解質塩を溶解した電解液を経由して、リチウムイオンが正負極間を移動することになる。
一方、同じアルカリ金属でもナトリウムに注目した研究が行われている。理論容量はリチウムの半分以下であり、電位差0.33V分がセルの電圧として低下する。しかしながら、資源の観点からみるとリチウムより埋蔵量が豊富なナトリウムは代替金属として魅力的である。この場合、リチウムイオンの代わりにナトリウムイオンを吸蔵・放出可能な材料を使用できる。
特に負極については、特開2007−35588号公報において、リチウムイオンを吸蔵・放出可能な黒鉛やケイ素はナトリウムイオンの吸蔵・放出能が低いもしくは吸蔵・放出しないことが記載されている。そこで、ナトリウムイオンを吸蔵・放出可能な負極材料として、特定の結晶構造をもった炭素材料を使用できると開示されている。
また、国際公開第2010/109889号公報において、ハードカーボンを用いた場合、十分なナトリウムイオンの吸蔵・放出が可能で、負極活物質が原因となる電池性能の低下を抑えたナトリウムイオン二次電池を提供することができると開示されている。
同様に、ハードカーボンについては、他にもJournal of The Electrochemical Society, 148 (8) A803 (2001)やElectrochimica Acta 47 (2002) 3303−3307において、ナトリウムイオンの吸蔵・放出が開示されている。
しかしながら、そのような炭素材料をナトリウムイオン電池の負極として用いた場合、長期のサイクル特性等の電池性能は十分に示されているとは言い難い。
特開2007−35588号公報 国際公開第2010/109889号公報
J. Electrochem. Soc., 148, A803(2001) Electrochimica acta, 47, 3303(2002)
本発明の目的は、ナトリウム又はナトリウムイオン二次電池の電極に好適な複合材料、当該複合材料からなる電極活物質、該電極活物質からなる電極、及び、該電極を備える蓄電デバイス、特に、ナトリウム又はナトリウムイオン二次電池を提供することにある。
本発明の目的は、芳香族基を有する架橋性有機化合物(A)と当該(A)成分を架橋可能な含ケイ素化合物(B)とを架橋反応させてなる硬化物を熱処理することで得られるケイ素含有炭素系複合材料によって達成される。
前記熱処理は、不活性ガス中又は真空中にて、300〜1500℃の温度で行われることが好ましい。
前記(A)成分は、脂肪族不飽和基、エポキシ基、アクリル基、メタクリル基、アミノ基、水酸基、メルカプト基及びハロゲン化アルキル基からなる群から選択される少なくとも1種の架橋性基を有することができる。
前記(A)成分は、一般式:

(R1)2

(式中、
は架橋性基であり、
xは1以上の整数であり、
はx価の芳香族基である)で表される有機化合物であることが好ましい。
前記(A)成分はケイ素原子を含んでもよい。前記(A)成分は、シロキサン、シラン、シラザン、カルボシラン又はこれらの混合物であることが好ましい。
前記シロキサンは、平均単位式:

(R3 SiO1/2)(R3 SiO2/2)(R3SiO3/2)(SiO4/2)

(式中、
3は、それぞれ独立して、架橋性基、炭素数1〜20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族基、アルコキシ基、水素原子又はハロゲン原子を表し、
a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはなく、一分子中のRの少なくとも1つは芳香族基であり、且つ、一分子中のRの少なくとも1つは架橋性基である)
で表されるものが好ましい。
前記(B)成分は、シロキサン、シラン、シラザン、カルボシラン又はこれらの混合物であることが好ましい。
前記シロキサンは、平均単位式:

(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)

(式中、
は、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基を表し、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、
a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0になることはない)
で表されるものが好ましい。
前記架橋反応は、付加反応、縮合反応、開環反応又はラジカル反応のいずれであってもよい。
前記硬化物は、脂肪族不飽和基を有する(A)成分と、ケイ素原子結合水素原子を有する(B)成分とのヒドロシリル化反応により得られたものであってよい。
前記硬化物は、ケイ素原子結合水素原子を有する(A)成分と、脂肪族不飽和基を有する(B)成分とのヒドロシリル化反応により得られたものであってよい。
前記硬化物は、脂肪族不飽和基を有する(A)成分と、脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する(B)成分とのラジカル反応により得られたものであってよい。
前記硬化物は、脂肪族不飽和基、アクリル基、メタクリル基、又はケイ素原子結合水素原子を有する(A)成分と、脂肪族不飽和基を有する(B)成分とのラジカル反応により得られたものであってよい。
本発明のケイ素含有炭素系複合材料はアモルファス形態であることが好ましい。また、本発明のケイ素含有炭素系複合材料は平均粒子径が5nm〜50μmの粒子形態であることが好ましい。
本発明の電極活物質は上記複合材料からなる。前記電極活物質は平均粒子径が1〜50μmの粒子であることが好ましい。
本発明の電極は上記電極活物質を含む。前記電極はナトリウム又はナトリウムイオン二次電池に好適に使用することができる。
本発明のケイ素含有炭素系複合材料は、高い可逆容量及び安定した充放電サイクル特性を有する。したがって、本発明のケイ素含有炭素系複合材料は、蓄電デバイス、特にナトリウム又はナトリウムイオン二次電池の電極に好適である。また、本発明のケイ素含有炭素系複合材料は、廉価な原料を用いて、簡易な製造プロセスで製造可能である。
本発明の電極活物質は、蓄電デバイス、特にナトリウム又はナトリウムイオン二次電池の電極に好適である。そして、本発明の電極は、電池に高い可逆容量と安定した充放電サイクル特性を付与できる。これにより、本発明のナトリウム又はナトリウムイオン二次電池は、高い可逆容量と安定した充放電サイクル特性を有することができる。
本発明のナトリウムイオン二次電池の一例を示す。 本発明のナトリウム二次電池の一例を示す。
(複合材料)
本発明のケイ素含有炭素系複合材料は、(A)芳香族基を有する架橋性有機化合物、及び、(B)前記(A)成分を架橋可能な含ケイ素化合物を架橋反応させて得られた硬化物を熱処理する工程を含む製造方法により得ることができる。本発明のケイ素含有炭素系複合材料は、電気化学的にナトリウムイオンを吸蔵可能である。
前記(A)成分は架橋可能な有機化合物であり、一般には、架橋性基を有する。前記(A)成分の架橋性基は架橋可能な基であれば特に限定されるものではないが、例えば、脂肪族不飽和基、エポキシ基、アクリル基、メタクリル基、アミノ基、水酸基、メルカプト基又はハロゲン化アルキル基が挙げられる。脂肪族不飽和基として、具体的には、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;アセチル基、プロピニル基、ペンチニル基等のアルキニル基が例示される。また、エポキシ基として、具体的には、グリシジル基、グリシドキシ基、エポキシシクロヘキシル基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)エチル基が例示される。また、アクリル基として、具体的には、3−アクリロキシプロピル基が例示される。また、メタクリル基として、具体的には、3−メタクリロキシプロピル基が例示される。また、アミノ基として、具体的には、3−アミノプロピル基、N−(2−アミノエチル)−3−アミノプロピル基が例示される。水酸基として、具体的には、ヒドロキシエチル基、ヒドロキシプロピル基等のヒドロキシアルキル基;ヒドロキシフェニル基等のヒドロキシアリール基が例示される。メルカプト基として、具体的には、3−メルカプトプロピル基が例示される。ハロゲン化アルキル基として、具体的には、3−クロロプロピル基が例示される。
なお、(A)成分は、一分子中に1個の架橋性基を有する有機化合物と一分子中に少なくとも2個の架橋性基を有する有機化合物の混合物であってもよい。この場合、混合物中の後者の含有率は特に限定されないが、架橋性が優れることから、少なくとも15質量(重量)%であることが好ましく、更には、少なくとも30質量(重量)%であることが好ましい。
前記(A)成分は、一分子中に少なくとも1個の芳香族基を有する。芳香族基としては、特に限定されるものではないが、一価芳香族基又は二価芳香族基が好ましく、一価芳香族基がより好ましい。一価芳香族基としては、フェニル基、トリル基、キシリル基等の炭素原子数6〜20のアリール基;ベンジル基、フェネチル基等の炭素原子数7〜20のアラルキル基;スチリル基、ビフェニル基等のその他の一価芳香族基、並びに、これらの基の炭素原子に結合した水素原子が少なくとも部分的にフッ素等のハロゲン原子、又は、カルビノール基、エポキシ基、グリシジル基、アシル基、カルボキシル基、アミノ基、メタクリル基、メルカプト基、アミド基、オキシアルキレン基等を含む有機基で置換された基が挙げられる。アリール又はアラルキル基は、非置換の炭素原子数6〜20のアリール基又はアラルキル基であることが好ましく、非置換の炭素原子数6〜10のアリール基又はアラルキル基であることがより好ましく、フェニル基が特に好ましい。二価芳香族基としては、例えば、フェニレン基、日フェニレン基等のアリーレン基が挙げられる。
なお、(A)成分は、一分子中に1個の芳香族を有する有機化合物と一分子中に少なくとも2個の芳香族を有する有機化合物の混合物であってもよい。この場合、混合物中の後者の含有率は特に限定されないが、少なくとも25質量(重量)%であることが好ましく、更には、少なくとも50質量(重量)%であることが好ましい。
前記(A)成分は、ケイ素原子を含まなくてもよく、ケイ素原子を含んでもよい。
ケイ素原子を含まない前記(A)成分としては、グラフェン構造の形成が容易である等、熱による炭化効率がよい点から、分子中に少なくとも1個の芳香環を有する有機化合物が好ましい。
このような(A)成分として、具体的には、分子中に架橋性基を有し、ケイ素原子を含まない芳香族炭化水素化合物、及び、分子中に架橋性基を有し、更に窒素原子、酸素原子、ホウ素原子等の炭素原子以外のヘテロ原子を有する、ケイ素原子を含まない芳香族化合物が例示される。
このような芳香族化合物としては、一般式:

(R1)2

(式中、
は架橋性基であり、
xは1以上の整数であり、好ましくは1又は2であり、より好ましくは1であり、
はx価の芳香族基である)
で表される有機化合物が例示される。
すなわち、式中、xが1である場合、R2は1価の芳香族基を示し、具体的には、下記の基が例示される。
Figure 2013157221
このような芳香族炭化水素化合物として、具体的には、α−若しくはβ−メチルスチレン、α−若しくはβ−エチルスチレン、メトキシスチレン、フェニルスチレン、クロロスチレン、o−、m−若しくはp−メチルスチレン、エチルスチレン、メチルシリルスチレン、ヒドロキシスチレン、シアノスチレン、ニトロスチレン、アミノスチレン、カルボキシスチレン、スルホキシスチレン、スチレンスルホン酸ソーダ、ビニルピリジン、ビニルチオフェン、ビニルピロリドン、ビニルナフタレン、ビニルアントラセン、ビニルビフェニルが例示される。
また、式中、xが2の場合、Rは2価の芳香族基を示し、具体的には、下記の基が例示される。
Figure 2013157221
このような芳香族炭化水素化合物として、具体的には、ジビニルベンゼン、ジビニルビフェニル、ビニルベンジルクロライド、ジビニルピリンジン、ジビニルチオフェン、ジビニルピロリドン、ジビニルナフタレン、ジビニルキシレン、ジビニルエチルベンゼン、ジビニルアントラセンが例示される。得られる硬化物の熱分解特性が優れることから、芳香族炭化水素化合物はジビニルベンゼンが好ましい。
また、式中、xが3の場合、Rは3価の芳香族基を示し、具体的には、下記の基が例示される。
Figure 2013157221
このような芳香族炭化水素化合物として、具体的には、トリビニルベンゼン、トリビニルナフタレンが例示される。
また、ヘテロ原子を有する芳香族化合物として、具体的には、下記一般式:
Figure 2013157221
で表される芳香族化合物が例示される。式中、Rは架橋性基であり、前記と同様の基が例示される。
更に、ヘテロ原子を有する環状化合物として、具体的には、下記一般式:
Figure 2013157221
で表される環状化合物が例示される。式中、Rは架橋性基であり、前記と同様の基が例示される。
ケイ素原子を含む前記(A)成分としては、架橋性基を有する限り、特に限定されるものではないが、例えば、ケイ素原子を含むモノマー、オリゴマー又はポリマーが挙げられる。例えば、ケイ素−ケイ素結合を有することを特徴とする構造単位からなるシラン、ケイ素−窒素−ケイ素結合を有することを特徴とする構造単位からなるシラザン、ケイ素−酸素−ケイ素結合を有することを特徴とする構造単位からなるシロキサン、ケイ素−炭素−ケイ素結合を有することを特徴とする構造単位からなるカルボシラン、及び、これらの混合物を挙げることができる。
前記(A)成分のシランとしては、例えば、平均単位式:

3 Si

又は、平均単位式:

(R3 Si)(R3 Si)(R3Si)(SiO)

(式中、
は、それぞれ独立して、上記架橋性基、炭素数1〜20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族基、アルコキシ基、水素原子又はハロゲン原子を示し、
a、b、c及びdは0又は正数を示し、但し、a+b+c+d=1であり、
一分子中のRの少なくとも1つは芳香族基であり、且つ、一分子中のRの少なくとも1つ、好ましくは少なくとも2つ、は上記架橋性基である)
で表されるものを使用することができる。ここで、芳香族基は上記と同一の意味である。
前記飽和脂肪族炭化水素基としてはアルキル基が好ましく、また、前記芳香族炭化水素基としてはアリール基及びアラルキル基が好ましい。
アルキル基としては、C−C12アルキル基が好ましく、C−Cアルキル基がより好ましい。アルキル基は、直鎖若しくは分岐鎖状アルキル基、シクロアルキル基、又は、シクロアルキレン基(直鎖又は分岐鎖状のアルキレン基(好ましくは、メチレン基、エチレン基等のC−Cアルキレン基)と炭素環(好ましくはC−C環)との組み合わせからなるアルキル基)のいずれかであることが好ましい。
直鎖状若しくは分岐鎖状アルキル基としては、直鎖状若しくは分岐鎖状C−Cアルキル基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基等が挙げられるが特にメチル基が好ましい。
シクロアルキル基としては、C−Cアルキル基が好ましく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられるが、シクロペンチル基及びシクロヘキシル基が好ましい。
アリール基としては、C−C12アリール基が好ましく、フェニル基、ナフチル基、トリル基が挙げられる。
アラルキル基としては、C−C12アラルキル基が好ましい。C−C12アラルキル基としては、ベンジル基、フェネチル基、フェニルプロピル基等が挙げられる。
前記炭化水素基は置換基を有していてもよく、当該置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン;水酸基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等のC−Cアルコキシ基;アミノ基;アミド基;ニトロ基;エポキシ基等が挙げられる。置換基は炭化水素鎖、飽和環及び芳香環のいずれの部位にも結合することができる。
アルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基が例示される。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示される。
前記シランは種々の公知方法を用いて調製することができる。例えば、アルカリ金属の存在下、ハロシラン類の脱ハロゲン反応を行う方法(Macromolecules, 23, 3423 (1990)等)、ジシレンのアニオン重合を行う方法(Macromolecules, 23, 4494 (1990)等)、電極還元によりハロシラン類の脱ハロゲン反応を行う方法(J. Chem. Soc., Chem. Commun.., 1161 (1990)、J. Chem. Soc., Chem. Commun.., 897 (1992)等)、マグネシウムの存在下、ハロシラン類の脱ハロゲン反応を行う方法(WO98/29476号公報等)、金属触媒の存在下、ヒドロシラン類の脱水素反応を行う方法(特開平4−334551号公報
等)等の方法が挙げられる。
前記(A)成分のシラザンとしては、例えば、平均単位式:

(R3 SiNR)(R3 SiNR)(R3SiNR)(SiNR)

(式中、
は、それぞれ独立して、上記架橋性基、炭素数1〜20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族基、アルコキシ基、水素原子又はハロゲン原子を示し、
は、水素原子又は炭素数1〜20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族基を示し、
a、b、c及びdは0又は正数を示し、但し、a+b+c+d=1であり、
一分子中のRの少なくとも1つは芳香族基であり、且つ、一分子中のRの少なくとも1つ、好ましくは少なくとも2つ、は上記架橋性基である)
で表されるものを使用することができる。ここで、芳香族基は上記と同一の意味であり、また、飽和脂肪族炭化水素基、アルコキシ基及びハロゲン原子は上記シランについて定義したものと同一の意味である。
前記シラザンは、当技術分野で周知の方法により調製することができる。ポリシラザンの調製方法は、例えば、米国特許第4312970号、第4340619号、第4395460号、第4404153号、第4482689号、第4397828号、第4540803号、第4543344号、第4835238号、第4774312号、第4929742号及び第4916200号に記載されている。更に、J.Mater.Sci., 22, 2609(1987)にも記載されている。
前記(A)成分のシロキサンとしては、例えば、平均単位式:

(R3 SiO1/2)(R3 SiO2/2)(R3SiO3/2)(SiO4/2)

(式中、
3は、それぞれ独立して、上記架橋性基、炭素数1〜20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族基、アルコキシ基、水素原子又はハロゲン原子を表し、
a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはなく、
一分子中のRの少なくとも1つは芳香族基であり、且つ、一分子中のRの少なくとも1つ、好ましくは少なくとも2つ、は上記架橋性基である)
で表されるものを使用することができる。ここで、芳香族基は上記と同一の意味であり、また、飽和脂肪族炭化水素基、アルコキシ基及びハロゲン原子は上記シランについて定義したものと同一の意味である。
前記シロキサンは、当技術分野で周知の方法により調製することができる。シロキサンの調製方法は特に限定されない。最も一般的には、シロキサンはオルガノクロロシラン類の加水分解によって調製される。そのような方法、及び他の方法は、Noll,Chemistry and Technology of Silicones,Chapter5(翻訳された第2ドイツ語版,Academic Press,1968)に記載されている。
前記(A)成分のカルボシランとしては、例えば、平均単位式:

(R3 SiCR5)(R3 SiCR5)(R3SiCR5)(SiCR5)

(式中、
は、それぞれ独立して、上記架橋性基、炭素数1〜20の1価の置換若しくは非置換の飽和脂肪族炭化水素基又は芳香族基、アルコキシ基、水素原子又はハロゲン原子を示し、
及びRは、それぞれ独立して、水素原子又は炭素数1〜20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族基を示し、
a、b、c、dは0又は正数を示し、但し、a+b+c+d=1であり、
一分子中のRの少なくとも1つは芳香族基であり、且つ、一分子中のRの少なくとも1つ、好ましくは少なくとも2つ、は上記架橋性基である)
で表されるものを使用することができる。ここで、芳香族基は上記と同一の意味であり、また、飽和脂肪族炭化水素基、アルコキシ基及びハロゲン原子は上記シランについて定義したものと同一の意味である。
前記カルボシランは、当技術分野で周知の方法により調製することができる。カルボシランの調製方法は、例えば、Macromolecules, 21, 30 (1988)、米国特許第3293194号明細書に記載されている。
シラン、シラザン、シロキサン及びカルボシランの形状は、特に限定されず、固体状、液体状、ペースト状等であることができるが、取り扱い性等の点で固体状であることが好ましい。
これらのケイ素系高分子化合物のうち、ケイ素含有量が著しく低くないこと、十分な化学的安定性があり、常温、空気中での扱いが容易なこと、原料価格並びに製造プロセスコストが低く、十分な経済性を有する等の工業的利点を考慮すると、ケイ素−酸素−ケイ素結合を有する単位よりなるシロキサンが好ましく、ポリシロキサンがより好ましい。
前記(A)成分は、前記有機化合物の1種、或いは、2種以上の混合物でもよく、更に、その他の成分として、アクリロニトリル等の含窒素モノマーを含んでいてもよい。この場合、含窒素モノマーの含有量は50質量(重量)%以下であることが好ましく、特に、10〜50質量(重量)%の範囲内であることが好ましい。
(B)成分は、前記(A)成分を架橋可能な含ケイ素化合物である。このような(B)成分として、例えば、シラン、シラザン、シロキサン、カルボシラン又はこれらの混合物が挙げられる。シラン、シラザン、シロキサン及びカルボシランは、それぞれ、具体的には、Si−Si結合を有するモノマー、オリゴマー又はポリマー等のシラン類、Si−N−Si結合を有するモノマー、オリゴマー又はポリマー等のシラザン類、Si−O−Si結合を有するモノマー、オリゴマー又はポリマー等のシロキサン類、Si−C−Si結合を有するモノマー、オリゴマー又はポリマー等のカルボシラン類から選択しうる。
更に、(B)成分としては、Si−(CH)−Si結合を有するモノマー、オリゴマー又はポリマー等のシルアルキレン類、Si−(C)−Si或いはSi−(CHCHCHCH)−Si結合を有するモノマー、オリゴマー又はポリマー等のシルアリーレン類、Si−O−Si結合、Si−Si結合、Si−(CH)−Si結合、Si−(C)−Si結合、及びSi−N−Si結合からなる少なくとも2種の結合を有する含ケイ素共重合体化合物、並びに、これらの混合物であってもよい。なお、これらの式中、nは1以上の整数である。
前記(B)成分はケイ素原子結合水素原子を有することが好ましい。
前記(B)成分としてのシランは、例えば、一般式:

4Si

又は、平均単位式:

(R 3Si)a(R 2Si)b(RSi)c(Si)d

(式中、
は、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;
a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはない)
で表される。
の一価炭化水素基として、具体的には、アルキル基、アルケニル基、アラルキル基、アリール基が例示される。アルキル基は、C〜C12アルキル基が好ましく、特に、C〜Cアルキル基が好ましい。アルキル基は、直鎖又は分岐鎖状アルキル基、シクロアルキル基、又は、シクロアルキレン基(直鎖又は分岐鎖状のアルキレン基(好ましくは、メチレン基、エチレン基等のC〜Cアルキレン基)と炭素環(好ましくはC〜C環)との組み合わせからなるアルキル基)のいずれかであってもよい。直鎖状若しくは分岐鎖状アルキル基は、直鎖状若しくは分岐鎖状C〜Cアルキル基が好ましく、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基が例示される。シクロアルキル基は、C〜Cシクロアルキル基が好ましく、具体的には、シクロブチル基、シクロペンチル基、シクロヘキシル基が例示される。アルケニル基は、C〜C12アルケニル基が好ましく、特に、C〜Cアルケニル基が好ましい。C〜Cアルケニル基として、具体的には、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基が例示され、ビニル基が好ましい。アラルキル基は、C〜C12アラルキル基が好ましい。C〜C12アラルキル基として、具体的には、ベンジル基、フェネチル基、フェニルプロピルが例示される。アリール基は、C〜C12アリール基が好ましく、具体的には、フェニル基、ナフチル基、トリル基が例示される。これらの一価炭化水素基は置換基を有していてもよい。当該置換基として、具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン;水酸基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等のアルコキシ基が例示される。このような置換一価炭化水素基として、具体的には、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、パーフルオロブチルエチル基、パーフルオロオクチルエチル基が例示される。
また、Rのハロゲン原子として、具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、好ましくは、塩素原子である。
また、Rのエポキシ基含有有機基として、具体的には、3−グリシドキシプロピル基、4−グリシドキシブチル基等のグリシドキシアルキル基;2−(3,4−エポキシシクロヘキシル)−エチル基、3−(3,4−エポキシシクロヘキシル)−プロピル基等のエポキシシクロヘキシルアルキル基;4−オキシラニルブチル基、8−オキシラニルオクチル基等のオキシラニルアルキル基が例示され、好ましくは、グリシドキシアルキル基であり、特に好ましくは、3−グリシドキシプロピル基である。
また、Rのアクリル基含有有機基又はメタクリル基含有有機基として、具体的には、3−アクリロキシプロピル基、3−メタクリロキシプロピル基、4−アクリロキシブチル基、4−メタクリロキシブチル基が例示され、好ましくは、3−メタクリロキシプロピル基である。
また、Rのアミノ基含有有機基として、具体的には、3−アミノプロピル基、4−アミノブチル基、N−(2−アミノエチル)−3−アミノプロピル基が例示され、好ましくは、3−アミノプロピル基、N−(2−アミノエチル)−3−アミノプロピル基である。
また、Rのメルカプト基含有有機基として、具体的には、3−メルカプトプロピル基、4−メルカプトブチル基が例示される。
また、Rのアルコキシ基として、具体的には、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基が例示され、好ましくは、メトキシ基、エトキシ基である。
なお、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基、又はヒドロキシ基である。
また、a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数である。但し、a、b及びcが共に0となることはない。
このシラン類は、一般式:R 4Siで表されるか、又は、(R 3Si)、(R 2Si)、(RSi)、及び、(Si)で表された構造単位のうち少なくとも1つの単位で構成されており、具体的には、(R 3Si)及び(R 2Si)の単位からなる直鎖状ポリシラン;(R 2Si)の単位からなる環状ポリシラン;(RSi)又は(Si)の単位からなる分岐鎖状ポリシラン(ポリシリン);(R 3Si)及び(RSi)の単位からなるポリシラン;(R 3Si)及び(Si)の単位からなるポリシラン;(RSi)及び(Si)の単位からなるポリシラン;(R 2Si)及び(RSi)の単位からなるポリシラン;(R 2Si)及び(Si)の単位からなるポリシラン;(R 3Si)、(R 2Si)及び(RSi)の単位からなるポリシラン;(R 3Si)、(R 2Si)及び(Si)の単位からなるポリシラン;(R 3Si)、(RSi)及び(Si)の単位からなるポリシラン;(R 2Si)、(RSi)及び(Si)の単位からなるポリシラン;(R 3Si)、(R 2Si)、(RSi)及び(Si)の単位からなるポリシラン等が挙げられる。(R 3Si)、(R 2Si)、(RSi)及び(Si)で表された構造単位の好ましい繰り返し数は、それぞれ、2〜10,000の範囲内が好ましくは、更には、3〜1,000の範囲内が好ましく、特には、3〜500の範囲内が好ましい。
このシラン類は種々の公知方法を用いて調製することができる。例えば、アルカリ金属の存在下、ハロシラン類の脱ハロゲン反応を行う方法(Macromolecules, 23, 3423 (1990)等)、ジシレンのアニオン重合を行う方法(Macromolecules, 23, 4494 (1990)等)、電極還元によりハロシラン類の脱ハロゲン反応を行う方法(J. Chem. Soc., Chem. Commun., 1161 (1990)、J. Chem. Soc., Chem. Commun., 897 (1992)等)、マグネシウムの存在下、ハロシラン類の脱ハロゲン反応を行う方法(WO98/29476号公報等)、金属触媒の存在下、ヒドロシラン類の脱水素反応を行う方法(特開平4−334551号公報等)等の方法が挙げられる。
なお、このシラン類は、他のポリマーとの含ケイ素共重合体化合物であってもよい。例えば、Si−Si結合及びSi−O−Si結合を有する含ケイ素共重合体化合物;Si−Si結合及びSi−N−Si結合を有する含ケイ素共重合体化合物;Si−Si結合及びSi−(CH2)n−Si結合を有する含ケイ素共重合体化合物;Si−Si結合及びSi−(C64)n−Si結合或いはSi−(CHCH64CHCH)n−Si結合を有する含ケイ素共重合体化合物等をシラン類として使用することができる。
その他のシラン類としては、一般式:

[(R)2HSi]e

(式中、
は、それぞれ独立して、置換若しくは非置換の一価炭化水素基であり;
eは2以上の整数であり;
はe価有機基である)
で表される含ケイ素化合物が例示される。式中、Rの一価炭化水素基としては、前記Rの一価炭化水素基と同様の基が例示される。eは2以上の整数であり、好ましくは、2〜6の整数である。また、Rはe価有機基であり、eが2の場合には、Rは二価有機基であり、具体的には、アルキレン基、アルケニレン基、アルキレンオキシアルキレン基、アリーレン基、アリーレンオキシアリーレン基、アリーレンアルキレンアリーレン基が例示され、更に具体的には、下記の基が例示される。−CH2CH2−,−CH2CH2CH2−,−CH2CH(CH3)−,−CH=CH−,−C≡C−,−CH2CH2OCH2CH2−,−CH2CH2CH2OCH2CH2−,
Figure 2013157221
また、eが3の場合には、Rは三価有機基であり、具体的には、下記の基が例示される。
Figure 2013157221
また、前記(B)成分としてのシラザンとしては、例えば、平均単位式:

(R 3SiNR10)a(R 2SiNR10)b(RSiNR10)c(SiNR10)d

(式中、
は、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;
10は水素原子又は置換若しくは非置換の一価炭化水素基であり;
a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはない)
で表される。R10の一価炭化水素基としては、Rの一価炭化水素基と同様の基が例示される。R10は水素原子又はアルキル基が好ましく、特に、水素原子又はメチル基が好ましい。
このシラザン類は、(R 3SiNR10)、(R 2SiNR10)、(RSiNR10)、及び、(SiNR10)で表された構造単位のうち少なくとも1つの単位で構成されており、具体的には、(R 3SiNR10)及び(R 2SiNR10)の単位からなる直鎖状ポリシラザン;(R 2SiNR10)の単位からなる環状ポリシラザン;(RSiNR10)又は(SiNR10)の単位からなる分岐鎖状ポリシラザン; (R 3SiNR10)及び(RSiNR10)の単位からなるポリシラザン;(R 3SiNR10)及び(SiNR10)の単位からなるポリシラザン;(RSiNR10)及び(SiNR10)の単位からなるポリシラザン;(R 2SiNR10)及び(RSiNR10)の単位からなるポリシラザン;(R 2SiNR10)及び(SiNR10)の単位からなるポリシラザン;(R 3SiNR10)、(R 2SiNR10)及び(RSiNR10)の単位からなるポリシラザン;(R 3SiNR10)、(R 2SiNR10)及び(SiNR10)の単位からなるポリシラザン;(R 3SiNR10)、(RSiNR10)及び(SiNR10)の単位からなるポリシラザン;(R 2SiNR10)、(RSiNR10)及び(SiNR10)の単位からなるポリシラザン;(R 3SiNR10)、(R 2SiNR10)、(RSiNR10)及び(SiNR10)の単位からなるポリシラザン等が挙げられる。(R 3SiNR10)、(R 2SiNR10)、(RSiNR10)、及び、(SiNR10)で表された構造単位の好ましい繰り返し数は、それぞれ、2〜10,000の範囲が好ましく、更には、3〜1,000の範囲内が好ましく、特には、3〜500の範囲内が好ましい。
このシラザン類は、当技術分野で周知の方法により調製することができる。このようなシラザン類の調製方法は、たとえば米国特許第4312970号、第4340619号、第4395460号、第4404153号、第4482689号、第4397828号、第4540803号、第4543344号、第4835238号、第4774312号、第4929742号及び第4916200号に記載されている。更に、J.Mater.Sci.,22, 2609 (1987)にも記載されている。
このシラザン類は、他のポリマーとの含ケイ素共重合体化合物であってもよい。例えば、Si−N−Si結合及びSi−O−Si結合を有する含ケイ素共重合体化合物;Si−N−Si結合及びSi−Si結合を有する含ケイ素共重合体化合物;Si−N−Si結合及びSi−(CH2)n−Si結合を有する含ケイ素共重合体化合物;Si−N−Si結合及びSi−(C64)n−Si結合或いはSi−(CHCH64CHCH)n−Si結合を有する含ケイ素共重合体化合物等をポリシラザンとして使用することができる。なお、式中、nは前記と同じである。
前記(B)成分としてのシロキサンは、例えば、平均単位式:

(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)

(式中、
は、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基を表し、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;
a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはない)
で表される。
このようなシロキサン類は、(R SiO1/2)、(R SiO2/2)、(RSiO3/2)、及び、(SiO4/2)で表された構造単位のうち少なくとも1つの単位で構成されており、具体的には、(R 3SiO1/2)及び(R 2SiO2/2)の単位からなる直鎖状ポリシロキサン;(R 2SiO2/2)の単位からなる環状ポリシロキサン;(RSiO3/2)又は(SiO4/2)の単位からなる分岐鎖状ポリシロキサン;(R 3SiO1/2)及び(RSiO3/2)の単位からなるポリシロキサン;(R 3SiO1/2)及び(SiO4/2)の単位からなるポリシロキサン;(RSiO3/2)及び(SiO4/2)の単位からなるポリシロキサン;(R 2SiO2/2)及び(RSiO3/2)の単位からなるポリシロキサン;(R 2SiO2/2)及び(SiO4/2)の単位からなるポリシロキサン;(R 3SiO1/2)、(R 2SiO2/2)及び(RSiO3/2)の単位からなるポリシロキサン;(R 3SiO1/2)、(R 2SiO2/2)及び(SiO4/2)の単位からなるポリシロキサン;(R 3SiO1/2)、(RSiO3/2)及び(SiO4/2)の単位からなるポリシロキサン;(R 2SiO2/2)、(RSiO3/2)及び(SiO4/2)の単位からなるポリシロキサン;(R 3SiO1/2)、(R 2SiO2/2)、(RSiO3/2)及び(SiO4/2)の単位からなるポリシロキサン等が挙げられる。(R 3SiO1/2)、(R 2SiO2/2)、(RSiO3/2)、及び、(SiO4/2)で表された構造単位の好ましい繰り返し数は、それぞれ、1〜10,000の範囲内が好ましく、更には、1〜1,000の範囲内が好ましく、特には、3〜500の範囲内が好ましい。
このシロキサン類は、当技術分野で周知の方法により調製することができる。このシロキサン類の調製方法は特に限定されず、最も一般的には、オルガノクロロシラン類の加水分解によって調製される。そのような方法、及び他の方法は、Noll,Chemistryand Technology of Silicones,Chapter 5(翻訳された第2ドイツ語版,Academic Press,1968)に記載されている方法である。
なお、このシロキサン類は、ポリマーとの含ケイ素共重合体化合物であってもよい。例えば、Si−O−Si結合及びSi−Si結合を有する含ケイ素共重合体化合物;Si−O−Si結合及びSi−N−Si結合を有する含ケイ素共重合体化合物;Si−O−Si結合及びSi−(CH)−Si結合を有する含ケイ素共重合体化合物;Si−O−Si結合及びSi−(C)−Si結合或いはSi−(CHCHCHCH)−Si結合を有する含ケイ素共重合体化合物等をシロキサン類として使用することができる。なお、式中、nは前記と同じである。
前記(B)成分としてのカルボシランとしては、例えば、平均単位式:

(R 3SiR11)a(R 2SiR11)b(RSiR11)c(SiR)d

(式中、
は、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基、又はヒドロキシ基であり;
11はアルキレン基又はアリーレン基であり;
a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcは共に0となることはない)
で表される。R11のアルキレン基は、例えば、式:−(CH2)n−で表され、また、R11のアリーレン基は、例えば、式:−(C64)n−で表される。なお、式中、nは前記と同じである。
このカルボシラン類は、(R 3SiR11)、(R 2SiR11)、(RSiR11)及び(SiR11)で表された構造単位のうち少なくとも1つの単位で構成されており、具体的には、例えば、(R 3SiR11)及び(R 2SiR11)の単位からなる直鎖状ポリカルボシラン;(R 2SiR11)の単位からなる環状ポリカルボシラン;(RSiR11)又は(SiR11)の単位からなる分岐鎖状ポリカルボシラン;(R 3SiR11)及び(RSiR11)の単位からなるポリカルボシラン;(R 3SiR11)及び(SiR11)の単位からなるポリカルボシラン;(RSiR11)及び(SiR11)の単位からなるポリカルボシラン;(R 2SiR11)及び(RSiR11)の単位からなるポリカルボシラン;(R 2SiR11)及び(SiR11)の単位からなるポリカルボシラン;(R 3SiR11)、(R 2SiR11)及び(RSiR11)の単位からなるポリカルボシラン;(R 3SiR11)、(R 2SiR11)及び(SiR11)の単位からなるポリカルボシラン;(R 3SiR11)、(RSiR11)及び(SiR11)の単位からなるポリカルボシラン;(R 2SiR11)、(RSiR11)及び(SiR11)の単位からなるポリカルボシラン;(R 3SiR11)、(R 2SiR11)、(RSiR11)及び(SiR11)の単位からなるポリカルボシラン等が挙げられる。(R 3SiR11)、(R 2SiR11)、(RSiR11)及び(SiR11)で表された構造単位の好ましい繰り返し数は、それぞれ、2〜10,000の範囲内が好ましく、更には、3〜1,000の範囲内が好ましく、特には、3〜500の範囲内が好ましい。
このカルボシラン類は、当技術分野で周知の方法により調製することができる。カルボシラン類の調製方法は、カルボシランの調製方法は、例えば、Macromolecules, 21, 30 (1988)、米国特許第3293194号明細書に記載されている。
このカルボシラン類は、他のポリマーとの含ケイ素共重合体化合物であってもよい。例えば、Si−(CH2)n−Si結合及びSi−O−Si結合を有する含ケイ素共重合体化合物;Si−(CH2)n−Si結合及びSi−Si結合を有する含ケイ素共重合体化合物;Si−(CH2)n−Si結合及びSi−N−Si結合を有する含ケイ素共重合体化合物;Si−(CH2)n−Si結合及びSi−(C64)n−Si結合を有する含ケイ素共重合体化合物;Si−(C64)n−Si結合及びSi−O−Si結合を有する含ケイ素共重合体化合物;Si−(C64)n−Si結合及びSi−Si結合を有する含ケイ素共重合体化合物;Si−(C64)n−Si結合或いはSi−(CHCH64CHCH)n−Si結合及びSi−N−Si結合を有する含ケイ素共重合体化合物等をカルボシラン類として使用することができる。なお、式中、nは前記と同じである。
(B)成分としては、特に、平均単位式:

(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)

(式中、
は、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;
a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはない)
で表されるシロキサン、特にポリシロキサンが好ましい。
架橋反応は、(A)成分及び(B)成分を架橋しうるものであれば特に限定されるものではないが、具体的には、ヒドロシリル化反応、マイケル付加反応、ディールズ・アルダー反応等の付加反応;脱アルコール、脱水素、脱水、脱アミン等の縮合反応;エポキシ開環、エステル開環等の開環反応;パーオキサイド、UV等によって開始されるラジカル反応が例示される。特に、(A)成分が脂肪族不飽和基を有し、(B)成分がケイ素原子結合水素原子を有する場合、また、(A)成分がケイ素原子結合水素原子を有し、(B)成分が脂肪族不飽和基を有する場合、ヒドロシリル化反応用触媒の存在下、ヒドロシリル化反応することができる。
ヒドロシリル化反応用触媒として、具体的には、白金微粉末、白金黒、白金坦持シリカ微粉末、白金坦持活性炭、塩化白金酸、四塩化白金、塩化白金酸のアルコール溶液、白金とオレフィンの錯体、白金とアルケニルシロキサンの錯体が例示される。この含有量は特に限定されないが、(A)成分と(B)成分の合計量に対して、この触媒中の金属原子が質量(重量)単位で0.1〜1,000ppmの範囲内となる量であることが好ましく、特には、1〜500ppmの範囲内となる量であることが好ましい。
また、(A)成分が脂肪族不飽和基を有し、(B)成分がケイ素原子結合水素原子を有する場合、また、(A)成分がケイ素原子結合水素原子を有し、(B)成分が脂肪族不飽和基を有する場合、各成分の使用量は特に限定されないが、(A)成分又は(B)成分中の脂肪族不飽和基1モルに対して、(B)成分又は(A)成分中のケイ素原子結合水素原子が0.1〜50モルの範囲内となる量であり、好ましくは、0.1〜30モルの範囲内となる量であり、特に好ましくは、0.1〜10モルの範囲内となる量である。これは、ケイ素原子結合水素原子の量が、前記範囲の下限未満であると、得られる硬化物を焼成した場合の炭化収率が減少する傾向があり、一方、前記範囲を超えると、得られる硬化物を焼成して得られるケイ素含有炭素系複合材料の電極活物質としての性能が低下する傾向があるからである。
また、(A)成分が脂肪族不飽和基を有し、(B)成分が脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する場合、並びに、(B)成分が脂肪族不飽和基を有し、(A)成分が脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する場合は、ラジカル開始剤により、熱及び/又は光によりラジカル反応することもできる。
このラジカル開始剤として、具体的には、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート等の有機過酸化物、或いは有機アゾ化合物が例示される。この有機過酸化物として、具体的には、ジベンゾイルパーオキサイド、ビス−p−クロロベンゾイルパーオキサイド、ビス−2,4−ジクロロベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルパーベンゾエート、2,5−ビス(t−ブチルパーオキシ)−2,3−ジメチルヘキサン、t−ブチルパーアセテート、ビス(o−メチルベンゾイルパーオキサイド)、ビス(m−メチルベンゾイルパーオキサイド)、ビス(p−メチルベンゾイルパーオキサイド)、2,3−ジメチルベンゾイルパーオキサイド、2,4−ジメチルベンゾイルパーオキサイド、2,6−ジメチルベンゾイルパーオキサイド、2,3,4−トリメチルベンゾイルパーオキサイド、2,4,6−トリメチルべンゾイルパーオキサイド等のメチル基置換ベンゾイルパーオキサイド;t−ブチルパーベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシアセテート、これらの混合物が例示される。また、この有機アゾ化合物として、具体的には、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル、2,2'−アゾビス(2,4−ジメチルバレロニトリル)、2,2'−アゾビス−イソブチルバレロニトリル、1,1'−アゾビス(1−シクロヘキサンカルボニトリル)が例示される。
このラジカル開始剤の含有量は特に限定されないが、(A)成分と(B)成分の合計量に対して0.1〜10質量(重量)%の範囲内となる量であることが好ましく、特には、0.5〜5質量(重量)%の範囲内となる量であることが好ましい。
また、(A)成分が脂肪族不飽和基を有し、(B)成分が脂肪族不飽和基、アクリル基、メタクリル基、或いはケイ素原子結合水素原子を有する場合、並びに、(B)成分が脂肪族不飽和基を有し、(A)成分が脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する場合、各成分の使用量は特に限定されないが、一方の成分中の脂肪族不飽和基1モルに対して、他方の成分中の脂肪族不飽和基、アクリル基、メタクリル基或いはケイ素原子結合水素原子が0.1〜50モルの範囲内となる量であり、好ましくは、0.1〜30モルの範囲内となる量であり、特に好ましくは、0.1〜10モルの範囲内となる量である。これは、脂肪族不飽和基、アクリル基、メタクリル基、或いはケイ素原子結合水素原子の量が、前記範囲の下限未満であると、得られる硬化物を焼成した場合の炭化収率が減少する傾向があり、一方、前記範囲を超えると、得られる硬化物を焼成して得られるケイ素含有炭素系複合材料の電極活物質としての性能が低下する傾向があるからである。
(A)成分と(B)成分を架橋反応させてなる硬化物を形成する場合、例えば、下記I又はIIの方法で製造し、次いで、熱処理(焼成)の工程に移ることができる。
I:(A)成分と(B)成分を混合した後、300℃以下、特に60〜300℃の温度でプレキュアする。得られた硬化物をそのまま次の焼成工程に用いてもよく、平均粒子径が0.1〜30μm、より好ましくは1〜20μmの粒度に粉砕した後次の焼成工程に用いてもよい。
II:硬化物を球状の粒子として形成する場合は、例えば、(A)成分と(B)成分からなる架橋性組成物を熱風中に噴霧し架橋反応するか、又は、当該架橋性組成物と非相溶性の媒体中に乳化又は分散して架橋反応することが好ましい。
(A)成分又は(B)成分の一方が脂肪族不飽和基を有し、他方がケイ素原子結合水素原子を有する場合、前記(A)成分と(B)成分とヒドロシリル化反応用触媒を混合した架橋性組成物を熱風中に微粒子状に噴霧して、ヒドロシリル化反応により架橋し、微粒子状の硬化物粉末を得ることができる。
一方、前記(A)成分と(B)成分とヒドロシリル化反応用触媒を混合した架橋性組成物を、乳化剤の水溶液中に添加し、攪拌により乳化して架橋性組成物の微粒子を形成し、次いでヒドロシリル化反応により架橋し、微粒子状の硬化物粉末を形成することもできる。
この乳化剤は特に限定されないが、具体的には、イオン性界面活性剤、ノニオン性界面活性剤、イオン性界面活性剤とノニオン性界面活性剤の混合物が例示される。特に、架橋性組成物と水を混合することにより製造される水中油型エマルジョンの均一分散性及び安定性が良好であることから、1種類以上のイオン性界面活性剤と1種類以上のノニオン性界面活性剤の混合物を用いることが好ましい。
また、乳化剤と併用してシリカ(コロイダルシリカ)、酸化チタン等金属酸化物を使用し、硬化物粉末の表面にシリカを保持した状態で炭素化することにより、炭素表面に安定な皮膜を形成し、炭化収率を上げること又は炭素材の放置時に生じる表面酸化を抑制することができる。
硬化物粉末の粒子径は特に限定されないが、焼成により、電極活物質として好適な平均粒子径5nm〜50μmのケイ素含有炭素系複合材料を形成することから、その好ましい平均粒子径は5nm〜100μmの範囲内であることが好ましく、特に、0.1〜80μmの範囲内であることが好ましく、さらに、0.5〜80μmの範囲内であることが好ましい。
このようにして得られた硬化物粉末の架橋を更に促進し、焼成による炭化収率を向上できることから、空気中、150〜300℃で更に熱処理することが好ましい。
本発明のケイ素含有炭素系複合材料は、(A)成分及び(B)成分の硬化物を熱処理(焼成)する工程を経て得ることができる。
前記焼成の条件は特には限定されるものではないが、不活性ガス又は真空中、300〜1500℃で焼成することが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンが例示される。なお、この不活性ガス中に、水素ガス等の還元性ガスを含んでもよい。焼成温度としては、500℃から1000℃の範囲がより好ましい。焼成時間も特に限定されるものではないが、例えば、10分〜10時間、好ましくは30分〜3時間の範囲とすることができる。
焼成は、固定床又は流動床方式の炭化炉で行うことができ、所定温度へ昇温できる機能を有する炉であれば、炭化炉の加熱方式及び種類は特に限定されない。炭化炉として、具体的には、リードハンマー炉、トンネル炉、単独炉、オキシノン炉、ローラーハースキルン、プッシャーキルン、バッチ式ロータリーキルン、連続式ロータリーキルンが例示される。
ローラーハースキルン、プッシャーキルン及び連続式ロータリーキルン等の連続炉を用いた場合、前記の(A)成分と(B)成分を架橋反応させてなる硬化物を形成する工程および硬化物の焼成工程を連続的に行うことができる。また、(A)成分と(B)成分を架橋反応させてなる硬化物を形成する工程、焼成工程、スパッタリングや熱化学蒸着処理等の表面被覆処理工程を連続炉中で連続的に行うこともできる。 ローラーハースキルン、プッシャーキルン及びび連続式ロータリーキルン等の連続炉を用いた場合、各工程雰囲気中の酸素濃度を厳密に制御できるので、得られるケイ素含有炭素複合材料中の酸素原子や水素原子の量の制御、調整が容易となるという利点がある。
このようにして得られた本発明のケイ素含有炭素複合材料は、式:SiOで表される化学組成を有することを特徴とする。式中、xは0.8〜1.7であり、好ましくは0.8〜1.6、より好ましくは0.8〜1.5、更により好ましくは0.9〜1.2である。yは1.4〜8.0であり、好ましくは1.7〜7.5、より好ましくは2.0〜6.0、更により好ましくは2.5〜4.5の範囲である。zは0.1〜1.5であり、好ましくは0.2〜1.0、より好ましくは0.3〜0.9の範囲である。化学組成が上記範囲内であると、可逆容量及び充放電サイクル特性が向上し、特に初期の充放電効率が向上する。
上記ケイ素含有炭素複合材料の化学組成は、例えば、(A)成分の種類、(B)成分の種類、及び(A)成分と(B)成分の硬化反応時の量比を変更することにより、硬化物中のケイ素原子1個あたりの酸素原子、炭素原子及び水素原子の比を予め調整することで制御可能である。特にケイ素原子に結合した芳香族基が存在すると焼成後の「y」の値の制御が容易になることから、(A)成分がケイ素原子を含み、(A)成分がケイ素原子結合芳香族基を有する、若しくは、(B)成分も芳香族基を有しており、(A)成分と(B)成分の両方がケイ素原子結合芳香族基を含有することが好ましい。また焼成時の熱処理雰囲気、不活性ガスの流量、昇温速度及び熱処理時間でも制御可能である。
ケイ素含有炭素系複合材料は、ケイ素原子が酸素原子及び炭素原子に結合しており、且つ、アモルファス構造であることが好ましい。このような構造は29Si MAS NMRやX線回折分析により確認することができる。ケイ素含有炭素系複合材料が結晶化すると、充放電サイクル特性や初期充放電効率が低下する恐れがある。
本発明のケイ素含有炭素系複合材料の表面に、金属や炭素による表面被覆処理を更に実施してもよい。
ケイ素含有炭素系複合材料の炭素表面被覆方法は任意である。例えば、非酸化性雰囲気下で800℃以上の温度でケイ素含有炭素系複合材料表面に(D1)蒸着炭素源由来の炭素皮膜を熱化学蒸着処理してもよい。また、(D2)熱により炭化する有機材料とケイ素含有炭素系複合材料とを混合し更に焼成することで、熱により炭化する有機材料に由来する炭素相で覆われたケイ素含有炭素系複合材料を得ることもできる。
熱化学蒸着処理に用いる装置は、非酸化性雰囲気で800℃以上に加熱する手段を有する装置であれば特に限定されず、その目的に応じて適宜選択することができる。連続法、回分法及びこれらを併用した装置が使用でき、具体的には、流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、バッチ式ロータリーキルン、連続ロータリーキルンが例示される。
熱化学蒸着処理に用いる(D1)蒸着炭素源としては、具体的には、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の脂肪族系炭化水素若しくはこれらの混合物;ベンゼン、ジビニルベンゼン、モノビニルベンゼン、エチルビニルベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の芳香族系炭化水素;タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油;前記焼成工程で発生した排気ガス若しくはこれらの混合物が例示される。メタンやアセチレンであることが一般的である。
非酸化性雰囲気は、前記蒸着炭素源ガス又はその気化ガス;アルゴンガス、ヘリウムガス、水素ガス、窒素ガス等の非酸化性ガス;及びこれらの混合ガス等を熱化学蒸着処理装置内に導入することで得ることができる。
(D2)熱により炭化する有機材料とケイ素含有炭素複合材料とを混合後更に焼成して、熱により炭化する有機材料に由来する炭素相で覆われたケイ素含有炭素系複合材料を得る場合、焼成は、前記と同様にしておこなうことができる。(D2)熱により炭化する有機材料としては、具体的には、常温で液状若しくはワックス状のパラフィン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、ウレタン樹脂、AS樹脂、ABS樹脂、ポリ塩化ビニル、ポリアセタール、芳香族系ポリカーボネート樹脂、芳香族系ポリエステル樹脂、コールタール、フェノール樹脂、エポキシ樹脂、ウレア樹脂、メラミン樹脂、フッ素樹脂、イミド樹脂、フラン樹脂、及びこれらの混合物が例示される。中でも、芳香族系ポリカーボネート、芳香族系ポリエステル、コールタール、フェノール樹脂、フッ素樹脂、イミド樹脂、フラン樹脂等の高分子量芳香族化合物やメラミン樹脂であることが好ましい。グラフェン構造の形成が容易である等、熱による炭化効率がよいからである。
ケイ素含有炭素複合材料表面に炭素による被覆をおこなう場合、炭素の被覆量は、ケイ素含有炭素系複合材料中0.5〜50質量(重量)%であることが好ましく、1〜30質量(重量)%であることがより好ましく、1〜20質量(重量)%であることが更に好ましい。電極活物質としてケイ素含有炭素系複合材料のみを使用する場合でも好適な導電性を有し、電極の充放電容量の低下を抑制できるからである。
ケイ素含有炭素系複合材料の金属表面被覆方法は任意である。例えば、真空蒸着、スパッタリング、電解めっきや無電解めっきにより金、銀、銅、鉄、亜鉛、白金、アルミ、コバルト、ニッケル、チタン、パラジウム、ステンレススチール等の金属被覆をケイ素含有炭素系複合材料表面に形成することができる。中でも、ニッケルと銅が表面被覆金属として好適である。
本発明のケイ素含有炭素系複合材料は、平均粒子径が5nm〜50μmの粒子の形態であることができる。平均粒子径は10nm〜40μmであることが好ましく、100nm〜30μmであることがより好ましく、1μm〜20μmであることが更により好ましい
本発明のケイ素含有炭素系複合材料からなる電極活物質は、高い可逆容量と安定した充放電サイクル特性を有し、ナトリウムイオンが放出される際の電位損失が小さい電極を簡易な製造プロセスで製造可能とすることができる。したがって、この電極活物質は非水電解質二次電池の電極用活物質として好適に使用することができる。特に、この電極活物質はナトリウム又はナトリウムイオン二次電池の電極の活物質として好適である。
(電極)
本発明の電極は、前記の電極活物質を含有することを特徴とし、電極の形状及び調製方法は特に限定されるものでない。本発明の電極を調製する方法として、具体的には、ケイ素含有炭素系複合材料をバインダーと混合して電極を作製する方法;ケイ素含有炭素系複合材料をバインダー及び溶媒と混合し、得られたペーストを、集電体上に圧着し、或いは集電体上に塗布し、その後に乾燥して電極とする等の方法により電極を作製する方法が例示される。また、集電体に塗布したペーストの膜厚は、例えば、30〜500μm、好ましくは50〜300μm程度である。なお、塗布後の乾燥の手段は特に限定されるものではないが、加熱真空乾燥処理が好ましい。乾燥処理後の集電体上の電極材料の膜厚は、例えば、10〜300μm、好ましくは20〜200μm程度である。なお、ケイ素含有炭素系複合材料が繊維状の場合には、一軸方向に配したり、織物等の構造体の形にし、金属や導電性高分子等の導電性繊維で束ねたり編み込むことにより、電極を作製することができる。電極の形成においては、必要に応じて端子を組み合わせてもよい。
集電体は、特に限定されるものではなく、具体的には、銅、ニッケル、又はそれらの合金等の金属のメッシュ、箔が例示される。
バインダーとして、具体的には、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、スチレン−ブタジエン樹脂が例示される。バインダーの使用量は、特に限定されるものではなく、その下限値は、ケイ素含有炭素系複合材料100質量(重量)部に対して、5〜30質量(重量)部の範囲内であり、好ましくは5〜20質量(重量)部の範囲内である。バインダーの使用量が前記範囲を外れると、例えば、集電体表面上へのケイ素含有炭素系複合材料の密着強度が不十分になり、また、電極内部抵抗上昇の原因となる絶縁層が形成されるおそれがある。ペーストの調製方法は、特に制限されず、例えば、バインダーと有機溶媒との混合液(又は分散液)にケイ素含有炭素系複合材料を混合する方法等を例示することができる。
溶媒としては、通常、バインダーを溶解又は分散可能な溶媒が使用され、具体的には、N−メチルピロリドン、N,N−ジメチルホルムアミド等の有機溶媒を例示することができる。溶媒の使用量は、ペースト状となる限り特に制限されず、例えば、ケイ素含有炭素系複合材料100質量(重量)部に対して、通常、0.01〜500質量(重量)部の範囲内、好ましくは0.01〜400質量(重量)部の範囲内で、更に好ましくは0.01〜300質量(重量)部の範囲内である。
なお、本発明の電極には任意の添加材を配合してもよい。例えば、導電助剤を加えて電極を製造してもよい。導電助剤の使用割合は特に制限されないが、ケイ素含有炭素系複合材料100質量(重量)部に対して、2〜60質量(重量)部の範囲内であり、好ましくは5〜40質量(重量)部の範囲内であり、更に好ましくは5〜20質量(重量)部の範囲内である。導電性に優れ、電極の充放電容量の低下を抑制できるからである。
導電助剤としては、カーボンブラック(ケッチェンブラック、アセチレンブラック等)、炭素繊維、カーボンナノチューブ等が例示できる。導電助剤は、単独で又は2種以上組み合わせて使用することができる。なお、導電助剤は、例えば、ケイ素含有炭素系複合材料、バインダー及び溶媒を含むペーストに混合することができる。
また、本発明の電極にはその他任意の添加材として、黒鉛等の電極活物質を配合してもよい。
本発明のナトリウム及びナトリウムイオン電池は、前記の電極を備えたことを特徴とする。ナトリウムイオン二次電池は、例えば、前記電極からなる負極、ナトリウムを吸蔵・放出可能な正極、電解液、セパレータ、集電体、ガスケット、封口板、ケース等の電池構成要素を用い、常法により製造することができる。ナトリウム二次電池は、例えば、前記電極からなる正極、金属ナトリウムからなる負極、電解液、セパレータ、集電体、ガスケット、封口板、ケース等の電池構成要素を用い、常法により製造することができる。
本発明の電池の好ましい態様であるナトリウム又はナトリウムイオン二次電池を図1及び図2により詳細に説明する。
図1は、本発明の電池の一例であるナトリウムイオン二次電池であるボタン形電池の概略分解断面図である。
図1に示すナトリウムイオン二次電池は、上面開口有底円筒形状のケース1、ケース1の外周と略同等のサイズの内周を有する両端開口円筒形状のガスケット2、ワッシャー3、SUS板4、集電体5、本発明のケイ素含有炭素系複合材料を電極活物質として含む負極6、セパレータ7、正極8、集電体9、及び、封口板10からなる。
図1に示すナトリウムイオン二次電池のケース1内には、ケース1の内周よりも若干小さいサイズの略リング状であるワッシャー3が収容されており、ワッシャー3の上にケース1の内周よりも若干小さいサイズの略円盤状であるSUS板4が載置されている。SUS板4の上には、共にケース1の内周よりも若干小さいサイズの略円盤状である集電体5及び負極6が配設される。負極6の上には、ケース1の内周と略同等のサイズの一枚の円盤状部材としてのセパレータ7が載置され、セパレータ7には電解液が含浸されている。なお、セパレータ7は2枚以上の円盤状部材から構成されていてもよい。セパレータ7上には負極6と略同等のサイズの正極8及び集電体5と略同等のサイズの集電体9が配設される。集電体5は銅、ニッケル等の金属からなる箔、メッシュ等で構成されており、集電体9はアルミニウム等の金属からなる箔、メッシュ等で構成されており、それぞれ、負極5及び正極8に密着して一体化している。
図1に示すナトリウムイオン二次電池では、ケース1の壁面にガスケット2が嵌合されており、ガスケット2よりも若干大きいサイズの内周面を有する下面開口有底円筒形状の封口板10の当該内周面がガスケット2の外周面に更に嵌合されている。これにより、ケース1と封口板10はガスケット2によって絶縁され、ケース1、ガスケット2、ワッシャー3、SUS板4、集電体5、負極6、セパレータ7、正極8、集電体9及び封口板10の軸線が一致したボタン形電池が形成される。
図1に示すナトリウムイオン二次電池における正極8は、特に限定されるものではなく、例えば、正極活物質、導電助材及びバインダー等で構成することができる。正極活物質としては、例えば、NaMn、NaNiO、NaCoO、NaFeO、NaNi0.5Mn0.5、NaCrO等が挙げられる。正極活物質は、単独で又は二種以上組み合わせて使用してもよい。導電助材及びバインダーとしては上記と同様のものが例示される。
図2は実施例で作製した本発明の電池の一例であるナトリウム二次電池であるボタン形電池の概略分解断面図である。
図2に示すナトリウム二次電池は、上面開口有底円筒形状のケース1、ケース1の外周と略同等のサイズの内周を有する両端開口円筒形状のガスケット2、ワッシャー3、SUS板4、金属ナトリウムからなる負極6、セパレータ7、本発明のケイ素含有炭素系複合材料を電極活物質として含む正極8、集電体9’、及び、封口板10からなる。
図2に示すナトリウム二次電池のケース1内には、ケース1の内周よりも若干小さいサイズの略リング状であるワッシャー3が収容されており、ワッシャー3の上にケース1の内周よりも若干小さいサイズの略円盤状であるSUS板4が載置されている。SUS板4の上には、ケース1の内周よりも若干小さいサイズの略円盤状である負極6が配設される。負極6の上には、ケース1の内周と略同等のサイズの一枚の円盤状部材としてのセパレータ7が載置され、セパレータ7には電解液が含浸されている。なお、セパレータ7は2枚以上の円盤状部材から構成されていてもよい。セパレータ7上には負極6と略同等のサイズの正極8及び集電体9’が配設される。集電体9’は銅、ニッケル等の金属からなる箔、メッシュ等で構成されており、正極8に密着して一体化している。
図2に示すナトリウム二次電池では、ケース1の壁面にガスケット2が嵌合されており、ガスケット2よりも若干大きいサイズの内周面を有する下面開口有底円筒形状の封口板10の当該内周面がガスケット2の外周面に更に嵌合されている。これにより、ケース1と封口板10はガスケット2によって絶縁され、ケース1、ガスケット2、ワッシャー3、SUS板4、負極6、セパレータ7、正極8、集電体9’及び封口板10の軸線が一致したボタン形電池が形成される。
図1及び図2に示すナトリウム又はナトリウムイオン二次電池に含まれる電解液は、特に限定されるものではなく、公知のものを用いることができる。例えば、電解液として、有機溶媒に電解質を溶解させた溶液を用いることにより、非水系ナトリウム又はナトリウムイオン二次電池を製造することができる。電解質としては、例えば、NaClO、NaPF、NaBF、CFSONa、NaAsF、NaB(C、CHSONa、CFSONa、NaN(SOCF、NaN(SO、NaC(SOCF、NaN(SOCF等を例示することができる。有機溶媒としては、例えば、カーボネート類(プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等)、ラクトン類(γ一ブチロラクトン等)、鎖状エーテル類(1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等)、環状エーテル類(テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン等)、スルホラン類(スルホラン等)、スルホキシド類(ジメチルスルホキシド等)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリル等)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、ポリオキシアルキレングリコール類(ジエチレングリコール等)等の非プロトン性溶媒を例示することができる。有機溶媒は、単独で用いてもよく二種以上の混合溶媒として用いてもよい。電解質濃度は、例えば、電解液1Lに対して、電解質0.3〜5モル、好ましくは0.5〜3モル、更に好ましくは0.8〜1.5モル程度である。
図1及び図2に示すナトリウム又はナトリウムイオン二次電池におけるセパレータ7は、特に限定されるものではなく、公知のセパレータ、例えば、多孔質ポリプロピレン製不織布、多孔質ポリエチレン製不織布等のポリオレフィン系の多孔質膜等を使用することができる。
本発明のナトリウム及びナトリウムイオン電池は、図1、図2に示した例に限定されるものではなく、例えば、積層形、パック形、ボタン形、ガム形、組電池形、角形といった様々な形態のものに適用可能である。
本発明のケイ素含有炭素系複合材料は、高い可逆容量と安定した充放電サイクル特性を有するナトリウム又はナトリウムイオン二次電池用の電極活物質及び電極に好適である。また、本発明のケイ素含有炭素系複合材料は、廉価な原料を用いて、簡易な製造プロセスで製造可能である。そして、本発明の電極活物質及び電極は、電池に高い可逆容量と安定した充放電サイクル特性を付与できる。したがって、本発明のナトリウム又はナトリウムイオン二次電池は高い可逆容量と安定した充放電サイクル特性、且つ、高い初期充放電効率を有することができる。
以下、実施例及び比較例に基づいて本発明を詳細に説明するが、本発明は実施例に限定されるものではない。なお、実施例及び比較例における各元素分析及び電池特性の評価は以下のとおりに実施された。
[元素分析]
C、H、N分析:酸素循環燃焼法・TCD検出方式及び高周波燃焼法・赤外線吸収検出方式により検出された元素量の総和により求めた。
装置:NCH−21型 (住化分析センター社製)及びCS−LS600(LECO社製)
O分析:高温炭素反応・NDIR検出方式
装置:EMGA−2800(堀場製作所社製)
Si分析:試料を灰化、アルカリ溶融、酸溶解して分解した後、ICP検出を行った。
装置:iCAP6500DuoView(サーモフィッシャーサイエンティフィック社製)
[電池特性]
本発明のケイ素含有炭素系複合材料のナトリウム挿入脱離容量を次のようにして測定した。
北斗電工製、HJ1010mSM8Aを用い、ナトリウム挿入脱離容量測定を定電流でおこなった。その際、第一サイクルにおいて、ケイ素含有炭素系複合材料重量あたりの理論容量を700mAhとし、電流値をケイ素含有炭素系複合材料重量あたり70mAとなるようにした。また、ナトリウム挿入は電池電圧が0.005Vに達した後、更に10分の1の電流値となるまでとした。ナトリウム放出は電池電圧が1.5Vに到達するまでの容量とした。各ナトリウム挿入脱離の切り替え時には、30分間、開回路で放置した。なお、サイクル特性については、第一サイクルで得られた容量を理論容量とした。2回目以降0.1C相当の電流値で一サイクル目と同様な条件で行った。3サイクル目ナトリウム脱離容量を可逆容量とし、サイクル試験後の容量維持率はそのナトリウム脱離容量に対するサイクル後のナトリウム脱離容量で表示した。
[実施例1]
(ケイ素含有硬化物の調製)
DVB570(新日鐵化学社製、ジビニルベンゼン57.0質量(重量)%とビニルエチルベンゼン38.9質量(重量)%が主成分であり、主成分中のジビニルベンゼンの含有率約60質量(重量)%)775gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)531g(前記DVB570中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中120℃でこの組成物を硬化させることで硬化物を作製した。
(ケイ素含有炭素系複合材料の調製)
SSA−Sグレードのアルミナ製ボートに、前記硬化物1200gを投入し、ボートを脱脂炉内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。得られた焼成物を気流式粉砕機で粉砕後、精密空気分級機を用いて分級した。カーボン製容器に粉砕分級後得られた焼成物800gを投入し、容器をオキシノン炉内へ設置した。その後、4体積%水素含有高純度窒素を10L/分の流量で供給しつつ、1000℃で1時間かけて焼成することでケイ素含有炭素系複合材料を得た。前記ケイ素含有炭素系複合材料の化学組成を表1に示す。
(電極の作製)
前記ケイ素含有炭素系複合材料85質量(重量)%、カーボンブラック5質量(重量)%を加え、15分混合した。その後、5質量(重量)%ポリフッ化ビニリデン含有N−メチル−2−ピロリドン溶液をポリフッ化ビニリデンが固形分として10質量(重量)%となるように加え、更にN−メチル−2−ピロリドン適量を加え混合することによりスラリー状にした。その後、銅箔ロール上にスラリーを塗布した。こうして得られた電極を85℃で、12時間以上真空下保存し、厚み約60μmの電極を作製した。
(二次電池の作製及び評価)
前記電極、対極に金属ナトリウム、電解液として六フッ化リン酸ナトリウムを1モル/Lの割合で溶解させたエチレンカーボネートとジエチルカーボネート1:1(体積比)混合溶媒、及びセパレータとしてポリエチレン不織布を用い、コイン型ナトリウム二次電池を作製した。表2に実施例1の電池の特性を示す。
[実施例2]
(ケイ素含有硬化物及びケイ素含有炭素系複合材料の調製)
ジフェニルビス(ジメチルビニルシロキシ)シラン約3000g(14.06質量(重量)%ビニル基含有)に、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)約990g(前記ジフェニルビス(ジメチルビニルシロキシ)シラン中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として5ppmを混合して架橋性組成物を調製した。その後、高砂工業株式会社製装置(ロータリーキルン)で1%水素を含む窒素雰囲気中、200℃にてこの組成物を硬化させたのち、更に温度を上げて1000℃到達後、1時間熱処理を行い焼成物約2450g得た。焼成物を日本ニューマチック工業株式会社製装置(ラボジェットミル)で粉砕することでケイ素含有炭素系複合材料が得られた。
(電極の作製)
実施例1と同様に行い、厚み約40μmの電極を作製した。
(二次電池の作製及び評価)
定電流充放電測定を実施例1と同様に行った。表2に実施例2の電池の特性を示す。
[実施例3]
(ケイ素含有硬化物の調製)
ジフェニルビス(ジメチルビニルシロキシ)シラン 3.0g(14.06質量(重量)%ビニル基含有)に、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)0.98g(前記ジフェニルビス(ジメチルビニルシロキシ)シラン中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppmを混合して架橋性組成物を調製した。その後、窒素中150℃にてこの組成物を硬化させることで硬化物を調製した。
(ケイ素含有炭素系複合材料の調製)
SSA−Sグレードのアルミナ製ボートに、前記硬化物3.7gを投入し、ボートを脱脂内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級を行った。SSA−Sグレードのアルミナ製ボートに、粉砕分級後得られた焼成物2.2gを投入し、ボートをマッフル炉内へ設置した。マッフル炉内を減圧に60分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度アルゴンを100mL/分の流量で供給しつつ、5℃/分の割合で昇温し、1000℃で1時間焼成することでケイ素含有炭素系複合材料を得た。前記ケイ素含有炭素系複合材料の化学組成を表1に示す。
(電極の作製)
実施例1と同様に行い、厚み約40μmの電極を作製した。
(二次電池の作製及び評価)
定電流充放電測定を実施例1と同様に行った。表2に実施例4の電池の特性を示す。
[実施例4]
(ケイ素含有硬化物の調製)
ジフェニルビス(ジメチルハイドロジェンシロキシ)シラン(ケイ素原子結合水素原子含有量=0.66質量(重量)%)6.38gに、粘度4mPa・sの環状メチルビニルポリシロキサン(ケイ素原子結合ビニル基の含有量=31.4質量(重量)%)3.63g(前記ジフェニルビス(ジメチルハイドロジェンシロキシ)シラン中のケイ素原子結合水素原子1モルに対して本サイクリクス中のケイ素原子結合ビニル基が約1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中150℃でこの組成物を硬化させることで硬化物を調製した。
(ケイ素含有炭素系複合材料の調製)
前記硬化物9.04gを投入し、焼成物1.78gを投入した以外は実施例3と同様に行った。得られたケイ素含有炭素系複合材料の化学組成を表1に示す。
(電極の作製)
実施例1と同様に行い、厚み約50μmの電極を作製した。
(二次電池の作製及び評価)
定電流充放電測定を実施例1と同様に行った。表2に実施例5の電池の特性を示す。
[実施例5]
(ケイ素含有硬化物の調製)
粘度118mPa・sの両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン(東レ・ダウコーニング社製、ケイ素原子結合水素原子の含有量=0.32質量(重量)%)7.83gに、粘度4mPa・sの環状メチルビニルポリシロキサン(ケイ素原子結合ビニル基の含有量=31.4質量(重量)%)2.18g(前記両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン中のケイ素原子結合水素原子1モルに対して本サイクリクス中のケイ素原子結合ビニル基が約1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒 を白金金属として10ppmを混合して架橋性組成物を調製した。その後、窒素中150℃でこの組成物を硬化させることで硬化物を作製した。
(ケイ素含有炭素系複合材料の調製)
前記硬化物9.04gを投入し、焼成物2.12gを投入した以外は実施例3と同様に行った。得られたケイ素含有炭素系複合材料の化学組成を表1に示す。
(電極の作製)
実施例1と同様に行い、厚み約40μmの電極を作製した。
(二次電池の作製及び評価)
定電流充放電測定を実施例1と同様に行った。表2に実施例6の電池の特性を示す。
[実施例6]
(ケイ素含有硬化物の調製)
DVB570(新日鐵化学社製、ジビニルベンゼン57.0質量(重量)%とビニルエチルベンゼン38.9質量(重量)%が主成分であり、主成分中のジビニルベンゼンの含有率約60質量(重量)%)15.49gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)2.65g(前記DVB570中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約0.25モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中120℃でこの組成物を硬化させることで硬化物を作製した。
(ケイ素含有炭素系複合材料の調製)
カーボン製容器に、前記硬化物4gを投入し、容器をオキシノン炉内へ設置した。その後、4体積%水素含有高純度窒素を10L/分の流量で供給しつつ、1000℃で1時間かけて焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級することでケイ素含有炭素系複合材料を得た。前記ケイ素含有炭素系複合材料の化学組成を表1に示す。
(電極の作製)
実施例1と同様に行い、厚み約40μmの電極を作製した。
(二次電池の作製及び評価)
定電流充放電測定を実施例1と同様に行った。表2に実施例6の電池の特性を示す。
[比較例1]
(電極の作製)
半導体グレードケイ素の粉砕物(d50=3μm)、70質量(重量)%、アセチレンブラック15質量(重量)%を加え、更にカルボキシメチルセルロース(重合度500、東京化成製)7.5質量(重量)%、ポリアクリル酸(分子量25,000、和光純薬製)及び純水を適量加え、15分混合した。その後、更に純水を加え15分混合することによりスラリー状にした。その後、銅箔ロール上にスラリーを塗布した。こうして得られた電極を85℃で、12時間以上真空下保存し、厚み約30μmの電極を作製した。
(二次電池の作製及び評価)
定電流充放電測定を0.1mAの電流値でおこなった以外は、実施例1と同様に行った。表2に比較例1の電池の特性を示す。
[比較例2]
(ケイ素含有硬化物の調製)
テトラメチルジビニルジシロキサン(東レ・ダウコーニング社製)10gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)6.7g(前記テトラメチルジビニルジシロキサン中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中120℃でこの組成物を硬化させることで硬化物を作製した。
(ケイ素含有炭素系複合材料の調製)
カーボン製容器に、前記硬化物4gを投入し、容器をオキシノン炉内へ設置した。その後、4体積%水素含有高純度窒素を10L/分の流量で供給しつつ、1000℃で1時間かけて焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級することでケイ素含有炭素系複合材料を得た。前記硬化物4gを使用し、実施例3と同様に600℃で脱脂、粉砕、分級後、焼成時カーボン製容器に2gを投入し、容器をオキシノン炉内へ設置した。その後、4体積%水素含有高純度窒素を10L/分の流量で供給しつつ、1100℃で1時間かけて焼成し、ケイ素含有炭素系複合材料を得た。前記ケイ素含有炭素系複合材料の化学組成を表1に示す。
(電極の作製)
実施例1と同様に行い、厚み約30μmの電極を作製した。
(二次電池の作製及び評価)
定電流充放電測定を実施例1と同様に行った。表2に比較例2の電池の特性を示す。
Figure 2013157221
Figure 2013157221
1:ケース、2:ガスケット、3:ワッシャー、4:SUS板、5:集電体、6:負極、7:セパレータ、8:正極、9、9’:集電体、10:封口板

Claims (21)

  1. (A)芳香族基を有する架橋性有機化合物、及び
    (B)前記(A)成分を架橋可能な含ケイ素化合物
    とを架橋反応させてなる硬化物を熱処理することで得られる、電気化学的にナトリウムイオンを吸蔵可能なケイ素含有炭素系複合材料。
  2. 前記熱処理が、不活性ガス中又は真空中にて、300〜1500℃の温度で行われる、請求項1記載のケイ素含有炭素系複合材料。
  3. 前記(A)成分が、脂肪族不飽和基、エポキシ基、アクリル基、メタクリル基、アミノ基、水酸基、メルカプト基及びハロゲン化アルキル基からなる群から選択される少なくとも1種の架橋性基を有する、請求項1又は2記載のケイ素含有炭素系複合材料。
  4. 前記(A)成分が、一般式:

    (R1)2

    (式中、
    は架橋性基であり、
    xは1以上の整数であり、
    はx価の芳香族基である)
    で表される有機化合物である、請求項1乃至3のいずれかに記載のケイ素含有炭素系複合材料。
  5. 前記(A)成分がケイ素原子を含む、請求項1乃至3のいずれかに記載のケイ素含有炭素系複合材料。
  6. 前記(A)成分が、シラン、シラザン、シロキサン、カルボシラン又はこれらの混合物である、請求項5記載のケイ素含有炭素系複合材料。
  7. 前記シロキサンが、平均単位式:

    (R3 SiO1/2)(R3 SiO2/2)(R3SiO3/2)(SiO4/2)

    (式中、
    3は、それぞれ独立して、架橋性基、炭素数1〜20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族基、アルコキシ基、水素原子又はハロゲン原子を表し、
    a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはなく、一分子中のRの少なくとも1つは芳香族基であり、且つ、一分子中のRの少なくとも1つは架橋性基である)
    で表される、請求項6記載のケイ素含有炭素系複合材料。
  8. 前記(B)成分が、シラン、シラザン、シロキサン、カルボシラン又はこれらの混合物である、請求項1乃至7のいずれかに記載のケイ素含有炭素系複合材料。
  9. 前記シロキサンが、平均単位式:

    (R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)

    (式中、
    は、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基を表し、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、
    a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0になることはない)
    で表される、請求項8記載のケイ素含有炭素系複合材料。
  10. 前記架橋反応が、付加反応、縮合反応、開環反応又はラジカル反応である、請求項1乃至9のいずれかに記載のケイ素含有炭素系複合材料。
  11. 前記硬化物が、脂肪族不飽和基を有する(A)成分と、ケイ素原子結合水素原子を有する(B)成分とのヒドロシリル化反応により得られたものである、請求項1乃至10のいずれかに記載のケイ素含有炭素系複合材料。
  12. 前記硬化物が、ケイ素原子結合水素原子を有する(A)成分と、脂肪族不飽和基を有する(B)成分とのヒドロシリル化反応により得られたものである、請求項1乃至10のいずれかに記載のケイ素含有炭素系複合材料。
  13. 前記硬化物が、脂肪族不飽和基を有する(A)成分と、脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する(B)成分とのラジカル反応により得られたものである、請求項1乃至10のいずれかに記載のケイ素含有炭素系複合材料。
  14. 前記硬化物が、脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する (A)成分と、脂肪族不飽和基を有する(B)成分とのラジカル反応により得られたものである、請求項1乃至10のいずれかに記載のケイ素含有炭素系複合材料。
  15. アモルファス形態である、請求項1乃至14のいずれかに記載のケイ素含有炭素系複合材料。
  16. 平均粒子径が5nm〜50μmの粒子形態である、請求項1乃至15のいずれかに記載のケイ素含有炭素系複合材料。
  17. 請求項1乃至16のいずれかに記載のケイ素含有炭素系複合材料からなる電極活物質。
  18. 平均粒子径が1〜50μmの粒子である、請求項17記載の電極活物質。
  19. 請求項17又は18記載の電極活物質を含む電極。
  20. 請求項19記載の電極を備える蓄電デバイス。
  21. ナトリウム又はナトリウムイオン二次電池である、請求項20記載の蓄電デバイス。
JP2012017368A 2012-01-30 2012-01-30 ケイ素含有炭素系複合材料 Pending JP2013157221A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012017368A JP2013157221A (ja) 2012-01-30 2012-01-30 ケイ素含有炭素系複合材料
PCT/JP2013/051686 WO2013115114A1 (en) 2012-01-30 2013-01-22 Silicon-containing carbon-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017368A JP2013157221A (ja) 2012-01-30 2012-01-30 ケイ素含有炭素系複合材料

Publications (1)

Publication Number Publication Date
JP2013157221A true JP2013157221A (ja) 2013-08-15

Family

ID=47884454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017368A Pending JP2013157221A (ja) 2012-01-30 2012-01-30 ケイ素含有炭素系複合材料

Country Status (2)

Country Link
JP (1) JP2013157221A (ja)
WO (1) WO2013115114A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062168A (ja) * 2013-08-19 2015-04-02 Jsr株式会社 電極材料の製造方法、電極及び蓄電デバイス
JP2016091723A (ja) * 2014-10-31 2016-05-23 国立大学法人鳥取大学 ナトリウムイオン二次電池用負極およびその製造方法並びにナトリウムイオン二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11645693B1 (en) * 2020-02-28 2023-05-09 Amazon Technologies, Inc. Complementary consumer item selection
CN115667373A (zh) * 2020-05-28 2023-01-31 3M创新有限公司 可固化组合物、由其形成的反应产物及包含该反应产物的电子制品
CN112875694B (zh) * 2021-01-19 2022-10-28 青海凯金新能源材料有限公司 一种复合石墨负极材料的制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1023797A (en) 1964-02-14 1966-03-23 Ici Ltd New and improved process of preparing organosilicon polymers
DE2951879A1 (de) 1978-12-22 1980-07-31 Nippon Kogaku Kk Photoekektrischer umformer mit einer photoelektrischen elementanordnung des ladungsspeichertyps
US4340619A (en) 1981-01-15 1982-07-20 Dow Corning Corporation Process for the preparation of poly(disilyl)silazane polymers and the polymers therefrom
US4404153A (en) 1981-01-15 1983-09-13 Dow Corning Corporation Process for the preparation of poly(disilyl)silazane polymers and the polymers therefrom
US4312970A (en) 1981-02-20 1982-01-26 Dow Corning Corporation Silazane polymers from {R'3 Si}2 NH and organochlorosilanes
US4395460A (en) 1981-09-21 1983-07-26 Dow Corning Corporation Preparation of polysilazane polymers and the polymers therefrom
US4397828A (en) 1981-11-16 1983-08-09 Massachusetts Institute Of Technology Stable liquid polymeric precursor to silicon nitride and process
US4543344A (en) 1983-11-28 1985-09-24 Dow Corning Corporation Silicon nitride-containing ceramic material prepared by pyrolysis of hydrosilazane polymers from (R3 Si)2 NH and HSiCl3
US4540803A (en) 1983-11-28 1985-09-10 Dow Corning Corporation Hydrosilazane polymers from [R3 Si]2 NH and HSiCl3
US4482689A (en) 1984-03-12 1984-11-13 Dow Corning Corporation Process for the preparation of polymetallo(disily)silazane polymers and the polymers therefrom
US4835238A (en) 1987-06-08 1989-05-30 Dow Corning Corporation Polysilacyclobutasilazanes
US4774312A (en) 1987-06-08 1988-09-27 Dow Corning Corporation Polydisilacyclobutasilazanes
US4916200A (en) 1987-06-08 1990-04-10 Dow Corning Corporation Silane modified polysilacyclobutasilazanes
US4929742A (en) 1988-11-28 1990-05-29 Dow Corning Corporation Silane modified polysilacyclobutasilazanes
JPH04334551A (ja) 1991-05-10 1992-11-20 Tonen Corp ヒドロシランの重合触媒
CN1092215C (zh) 1996-12-27 2002-10-09 大阪瓦斯株式会社 聚硅烷的制造方法
JP4963806B2 (ja) 2005-07-29 2012-06-27 三洋電機株式会社 非水電解質二次電池
JP5800316B2 (ja) 2009-03-27 2015-10-28 学校法人東京理科大学 ナトリウムイオン二次電池
JP2012178224A (ja) * 2011-01-31 2012-09-13 Dow Corning Toray Co Ltd 表面炭素被覆ケイ素含有炭素系複合材料の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062168A (ja) * 2013-08-19 2015-04-02 Jsr株式会社 電極材料の製造方法、電極及び蓄電デバイス
JP2016091723A (ja) * 2014-10-31 2016-05-23 国立大学法人鳥取大学 ナトリウムイオン二次電池用負極およびその製造方法並びにナトリウムイオン二次電池

Also Published As

Publication number Publication date
WO2013115114A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2011013855A1 (ja) 電極活物質、電極、および蓄電デバイス
WO2011013851A1 (ja) 電極活物質、電極、および蓄電デバイス
KR101139205B1 (ko) Si-C-O계 복합체 및 그의 제조 방법 및 비수전해질이차 전지용 부극재
JP4998662B2 (ja) Si−C−O系コンポジット及びその製造方法並びに非水電解質二次電池用負極材
EP2104164A1 (en) Porous silicon-containing carbon-based composite material, electrode composed of the same and battery
WO2012105672A1 (ja) ケイ素含有炭素系複合材料
KR102370791B1 (ko) 비수성 이차 전지 부극용 활물질 및 비수성 이차 전지
US5824280A (en) Electrodes for lithium ion batteries using polysiloxanes
JP2014107013A (ja) ケイ素含有複合材料
JP2012178224A (ja) 表面炭素被覆ケイ素含有炭素系複合材料の製造方法
Lim et al. Novel approach for controlling free-carbon domain in silicone oil-derived silicon oxycarbide (SiOC) as an anode material in secondary batteries
CN111640917A (zh) 复合体与SiOC结构体及其制法、负极及组合物、二次电池
JP2013157221A (ja) ケイ素含有炭素系複合材料
TW201929300A (zh) 負極活性物質及其製造方法
JP2006059558A (ja) 電気化学蓄電デバイス及びその製造方法
WO2013002157A1 (ja) リチウム被覆金属ケイ素又はケイ素合金微粉末が分散されたケイ素含有炭素系複合材料
US6306541B1 (en) Electrodes for lithium ion batteries using polysilanes
WO2012105671A1 (ja) ケイ素含有炭素系複合材料
KR20230030569A (ko) 전지용 활물질, 전지용 복합 활물질, 및 이차 전지
CN115966662A (zh) 用于锂二次电池的负极活性物质和包括其的锂二次电池
JP2014029785A (ja) ケイ素含有炭素系複合材料
TW201236973A (en) Silicon-containing carbon-based composite material
TW201235296A (en) Method for manufacturing a carbon surface-coated silicon-containing carbon-based composite material