JP2013148848A - 光学フィルムおよびその製造方法、並びにこれを用いた偏光板 - Google Patents

光学フィルムおよびその製造方法、並びにこれを用いた偏光板 Download PDF

Info

Publication number
JP2013148848A
JP2013148848A JP2012011519A JP2012011519A JP2013148848A JP 2013148848 A JP2013148848 A JP 2013148848A JP 2012011519 A JP2012011519 A JP 2012011519A JP 2012011519 A JP2012011519 A JP 2012011519A JP 2013148848 A JP2013148848 A JP 2013148848A
Authority
JP
Japan
Prior art keywords
film
acid
optical film
resin
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012011519A
Other languages
English (en)
Other versions
JP6212836B2 (ja
Inventor
Mutsumi Kasahara
睦美 笠原
Koichi Saito
浩一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012011519A priority Critical patent/JP6212836B2/ja
Publication of JP2013148848A publication Critical patent/JP2013148848A/ja
Application granted granted Critical
Publication of JP6212836B2 publication Critical patent/JP6212836B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】薄型化した場合であっても、偏光板の作製に用いられた際に当該偏光板の割れを防止することが可能な、ゼロ位相差フィルム、およびその製造方法を提供する。
【解決手段】薄型化のゼロ位相差フィルムにおいて、長手方向または幅手方向のいずれか一方の破断点応力が所定の値以上となるように光学フィルムを構成する。また、光学フィルムを製造にあたって、原反フィルムに対して延伸処理を施す際に、長手方向(MD方向)の延伸倍率および幅手方向(TD方向)の延伸倍率の一方が他方の1.01倍以上となるような異方延伸処理を施す。
【選択図】なし

Description

本発明は、光学フィルムおよびその製造方法、並びにこれを用いた偏光板に関する。
液晶表示装置の方式としては、通称TN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等がよく知られているが、なかでもIPS(インプレーンスイッチング;In-Plane Switching)モード型液晶表示装置(以下、単に「IPS型液晶表示装置」とも称する)は、液晶層および当該液晶層を挟持する一対の基板を有する液晶セルと、当該液晶セルの両側(視認側およびバックライト側)にそれぞれ配置された偏光板と、を備えるものである(例えば、特許文献1を参照)。このIPS型液晶表示装置は、現在、タブレット型表示装置やスマートフォンなどの携帯用機器に広く用いられている。IPS型液晶表示装置では、黒表示時に液晶層に含まれる液晶分子が前記一対の基板の表面に対して平行に配向するため、IPS型液晶表示装置は黒表示性能に優れるという利点がある。また、IPS型液晶表示装置では、いわゆる光学補償フィルム(視野角拡大フィルム)を用いなくともある程度の高視野角を確保できるという利点もある。なお、偏光板は、偏光子の両側の面に偏光板保護フィルムとしての光学フィルムが積層されてなる構成を有しており、この光学フィルムに種々の特性を持たせることで、偏光板に各種の機能を発揮させる試みも多くなされている。
上述したような携帯用機器に採用される液晶表示装置に対しては、一般に薄型化・軽量化の要求が大きく、これに伴って液晶表示装置に用いられる光学フィルムに対する薄型化の要求も大きい。また、上述したIPS型液晶表示装置に用いられる光学フィルムの好ましい一形態として、面内方向のリターデーション(Ro)および厚み方向のリターデーション(Rth)がいずれも0に近い、いわゆる「ゼロ位相差フィルム」がある。この「ゼロ位相差フィルム」を製造するための手段として、固有複屈折の正負が異なる樹脂を相溶状態で混合する技術が知られている(例えば、特許文献2を参照)。
特開2010−250204号公報 特開2011−123402号公報
光学フィルムの一般的な製造方法として、ポリマーフィルムを種々の延伸技術を用いて一軸延伸または二軸延伸により製造するという方法がある。この際、延伸倍率を大きく設定すれば膜厚の小さい光学フィルムを製造可能であることから、本発明者らはまず、高い延伸倍率での延伸処理を施すことで光学フィルムの薄膜化を達成することを試みた。しかしながら、単一の組成を有する樹脂フィルムに対して単純に高倍率延伸を行うのみでは、樹脂の配向に伴ってリターデーション(Ro、Rth)の値が大きくなってしまい、ゼロ位相差フィルムを製造することはできない。そこで、特許文献2に記載されているような、固有複屈折の正負が異なる樹脂を混合する技術を採用した上で高倍率延伸処理を試みた。これにより、得られるフィルムをゼロ位相差フィルムとすることはできたが、その一方で、得られたフィルムを用いて偏光板を構成したときに、偏光板が割れやすいという問題が生じることが判明した。
かような知見に基づき、本発明は、薄型化した場合であっても、偏光板の作製に用いられた際に当該偏光板の割れを防止することが可能な、ゼロ位相差フィルム、およびその製造方法を提供することを目的とする。
上記の課題に鑑み、本発明者らはさらに、偏光板の割れを防止することができるような光学フィルム得るための手段を鋭意探索した。その結果、長手方向または幅手方向のいずれか一方の破断点応力が所定の値以上となるように光学フィルムを構成することで、薄型化のゼロ位相差フィルムとしても偏光板の割れの発生を防止することが可能な光学フィルムが提供されうることを見出した。また、光学フィルムを製造にあたって、原反フィルムに対して延伸処理を施す際に、長手方向(MD方向)の延伸倍率および幅手方向(TD方向)の延伸倍率の一方が他方の1.01倍以上となるような異方延伸処理を施すことで、上述したような優れた特性を有する光学フィルムの製造が可能となることを見出し、本発明を完成させるに至った。
すなわち、本発明の上記目的は、以下の構成により達成される。
1.膜厚が10〜40μmであり、
下記数式(1)および下記数式(2):
式中、nxはフィルム面内の遅相軸方向の屈折率を表し、nyはフィルム面内の進相軸方向の屈折率を表し、nzはフィルム厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す;屈折率は23℃、55%RHの環境下、波長590nmで測定
でそれぞれ表されるRoおよびRthが、
を満足し、長手方向または幅手方向のいずれか一方の破断点応力が80MPaよりも大きい、光学フィルム;
2.幅手方向の破断点応力が長手方向の破断点応力よりも大きい、上記1に記載の光学フィルム;
3.固有複屈折値が正の樹脂および固有複屈折値が負の樹脂を相溶状態で含有する、上記1または2に記載の光学フィルム;
4.前記固有複屈折値が正の樹脂がアクリル樹脂であり、前記固有複屈折値が負の樹脂がセルロース樹脂である、上記3に記載の光学フィルム;
5.上記1〜4のいずれか1項に記載の光学フィルムの製造方法であって、
ドープを支持体上に流延して得られるフィルムを乾燥し、剥離した後に長手方向(MD方向)および幅手方向(TD方向)に延伸する工程を含み、
長手方向(MD方向)の延伸倍率および幅手方向(TD方向)の延伸倍率の一方が他方の1.01倍以上であり、延伸後のフィルムの膜厚が10〜40μmである、光学フィルムの製造方法;
6.幅手方向(TD方向)の延伸倍率が長手方向(MD方向)の延伸倍率よりも大きい、上記5に記載の製造方法;
7.長手方向(MD方向)の延伸倍率が1.5〜3.0倍である、上記5または6に記載の製造方法;
8.前記ドープの支持体への流延が溶融流延である、上記5〜7のいずれか1項に記載の製造方法;
9.上記1〜4のいずれか1項に記載の光学フィルムまたは上記5〜8のいずれか1項に記載の製造方法により製造された光学フィルムと、偏光子とが、前記偏光子の吸収軸方向と前記光学フィルムの長手方向(MD方向)とが平行になるように積層されてなる、偏光板。
本発明によれば、薄型化した場合であっても高い機械的強度を維持することが可能な、ゼロ位相差フィルム、およびその製造方法が提供される。
本発明に係る光学フィルム(セルロースエステルフィルム)の製造方法を実施する装置の1つの実施形態を示す概略フローシートである。 図1に示す製造装置の要部拡大フローシートである。 (a)は流延ダイの要部の外観図であり、(b)は流延ダイの要部の断面図である。 挟圧回転体の第1実施形態の断面図である。 挟圧回転体の第2実施形態の回転軸に垂直な平面での断面図である。 挟圧回転体の第2実施形態の回転軸を含む平面での断面図である(特許319404号明細書より引用)。
以下、本発明の実施形態を詳細に説明する。
≪光学フィルム≫
本発明の一形態は、光学フィルムに関する。本形態に係る光学フィルムは、以下の特徴を有する。
(a)膜厚が10〜40μmである;
(b)下記数式(1)および下記数式(2):
式中、nxはフィルム面内の遅相軸方向の屈折率を表し、nyはフィルム面内の進相軸方向の屈折率を表し、nzはフィルム厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す;屈折率は23℃、55%RHの環境下、波長590nmで測定
でそれぞれ表されるRoおよびRthが、
を満足する;および、
(c)長手方向または幅手方向のいずれか一方の破断点応力が80MPaよりも大きい。
本形態に係る光学フィルムは、上述した(a)〜(c)の特徴を有するものであれば、その具体的な組成等の構成については特に制限はない。
一例として、本形態に係る光学フィルムは、例えば、セルロース樹脂、アクリル樹脂、ノルボルネン系樹脂などの1種または2種以上を含有するものが用いられる。これらの樹脂を含有するフィルムであれば、光学フィルムに求められる透明性、耐熱性、耐湿性などの各種特性に優れる。なかでも、本形態に係る光学フィルムの好ましい実施形態は、固有複屈折値が正の樹脂および固有複屈折値が負の樹脂を相溶状態で含有する。
正の固有複屈折を有する樹脂は、延伸時に延伸方向の屈折率が大きくなる特性を有する樹脂であれば特に限定されないが、透明性が高く熱可塑性のあるものが好ましい。正の固有複屈折を有する樹脂の例として、具体的には、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)等のセルロース樹脂、ポリノルボルネン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリアリレート樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂や、これらの混合物等が挙げられる。なかでもセルロース樹脂が好ましく、セルロースエステル樹脂がより好ましい。特に、セルロースエステル樹脂として、炭素数2〜4のアシル基、または、炭素数2のアシル基および炭素数3〜4のアシル基で置換され、かつ、アシル基総置換度が1.0以上2.4以下であり、アシル置換基の総炭素数が4.4以上のものが、正の固有複屈折を有するポリマーの好ましい形態として採用されうる。
なお、正の固有複屈折を有する樹脂がセルロースエステル樹脂を含む場合、当該セルロースエステル樹脂の重量平均分子量(Mw)は、フィルム強度(脆性、機械強度)の観点から好ましくは75000以上であり、75000〜300000の範囲であることがより好ましく、100000〜240000の範囲内であることがさらに好ましく、160000〜240000のものが特に好ましい。
一方、負の固有複屈折を有する樹脂は、延伸時に延伸方向と直交方向の屈折率が大きくなる特性を有する樹脂であれば特に限定されない。特に透明性が高く熱可塑性のあるものが好ましく、なかでも、アクリル樹脂が好ましく用いられる。
本形態に用いられうるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50〜99質量%、およびこれと共重合可能な他の単量体単位1〜50質量%からなるものが好ましい。
共重合可能な他の単量体としては、アルキル基の炭素数が2〜18のアルキルメタクリレート、アルキル基の炭素数が1〜18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α−メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル、無水マレイン酸、マレイミド、N−置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。
これらのなかでも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn−ブチルアクリレートが特に好ましく用いられる。
以上のように、本形態に係る光学フィルムは、固有複屈折値が正の樹脂としてセルロースエステル樹脂と、固有複屈折値が負の樹脂としてアクリル樹脂とを、相溶状態で含有するものであることが好ましい。なお、本明細書において、ある樹脂が延伸方向に対して正の固有複屈折または負の固有複屈折のいずれを有するものであるかについては、下記の試験法により判断することができる。
〈樹脂の複屈折性試験法〉
樹脂を単独で溶媒に溶解しキャスト製膜した後、加熱乾燥し、透過率80%以上のフィルムについて複屈折性の評価を行う。
アッベ屈折率計−4T((株)アタゴ製)に多波長光源を用いて屈折率測定を行い、上記フィルムを幅手方向に延伸したときに、延伸方向の屈折率をNx、また直交する面内方向の屈折率をNyとする。590nmの各々の屈折率について、(Nx−Ny)>0であるフィルムについて、当該樹脂は延伸方向に対して正の固有複屈折を有すると判断する。同様にして(Nx−Ny)<0である場合、負の固有複屈折を有すると判断する。
アクリル樹脂は、特に光学フィルムとしての脆性の改善およびセルロースエステル樹脂と相溶した際の透明性の改善の観点で、重量平均分子量(Mw)が80000以上であることが好ましい。アクリル樹脂の重量平均分子量(Mw)が80000を下回ると、十分な脆性の改善が得られずにセルロースエステル樹脂との相溶性が劣化する虞がある。アクリル樹脂の重量平均分子量(Mw)は、80000〜1000000の範囲内であることがさらに好ましく、100000〜600000の範囲内であることが特に好ましく、150000〜400000の範囲であることが最も好ましい。アクリル樹脂(A)の重量平均分子量(Mw)の上限値は特に限定されるものではないが、製造上の観点から1000000以下とされることが好ましい形態である。
なお、アクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。
溶媒: メチレンクロライド
カラム: Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用する)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000〜500迄の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いることが好ましい。
アクリル樹脂の製造方法としては、特に制限はなく、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いてもよい。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁重合または乳化重合では30〜100℃、塊状重合または溶液重合では80〜160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。
アクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。
セルロースエステル樹脂について、特に脆性の改善やアクリル樹脂と相溶させたときの透明性の観点から、アシル基総置換度(T)が好ましくは2.0〜3.0であり、炭素数が3〜7のアシル基の置換度は好ましくは1.2〜3.0であり、炭素数3〜7のアシル基の置換度は好ましくは2.0〜3.0である。すなわち、セルロースエステル樹脂は、好ましくは、炭素数が3〜7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。
セルロースエステル樹脂の、アシル基総置換度が2.0を下回る場合、すなわち、セルロースエステル分子の2,3,6位の水酸基の残度が1.0を上回る場合には、アクリル樹脂とセルロースエステル樹脂とが十分に相溶せず偏光板保護フィルムとして用いる場合にヘイズが問題となる虞がある。また、アシル基総置換度が2.0以上であっても、炭素数が3〜7のアシル基の置換度が1.2を下回る場合は、やはり十分な相溶性が得られないか、脆性が低下する虞がある。例えば、アシル基総置換度が2.0以上の場合であっても、炭素数2のアシル基(すなわち、アセチル基)の置換度が高く、炭素数3〜7のアシル基の置換度が1.2を下回る場合は、相溶性が低下してヘイズが上昇する虞がある。また、アシル基総置換度が2.0以上の場合であっても、炭素数8以上のアシル基の置換度が高く、炭素数3〜7のアシル基の置換度が1.2を下回る場合は、脆性が劣化し、所望の特性が得られない虞がある。
セルロースエステル樹脂のアシル置換度は、総置換度(T)が2.0〜3.0であり、炭素数が3〜7のアシル基の置換度が1.2〜3.0であれば問題ないが、炭素数が3〜7以外のアシル基、すなわち、アセチル基や炭素数が8以上のアシル基の置換度の総計が1.3以下とされることが好ましい。また、セルロースエステル樹脂のアシル基の総置換度(T)は、2.5〜3.0の範囲であることがさらに好ましい。
なお、前記アシル基は、脂肪族アシル基であっても、芳香族アシル基であってもよい。脂肪族アシル基の場合は、直鎖であっても分岐していてもよく、さらに置換基を有してもよい。本発明におけるアシル基の炭素数は、アシル基の置換基を包含するものである。
セルロースエステル樹脂が、芳香族アシル基を置換基として有する場合、芳香族環に置換する置換基Xの数は0〜5個であることが好ましい。この場合も、置換基を含めた炭素数が3〜7であるアシル基の置換度が1.2〜3.0となるように留意が必要である。例えば、ベンゾイル基は炭素数が7になるため、炭素を含む置換基を有する場合は、ベンゾイル基としての炭素数は8以上となり、炭素数が3〜7のアシル基には含まれないこととなる。
さらに、芳香族環に置換する置換基の数が2個以上のとき、これらは互いに同じでも異なっていてもよく、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。
セルロースエステル樹脂としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましい。これらの中で特に好ましいセルロースエステル樹脂は、セルロースアセテートプロピオネートやセルロースプロピオネートである。
なお、アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することができる。また、アセチル基の置換度や他のアシル基の置換度は、ASTM−D817−96に規定の方法により求めたものである。
セルロースエステル樹脂の重量平均分子量(Mw)は、特にアクリル樹脂との相溶性、脆性の改善の観点から好ましくは75000以上であり、75000〜300000の範囲であることがより好ましく、100000〜240000の範囲内であることがさらに好ましく、160000〜240000のものが特に好ましい。セルロースエステル樹脂の重量平均分子量(Mw)が75000を下回る場合は、耐熱性や脆性の改善効果が十分に得られない虞がある。本発明では2種以上のセルロース樹脂を混合して用いることもできる。
本形態に係る光学フィルムにおいて、アクリル樹脂とセルロースエステル樹脂とは、好ましくは95:5〜30:70の質量比で、かつ相溶状態で含有されるが、より好ましくは95:5〜50:50であり、さらに好ましくは90:10〜60:40である。アクリル樹脂とセルロースエステル樹脂との質量比が、95:5よりもアクリル樹脂が多くなると、セルロースエステル樹脂による効果が十分に得られない虞があり、同質量比が30:70よりもアクリル樹脂が少なくなると、耐湿性が不十分となる虞がある。
本形態に係る光学フィルムは、アクリル樹脂とセルロースエステル樹脂とが相溶状態で含有されてなるものであることが好ましい。光学フィルムとして必要とされる物性や品質を、異なる樹脂を相溶させることで相互に補うことにより達成するためである。なお、アクリル樹脂とセルロースエステル樹脂とが相溶状態となっているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、1つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。なお、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC−7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。
また、「アクリル樹脂やセルロースエステル樹脂を相溶状態で含有する」とは、上述したように各々の樹脂(ポリマー)を混合することで、結果として相溶された状態となることを意味しており、モノマー、ダイマー、あるいはオリゴマー等のアクリル樹脂の前駆体をセルロースエステル樹脂に混合させた後に重合させることにより混合樹脂とされた状態は含まれないものとする。
例えば、モノマー、ダイマー、あるいはオリゴマー等のアクリル樹脂の前駆体をセルロースエステル樹脂に混合させた後に重合されることにより混合樹脂を得る工程は、重合反応が複雑であり、この方法で作成した樹脂は、反応の制御が困難であり、分子量の調整も困難となる。また、このような方法で樹脂を合成した場合は、グラフト重合、架橋反応や環化反応が生じることが多く、溶媒に溶解しにくいケースや、加熱により溶融できなくなることが多く、混合樹脂中におけるアクリル樹脂を溶離して重量平均分子量(Mw)を測定することも困難であるため、物性をコントロールすることが難しく光学フィルムを安定に製造する樹脂として用いることはできない。
アクリル樹脂とセルロースエステル樹脂とは、それぞれ非結晶性樹脂であることが好ましく、いずれか一方が結晶性高分子、あるいは部分的に結晶性を有する高分子であってもよいが、本発明においてアクリル樹脂とセルロースエステル樹脂とが相溶することで、非結晶性樹脂となることが好ましい。
本形態に係る光学フィルムにおけるアクリル樹脂の重量平均分子量(Mw)やセルロースエステル樹脂の重量平均分子量(Mw)や置換度は、両者の樹脂の溶媒に対して溶解性の差を用いて分別した後に、それぞれ測定することにより得られる。樹脂を分別する際には、いずれか一方にのみ溶解する溶媒中に相溶された樹脂を添加することで、溶解する樹脂を抽出して分別することができ、このとき加熱操作や環流を行ってもよい。これらの溶媒の組み合わせを2工程以上組み合わせて、樹脂を分別してもよい。溶解した樹脂と、不溶物として残った樹脂を濾別し、抽出物を含む溶液については、溶媒を蒸発させて乾燥させる操作によって樹脂を分別することができる。これらの分別した樹脂は、高分子の一般の構造解析によって特定することができる。本形態に係る光学フィルムが、アクリル樹脂やセルロースエステル樹脂以外の樹脂を含有する場合も同様の方法で分別することができる。
また、相溶された樹脂の重量平均分子量(Mw)がそれぞれ異なる場合は、ゲルパーミエーションクロマトグラフィー(GPC)によって、高分子量物は早期に溶離され、低分子量物であるほど長い時間を経て溶離されるために、容易に分別可能であるとともに分子量を測定することも可能である。
また、相溶した樹脂をGPCによって分子量測定を行うと同時に、時間毎に溶離された樹脂溶液を分取して溶媒を留去し乾燥した樹脂を、構造解析を定量的に行うことで、異なる分子量の分画毎の樹脂組成を検出することで、相溶されている樹脂をそれぞれ特定することができる。事前に溶媒への溶解性の差で分取した樹脂を、各々GPCによって分子量分布を測定することで、相溶されていた樹脂をそれぞれ検出することもできる。
なお、本形態に係る光学フィルムは、フィルムとしての機能を損なわない限り、アクリル樹脂、セルロースエステル樹脂以外の樹脂や添加剤を含有して構成されていてもよい。アクリル樹脂、セルロースエステル樹脂以外の樹脂を含有する場合、添加される樹脂が相溶状態であっても、溶解せずに混合されていてもよい。また、本形態に係る光学フィルムにおけるアクリル樹脂およびセルロースエステル樹脂の総質量は、光学フィルムの55質量%以上であることが好ましく、さらに好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。
以上、好ましい実施形態として正の固有複屈折を有する樹脂(セルロースエステル樹脂など)と負の固有複屈折を有する樹脂(アクリル樹脂)とのブレンドの形態からなる光学フィルムについて説明したが、上述した(a)〜(c)の特徴を有する光学フィルムである限り、他の構成(組成)を有するものであってもよいことはもちろんである。以下、上述した(a)〜(c)の特徴について、詳細に説明する。
〈特徴(a):膜厚〉
本形態に係る光学フィルムの膜厚は、10〜40μmである。光学フィルムの膜厚が10μm未満であると、偏光板保護フィルムとして偏光子に貼合された際に、偏光子の収縮を抑えることができず、偏光板が必要以上に収縮してパネル点灯時の熱によるムラが発生する虞がある。一方、光学フィルムの膜厚が40μmを超えると、十分な薄型化を達成することができない虞がある。なお、本形態に係る光学フィルムの膜厚は、好ましくは15〜30μmであり、より好ましくは20〜25μmである。
〈特徴(b):リターデーション(ゼロ位相差)〉
本形態に係る光学フィルムは、いわゆる「ゼロ位相差フィルム」である。これにより、カラーシフト(黒表示時における斜めからの漏れ光の着色現象)を抑制できるという利点がある。なお、これを定量的に表現すれば、本形態に係る光学フィルムは、下記数式(1)および下記数式(2):
式中、nxはフィルム面内の遅相軸方向の屈折率を表し、nyはフィルム面内の進相軸方向の屈折率を表し、nzはフィルム厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す;屈折率は23℃、55%RHの環境下、波長590nmで測定
でそれぞれ表されるRoおよびRthについて、
を満足する。Roは、より好ましくは0〜3であり、特に好ましくは0〜1である。また、Rthは、より好ましくは−5〜5であり、特に好ましくは−3〜3である。なお、これらのRoおよびRthを上述した範囲内の値に制御するには、これらの偏光板保護フィルムの製造時において、フィルムの組成や延伸条件、リターデーション調整剤の種類や添加量などを適宜調節すればよい。
〈特徴(c):破断点応力〉
本形態に係る光学フィルムは、上述した特徴(a)のように比較的薄いにもかかわらず、優れた機械的強度を発揮するものである。これを定量的に表現すれば、長手方向(MD方向)または幅手方向(TD方向)のいずれか一方の破断点応力が80MPaよりも大きい。長手方向(MD方向)と幅手方向(TD方向)とでは、幅手方向(TD方向)の破断点応力がより大きいことが好ましい。かような構成とすることで、本形態に係る光学フィルムが偏光子とロール・トゥ・ロールで貼合されてなる偏光板の割れが効果的に防止されうる。これは、以下のように説明される。すなわち、一般に偏光子は吸収軸が存在する長手方向(MD方向)に裂けやすい。したがって、本形態に係る光学フィルムを偏光子に対してロール・トゥ・ロールで貼合して偏光板を構成したときに、光学フィルムの幅手方向(TD方向)の破断点応力がより大きければ、偏光子の長手方向(MD方向)への裂けが抑制され、同時に偏光板の割れも防止されるのである。ここで、長手方向(MD方向)および幅手方向(TD方向)の破断点応力はいずれも大きいほど好ましいが、これらの具体的な値について特に制限はない。一例として、幅手方向(TD方向)の破断点応力は、好ましくは100MPa以上であり、より好ましくは130MPa以上である。また、長手方向(MD方向)の破断点応力は、好ましくは90MPa以上であり、より好ましくは100MPa以上である。なお、破断点応力の上限値についても特に制限はないが、現実的には、いずれも200MPa程度以下である。これらの破断点応力の値としては、後述する実施例の欄に記載の手法により測定された値を採用するものとする。
なお、フィルムの破断点応力の値を制御するには、フィルムを構成する樹脂および添加剤の種類やその配合比、フィルム作製時の延伸条件などを調節すればよい。例えば、後述する実施例に示すように、長手方向(MD方向)と幅手方向(TD方向)とで延伸倍率の等しい、いわゆる等方延伸を行った場合には、上述した破断点応力を達成することはできない。
(添加剤)
本形態に係る光学フィルムは、種々の添加剤を含みうる。このような添加剤としては、例えば、可塑剤や紫外線吸収剤、赤外線吸収剤、マット剤、着色剤などが挙げられる。
〈可塑剤〉
光学フィルムは、可塑剤を含んでもよい。可塑剤の具体的な形態について特に制限はないが、例えば、ポリエステル系可塑剤や糖エステル系化合物などが挙げられる。
〈ポリエステル系可塑剤〉
ポリエステル系可塑剤の具体的な構造について特に制限はなく、分子内に芳香環またはシクロアルキル環を有するポリエステル系可塑剤が用いることができる。ポリエステル系可塑剤としては、例えば、下記一般式(4)で表されるポリエステル化合物が挙げられる。
で表されるポリエステル化合物が挙げられる。
一般式(4)において、Bは、炭素数2〜6の直鎖または分岐のアルキレン基またはシクロアルキレン基を表し、Aは、炭素数6〜14の芳香環、または、炭素数2〜6の直鎖もしくは分岐のアルキレン基もしくはシクロアルキレン基を表し、Xは、水素原子または炭素数6〜14の芳香環を含むモノカルボン酸残基を表し、nは、1以上の自然数を表す。
一般式(4)で表されるポリエステル化合物は、芳香環(炭素数6〜14)または直鎖もしくは分岐のアルキレン基もしくはシクロアルキレン基(ともに炭素数2〜6)を有するジカルボン酸と、炭素数2〜6の直鎖または分岐のアルキレンジオールまたはシクロアルキレンジオールとの交互共重合により得られる交互共重合体である。芳香族ジカルボン酸と、直鎖または分岐のアルキレン基またはシクロアルキレン基を有するジカルボン酸とは、それぞれ単独で用いても、混合物として用いても構わないが、偏光板保護フィルムを構成する主成分の樹脂(例えば、セルロースエステル樹脂)との相溶性の点から、少なくとも芳香族ジカルボン酸が10%以上含まれることが好ましい。また、芳香環(炭素数6〜14)を有するモノカルボン酸で両末端を封止してもよい。
芳香環(炭素数6〜14)を有するジカルボン酸、つまり、炭素数6〜16の芳香族ジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、1,5−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,8−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,8−ナフタレンジカルボン酸、2,2’−ビフェニルジカルボン酸、4,4’−ビフェニルジカルボン酸、等が挙げられる。そのなかでも好ましくは、テレフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸である。
直鎖または分岐のアルキレン基またはシクロアルキレン基(炭素数2〜6)を有するジカルボン酸としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、1,2−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、等が挙げられる。そのなかでも好ましくは、コハク酸、アジピン酸、1,4−シクロヘキサンジカルボン酸である。
また、炭素数が2〜6の直鎖または分岐のアルキレンジオールまたはシクロアルキレンジオールとしては、例えば、エタンジオール(エチレングリコール)、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール等が挙げられる。そのなかでも、好ましくはエタンジオール(エチレングリコール)、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオールである。
なかでも、Aが置換基を有していてもよいベンゼン環、ナフタレン環またはビフェニル環であることが、可塑性付与性能に優れるという観点から好ましい。ここで、ベンゼン環、ナフタレン環またはビフェニル環が有しうる「置換基」とは、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、または炭素数1〜6のアルコキシ基である。
ポリエステル化合物の両末端を封止する、芳香環(炭素数6〜14)を有するモノカルボン酸としては、例えば、安息香酸、オルトトルイル酸、メタトルイル酸、パラトルイル酸、パラターシャリブチル安息香酸、ジメチル安息香酸、パラメトキシ安息香酸が挙げられる。そのなかでも好ましくは安息香酸、パラトルイル酸、パラターシャリブチル安息香酸である。
芳香族ポリエステル化合物は、常法により上述したジカルボン酸とアルキレンジオールまたはシクロアルキレンジオールとのポリエステル化反応またはエステル交換反応による熱溶融縮合法か、あるいはこれら酸の酸クロライドとグリコール類との界面縮合法のいずれかの方法によって容易に合成することができる。さらに、上述した芳香族モノカルボン酸を加えることで、両末端が封止されたポリエステル化合物を合成することができる。
以下に、本発明において用いられうる芳香族ポリエステル化合物を例示する。
本形態に係る光学フィルムは、一般式(4)で表されるポリエステル化合物以外の可塑剤をさらに含有することができる。
一般式(4)で表されるポリエステル化合物以外の可塑剤としては特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤および多価アルコールエステル系可塑剤、エステル系可塑剤、アクリル系可塑剤等から選択される。
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。
本発明に好ましく用いられる多価アルコールは次の一般式(a)で表される。
一般式(a): R11−(OH)
(式中、R11はn価の有機基、nは2以上の正の整数、OH基はアルコール性、および/またはフェノール性ヒドロキシ基(水酸基)を表す。
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、これらに限定されるものではない。
アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。
特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、これに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることがさらに好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースアセテートとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基あるいはエトキシ基などのアルコキシ基を1〜3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることがさらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースアセテートとの相溶性の点では小さい方が好ましい。
多価アルコールエステルに用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
以下に、多価アルコールエステルの具体的化合物を例示する。
グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。
アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
リン酸エステル系可塑剤としては、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
多価カルボン酸エステル化合物としては、2価以上、好ましくは2価〜20価の多価カルボン酸とアルコールのエステルよりなる。また、脂肪族多価カルボン酸は2〜20価であることが好ましく、芳香族多価カルボン酸、脂環式多価カルボン酸の場合は3価〜20価であることが好ましい。
多価カルボン酸は次の一般式(b)で表される。
一般式(b):R12(COOH)m1(OH)n1
式中、R12は(m1+n1)価の有機基、m1は2以上の正の整数、n1は0以上の整数、COOH基はカルボキシ基、OH基はアルコール性またはフェノール性ヒドロキシ基を表す。
好ましい多価カルボン酸の例としては、例えば以下のようなものを挙げることができるが、これらに限定されるものではない。
トリメリット酸、トリメシン酸、ピロメリット酸のような3価以上の芳香族多価カルボン酸またはその誘導体、コハク酸、アジピン酸、アゼライン酸、セバシン酸、シュウ酸、フマル酸、マレイン酸、テトラヒドロフタル酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クエン酸のようなオキシ多価カルボン酸などを好ましく用いることができる。特にオキシ多価カルボン酸を用いることが、保留性向上などの点で好ましい。
本発明に用いることのできる多価カルボン酸エステル化合物に用いられるアルコールとしては特に制限はなく公知のアルコール、フェノール類を用いることができる。
例えば炭素数1〜32の直鎖または側鎖を持った脂肪族飽和アルコールまたは脂肪族不飽和アルコールを好ましく用いることができる。炭素数1〜20であることがさらに好ましく、炭素数1〜10であることが特に好ましい。
また、シクロペンタノール、シクロヘキサノールなどの脂環式アルコールまたはその誘導体、ベンジルアルコール、シンナミルアルコールなどの芳香族アルコールまたはその誘導体なども好ましく用いることができる。
多価カルボン酸としてオキシ多価カルボン酸を用いる場合は、オキシ多価カルボン酸のアルコール性またはフェノール性のヒドロキシ基(水酸基)を、モノカルボン酸を用いてエステル化してもよい。好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
脂肪族モノカルボン酸としては炭素数1〜32の直鎖または側鎖を持った脂肪酸を好ましく用いることができる。炭素数1〜20であることがさらに好ましく、炭素数1〜10であることが特に好ましい。
好ましい脂肪族モノカルボン酸としては酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上持つ芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に酢酸、プロピオン酸、安息香酸であることが好ましい。
多価カルボン酸エステル化合物の分子量は特に制限はないが、分子量300〜1000の範囲であることが好ましく、350〜750の範囲であることがさらに好ましい。保留性向上の点では大きい方が好ましく、透湿性、セルロースアセテートとの相溶性の点では小さい方が好ましい。
本発明に用いることのできる多価カルボン酸エステルに用いられるアルコール類は一種類でも良いし、二種以上の混合であっても良い。
本発明に用いることのできる多価カルボン酸エステル化合物の酸価は1mgKOH/g以下であることが好ましく、0.2mgKOH/g以下であることがさらに好ましい。酸価を上記範囲にすることによって、リターデーションの環境変動も抑制されるため好ましい。
なお、酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。
特に好ましい多価カルボン酸エステル化合物の例を以下に示すが、本発明はこれに限定されるものではない。
例えば、トリエチルシトレート、トリブチルシトレート、アセチルトリエチルシトレート(ATEC)、アセチルトリブチルシトレート(ATBC)、ベンゾイルトリブチルシトレート、アセチルトリフェニルシトレート、アセチルトリベンジルシトレート、酒石酸ジブチル、酒石酸ジアセチルジブチル、トリメリット酸トリブチル、ピロメリット酸テトラブチル等が挙げられる。
可塑剤は、光学フィルム100質量%に対して、5〜20質量%の量で含まれることが好ましく、より好ましくは5〜10質量%である。
〈糖エステル化合物〉
本形態に係る光学フィルムがセルロースエステル樹脂を含む場合には、糖エステル化合物をさらに含むことで、セルロースエステル樹脂の加水分解が防止されることから、フィルムの耐水性が向上しうる。また、偏光板を構成する際の偏光子との貼合時には、フィルム表面がケン化処理されるが、このケン化処理時におけるセルロースエステル樹脂の加水分解とそれに伴うアルカリケン化液への溶出も防止されうる。
糖エステル化合物の一例としては、下記一般式(5):
で表される化合物が挙げられる。
一般式(5)において、Qは、単糖類または二糖類の残基を表し、Rは、脂肪族基または芳香族基を表し、mは、単糖類または二糖類の残基に直接結合している水酸基の数の合計であり、lは、単糖類または二糖類の残基に直接結合している−(O−C(=O)−R)基の数の合計であり、3≦m+l≦8であり、l≠0である。
一般式(5)で表される構造を有する化合物は、水酸基の数(m)、−(O−C(=O)−R)基の数(l)が固定された単一種の化合物として単離することは困難であり、式中のm、lの異なる成分が数種類混合された化合物となることが知られている。したがって、水酸基の数(m)、−(O−C(=O)−R)基の数(l)が各々変化した混合物としての性能が重要であり、本形態のようなセルロースアシレートフィルムの場合、ヘイズ特性に対し一般式(5)で表される構造を有し、かつm=0の成分とm>0の成分との混合比率が45:55〜0:100である化合物が好ましい。さらに性能的、コスト的により好ましくはm=0の成分とm>0の成分との混合比率が10:90〜0.1:99.9の範囲である。なお、上記のm=0の成分とm>0の成分は、常法により高速液体クロマトグラフィによって測定することが可能である。
上記一般式(5)において、Qは単糖類または二糖類の残基を表す。単糖類の具体例としては、例えばアロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、リボース、アラビノース、キシロース、リキソースなどが挙げられる。
以下に、一般式(5)で表される、単糖類残基を有する化合物の構造例を示すが、本発明はこれらの具体例に限定されるものではない。
二糖類の具体例としては、例えば、トレハロース、スクロース、マルトース、セロビオース、ゲンチオビオース、ラクトース、イソトレハロースなどが挙げられる。
以下に、一般式(5)で表される、二糖類残基を有する化合物の構造例を示すが、本発明はこれらの具体例に限定されるものではない。
一般式(5)において、Rは、脂肪族基または芳香族基を表す。ここで、脂肪族基および芳香族基はそれぞれ独立に置換基を有していてもよい。
また、一般式(5)において、mは、単糖類または二糖類の残基に直接結合している水酸基の数の合計であり、lは、単糖類または二糖類の残基に直接結合している−(O−C(=O)−R)基の数の合計である。そして、3≦m+l≦8であることが必要であり、4≦m+l≦8であることが好ましい。また、l≠0である。なお、lが2以上である場合、−(O−C(=O)−R)基は互いに同じでもよいし異なっていてもよい。
Rの定義における脂肪族基は、直鎖であっても、分岐であっても、環状であってもよく、炭素数1〜25のものが好ましく、1〜20のものがより好ましく、2〜15のものが特に好ましい。脂肪族基の具体例としては、例えば、メチル、エチル、n−プロピル、iso−プロピル、シクロプロピル、n−ブチル、iso−ブチル、tert−ブチル、アミル、iso−アミル、tert−アミル、n−ヘキシル、シクロヘキシル、n−ヘプチル、n−オクチル、ビシクロオクチル、アダマンチル、n−デシル、tert−オクチル、ドデシル、ヘキサデシル、オクタデシル、ジデシルなどが挙げられる。
また、Rの定義における芳香族基は、芳香族炭化水素基でもよいし、芳香族複素環基でもよく、より好ましくは芳香族炭化水素基である。芳香族炭化水素基としては、炭素数が6〜24のものが好ましく、6〜12のものがさらに好ましい。芳香族炭化水素基の具体例としては、例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニルなどが挙げられる。芳香族炭化水素基としては、ベンゼン、ナフタレン、ビフェニルが特に好ましい。芳香族複素環基としては、酸素原子、窒素原子または硫黄原子のうち少なくとも1つを含むものが好ましい。複素環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族複素環基としては、ピリジン、トリアジン、キノリンが特に好ましい。
次に、一般式(5)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
(合成例:一般式(5)で表される化合物の合成例)
撹拌装置、還流冷却器、温度計および窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.8モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。そして、次にトルエン1L、0.5質量%の炭酸ナトリウム水溶液300gを添加し、50℃で30分間撹拌後、静置して、トルエン層を分取した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、例示化合物1、例示化合物2、例示化合物3、例示化合物4、および例示化合物5の混合物を得た。得られた混合物をHPLCおよびLC−MASSで解析したところ、例示化合物1が7質量%、例示化合物2が58質量%、例示化合物3が23質量%、例示化合物4が9質量%、例示化合物5が3質量%であった。なお、得られた混合物の一部をシリカゲルカラムクロマトグラフィーにより精製することで、それぞれ純度100%の例示化合物1、例示化合物2、例示化合物3、例示化合物4、および例示化合物5を得た。
糖エステル化合物は、本形態に係る光学フィルム100質量%に対して、5〜20質量%の量で含まれることが好ましく、より好ましくは5〜10質量%である。
〈ポリエステル〉
本形態に係る光学フィルムは、下記のポリエステルを含有することも好ましい。
(一般式(d)または(e)で表されるポリエステル)
本形態に係る光学フィルムは、下記一般式(d)または(e)で表されるポリエステルを含有することが好ましい。
式中、B1はモノカルボン酸を表し、Gは2価のアルコールを表し、Aは2塩基酸を表す。B1、G、Aはいずれも芳香環を含まない。mは繰り返し数を表す。
式中、B2はモノアルコールを表し、Gは2価のアルコールを表し、Aは2塩基酸を表す。B2、G、Aはいずれも芳香環を含まない。nは繰り返し数を表す。
一般式(d)、(e)において、B1はモノカルボン酸成分を表し、B2はモノアルコール成分を表し、Gは2価のアルコール成分を表し、Aは2塩基酸成分を表し、これらによって合成されたことを表す。B1、B2、G、Aはいずれも芳香環を含まないことが特徴である。m、nは繰り返し数を表す。
B1で表されるモノカルボン酸としては、特に制限はなく公知の脂肪族モノカルボン酸、脂環族モノカルボン酸等を用いることができる。
好ましいモノカルボン酸の例としては以下のものが挙げられるが、本発明はこれに限定されない。
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖のまたは側鎖を有する脂肪酸が好ましく用いられうる。炭素数1〜20であることがさらに好ましく、炭素数1〜12であることが特に好ましい。酢酸を含有させるとセルロースアシレートとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸とを混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸;ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等が挙げられる。
B2で表されるモノアルコール成分としては、特に制限はなく公知のアルコール類が用いられうる。例えば、炭素数1〜32の直鎖のまたは側鎖を有する脂肪族飽和アルコールまたは脂肪族不飽和アルコールが好ましく用いられうる。炭素数1〜20であることがさらに好ましく、炭素数1〜12であることが特に好ましい。
Gで表される2価のアルコール成分としては、以下のものが挙げられるが、本発明はこれらに限定されない。例えば、エチレングリコール、ジエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,5−ペンチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等が挙げられるが、これらのうちエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコールが好ましく、さらに、1,3−プロピレングリコール、1,4−ブチレングリコール1,6−ヘキサンジオール、ジエチレングリコールが好ましく用いられる。
Aで表される2塩基酸(ジカルボン酸)成分としては、脂肪族2塩基酸、脂環式2塩基酸が好ましく、脂肪族2塩基酸としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等、特に、脂肪族ジカルボン酸としては炭素数4〜12のもの、これらから選ばれる少なくとも1つのものが使用されうる。つまり、2種以上の2塩基酸を組み合わせて使用してもよい。
m、nは繰り返し数を表し、1以上で170以下が好ましい。
(一般式(f)または(g)で表されるポリエステル)
本形態に係る光学フィルムは、下記一般式(f)または(g)で表されるポリエステルを含有することも好ましい。
式中、B1は炭素数1〜12のモノカルボン酸を表し、Gは炭素数2〜12の2価のアルコールを表し、Aは炭素数2〜12の2塩基酸を表す。B1、G、Aはいずれも芳香環を含まない。mは繰り返し数を表す。
式中、B2は炭素数1〜12のモノアルコールを表し、Gは炭素数2〜12の2価のアルコールを表し、Aは炭素数2〜12の2塩基酸を表す。B2、G、Aはいずれも芳香環を含まない。nは繰り返し数を表す。
一般式(f)、(g)において、B1はモノカルボン酸成分を表し、B2はモノアルコール成分を表し、Gは炭素数2〜12の2価のアルコール成分を表し、Aは炭素数2〜12の2塩基酸成分を表し、これらによって合成されたことを表す。B1、G、Aはいずれも芳香環を含まない。m、nは繰り返し数を表す。なお、B1、B2は、前述の一般式(d)または(e)におけるB1、B2と同義である。また、G、Aは、前述の一般式(d)または(e)におけるG、Aの中で炭素数2〜12のアルコール成分または2塩基酸成分に相当する。
ポリエステルの数平均分子量は1000以上10000以下である。数平均分子量が1000未満では、高温高倍率延伸で破断が生じやすく、10000より大きいと相分離起因の白化が増加しやすい。
ポリエステルの重縮合は常法によって行われる。例えば、上記2塩基酸とグリコールとの直接反応、上記の2塩基酸またはこれらのアルキルエステル類、例えば2塩基酸のメチルエステルとグリコール類とのポリエステル化反応またはエステル交換反応により熱溶融縮合法か、あるいはこれら酸の酸クロライドとグリコールとの脱ハロゲン化水素反応のいずれかの方法により容易に合成することができるが、重量平均分子量がさほど大きくないポリエステルは直接反応により合成することが好ましい。
低分子量側に分布が高くあるポリエステルはセルロースアシレートとの相溶性が非常によく、フィルム形成後、透湿度も小さく、しかも透明性に富んだセルロースアシレートフィルムを得ることができる。分子量の調節方法は、特に制限なく従来の方法を使用できる。例えば、重合条件にもよるが、1価の酸または1価のアルコールで分子末端を封鎖する方法を用いる場合には、これらの1価の原料化合物の添加量を調整することで分子量を調節することができる。この場合、1価の酸の添加量を調整することが、ポリマーの安定性の観点から好ましい。例えば、酢酸、プロピオン酸、酪酸等が挙げられるが、重縮合反応中には系外に留去されず、停止して反応系外に除去するときには留去し易いものを選ぶことが好ましい。なお、この目的で複数の化合物を混合使用してもよい。また、直接反応の場合には、反応中に生成する水の量により反応を停止するタイミングを計ることによっても重量平均分子量を調節できる。その他、仕込むグリコールまたは2塩基酸のモル数を偏らせることによっても分子量の調節が可能であるし、反応温度をコントロールして分子量を調節することもできる。
ポリエステルは、本形態に係る光学フィルム100質量%に対して、5〜20質量%の量で含まれることが好ましく、5〜15質量%の量で含まれることがより好ましい。
〈紫外線吸収剤〉
本形態に係る光学フィルムは、紫外線吸収剤を含有することもできる。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐久性を向上させることを目的としており、特に波長370nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは2%以下である。なお、本発明に係る位相差フィルムが紫外線吸収剤を含む場合、当該紫外線吸収剤は2種以上含まれることが好ましい。
本発明に用いられる紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
例えば、5−クロロ−2−(3,5−ジ−sec−ブチル−2−ヒドロキシルフェニル)−2H−ベンゾトリアゾール、(2−2H−ベンゾトリアゾール−2−イル)−6−(直鎖および側鎖ドデシル)−4−メチルフェノール、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2,4−ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328等のチヌビン類があり、これらはいずれもBASFジャパン株式会社製の市販品であり好ましく使用できる。
本発明で好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、である。このほか、1,3,5トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6−148430号記載のポリマータイプの紫外線吸収剤が好ましく用いられる。
紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒あるいはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、または直接ドープ組成中に添加してもよい。また、無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースアセテート中にディゾルバーやサンドミルを使用し、分散してからドープに添加すればよい。
紫外線吸収剤は、本形態に係る光学フィルム100質量%に対して、0.5〜5質量%の量で含まれることが好ましく、0.5〜3質量%の量で含まれることがより好ましい。
〈赤外線吸収剤〉
本形態に係る光学フィルムは、赤外線吸収剤を含んでもよい。かような構成とすることにより、フィルムの逆波長分散性が調整されうる。
赤外線吸収剤は、750〜1100nmの波長領域に最大吸収を有することが好ましく、800〜1000nmの波長領域に最大吸収を有することがさらに好ましい。また、赤外線吸収剤は、可視領域に実質的に吸収を有していないことが好ましい。
赤外線吸収剤としては、赤外線吸収染料または赤外線吸収顔料を用いることが好ましく、赤外線吸収染料を用いることが特に好ましい。
赤外線吸収染料には、有機化合物と無機化合物が含まれる。有機化合物である赤外線吸収染料を用いることが好ましい。有機赤外線吸収染料には、シアニン化合物、金属キレート化合物、アミニウム化合物、ジイモニウム化合物、キノン化合物、スクアリリウム化合物およびメチン化合物が含まれる。赤外線吸収染料については、色材、61〔4〕215−226(1988)、および化学工業、43−53(1986、5月)に記載がある。
赤外線吸収機能あるいは吸収スペクトルの観点で染料の種類を検討すると、ハロゲン化銀写真感光材料の技術分野で開発された赤外線吸収染料が優れている。ハロゲン化銀写真感光材料の技術分野で開発された赤外線吸収染料には、ジヒドロペリミジンスクアリリウム染料(米国特許5380635号明細書および特願平8−189817号明細書記載)、シアニン染料(特開昭62−123454号、同3−138640号、同3−211542号、同3−226736号、同5−313305号、同6−43583号の各公報、特願平7−269097号明細書および欧州特許0430244号明細書記載)、ピリリウム染料(特開平3−138640号、同3−211542号の各公報記載)、ジイモニウム染料(特開平3−138640号、同3−211542号の各公報記載)、ピラゾロピリドン染料(特開平2−282244号記載)、インドアニリン染料(特開平5−323500号、同5−323501号の各公報記載)、ポリメチン染料(特開平3−26765号、同4−190343号の各公報および欧州特許377961号明細書記載)、オキソノール染料(特開平3−9346号明細書記載)、アントラキノン染料(特開平4−13654号明細書記載)、ナフタロシアニン色素(米国特許5009989号明細書記載)およびナフトラクタム染料(欧州特許568267号明細書記載)が含まれる。これらの赤外線吸収剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
赤外線吸収剤は、本形態に係る光学フィルム100質量%に対して、0.5〜5質量%の量で含まれることが好ましく、0.5〜3質量%の量で含まれることがより好ましい。
〈マット剤(微粒子)〉
本形態に係る光学フィルムには、取扱性を向上させるため、例えば二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などの微粒子をマット剤として含有させることが好ましい。なかでも二酸化珪素がフィルムのヘイズを小さくできるので好ましい。
微粒子の平均一次粒子径としては、20nm以下が好ましく、さらに好ましくは5〜16nmであり、特に好ましくは5〜12nmである。
これらの微粒子は0.1〜5μmの粒径の2次粒子を形成してフィルム中に含まれることが好ましく、好ましい平均粒径は0.1〜2μmであり、さらに好ましくは0.2〜0.6μmである。これにより、フィルム表面に高さ0.1〜1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることができる。
本発明に用いられる微粒子の平均一次粒子径の測定は、透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、粒子径を測定しその平均値をもって、平均一次粒子径とする。
微粒子の見かけ比重としては、70g/リットル以上が好ましく、さらに好ましくは90〜200g/リットルであり、特に好ましくは100〜200g/リットルである。見かけ比重が大きいほど、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、固形分濃度の高いドープを調製する際には、特に好ましく用いられる。
1次粒子の平均径が20nm以下、見かけ比重が70g/リットル以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000〜1200℃にて空気中で燃焼させることで得ることができる。また例えばアエロジルR812、アエロジル200V、アエロジルR972V(以上、日本アエロジル株式会社製)の商品名で市販されており、それらを使用することができる。
上記記載の見かけ比重は、二酸化珪素微粒子を一定量メスシリンダーに採り、このときの重さを測定し、下記式で算出したものである。
マット剤(微粒子)は、偏光板保護フィルム100質量%に対して、0.1〜2質量%の量で含まれることが好ましく、0.1〜1質量%の量で含まれることがより好ましい。
〈着色剤〉
偏光板保護フィルムは、着色剤を含んでもよい。「着色剤」とは、染料や顔料を意味するが、本発明では、液晶画面の色調を青色調にする効果またはイエローインデックスの調整、ヘイズの低減を有するものが特に好ましい。着色剤としては各種の染料や顔料が使用可能であるが、特に、アントラキノン染料、アゾ染料、フタロシアニン顔料などが有効である。
着色剤は、本形態に係る光学フィルム100質量%に対して、1〜15質量ppmの量で含まれることが好ましく、1〜10質量ppmの量で含まれることがより好ましい。
≪光学フィルムの製造方法≫
本形態に係る光学フィルムの製造方法について特に制限はないが、その一例を以下で説明する。
〈溶融流延法(溶融押し出し法)〉
本発明に係る光学フィルムの製造方法としては、機械的強度および表面精度等に優れるフィルムを得るという観点からは、溶融押し出し法が優れている。以下、溶融押し出し法を例に挙げて、本発明に係る光学フィルムの製造方法について説明する。
図1は、本発明に係る光学フィルムの製造方法を実施する装置の全体構成を示す概略フローシートであり、図2は、流延ダイから冷却ロール部分の拡大図である。
図1および図2において、本発明に係る光学フィルムの製造方法は、セルロースエステル樹脂、アクリル樹脂等のフィルム材料を混合した後、押出し機1を用いて、流延ダイ4から第1冷却ロール5上に溶融押し出しし、第1冷却ロール5に外接させるとともに、さらに、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールに順に外接させて、冷却固化してフィルム10とする。次いで、剥離ロール9によって剥離したフィルム10を延伸装置12によりフィルムの両端部を把持して幅方向に延伸した後、巻き取り装置16により巻き取る。
また、平面性を矯正するために溶融フィルムを第1冷却ロール5表面に挟圧するタッチロール6が設けられている。このタッチロール6は表面が弾性を有し、第1冷却ロール5との間でニップを形成している。タッチロール6についての詳細は後述する。
本発明に係る光学フィルムの製造方法において、溶融押し出しの条件は、他のポリエステル等の熱可塑性樹脂に用いられる条件と同様にして行うことができる。材料は予め乾燥させておくことが好ましい。真空または減圧乾燥機や除湿熱風乾燥機等で水分を1000質量ppm以下、好ましくは200質量ppm以下に乾燥させることが望ましい。
例えば、熱風や真空または減圧下で乾燥した樹脂を押出し機1を用いて、押し出し温度200〜300℃程度で溶融し、リーフディスクタイプのフィルター2等で濾過し、異物を除去する。
供給ホッパー(図示略)から押出し機1へ導入する際は、真空下または減圧下や不活性ガス雰囲気下にして、酸化分解等を防止することが好ましい。
可塑剤等の添加剤を予め混合しない場合は、それらを押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサー3等の混合装置を用いることが好ましい。
本発明において、樹脂と、その他必要により添加される添加剤は、溶融する前に混合しておくことが好ましく、樹脂と添加剤を加熱前に混合することがさらに好ましい。混合は、混合機等により行ってもよく、また、前記したように樹脂調製過程において混合してもよい。混合機を使用する場合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機、ヘンシェルミキサー、リボンミキサー等一般的な混合機を用いることができる。
上記のようにフィルム構成材料を混合した後に、その混合物を押出し機1を用いて直接溶融して製膜するようにしてもよいが、一旦、フィルム構成材料をペレット化した後、当該ペレットを押出し機1で溶融して製膜するようにしてもよい。また、フィルム構成材料が、融点の異なる複数の材料を含む場合には、融点の低い材料のみが溶融する温度で一旦、いわゆるおこし状の半溶融物を作製し、半溶融物を押出し機1に投入して製膜することも可能である。フィルム構成材料に熱分解しやすい材料が含まれる場合には、溶融回数を減らす目的で、ペレットを作製せずに直接製膜する方法や、上記のようなおこし状の半溶融物を作ってから製膜する方法が好ましい。
押出し機1は、市場で入手可能な種々の押出し機を使用可能であるが、溶融混練押出し機が好ましく、単軸押出し機でも2軸押出し機でもよい。フィルム構成材料からペレットを作製せずに、直接製膜を行う場合、適当な混練度が必要であるため2軸押出し機を用いることが好ましいが、単軸押出し機でも、スクリューの形状をマドック型、ユニメルト型、ダルメージ等の混練型のスクリューに変更することにより、適度の混練が得られるので、使用可能である。フィルム構成材料として、一旦、ペレットやおこし状の半溶融物を使用する場合は、単軸押出し機でも2軸押出し機でも使用可能である。
押出し機1内および押し出した後の冷却工程は、窒素ガス等の不活性ガスで置換するか、あるいは減圧することにより、酸素の濃度を下げることが好ましい。
押出し機1内のフィルム構成材料の溶融温度は、フィルム構成材料の粘度や吐出量、製造するシートの厚さ等によって好ましい条件が異なるが、一般的には、フィルムのガラス転移温度Tgに対して、Tg以上、Tg+100℃以下、好ましくはTg+10℃以上、Tg+90℃以下である。押し出し時の溶融粘度は、1〜10000Pa・s、好ましくは10〜1000Pa・sである。また、押出し機1内でのフィルム構成材料の滞留時間は短い方が好ましく、5分以内、好ましくは3分以内、より好ましくは2分以内である。
滞留時間は、押出し機1の種類、押し出す条件にも左右されるが、材料の供給量やL/D、スクリュー回転数、スクリューの溝の深さ等を調整することにより短縮することが可能である。
押出し機1のスクリューの形状や回転数等は、フィルム構成材料の粘度や吐出量等により適宜選択される。本発明において押出し機1でのせん断速度は、1/秒〜10000/秒、好ましくは5/秒〜1000/秒、より好ましくは10/秒〜100/秒である。
本発明に使用できる押出し機1としては、一般的にプラスチック成形機として入手可能である。
押出し機1から押し出されたフィルム構成材料は、流延ダイ4に送られ、流延ダイ4のスリットからフィルム状に押し出される。流延ダイ4はシートやフィルムを製造するために用いられるものであれば特に限定はされない。
流延ダイ4の材質としては、ハードクロム、炭化クロム、窒化クロム、炭化チタン、炭窒化チタン、窒化チタン、超鋼、セラミック(タングステンカーバイド、酸化アルミ、酸化クロム)等を溶射もしくはメッキし、表面加工としてバフ、#1000番手以降の砥石を用いるラッピング、#1000番手以上のダイヤモンド砥石を用いる平面切削(切削方向は樹脂の流れ方向に垂直な方向)、電解研磨、電解複合研磨等の加工を施したもの等が挙げられる。流延ダイ4のリップ部の好ましい材質は、流延ダイ4と同様である。またリップ部の表面精度は0.5S以下が好ましく、0.2S以下がより好ましい。
この流延ダイ4のスリットは、そのギャップが調整可能なように構成されている。これを図3に示す。流延ダイ4のスリット32を形成する一対のリップのうち、一方は剛性の低い変形しやすいフレキシブルリップ33であり、他方は固定リップ34である。そして、多数のヒートボルト35が流延ダイ4の幅方向すなわちスリット32の長さ方向に一定ピッチで配列されている。
各ヒートボルト5には、埋め込み電気ヒータ37と冷却媒体通路とを具えたブロック36が設けられ、各ヒートボルト35が各ブロック36を縦に貫通している。ヒートボルト35の基部はダイ本体31に固定され、先端はフレキシブルリップ33の外面に当接している。
そしてブロック36を常時空冷しながら、埋め込み電気ヒータ37の入力を増減してブロック36の温度を上下させ、これによりヒートボルト35を熱伸縮させて、フレキシブルリップ33を変位させてフィルムの厚さを調整する。
ダイ後流の所要箇所に厚さ計を設け、これによって検出されたウェブ厚さ情報を制御装置にフィードバックし、この厚さ情報を制御装置で設定厚さ情報と比較し、同装置から来る補正制御量の信号によってヒートボルトの発熱体の電力またはオン率を制御するようにすることもできる。ヒートボルトは、好ましくは、長さ20〜40cm、直径7〜14mmを有し、複数、例えば数十本のヒートボルトが、好ましくはピッチ20〜40mmで配列されている。ヒートボルトの代わりに、手動で軸方向に前後動させることによりスリットギャップを調節するボルトを主体とするギャップ調節部材を設けてもよい。ギャップ調節部材によって調節されたスリットギャップは、通常200〜1000μm、好ましくは300〜800μm、より好ましくは400〜600μmである。
第1〜第3冷却ロールは、肉厚が20〜30mm程度のシームレスな鋼管製で、表面が鏡面に仕上げられている。その内部には、冷却液を流す配管が配置されており、配管を流れる冷却液によってロール上のフィルムから熱を吸収できるように構成されている。この第1〜第3冷却ロールのうち、第1冷却ロール5が本発明に係る回転支持体に相当する。
一方、第1冷却ロール5に当接するタッチロール6は、表面が弾性を有し、第1冷却ロール5への押圧力によって第1冷却ロール5の表面に沿って変形し、第1ロール5との間にニップを形成する。タッチロール6は挟圧回転体ともいう。タッチロール6としては、特許第3194904号、特許第3422798号、特開2002−36332号、特開2002−36333号などで開示されているタッチロールを好ましく用いることができる。これらは市販されているものを用いることもできる。
以下にこれらについて、さらに詳細に説明する。
図4は挟圧回転体の一例を示す断面図である。(タッチロール6の第1の例(以下、タッチロールA)の概略断面)を示す。図に示すように、タッチロールAは、可撓性の金属スリーブ41の内部に弾性ローラ42を配したものである。
金属スリーブ41は厚さ0.3mmのステンレス製であり、可撓性を有する。金属スリーブ41が薄過ぎると強度が不足し、逆に厚過ぎると弾性が不足する。これらのことから、金属スリーブ41の厚さとしては、0.1〜1.5mmが好ましい。弾性ローラ42は、軸受を介して回転自在な金属製の内筒43の表面にゴム44を設けてロール状としたものである。そして、タッチロールAが第1冷却ロール5に向けて押圧されると、弾性ローラ42が金属スリーブ41を第1冷却ロール5に押しつけ、金属スリープ41および弾性ローラ42は第1冷却ロール5の形状になじんだ形状に対応しつつ変形し、第1冷却ロールとの間にニップを形成する。金属スリーブ41の内部で弾性ローラ42との間に形成される空間には、冷却水45が流される。
図5は挟圧回転体の第2の例(以下、タッチロールB)を示す回転軸に垂直な平面での断面図である。また、図6は挟圧回転体の第2の例(タッチロールB)の回転軸を含む平面の一例を示す断面図である。
図5および図6は挟圧回転体の別の実施形態であるタッチロールBを示している。タッチロールBは、可撓性を有する、シームレスなステンレス鋼管製(厚さ4mm)の外筒51と、この外筒51の内側に同一軸心状に配置された高剛性の金属内筒52とから概略構成されている。外筒51と内筒52との間の空間53には、冷却液54が流される。詳しくは、タッチロールBは、両端の回転軸55a、55bに外筒支持フランジ56a、56bが取付けられ、これら両外筒支持フランジ56a、56bの外周部間に薄肉金属外筒51が取付けられている。
また、一方の回転軸55aの軸心部に形成されて流体戻り通路57を形成する流体排出孔58内に、流体供給管59が同一軸心状に配設され、この流体供給管59が薄肉金属外筒51内の軸心部に配置された流体軸筒60に接続固定されている。この流体軸筒60の両端部に内筒支持フランジ61a、61bがそれぞれ取り付けられ、これら内筒支持フランジ61a、61bの外周部間から他端側外筒支持フランジ56bにわたって約15〜20mm程度の肉厚を有する金属内筒52が取付けられている。
そしてこの金属内筒52と薄肉金属外筒51との間に、例えば10mm程度の冷却液の流送空間53が形成され、また金属内筒52に両端部近傍には、流送空間53と内筒支持フランジ61a、61b外側の中間通路62a、62bとを連通する流出口52aおよび流入口52bがそれぞれ形成されている。
また、外筒51は、ゴム弾性に近い柔軟性と可撓性、復元性をもたせるために、弾性力学の薄肉円筒理論が適用できる範囲内で薄肉化が図られている。この薄肉円筒理論で評価される可撓性は、肉厚t/ロール半径rで表されており、t/rが小さいほど可撓性が高まる。
このタッチロールBではt/r≦0.03の場合に可撓性が最適の条件となる。通常、一般的に使用されているタッチロールは、ロール径R=200〜500mm(ロール半径r=R/2)、ロール有効幅L=500〜1600mmで、r/L<1で横長の形状である。
そして図6に示すように、例えばロール径R=300mm、ロール有効幅L=1200mmの場合、肉厚tの適正範囲は150×0.03=4.5mm以下であるが、溶融シート幅を1300mmに対して平均線圧を98N/cmで挟圧する場合、同一形状のゴムロールと比較して、外筒51の肉厚を3mmとすることで相当ばね定数も等しく、外筒51と冷却ロールとのニップのロール回転方向のニップ幅kも約9mmで、このゴムロールのニップ幅約12mmとほぼ近い値を示し、同じような条件下で挟圧できることが分かる。なお、このニップ幅kにおけるたわみ量は0.05〜0.1mm程度である。
ここで、t/r≦0.03としたが、一般的なロール径R=200〜500mmの場合では、特に2mm≦t≦5mmの範囲とすると、可撓性も十分に得られ、また機械加工による薄肉化も容易に実施でき、極めて実用的な範囲となる。肉厚が2mm以下では加工時の弾性変形で高精度な加工ができない。
この2mm≦t≦5mmの換算値は、一般的なロール径に対して0.008≦t/r≦0.05となるが、実用にあたってはt/r≒0.03の条件下でロール径に比例して肉厚も大きくするとよい。例えばロール径:R=200ではt=2〜3mm、ロール径:R=500ではt=4〜5mmの範囲で選択する。
このタッチロールA、Bは不図示の付勢手段により第1冷却ロールに向けて付勢される。その付勢手段の付勢力をF、ニップにおけるフィルムの、第1冷却ロール5の回転軸に沿った方向の幅Wを除した値F/W(線圧)は、9.8〜147N/cmに設定される。
本実施形態によれば、タッチロールA、Bと第1冷却ロール5との間にニップが形成され、当該ニップをフィルムが通過する間に平面性を矯正すればよい。従って、タッチロールが剛体で構成され、第1冷却ロールとの間にニップが形成されない場合と比べて、小さい線圧で長時間かけてフィルムを挟圧するので、平面性をより確実に矯正することができる。
すなわち、線圧が9.8N/cmよりも小さいと、ダイラインを十分に解消することができなくなる。逆に、線圧が147N/cmよりも大きいと、フィルムがニップを通過しにくくなり、フィルムの厚さにかえってムラができてしまう。
また、タッチロールA、Bの表面を金属で構成することにより、タッチロールの表面がゴムである場合よりもタッチロールA、Bの表面を平滑にすることができるので、平滑性の高いフィルムを得ることができる。なお、弾性ローラ42の弾性体44の材質としては、エチレンプロピレンゴム、ネオプレンゴム、シリコンゴム等を用いることができる。
タッチロール6によってダイラインを良好に解消するためには、タッチロール6がフィルムを挟圧するときのフィルムの粘度が適切な範囲であることが重要となる。また、セルロースエステルは温度による粘度の変化が比較的大きいことが知られている。
従って、タッチロール6が光学フィルムを挟圧するときの粘度を適切な範囲に設定するためには、タッチロール6がフィルムを挟圧するときのフィルムの温度を適切な範囲に設定することが重要となる。光学フィルムのガラス転移温度をTgとしたとき、フィルムがタッチロール6に挟圧される直前のフィルムの温度Tを、Tg<T<Tg+110℃を満たすように設定することが好ましい。
好ましくはTg+10℃<T2<Tg+90℃、さらに好ましくはTg+20℃<T2<Tg+70℃である。タッチロール6が光学フィルムを挟圧するときのフィルムの温度を適切な範囲に設定するには、流延ダイ4から押し出された溶融物が第1冷却ロール5に接触する位置P1から第1冷却ロール5とタッチロール6とのニップの、第1冷却ロール5の回転方向に沿った長さLを調整すればよい。
本発明において、第1ロール5、第2ロール6に好ましい材質は、炭素鋼、ステンレス鋼、樹脂、等が挙げられる。また、表面精度は高くすることが好ましく表面粗さとして0.3S以下、より好ましくは0.01S以下とする。本発明においては、流延ダイ4の開口部(リップ)から第1ロール5までの部分を70kPa以下に減圧させることにより、上記、ダイラインの矯正効果がより大きく発現することを発見した。好ましくは減圧は50〜70kPaである。
流延ダイ4の開口部(リップ)から第1ロール5までの部分の圧力を70kPa以下に保つ方法としては、特に制限はないが、流延ダイ4からロール周辺を耐圧部材で覆い、減圧する等の方法がある。このとき、吸引装置は、装置自体が昇華物の付着場所にならないようヒーターで加熱する等の処置を施すことが好ましい。本発明では、吸引圧が小さ過ぎると昇華物を効果的に吸引できないため、適当な吸引圧とする必要がある。
本発明において、Tダイ4から溶融状態のフィルム状の樹脂を、第1ロール(第1冷却ロール)5、第2冷却ロール7、および第3冷却ロール8に順次密着させて搬送しながら冷却固化させ、未延伸の樹脂フィルム10を得る。
図1に示す実施形態では、第3冷却ロール8から剥離ロール9によって剥離した冷却固化された未延伸のフィルム10は、ダンサーロール(フィルム張力調整ロール)11を経て延伸機12に導き、そこでフィルム10を横方向(幅方向)に延伸する。この延伸により、フィルム中の分子が配向される。
フィルムを幅方向に延伸する方法は、公知のテンター等を好ましく用いることができる。特に延伸方向を幅方向とすることで、偏光フィルムとの積層がロール形態で実施できるので好ましい。幅方向に延伸することで、光学フィルムの遅相軸は幅方向になる。
一方、偏光フィルムの透過軸も、通常、幅方向である。偏光フィルムの透過軸と光学フィルムの遅相軸とが平行になるように積層した偏光板を液晶表示装置に組み込むことで、液晶表示装置の表示コントラストを高くすることができるとともに、良好な視野角が得られるのである。
フィルム構成材料のガラス転移温度Tgはフィルムを構成する材料種および構成する材料の比率を異ならせることにより制御できる。光学フィルムとして位相差フィルムを作製する場合、Tgは120℃以上、好ましくは135℃以上とすることが好ましい。液晶表示装置においては、画像の表示状態において、装置自身の温度上昇、例えば光源由来の温度上昇によってフィルムの温度環境が変化する。
このときフィルムの使用環境温度よりもフィルムのTgが低いと、延伸によってフィルム内部に固定された分子の配向状態に由来するリターデーション値およびフィルムとしての寸法形状に大きな変化を与えることとなる。
フィルムのTgが高過ぎると、フィルム構成材料をフィルム化するとき温度が高くなるために加熱するエネルギー消費が高くなり、またフィルム化するときの材料自身の分解、それによる着色が生じることがあり、従って、Tgは250℃以下が好ましい。
また延伸工程には公知の熱固定条件、冷却、緩和処理を行ってもよく、目的とする光学フィルムに要求される特性を有するように適宜調整すればよい。
例えば、位相差フィルムの物性と液晶表示装置の視野角拡大のための位相差フィルムの機能性付与を行うために、上記延伸工程、熱固定処理は適宜選択して行われている。このような延伸工程、熱固定処理を含む場合、加熱加圧工程は、それらの延伸工程、熱固定処理の前に行うようにする。
本発明に係る光学フィルムをの屈折率(リターデーション)制御は延伸操作により行うことが好ましい。以下、その延伸方法について説明する。
フィルムの延伸工程において、延伸は、例えばフィルムの長手方向(MD方向)およびそれとフィルム面内で直交する方向、すなわち幅手方向(TD方向)に対して、逐次または同時に行うことができる。この際、互いに直行する2軸方向に延伸することにより、得られるフィルムの膜厚変動が減少しうる。光学フィルムの膜厚変動が大き過ぎると位相差のムラが生じる場合があり、液晶表示装置に搭載したとき着色等のムラが問題となることがある。
光学フィルムの膜厚変動は、±3%、さらに±1%の範囲とすることが好ましい。以上のような目的において、互いに直交する2軸方向に延伸する方法は有効である。ここで、互いに直交する2軸方向の延伸倍率は特に制限されないが、長手方向(MD方向)の延伸倍率および幅手方向(TD方向)の延伸倍率の一方が他方の1.01倍以上であることが好ましく、1.1〜2.0倍であることがより好ましく、1.2〜1.5倍であることが特に好ましい。言い換えれば、互いに直交する2軸方向に対して等方延伸ではなく異方延伸を施すことで、本発明に係る光学フィルムを好適に製造することができる。なお、得られる光学フィルムの破断点応力の値をよりいっそう向上させるという観点からは、幅手方向(TD方向)の延伸倍率が長手方向(MD方向)の延伸倍率よりも大きいことが好ましい。ここで、延伸倍率の具体的な値について特に制限はないが、長手方向(MD方向)の延伸倍率は、好ましくは1.5〜3.0倍であり、より好ましくは1.8〜2.5倍であり、さらに好ましくは1.8〜2.2倍である。また、幅手方向(TD方向)の延伸倍率は、好ましくは1.8〜3.0倍であり、より好ましくは2.0〜3.0倍であり、さらに好ましくは2.0〜2.5倍である。
長手方向に偏光子の吸収軸が存在する場合、幅方向に偏光子の透過軸が一致することになる。長尺状の偏光板をロール・トゥ・ロールの貼合で得るためには、光学フィルムは幅手方向に遅相軸を得るように延伸することが好ましい。
延伸後、フィルムの端部をスリッター13により製品となる幅にスリットして裁ち落とした後、エンボスリング14およびバックロール15よりなるナール加工装置によりナール加工(エンボッシング加工)をフィルム両端部に施し、巻き取り機16によって巻き取ることにより、光学フィルム(元巻き)F中の貼り付きや、すり傷の発生を防止する。ナール加工の方法は、凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、変形しており、フィルム製品として使用できないので、切除されて、原料として再利用される。
次に、フィルムの巻き取り工程は、円筒形巻きフィルムの外周面とこれの直前の移動式搬送ロールの外周面との間の最短距離を一定に保持しながらフィルムを巻き取りロールに巻き取るものである。かつ巻き取りロールの手前には、フィルムの表面電位を除去または低減する除電ブロア等の手段が設けられている。
本発明に係る光学フィルムの製造に係る巻き取り機は一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻き取り方法で巻き取ることができる。なお、偏光板保護フィルムの巻き取り時の初期巻き取り張力が90.2〜300.8N/mであるのが好ましい。
本発明に係る方法におけるフィルムの巻き取り工程では、温度20〜30℃、湿度20〜60%RHの環境条件にて、フィルムを巻き取ることが好ましい。このように、フィルムの巻き取り工程での温度および湿度を規定することにより、厚さ方向リターデーション(Rt)の湿度変化の耐性が向上する。
巻き取り工程における温度が20℃未満であれば、シワが発生し、フィルム巻品質劣化のため実用に耐えないので、好ましくない。フィルムの巻き取り工程における温度が30℃を超えると、やはりシワが発生し、フィルム巻品質劣化のため実用に耐えないので、好ましくない。
また、フィルムの巻き取り工程における湿度が20%RH未満であれば、帯電しやすく、フィルム巻品質劣化のため実用に耐えないので、好ましくない。フィルムの巻き取り工程における湿度が60%RHを超えると、巻品質、貼り付き故障、搬送性が劣化するので、好ましくない。
光学フィルムをロール状に巻き取る際の、巻きコアとしては、円筒上のコアであれは、どのような材質のものであってもよいが、好ましくは中空プラスチックコアであり、プラスチック材料としては加熱処理温度にも耐える耐熱性プラスチックであればどのようなものであってもよく、フェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂等の樹脂が挙げられる。またガラス繊維等の充填材により強化した熱硬化性樹脂が好ましい。例えば、中空プラスチックコア:FRP製の外径6インチ(以下、インチは2.54cmを表す。)、内径5インチの巻きコアが用いられる。
これらの巻きコアへの巻き数は、100巻き以上であることが好ましく、500巻き以上であることがさらに好ましく、巻き厚は5cm以上であることが好ましく、フィルム基材の幅は80cm以上であることが好ましく、1m以上であることが特に好ましい。
光学フィルムの遅相軸または進相軸はフィルム面内に存在し、製膜方向とのなす角度をθ1とすると、θ1は−1〜+1°、好ましくは−0.5〜+0.5°となるようにする。このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA−21ADH(王子計測機器社製)を用いて行うことができる。θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制または防止することに寄与し、カラー液晶表示装置においては忠実な色再現に寄与する。
光学フィルムの面内方向のリターデーションRo分布は、5%以下に調整することが好ましく、より好ましくは2%以下であり、特に好ましくは1.5%以下である。また、フィルムの厚さ方向のリターデーションRt分布を10%以下に調整することが好ましいが、さらに好ましくは2%以下であり、特に好ましくは1.5%以下である。光学フィルムにおいては、リターデーション値の分布変動が小さい方が好ましく、液晶表示装置に光学フィルムを含む偏光板を用いるとき、当該リターデーション分布変動が小さいことが色ムラ等を防止する観点で好ましい。
本発明により得られる製造的効果は、特に100m以上の長尺の巻物においてより顕著となり、1500m、2500m、5000mとより長尺化するほど、偏光板製造の製造的効果が得られる。例えば、光学フィルムの製造において、ロール長さは、生産性と運搬性を考慮すると、10〜5000m、好ましくは50〜4500mであり、このときのフィルムの幅は、偏光子の幅や製造ラインに適した幅を選択することができる。0.5〜4.0m、好ましくは0.6〜3.0mの幅でフィルムを製造してロール状に巻き取り、偏光板加工に供してもよく、また、目的の倍幅以上のフィルムを製造してロールに巻き取った後、断裁して目的の幅のロールを得て、このようなロールを偏光板加工に用いるようにしてもよい。
光学フィルムの製造に際して、延伸の前および/または後で帯電防止層、ハードコート層、易滑性層、接着層、防眩層、バリアー層等の機能性層を塗設してもよい。この際、コロナ放電処理、プラズマ処理、薬液処理等の各種表面処理を必要に応じて施すことができる。
製膜工程において、カットされたフィルム両端のクリップ把持部分は、前述のように粉砕処理された後、或いは必要に応じて造粒処理を行った後、同じ品種のフィルム用原料としてまたは異なる品種のフィルム用原料として再利用することができる。
また、前述の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なる組成物を共押し出しして、積層構造の光学フィルムを作製することもできる。
例えば、スキン層/コア層/スキン層といった構成の光学フィルムを作ることができる。例えば、マット剤は、スキン層に多く、またはスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多く入れることができ、コア層のみに入れてもよい。また、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えば、スキン層に低揮発性の可塑剤および/または紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。
スキン層とコア層のガラス転移温度が異なっていてもよく、スキン層のガラス転移温度よりコア層のガラス転移温度が低いことが好ましい。このとき、スキンとコアの両者のガラス転移温度を測定し、これらの体積分率より算出した平均値を上記ガラス転移温度Tgと定義して同様に扱うこともできる。また、溶融流延時の溶融物の粘度もスキン層とコア層で異なっていてもよく、スキン層の粘度>コア層の粘度でも、コア層の粘度≧スキン層の粘度でもよい。
本発明に係る光学フィルムは、寸度安定性が、23℃、55%RHに24時間放置したフィルムの寸法を基準としたとき、80℃、90%RHにおける寸法の変動値が±2.0%未満であり、好ましくは1.0%未満であり、さらに好ましくは0.5%未満である。
本発明に係る光学フィルムを偏光板保護フィルムとして用いる際に、フィルム自身が上記の範囲内の変動であると、偏光板としてのリターデーションの絶対値と配向角が当初の設定からずれないために、表示品質の劣化を引き起こすことがないため好ましい。
<偏光板>
本発明に係る光学フィルムは、偏光板保護フィルムとして、偏光板を構成するのに用いられうる。以下、偏光板の構成について、簡単に説明する。
本発明に係る光学フィルムを偏光板保護フィルムとして用いる場合、偏光板は一般的な方法で作製することができる。本発明に係る光学フィルムの裏面側に粘着層を設け、ヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に貼り合わせることが好ましい。この際、光学フィルムと偏光子との積層は、偏光子の吸収軸方向と光学フィルムの長手方向(MD方向)とが平行になるように積層するようにすれば、偏光板の製造をロール・トゥ・ロールで行うことができるため、好ましい。
(偏光子)
偏光子は、偏光板の主たる構成要素であり、一定方向の偏波面の光だけを通す素子である。現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられうる。偏光子の膜厚は5〜30μmが好ましく、特に5〜20μmであることが好ましい。
また、特開2003−248123号公報、特開2003−342322号公報等に記載のエチレン単位の含有量1〜4モル%、重合度2000〜4000、ケン化度99.0〜99.99モル%のエチレン変性ポリビニルアルコールも好ましく用いられる。なかでも、熱水切断温度が66〜73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。このエチレン変性ポリビニルアルコールフィルムを用いた偏光子は、偏光性能および耐久性能に優れているうえに、色斑が少ないという利点がある。
偏光子の他方の面には、本発明に係る光学フィルムを同様に用いてもよいし、別の偏光板保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR−3、KC8UCR−4、KC8UCR−5、KC8UE、KC4UE、KC4FR−3、KC4FR−4、KC4HR−1、KC8UY−HA、KC8UX−RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。
<液晶表示装置>
本発明に係る光学フィルムを用いて構成した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができるが、特に大型の液晶表示装置やデジタルサイネージ等の屋外用途の液晶表示装置に好ましく用いられる。本発明に係る偏光板は、従来公知の粘着層等を介して液晶セルに貼合すればよい。なお、本発明に係る偏光板を液晶表示装置に搭載する際には、少なくとも液晶セルの側に本発明に係る光学フィルム(偏光板保護フィルム)が配置されるようにすることが好ましいが、かような形態のみに制限されるわけではない。
本発明に係る偏光板は反射型、透過型、半透過型、またはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型(FFS方式も含む)等の各種駆動方式の液晶表示装置に好ましく用いられる。特に画面が30型以上、特に30型〜54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。なかでも、本発明に係る光学フィルムはいわゆるゼロ位相差フィルムとして提供されるものであることから、IPSモード型液晶表示装置に用いられることが好ましい。
〈IPSモード型液晶セル〉
IPSモード型液晶表示装置における液晶パネルの液晶層は、初期状態で基板面と平行なホモジニアス配向で、かつ基板と平行な平面で液晶層のダイレクターは電圧無印加時で電極配線方向と平行または幾分角度を有し、電圧印加時で液晶層のダイレクターの向きが電圧の印加に伴い電極配線方向と垂直な方向に移行し、液晶層のダイレクター方向が電圧無印加時のダイレクター方向に比べて45°電極配線方向に傾斜したとき、当該電圧印加時の液晶層は、まるで1/2波長板のように偏光の方位角を90°回転させ、出射側偏光板の透過軸と偏光の方位角が一致して白表示となる。
一般に、液晶層の厚みは一定であるが、横電界駆動であるため、液晶層の厚みに若干凹凸を設ける方がスイッチングに対する応答速度を上げることができるとも考えられるが、液晶層の厚みが一定でない場合であっても、その効果を最大限生かすことができるものであり、液晶層の厚みの変化に対して影響が少ない。液晶層の厚みは、2〜6μmであって、好ましくは3〜5.5μmである。本形態に係る液晶表示装置は、大型の液晶テレビに用いられるほか、タブレット型表示装置やスマートフォンなどの携帯用機器にも好ましく用いられうる。
なお、IPSモード型液晶セルの詳細について特に制限はなく、従来公知の他の技術的事項(例えば、特開2010−3060号公報など)を参照することで、本発明を実施してももちろんよい。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
<光学フィルムの作製>
(光学フィルム1の作製)
正の固有複屈折を有する樹脂として、セルロースエステル樹脂であるセルロースアセテートプロピオネート(アシル基総置換度2.75、アセチル基置換度0.19、プロピオニル基置換度2.56、分子量Mw=200000)を準備した。また、負の固有複屈折を有する樹脂として、アクリル樹脂(ダイヤナールBR85(三菱レイヨン(株)製、Mw=280000)を準備した。
下記のように、上記で準備したセルロースエステル樹脂およびアクリル樹脂、並びに各種添加剤を用いて溶融流延法により光学フィルム1を作製した。
アクリル樹脂 70質量部
セルロースエステル樹脂 30質量部
SumilizerGS(住友化学(株)製) 0.25質量部
IRGANOX1010(BASFジャパン(株)製) 0.5質量部
GSY−P101(堺化学工業(株)製) 0.25質量部
アクリル樹脂、およびセルロースエステル樹脂を70℃、3時間減圧下で乾燥を行い室温まで冷却した後、上記添加剤を混合した。次いで、得られた混合物を2軸式押し出し機を用いて230℃で溶融混合しペレット化した。
このペレットを用いて窒素雰囲気下、250℃にて溶融して流延ダイ4から第1冷却ロール5上に押し出し、第1冷却ロール5とタッチロール6との間にフィルムを挟圧して成形した。
流延ダイ4のギャップの幅がフィルムの幅方向端部から30mm以内では0.5mm、その他の場所では1mmとなるようにヒートボルトを調整した。タッチロールとしては、タッチロールAを使用し、その内部に冷却水として80℃の水を流した。
流延ダイ4から押し出された樹脂が第1冷却ロール5に接触する位置P1から第1冷却ロール5とタッチロール6とのニップの第1冷却ロール5回転方向上流端の位置P2までの、第1冷却ローラ5の周面に沿った長さLを20mmに設定した。その後、タッチロール6を第1冷却ロール5から離間させ、第1冷却ロール5とタッチロール6とのニップに挟圧される直前の溶融部の温度Tを測定した。
本実施例において、第1冷却ロール5とタッチロール6とのニップに挟圧される直前の溶融部の温度Tは、ニップ上流端P2よりもさらに1mm上流側の位置で、温度計(安立計器株式会社製HA−200E)により測定した。本実施例では測定の結果、温度Tは141℃であった。
タッチロール6の第1冷却ロール5に対する線圧は14.7N/cmとした。さらに、次いで、赤外線ヒータ下二つのロールの周速差により長手方向(MD方向)に延伸を行った。延伸温度は150℃、延伸倍率は1.4倍とした。得られたフィルムを予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有するテンターに導入し、幅手方向(TD方向)に140℃で2.0倍に延伸した後、120℃まで冷却し、120℃を維持し熱処理を行った。その後クリップから開放し、クリップ把持部を裁ち落とし、フィルム両端に幅10mm、高さ5μmのナーリング加工を施し、巻き取り張力220N/m、テーパー40%で巻芯に巻き取った。
なお、フィルムは、厚さが20μmとなるように、押し出し量および引き取り速度を調整し、仕上がりのフィルム幅は、1430mm幅になるようにスリットし、巻き取った。巻芯の大きさは、内径152mm、外径165〜180mm、長さ1550mmであった。
この巻芯母材として、エポキシ樹脂をガラス繊維、カーボン繊維に含浸させたプリプレグ樹脂を用いた。巻芯表面にはエポキシ導電性樹脂をコーティングし、表面を研磨して、表面粗さRaは0.3μmに仕上げた。なお、巻長は2500mとした。得られたフィルム原反試料を光学フィルム1とする。製膜時、搬送時、巻き取り時、フィルム取り扱い時のいずれにおいても破断・切れ目はなかった。
また、作製した光学フィルム1のガラス転移温度を、示差走査熱量測定器(Perkin Elmer社製DSC−7型)を用いて測定したところ、Tg:126℃の1箇所のみにピークが見られ、セルロースエステル樹脂とアクリル樹脂とが相溶状態で存在していることが分かった。
(光学フィルム2〜8の作製)
光学フィルム1の作製において、樹脂の組成比および延伸倍率を下記の表1のように変更したこと以外は同様にして、光学フィルム2〜8を作製した。
<光学フィルムとしての特性評価>
上記で作製した光学フィルム1〜8について、以下の評価を実施した。
(リターデーション(Ro、Rth)の測定)
上記で作製した光学フィルムについて、自動複屈折率計KOBRA−21ADH(王子計測機器株式会社製)を用いて23℃、55%RHの雰囲気下で590nmの波長において3次元屈折率測定を行ない、遅相軸方向の屈折率nx、進相軸方向の屈折率ny、厚み方向の屈折率nzを求めた。そして、フィルムの厚み(nm)をdとして、下記数式(1)および下記数式(2):
から、厚み方向のリタデーション(Rt)および面内方向のリタデーション(Ro)を算出した。結果を下記の表2に示す。
(破断点応力)
上記で作製した光学フィルムについて、以下の手法により、長手方向(MD方向)および幅手方向(TD方向)のそれぞれの破断点応力を測定した。
具体的には、JIS K 7127に記載の方法に従い23℃55%RHの環境下で測定を行った。この際、試料幅を10mm、長さ80mmに切り出し、任意温度でチャック間距離50mmにし、引っ張り速度100mm/分で引っ張り試験を行い求めた。
結果を下記の表2に示す。
<偏光板としての特性評価>
上記で作製した光学フィルム1〜8のそれぞれを用いて偏光板を作製し、偏光板としての特性を評価した。
(偏光板の作製)
厚さ120μmの長尺ロールポリビニルアルコールフィルムを、ヨウ素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で5倍に搬送方向に延伸して偏光子を作製した。次いで、この偏光膜の片面に下記の条件でアルカリケン化処理した光学フィルム1を偏光板保護フィルムとして完全ケン化型ポリビニルアルコール5%水溶液を接着剤として用いて貼り、さらに偏光子の他方の面に同様にアルカリケン化処理したコニカミノルタオプト社製KC8UEWT(膜厚80μm)を貼り合わせ、乾燥して偏光板1を作製した。同様にして上記で作製した光学フィルム2〜8をそれぞれ用いて、偏光板2〜8を作製した。
(アルカリケン化処理)
ケン化工程 2M−NaOH 50℃ 90秒
水洗工程 水 30℃ 45秒
中和工程 10質量%HCl 30℃ 45秒
水洗工程 水 30℃ 45秒
ケン化処理後、水洗、中和、水洗の順に行い、次いで80℃で乾燥を行った。
(偏光板の割れの評価)
上記で作製した偏光板1〜8について、割れに対する耐性を評価した。具体的には、作製した偏光板の隅を手で折り曲げ、そのときの挙動を目視にて観察し、以下の基準により3段階評価した。結果を下記の表2に示す。
○:割れない
△:割れるが、切れない
×:割れて、かつ、切れた
表2に示すように、薄膜のゼロ位相差フィルムを、長手方向または幅手方向のいずれか一方の破断点応力が80MPaよりも大きくなるように(特に、幅手方向の破断点応力がより大きくなるように)構成することで、偏光板の割れが防止されることが分かる。そして、このような光学フィルムを製造するには、原反フィルムに対して異方延伸処理を施すことが有効である(特に、延伸倍率を比較的大きい値に設定するか、または、幅手方向の延伸倍率をより大きい値に設定することがいっそう有効である)ことが分かる。
1 押出し機
2 フィルター
3 スタチックミキサー
4 流延ダイ
5 回転支持体(第1冷却ロール)
6 挟圧回転体(タッチロール)
7 回転支持体(第2冷却ロール)
8 回転支持体(第3冷却ロール)
9、11、13、14、15 搬送ロール
10 フィルム
12 延伸機、
16 巻取り装置、
31 ダイ本体、
32 スリット、
41 金属スリーブ、
42 弾性ローラ、
43 金属製の内筒、
44 ゴム、
45 冷却水、
51 外筒、
52 内筒、
53 空間、
54 冷却液、
55a、55b 回転軸、
56a、56b 外筒支持フランジ、
60 流体軸筒、
61a、61b 内筒支持フランジ、
62a、62b 中間通路。

Claims (9)

  1. 膜厚が10〜40μmであり、
    下記数式(1)および下記数式(2):
    式中、nxはフィルム面内の遅相軸方向の屈折率を表し、nyはフィルム面内の進相軸方向の屈折率を表し、nzはフィルム厚み方向の屈折率を表し、dはフィルムの厚み(nm)を表す;屈折率は23℃、55%RHの環境下、波長590nmで測定
    でそれぞれ表されるRoおよびRthが、
    を満足し、長手方向または幅手方向のいずれか一方の破断点応力が80MPaよりも大きい、光学フィルム。
  2. 幅手方向の破断点応力が長手方向の破断点応力よりも大きい、請求項1に記載の光学フィルム。
  3. 固有複屈折値が正の樹脂および固有複屈折値が負の樹脂を相溶状態で含有する、請求項1または2に記載の光学フィルム。
  4. 前記固有複屈折値が正の樹脂がアクリル樹脂であり、前記固有複屈折値が負の樹脂がセルロース樹脂である、請求項3に記載の光学フィルム。
  5. 請求項1〜4のいずれか1項に記載の光学フィルムの製造方法であって、
    ドープを支持体上に流延して得られるフィルムを乾燥し、剥離した後に長手方向(MD方向)および幅手方向(TD方向)に延伸する工程を含み、
    長手方向(MD方向)の延伸倍率および幅手方向(TD方向)の延伸倍率の一方が他方の1.01倍以上であり、延伸後のフィルムの膜厚が10〜40μmである、光学フィルムの製造方法。
  6. 幅手方向(TD方向)の延伸倍率が長手方向(MD方向)の延伸倍率よりも大きい、請求項5に記載の製造方法。
  7. 長手方向(MD方向)の延伸倍率が1.5〜3.0倍である、請求項5または6に記載の製造方法。
  8. 前記ドープの支持体への流延が溶融流延である、請求項5〜7のいずれか1項に記載の製造方法。
  9. 請求項1〜4のいずれか1項に記載の光学フィルムまたは請求項5〜8のいずれか1項に記載の製造方法により製造された光学フィルムと、偏光子とが、前記偏光子の吸収軸方向と前記光学フィルムの長手方向(MD方向)とが平行になるように積層されてなる、偏光板。
JP2012011519A 2012-01-23 2012-01-23 光学フィルムおよびその製造方法、並びにこれを用いた偏光板 Expired - Fee Related JP6212836B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011519A JP6212836B2 (ja) 2012-01-23 2012-01-23 光学フィルムおよびその製造方法、並びにこれを用いた偏光板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011519A JP6212836B2 (ja) 2012-01-23 2012-01-23 光学フィルムおよびその製造方法、並びにこれを用いた偏光板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016236115A Division JP2017097352A (ja) 2016-12-05 2016-12-05 光学フィルムおよびその製造方法、並びにこれを用いた偏光板

Publications (2)

Publication Number Publication Date
JP2013148848A true JP2013148848A (ja) 2013-08-01
JP6212836B2 JP6212836B2 (ja) 2017-10-18

Family

ID=49046374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011519A Expired - Fee Related JP6212836B2 (ja) 2012-01-23 2012-01-23 光学フィルムおよびその製造方法、並びにこれを用いた偏光板

Country Status (1)

Country Link
JP (1) JP6212836B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169769A (ja) * 2014-03-06 2015-09-28 帝人株式会社 多層一軸延伸フィルム、ならびにそれからなる反射型偏光板、ips方式液晶ディスプレイ装置用光学部材およびips方式液晶ディスプレイ装置
JP2016138963A (ja) * 2015-01-27 2016-08-04 株式会社日本触媒 光学フィルム、その利用およびその製造方法
WO2017110399A1 (ja) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 光学フィルム、偏光板及び表示装置
CN106985425A (zh) * 2015-09-30 2017-07-28 富士胶片株式会社 模具、薄膜制造设备、溶液制膜方法及熔融制膜方法
WO2018216598A1 (ja) * 2017-05-25 2018-11-29 日東電工株式会社 偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112207A1 (ja) * 2005-03-31 2006-10-26 Nippon Shokubai Co., Ltd. 偏光子保護フィルム、偏光板、および画像表示装置
JP2008194886A (ja) * 2007-02-09 2008-08-28 Nippon Shokubai Co Ltd 表面保護フィルム
JP2009262533A (ja) * 2008-04-04 2009-11-12 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
JP2009271510A (ja) * 2008-04-11 2009-11-19 Konica Minolta Opto Inc セルロースエステルフィルム、光学フィルム、偏光板、液晶表示装置およびセルロースエステルフィルムの溶融流延製膜方法
WO2009150910A1 (ja) * 2008-06-10 2009-12-17 コニカミノルタオプト株式会社 アクリルフィルムの製造方法およびその製造方法によって製造したアクリルフィルム
WO2010119730A1 (ja) * 2009-04-15 2010-10-21 コニカミノルタオプト株式会社 光学素子
JP2010240986A (ja) * 2009-04-06 2010-10-28 Kaneka Corp アクリル系保護フィルム
JP2010271690A (ja) * 2009-04-23 2010-12-02 Nippon Shokubai Co Ltd 位相差フィルムの製造方法
JP2011128408A (ja) * 2009-12-18 2011-06-30 Konica Minolta Opto Inc ハードコートフィルムの製造方法、ハードコートフィルム、偏光板、および画像表示装置
JP2011154360A (ja) * 2009-12-28 2011-08-11 Fujifilm Corp 光学フィルム及びその製造方法
JP2012014187A (ja) * 2011-09-15 2012-01-19 Konica Minolta Holdings Inc 偏光板及び表示装置
JP2012013846A (ja) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd ロール状偏光板のセット及びその製造方法並びに液晶パネルの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112207A1 (ja) * 2005-03-31 2006-10-26 Nippon Shokubai Co., Ltd. 偏光子保護フィルム、偏光板、および画像表示装置
JP2008194886A (ja) * 2007-02-09 2008-08-28 Nippon Shokubai Co Ltd 表面保護フィルム
JP2009262533A (ja) * 2008-04-04 2009-11-12 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
JP2009271510A (ja) * 2008-04-11 2009-11-19 Konica Minolta Opto Inc セルロースエステルフィルム、光学フィルム、偏光板、液晶表示装置およびセルロースエステルフィルムの溶融流延製膜方法
WO2009150910A1 (ja) * 2008-06-10 2009-12-17 コニカミノルタオプト株式会社 アクリルフィルムの製造方法およびその製造方法によって製造したアクリルフィルム
JP2010240986A (ja) * 2009-04-06 2010-10-28 Kaneka Corp アクリル系保護フィルム
WO2010119730A1 (ja) * 2009-04-15 2010-10-21 コニカミノルタオプト株式会社 光学素子
JP2010271690A (ja) * 2009-04-23 2010-12-02 Nippon Shokubai Co Ltd 位相差フィルムの製造方法
JP2011128408A (ja) * 2009-12-18 2011-06-30 Konica Minolta Opto Inc ハードコートフィルムの製造方法、ハードコートフィルム、偏光板、および画像表示装置
JP2011154360A (ja) * 2009-12-28 2011-08-11 Fujifilm Corp 光学フィルム及びその製造方法
JP2012013846A (ja) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd ロール状偏光板のセット及びその製造方法並びに液晶パネルの製造方法
JP2012014187A (ja) * 2011-09-15 2012-01-19 Konica Minolta Holdings Inc 偏光板及び表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169769A (ja) * 2014-03-06 2015-09-28 帝人株式会社 多層一軸延伸フィルム、ならびにそれからなる反射型偏光板、ips方式液晶ディスプレイ装置用光学部材およびips方式液晶ディスプレイ装置
JP2016138963A (ja) * 2015-01-27 2016-08-04 株式会社日本触媒 光学フィルム、その利用およびその製造方法
CN106985425A (zh) * 2015-09-30 2017-07-28 富士胶片株式会社 模具、薄膜制造设备、溶液制膜方法及熔融制膜方法
WO2017110399A1 (ja) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 光学フィルム、偏光板及び表示装置
JPWO2017110399A1 (ja) * 2015-12-25 2018-10-18 コニカミノルタ株式会社 光学フィルム、偏光板及び表示装置
WO2018216598A1 (ja) * 2017-05-25 2018-11-29 日東電工株式会社 偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置
JP2018200339A (ja) * 2017-05-25 2018-12-20 日東電工株式会社 偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置
CN110637242A (zh) * 2017-05-25 2019-12-31 日东电工株式会社 偏振膜、带粘合剂层的偏振膜、及图像显示装置

Also Published As

Publication number Publication date
JP6212836B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
WO2009150926A1 (ja) アクリルフィルムの製造方法およびその製造方法で作製したアクリルフィルム
US8361264B2 (en) Process for producing polarizing plate, polarizing plate produced by the process, and liquid crystal display device using the polarizing plate
JPWO2011016279A1 (ja) セルロースアセテートフィルム、偏光板及び液晶表示装置
WO2013080847A1 (ja) アクリル樹脂含有フィルムの製造方法
JP2007003679A (ja) 位相差板、偏光板及び液晶表示装置
JP6212836B2 (ja) 光学フィルムおよびその製造方法、並びにこれを用いた偏光板
KR20130040246A (ko) 위상차 필름 및 그것을 사용한 편광판, 액정 표시 장치
JP5776362B2 (ja) セルロースエステルフィルムおよびその製造方法、並びにこれを用いた位相差フィルムおよび表示装置
WO2010052980A1 (ja) 光学フィルム
JP5446526B2 (ja) アクリル系樹脂フィルムの製造方法
US8652590B2 (en) Polarizing plate and liquid crystal display
KR20130025881A (ko) 셀룰로오스아세테이트 필름 및 그것을 사용한 편광판, 액정 표시 장치
JP5861700B2 (ja) 延伸セルロースエステルフィルム、及びその製造方法
JP5935810B2 (ja) Ipsモード型液晶表示装置
JPWO2011114764A1 (ja) 位相差フィルム及びそれが備えられた偏光板
CN103314325B (zh) 垂直取向型液晶显示装置及其制造方法
JP2012088408A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板及び液晶表示装置
JP2017097352A (ja) 光学フィルムおよびその製造方法、並びにこれを用いた偏光板
JP2015132661A (ja) 偏光板保護フィルム、その製造方法、偏光板及び液晶表示装置
WO2012111324A1 (ja) 延伸セルロースエステルフィルム、及びその製造方法
WO2012176546A1 (ja) セルロースアシレートフィルムおよびその製造方法、並びにこれを用いた偏光板および液晶表示装置
WO2010106854A1 (ja) 光学フィルム、光学フィルムの製造方法
JP5772680B2 (ja) セルロースアシレート積層フィルムおよびその製造方法、並びにそれを用いた偏光板および液晶表示装置
JP5626134B2 (ja) Va型液晶表示装置
WO2010119732A1 (ja) 偏光子保護フィルム、それを用いた偏光板及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6212836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees