JP2013132135A - 回転電機制御装置 - Google Patents

回転電機制御装置 Download PDF

Info

Publication number
JP2013132135A
JP2013132135A JP2011280154A JP2011280154A JP2013132135A JP 2013132135 A JP2013132135 A JP 2013132135A JP 2011280154 A JP2011280154 A JP 2011280154A JP 2011280154 A JP2011280154 A JP 2011280154A JP 2013132135 A JP2013132135 A JP 2013132135A
Authority
JP
Japan
Prior art keywords
phase
current
control
overcurrent
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011280154A
Other languages
English (en)
Other versions
JP5664928B2 (ja
Inventor
Hiroki Sugiyama
裕樹 杉山
Isao Fujiwara
勲 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2011280154A priority Critical patent/JP5664928B2/ja
Publication of JP2013132135A publication Critical patent/JP2013132135A/ja
Application granted granted Critical
Publication of JP5664928B2 publication Critical patent/JP5664928B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】インバータを制御する制御方式が切り換わった際に生じる過渡電流によって過度に回転電機の動作を制限したり、電流センサの使用が必要以上に制限されたりすることなく、効率的に回転電機の電流を検出して、回転電機を電流フィードバック制御する。
【解決手段】インバータ制御部15が実行制御方式を切り換えた制御方式切換時から予め規定された期間の判定猶予期間MTが設定され、3相の内の何れか1相が過電流相であると判定された場合に、出力制限判定部13は、判定猶予期間MTが経過するまで回転電機MGの出力制限SDの判定を保留し、電流検出部11は、少なくとも判定猶予期間MTの間、過電流相とは別の2相に対応する電流センサの測定結果Miに基づいて過電流相の電流値を演算して3相全ての実電流Iu,Iv,Iwを検出する。
【選択図】図1

Description

本発明は、直流電力と3相交流電力との間で電力変換するインバータを備えて交流の回転電機を駆動する回転電機駆動装置を制御対象とし、前記回転電機に流れる実電流を検出して電流フィードバック制御する回転電機制御装置に関する。
回転電機は、多くの場合、回転電機に流れる電流と目標電流との偏差に基づく電流フィードバック制御により駆動制御される。このため、回転電機に流れる電流を測定する必要がある。例えば3相交流型の回転電機の場合には、各相のステータコイルに流れる電流が、各相に対応して設けられた電流センサによって測定される。特開2002−233160号公報(特許文献1)には、直流電力と交流電力との間で電力変換を行って回転電機を駆動するインバータを制御して回転電機を電流フィードバック制御するインバータ制御装置が開示されている。このインバータ制御装置は、各相に対応して設けられた電流センサが異常となった相を特定し、当該電流センサの測定結果の代わりに他の相の測定結果を用いて、当該相の電流推定値を得て、電流センサの1つに異常が生じても回転電機の電流フィードバック制御を継続する(第6、18−20段落、要約等)。
ところで、回転電機の制御方式には、回転電機の目標トルクや回転速度に応じて適した制御方式が存在する。例えば、正弦波を基調とした電圧指令とキャリアとの振幅比較によってパルスを出力するパルス幅変調制御や、回転電機の回転に同期して電気角の1周期に対応する1つの矩形波を出力する矩形波制御などがある。ここで、例えばパルス幅変調制御と矩形波制御との間で制御方式を相互に切り換える際に、インバータに印加される電圧に変動が生じ、この変動に伴って過渡的な電流が生じる場合がある。そして、このような過渡電流は、電流センサによる電流の測定精度を保証する保証範囲外の値となる場合があり、この過渡電流を測定したことによって、当該電流センサが異常であると判定される場合がある。あるいは、過度電流の発生を検出したことによって回転電機の動作が制限される可能性もある。しかし、当該電流センサは異常とは限らず、また、過渡電流の発生も一時的なものである。従って、回転電機の動作を過度に制限することは好ましくなく、また、異常と判定された電流センサの使用が必要以上に制限されることも好ましくない。
特開2002−233160号公報
上記背景に鑑みて、インバータを制御する制御方式が切り換わった際に生じる過渡電流によって過度に回転電機の動作を制限したり、電流センサの使用が必要以上に制限されたりすることなく、効率的に回転電機の電流を検出して、回転電機を電流フィードバック制御することが望まれる。
上記課題に鑑みた本発明に係る回転電機制御装置の特徴構成は、
直流電力と3相交流電力との間で電力変換するインバータを備えて交流の回転電機を駆動する回転電機駆動装置を制御対象とし、前記回転電機に流れる実電流を検出して電流フィードバック制御する回転電機制御装置であって、
3相各相に対応して設けられて各相に流れる電流を測定する電流センサの測定結果に基づいて、各相の前記実電流を検出する電流検出部と、
前記測定結果が、前記電流センサの予め定められた測定精度保証範囲内の値に設定された過電流判定しきい値以上の前記電流センサに対応する相を、過電流状態の過電流相であると判定する過電流判定部と、
前記過電流判定部の判定結果に基づいて、前記回転電機の出力を制限する必要のある要制限状態であるか否かを判定する出力制限判定部と、
前記回転電機の目標トルク及び回転速度に応じて少なくとも2つの異なる制御方式から1つの実行制御方式を決定して前記インバータをスイッチング制御すると共に、前記要制限状態であると判定された場合には、前記インバータの動作状態を停止状態とするインバータ制御部と、
前記インバータ制御部が前記実行制御方式を切り換えた制御方式切換時から予め規定された期間の判定猶予期間を設定する判定猶予期間設定部と、を備え、
前記過電流判定部により、3相の内の2相以上が前記過電流相であると判定された場合には、前記出力制限判定部は、前記判定猶予期間に拘わらず前記要制限状態であると判定し、
前記過電流判定部により3相の内の何れか1相が前記過電流相であると判定された場合には、前記出力制限判定部は、前記判定猶予期間が経過するまで判定を保留し、前記電流検出部は、少なくとも前記判定猶予期間の間、前記過電流相とは別の2相に対応する前記電流センサの測定結果に基づいて前記過電流相の電流値を演算して3相全ての前記実電流を検出する点にある。
この特徴構成によれば、インバータ制御部が実行制御方式を切り換えた制御方式切換時から判定猶予期間が設定される。従って、制御方式の切り換えによって過渡電流が生じ、3相の内の1相において電流センサによる測定結果が過電流判定しきい値以上となっても、直ちに回転電機の出力を制限する要制限状態と判定されることがない。即ち、回転電機の動作が不必要に制限されることがない。また、測定結果が過電流しきい値以上となった相に対応する電流センサも、判定猶予期間中においては故障などと判定されることがない。即ち、電流センサの使用が不必要に制限されることもない。一方、3相の内の2相以上が過電流相であると判定された場合には、判定猶予期間内であっても、出力制限判定部により要制限状態であると判定されて回転電機の出力が制限される。従って、回転電機の動作を制限する必要があるような過電流の発生や、電流センサの故障などに対しても適切に対応することが可能である。このように、本特徴構成によれば、インバータを制御する制御方式が切り換わった際に生じる過渡電流によって過度に回転電機の動作を制限したり、電流センサの使用が必要以上に制限されたりすることなく、効率的に回転電機の電流を検出して、回転電機を電流フィードバック制御することが可能である。
過渡電流の発生によって複数の相の測定結果が同時に過電流しきい値以上となる場合もあり、このような場合にはインバータが停止状態に制御される。過渡電流の発生は一時的なものであるから、インバータを停止状態とした後で、要制限状態であるとの判定に至った事象が解消する場合がある。このような場合には、速やかにインバータのスイッチング制御を再開することが好ましい。1つの態様として、本発明に係る回転電機制御装置の前記インバータ制御部は、前記インバータの動作状態を前記停止状態としてから、予め定められた待機期間以上経過した後、前記インバータのスイッチング制御を再開すると好適である。
ところで、判定猶予期間は、固定値である必要はない。例えば、インバータ制御部が3つ以上の異なる方式から実行制御方式を決定可能である場合、切り換え前後の制御方式の組み合わせは少なくとも2つ存在する。また、実行制御方式が切り換わる際に生じる過度電流の大きさや継続時間は、切り換え前後の制御方式の組み合わせによって異なり、その組み合わせによってある程度予測することが可能な特性を有している。従って、判定猶予期間は、切り換え前後の制御方式の組み合わせに応じて異なる値に設定されると好適である。1つの態様として、本発明に係る回転電機制御装置の前記インバータ制御部は、少なくとも3つの異なる方式から前記実行制御方式を決定可能であり、前記判定猶予期間は、切り換え前後の前記制御方式の組み合わせに応じて異なる値に設定されると好適である。
また、1つの態様として、本発明に係る回転電機制御装置は、前記インバータ制御部が、前記回転電機の回転に同期してスイッチングを行う同期制御方式と、前記回転電機の回転に拘束される必要なく設定される制御周期に応じてスイッチングを行う非同期制御方式との間で前記実行制御方式を切り換え可能であり、さらに、前記同期制御方式及び前記非同期制御方式のそれぞれにおいて、異なるスイッチングパターンを有するそれぞれ少なくとも2つの制御方式の間で前記実行制御方式を切り換え可能であり、前記判定猶予期間は、前記同期制御方式及び前記非同期制御方式の中で前記実行制御方式を切り換える際の期間よりも、前記同期制御方式と前記非同期制御方式との間で前記実行制御方式を切り換える際の期間の方が長く設定されていると好適である。発明者らの実験や解析によれば、実行制御方式が切り換わる際に生じる過度電流の大きさや継続時間は、同期制御方式及び非同期制御方式の中で実行制御方式を切り換える際よりも、同期制御方式と非同期制御方式との間で実行制御方式を切り換える際の方が大きいことが判った。従って、上記構成のように判定猶予期間を設定することで、より適切に回転電機の電流を検出して、回転電機を電流フィードバック制御することが可能となる。
判定猶予期間の経過後など、判定猶予期間外で過電流相が存在すると判定された場合であっても、他の2相が健在であれば、当該2相の測定結果を用いて、3相の実電流を検出することが可能である。つまり、過度に回転電機の動作を制限することなく、回転電機の電流を検出して、回転電機を電流フィードバック制御することが可能である。1つの態様として、本発明に係る回転電機制御装置の前記出力制限判定部は、前記判定猶予期間の経過後に前記過電流判定部により3相の内の1相が前記過電流相であると判定された場合には、当該過電流相に対応する前記電流センサが故障している故障電流センサであると判定し、前記電流検出部は、前記故障電流センサとは別の2つの前記電流センサの測定結果に基づいて前記過電流相の電流値を演算して3相の前記実電流を検出すると好適である。
2相の電流センサの測定結果に基づいて過電流相の電流を演算している状況において、さらに他の相が過電流相であると判定されると、3相の実電流を検出することができなくなる。このような場合には、電流フィードバック制御もできなくなるので、速やかに回転電機の動作を制限することが好ましい。1つの態様として、本発明に係る回転電機制御装置の前記出力制限判定部は、さらに他の少なくとも1相が前記過電流判定部により前記過電流相であると判定された場合、前記要制限状態であると判定すると好適である。
回転電機制御装置の構成例を模式的に示すブロック図 フラグ及びカウンタのデータ構造を示す図 インバータ制御部の処理手順の一例を示すフローチャート 回転電機制御装置の処理手順の一例を示すフローチャートの第1分図 判定猶予期間の設定手順の一例を示すタイミングチャート 回転電機制御装置の処理手順の一例を示すフローチャートの第2分図 回転電機制御装置の処理手順の一例を示すフローチャートの第3分図
以下、回転電機として、埋込磁石構造の3相交流型の回転電機を駆動する回転電機駆動装置を制御対象とする回転電機制御装置を例として、本発明の実施形態を図面に基づいて説明する。この回転電機は、必要に応じて電動機(モータ)としても発電機(ジェネレータ)としても動作する。以下、回転電機をモータと称して説明する。
図1に示すように、モータMG(回転電機)は、モータMGを駆動する駆動装置1(回転電機駆動装置)を介してバッテリ3に接続されている。制御装置10(回転電機制御装置)は、駆動装置1を介してモータMGを駆動制御する。バッテリ3は、例えば、ニッケル水素二次電池やリチウムイオン二次電池等の各種二次電池、キャパシタ、或いはこれらの組合せ等により構成されている。バッテリ3は、駆動装置1を介してモータMGに電力を供給可能であると共に、モータMGが発電して得られた電力を蓄電可能に構成されている。駆動装置1は、直流電力と3相交流電力との間で電力変換するインバータ5を備えて構成されている。駆動装置1は、インバータ5の直流側の電圧であるシステム電圧(直流電圧)とバッテリ3の電圧との間で直流電圧を変換するための電圧変換装置(コンバータ)を備えていてもよい。バッテリ3やコンバータは、直流電源2に相当する。
インバータ5は、システム電圧を有する直流電力とモータMGの3相交流電力との間の電力変換を行う。インバータ5は、複数組のスイッチング素子を備えたブリッジ回路により構成されている。本実施形態では、スイッチング素子としてIGBT(insulated gate bipolar transistor)を用いる。インバータ5は、モータMGの各相(U相、V相、W相の3相)に対応するそれぞれのレッグについて一対のスイッチング素子を備えて構成されている。各レッグは、直列接続された上アーム素子及び下アーム素子により構成される。また、各スイッチング素子には、スイッチング素子がオン状態の場合の通流方向と逆方向となるように並列接続された(逆並列接続された)フリーホイールダイオードが備えられている。
スイッチング素子のそれぞれは、制御装置10から出力されるスイッチング制御信号SI(ここでは、IGBTのゲートを駆動するゲート駆動信号)に従って動作する。高電圧をスイッチングするIGBTやMOSFETのゲートに入力される駆動信号は、制御装置10を構成する電子回路(後述するようなマイクロコンピュータなど)の電源電圧よりも高い電圧を必要とする。このため、制御装置10により生成されたスイッチング制御信号SIは、不図示のドライバ回路を介して電圧変換(例えば昇圧)された後、インバータ5に入力される。
インバータ5は、システム電圧Vdcの直流電力を交流電力に変換してモータMGに供給し、不図示の他の制御装置から提供される目標トルクTMに応じたトルクをモータMGに出力させる。この際、各スイッチング素子は、後述するパルス幅変調制御や矩形波制御等の制御方式に従って生成されたスイッチング制御信号SIに基づいてスイッチング動作を行う。また、インバータ5は、モータMGが発電機として機能する際には、発電により得られた交流電力を直流電力に変換してバッテリ3へ回生する。
インバータ5とモータMGの各相のコイルとの間を流れる電流(実電流Iu,Iv,Iw(検出電流))は、電流センサ7により測定された電流(測定電流Mi(Mu,Mv,Mw))に基づいて制御装置10の電流検出部11が検出する。本実施形態では、3相の全てが非接触型の電流センサ7により測定される構成を例示している。また、モータMGのロータの各時点での磁極位置θ(ロータの回転角度)や回転速度ωは、回転センサ9により検出され、検出結果を制御装置10が取得する。回転センサ9は、例えばレゾルバ等により構成される。
駆動装置1を制御対象とする制御装置10の各機能部は、本実施形態では、マイクロコンピュータやDSP(digital signal processor)やメモリなどのハードウェアと、プログラムやパラメータなどのソフトウェアとの協働によって実現される。制御装置10の中核となるマイクロコンピュータは、CPUコア、プログラムメモリ、パラメータメモリ、ワークメモリ、A/Dコンバータ、タイマ(カウンタ)等を有して構成されている。もちろん、全てが1つの集積回路の中に構成されている必要はなく、例えば、プログラムメモリなど一部がCPUコアとは別の素子であってもよい。CPUコアは、種々の演算の実行主体となるALU(arithmetic logic unit)や、命令レジスタ、命令デコーダ、フラグレジスタ、汎用レジスタ、割り込みコントローラなどを有して構成される。アナログの電気信号をデジタルデータに変換するA/Dコンバータは、電流センサ7が測定した測定電流Miを受け取り、デジタルデータに変換する。これらの詳細については、公知であるから詳細な説明は省略する。
上述したように、本実施形態では、モータMGの3相のステータコイルの全てに流れる電流が非接触型の電流センサ7により測定され、制御装置10において電流フィードバック制御に利用される。ところで、3相の電流は平衡しているため、3相電流の総和はゼロである。従って、制御装置10は、3相のそれぞれに対応して設けられた3つの電流センサ7の内の何れかが故障した場合や、測定結果の信頼性が低いと判定された場合には、他の2つの電流センサ7の測定結果に基づいて3相全ての電流を検出することが可能である。以下、そのような制御装置10の機能的な構成や、その機能の実行の具体的な態様について説明する。
制御装置10は、図1に示すように電流検出部11と、過電流判定部12と、出力制限判定部13と、判定猶予期間設定部14と、インバータ制御部15とを有して構成されている。電流検出部11は、3相各相に対応して設けられて各相に流れる電流を測定する電流センサ7の測定結果(測定電流Mu,Mv,Mw)に基づいて、各相の実電流Iu,Iv,Iwを検出する機能部である。過電流判定部12は、電流センサ7の測定結果(測定電流Mu,Mv,Mw)に基づき、各相が過電流状態の過電流相であるか否かをそれぞれの相について判定する(相毎に判定する)機能部である。具体的には、過電流判定部12は、測定結果(測定電流Mu,Mv,Mw)が、過電流判定しきい値(THOC)以上となっている電流センサ7に対応する相(電流センサ7が測定対象とする相)を、過電流状態の過電流相であると判定する。過電流判定しきい値(THOC)は、例えば、電流センサ7の測定精度保証範囲内の値に、予め設定されている。
電流センサ7の測定精度保証範囲とは、例えば、電流センサ7の出力が線形性を保って出力可能な電流範囲や、対数などの関数で規定される相関関係を保って出力可能な電流範囲、測定誤差が誤差許容範囲内に収まる電流範囲であり、電流センサ7の品種などに応じて予め規定されている値である。本実施形態では、測定精度保証範囲は、電流センサ7の出力が線形性を保って出力可能な直線性保証範囲である。尚、過電流判定しきい値(THOC)は、さらに、インバータ5などの駆動装置1の許容電流の最大値の範囲内に設定されている。また、過電流判定しきい値(THOC)は、固定値である必要はなく、後述する制御方式などに応じて可変する値であってもよい。
出力制限判定部13は、過電流判定部12の判定結果に基づいて、モータMGの出力を制限する必要のある要制限状態であるか否かを判定する機能部である。例えば、過電流判定部12により過電流相があると判定された場合に、出力制限判定部13は、要制限状態であると判定する。後述するように、インバータ制御部15は、出力制限判定部13により要制限状態であると判定された場合には、インバータ5の動作状態を停止状態とする。
しかし、測定電流Mu,Mv,Mwが過電流しきい値(THOC)以上であっても、実際には問題ではない場合もある。後述するように、インバータ制御部15は、インバータ5をスイッチング制御する制御方式を複数有している。インバータ制御部15が実行する制御方式が切り換わる際には、過渡的にインバータ5への印可電圧が変動し、過渡電流が生じる場合があるが、このような過渡電流は一時的なものであるため、モータMGの出力を制限する必要はない。このため、判定猶予期間設定部14は、出力制限判定部13による判定を猶予するための判定猶予期間を設定する。具体的には、判定猶予期間設定部14は、インバータ制御部15が実行する制御方式(実行制御方式)を切り換えた制御方式切換時から予め規定された期間の判定猶予期間を設定する。
インバータ制御部15は、モータMGの目標トルクTM及び回転速度ωに応じて少なくとも2つの異なる制御方式から1つの実行制御方式を決定してインバータ5をスイッチング制御する機能部である。また、インバータ制御部15は、出力制限判定部13により、要制限状態であると判定された場合には、インバータ5の動作状態を停止状態とする。本実施形態では、インバータ制御部15は、モータMGの回転に同期して回転する2軸の直交ベクトル空間における電流ベクトル制御法を用いた電流フィードバック制御を実行してモータMGを制御する。電流ベクトル制御法では、例えば、永久磁石による界磁磁束の方向に沿ったd軸と、このd軸に対して電気的にπ/2進んだq軸との2軸の直交ベクトル空間において電流フィードバック制御を行う。
インバータ制御部15は、制御対象となるモータMGの目標トルクTM(トルク指令)に基づいて、d軸及びq軸の電流指令を決定する。そして、インバータ制御部15は、モータMGの各相のコイルを流れる実電流Iu,Iv,Iwに基づいて得られたベクトル空間における実電流と、電流指令との偏差を求めて比例積分制御演算(PI制御演算)や比例積分微分制御演算(PID制御演算)を行い、最終的に3相の電圧指令を決定する。この電圧指令に基づいて、スイッチング制御信号SIが生成される。モータMGの実際の3相空間と2軸の直交ベクトル空間との間の相互の座標変換は、回転センサ9により検出された磁極位置θに基づいて行われる。また、モータMGの回転速度ω(角速度)は、回転センサ9の検出結果より導出される。
インバータ制御部15は、インバータ5を構成するスイッチング素子のスイッチングパターンの方式(電圧波形制御の方式)として、少なくともパルス幅変調(PWM:pulse width modulation)制御と矩形波制御(1パルス制御)との2つの制御方式を有している。パルス幅変調制御は、U,V,Wの各相のインバータ5の出力電圧波形であるパルス幅変調波形が、上アーム素子がオン状態となるハイレベル期間と、下アーム素子がオン状態となるローレベル期間とにより構成されるパルスの集合で構成されると共に、その基本波成分が一定期間で略正弦波状となるように、各パルスのデューティーが設定される制御である。パルス幅変調では、交流電圧波形(電圧指令)の振幅と三角波(鋸波を含む)状のキャリア波形の振幅との大小関係に基づいてパルスが生成される。尚、キャリアとの比較によらずにデジタル演算により直接PWM波形を生成する場合もあるが、その場合でも、交流電圧波形と仮想的なキャリア波形の振幅とは相関関係を有する。
パルス幅変調制御には、公知の正弦波パルス幅変調(SPWM : sinusoidal PWM)制御や、空間ベクトルパルス幅変調(SVPWM : space vector PWM)制御、不連続パルス幅変調(DPWM:discontinuous PWM)制御などが含まれる。空間ベクトルパルス幅変調は、正弦波状の基本波に対して中性点バイアス電圧を印加した電圧指令に基づいてパルスが生成される変調方式である。正弦波パルス幅変調や空間ベクトルパルス幅変調は、基本波成分の振幅がキャリアの振幅以下の変調方式であるが、不連続パルス幅変調は電圧指令の振幅がキャリア波形の振幅を超えるパルス幅変調である。このため、正弦波パルス幅変調や空間ベクトルパルス幅変調を通常パルス幅変調、不連続パルス幅変調を過変調パルス幅変調と称する場合がある。不連続パルス幅変調では、各パルスのデューティー比を基本波成分の山側で大きく谷側で小さくすることにより、インバータ5の出力電圧波形の基本波成分の波形を歪ませ、振幅が通常パルス幅変調よりも大きくなるように制御する。例えば、不連続パルス幅変調では、3相の内の1相のパルスをハイ又はローに固定して、他の2相をパルス幅変調する2相変調なども行われる。
これらの正弦波パルス幅変調、空間ベクトルパルス幅変調、不連続パルス幅変調は、キャリアに対する相関関係を有する。このキャリアは例えば制御装置10を構成するマイクロコンピュータの演算周期や制御装置10を構成する電子回路の動作周期など、制御装置10の制御周期に応じて定まる。換言すれば、キャリアはモータMGの回転速度や回転角度(電気角)には拘束されない周期を有している。従って、キャリアも、キャリアに基づいて生成される各パルスも、モータMGの回転には同期していない。また、各パルスの変化点は、キャリアと電圧指令との大小比較により定まるから、各パルスとキャリアとの関係も同期関係にはない。従って、本実施形態において、正弦波パルス幅変調制御、空間ベクトルパルス幅変調制御、不連続パルス幅変調制御によりインバータ5がスイッチング制御される場合の制御方式を“非同期制御方式”と称する。
ところで、直流電圧から交流電圧への変換率を示す指標として、直流電圧に対する多相交流電圧の線間電圧の実効値の割合を示す変調率がある。一般的に、正弦波パルス幅変調制御の最大変調率は約0.61、空間ベクトルパルス幅変調制御の最大変調率は約0.71である。正弦波パルス幅変調制御における電圧指令はほぼ正弦波状である。空間ベクトルパルス幅変調制御の電圧指令は、上述したように部分的に電圧指令を上下にシフトさせて3相電圧の相間電圧を有効に利用できるようにしたことでやや歪みを有しているが、ほぼ正弦波状である。従って、一般的に、最大変調率が約0.71までの空間ベクトルパルス幅変調制御による変調は、“通常パルス幅変調”として扱われる。一方、空間ベクトルパルス幅変調制御の最大変調率である約0.71を越える変調率を有する変調方式は、通常よりも変調率を高くした変調方式として、“過変調パルス幅変調”と称される。不連続パルス幅変調制御は、この過変調パルス幅変調が可能であり、最大変調率は約0.78である。この変調率0.78は、物理的な限界値である。不連続パルス幅変調制御において変調率が0.78に達すると、電気角の1周期において1つのパルスが出力される矩形波制御(1パルス制御)となる。矩形波制御では、変調率は物理的な限界値である約0.78に固定される。
本実施形態においては、パルス幅変調制御では、d−q軸ベクトル空間の各軸に沿った界磁電流(d軸電流)と駆動電流(q軸電流)との合成ベクトルである電機子電流を制御してインバータ5を駆動制御する。つまり、インバータ制御部15は、d−q軸ベクトル空間における電機子電流の電流位相角(q軸電流ベクトルと電機子電流ベクトルとの為す角)を制御してインバータ5を駆動制御する。従って、パルス幅変調制御は、電流位相制御とも称される。
これに対して、矩形波制御は、3相交流電力の電圧位相を制御してインバータ5を制御する方式である。3相交流電力の電圧位相とは、3相の電圧指令の位相に相当する。本実施形態では、矩形波制御は、インバータ5の各スイッチング素子のオン及びオフがモータMGの電気角1周期に付き1回ずつ行われ、各相について電気角1周期に付き1パルスが出力される回転同期制御である。上述したように、本実施形態においては、正弦波パルス幅変調制御などによりインバータ5がスイッチング制御される場合の制御方式を、”非同期制御方式”と称する。これに対して、矩形波制御のように、モータMGの回転に同期してインバータ5がスイッチング制御される場合の制御方式を本実施形態では”同期制御方式”と称する。矩形波制御は、3相電圧の電圧位相を制御することによってインバータ5を駆動するので、電圧位相制御と称することもできる。
ところで、上記において、約0.71を越える変調率を有する変調方式を“過変調パルス幅変調”と呼び、不連続パルス幅変調は、この過変調パルス幅変調が可能であると説明した。また、不連続パルス幅変調において変調率を0.78まで到達させることが可能と説明した。しかし、この可変調域においては、非同期制御方式である不連続パルス幅変調に換えて、モータMGの回転に同期して数パルスを出力する多パルス制御を適用することも可能である。多パルス制御には、5パルス制御、7パルス制御などが採用可能である。この多パルス制御は、モータMGの回転に同期してパルスを出力するので、“同期制御方式”に属する。
本実施形態では、インバータ制御部15は、複数の制御方式として、少なくとも2つの制御方式である“非同期制御方式”と“同期制御方式”とを実行可能であり、モータMGの目標トルクTM及び回転速度ωに応じて実行制御方式を決定する。また、本実施形態では、インバータ制御部15は、“非同期制御方式”として、異なるスイッチングパターンを有する少なくとも2つの制御方式を有すると共に、“同期制御方式”として、異なるスイッチングパターンを有する少なくとも2つの制御方式を有している。具体的には、インバータ制御部15は、“非同期制御方式”として、正弦波パルス幅変調制御、空間ベクトルパルス幅変調制御、不連続パルス幅変調制御の3つの制御方式を有している。また、インバータ制御部15は、“同期制御方式”として、矩形波制御と多パルス制御との2つの制御方式を有している。
上述したように、実行制御方式が切り換わる際には、過渡的にインバータ5への印可電圧が変動し、過渡電流が生じる場合がある。このような一時的な過渡電流により、モータMGの出力が制限されることを抑制するために、制御装置10は、出力制限の判定を猶予するための判定猶予期間を設定する。以下、そのような制御装置10による制御手順についてフローチャートやタイミングチャートも利用して詳細に説明する。
はじめに、図2を利用して、制御装置10による制御に用いられる各種フラグや、カウンタ値(タイマ値)について説明する。このような各種フラグやカウンタ値(タイマ値)は、上述したように、CPUコアのフラグレジスタや、カウンタ(タイマ)によって実現される。制御方式切換フラグSWは1ビットのフラグである。図5のタイミングチャートに示すように、制御方式切換フラグSWは、インバータ制御部15がインバータ5の制御方式を切り換えた制御方式切換時(時刻t1)に“1”に設定される。そして、制御方式切換フラグSWに基づいて判定猶予期間設定部14が判定猶予期間MTを設定した際に、“0”に設定される(リセットされる)。出力制限フラグSDも1ビットのフラグである。このフラグは、出力制限判定部13によって“0”又は“1”に設定される。出力制限フラグSDの初期値は“0”であり、当該フラグの値が“0”の場合には、インバータ制御部15はインバータ5に対して通常のスイッチング制御を行い、“1”の場合にはインバータ5の出力制限を行う。
過電流相フラグCは3ビットのフラグであり、U相に対応する“Cu”、V相に対応する“Cv”、W相に対応する“Cw”により構成される。各フラグの初期値は“0”であり、電流センサ7による測定電流Mu,Mv,Mwが過電流しきい値(THOC)以上の相に対応するフラグが過電流判定部12により“1”に設定される。故障相フラグFは電流センサ7が故障していると判定されている相を示すフラグである。故障相フラグFも、各相に対応した3ビットのフラグであり、U,V,W各相に対応した“Fu”,“Fv”,“Fw”により構成される。除外相フラグEは、電流検出部11が測定電流Mu,Mv,Mwに基づいて実電流Iu,Iv,Iwを検出するに際して、測定値(測定電流Mu,Mv,Mw)を使用しない除外相を示すフラグである。除外相フラグEも3相各相に対応した3ビットのフラグであり、初期値は“0”で全ての相を除外しないことを示す。除外相フラグEは、過電流相フラグCと故障相フラグFとのビット論理和により設定される。具体的には、U相に対応する“Eu”は、“Cu”と“Fu”との論理和、V相に対応する“Ev”は、“Cv”と“Fv”との論理和、U相に対応する“Ew”は、“Cw”と“Fw”との論理和により定まる。つまり、過電流相フラグC及び故障相フラグFの何れかにおいて“1”が設定されている相は、電流センサ7の測定値が電流検出に用いられない除外相となる。
待機期間カウンタWCは、出力制限フラグSDが“1”に設定されてからの経過時間を計測するカウンタ(タイマ)である。インバータ制御部15は、インバータ5の動作状態を停止状態としてから、予め定められた待機期間以上経過した後、インバータ5のスイッチング制御を再開する。待機期間カウンタWCには、この待機期間に対応する値が設定される。本実施形態では、初期値は“0”であり、カウント開始時に設定されるプリセット値は“300”である。即ち、待機期間カウンタWCは、“300”にプリセットされた後、初期値“0”までダウンカウント(デクリメント)動作を行うカウンタ(タイマ)のカウント値(タイマ値)を示している。
猶予期間カウンタMCは、実行制御方式が切り換わった後の判定猶予期間MTを規定するためのカウンタ(タイマ)である。判定猶予期間設定部14は、インバータ制御部15が実行制御方式を切り換えた制御方式切換時(図5に示す時刻t1)から予め規定された期間の判定猶予期間MTを設定する。猶予期間カウンタMCには、この判定猶予期間MTに対応する値が設定される。本実施形態では、初期値は“0”であり、カウント開始時に設定されるプリセット値は“3”である。猶予期間カウンタMCは、制御方式切換フラグSWが“1”の場合に、“3”にプリセットされた後、初期値“0”までダウンカウント(デクリメント)動作を行うカウンタ(タイマ)のカウンタ値(タイマ値)を示している。
尚、猶予期間カウンタMCのプリセット値は、固定値である必要はない。例えば、インバータ制御部15が、少なくとも3つの異なる方式から実行制御方式を決定可能である場合、判定猶予期間MTは、切り換え前後の制御方式の組み合わせに応じて異なる値に設定されてもよい。例えば、空間ベクトルパルス幅変調制御、不連続パルス幅変調制御、矩形波制御の順に実行制御方式が切り換え可能である場合、空間ベクトルパルス幅変調制御と不連続パルス幅変調制御との間での切り換えの際の判定猶予期間MTと、不連続パルス幅変調制御と矩形波制御との間での切り換えの際の判定猶予期間MTとが異なる値であってもよい。
また、上述したように、インバータ制御部15が、モータMGの回転に同期してスイッチングを行う同期制御方式と、モータMGの回転に拘束される必要なく設定される制御周期に応じてスイッチングを行う非同期制御方式との間で実行制御方式を切り換え可能であり、さらに、同期制御方式及び非同期制御方式のそれぞれにおいて、異なるスイッチングパターンを有するそれぞれ少なくとも2つの制御方式の間で実行制御方式を切り換え可能である場合もある。このような場合、判定猶予期間MTは、同期制御方式及び非同期制御方式の中で実行制御方式を切り換える際の期間よりも、同期制御方式と非同期制御方式との間で実行制御方式を切り換える際の期間の方が長く設定されていると好適である。これは、非同期制御と同期制御との間で実行制御方式を切り換える際の方が、非同期制御内、同期制御内において実行制御方式を切り換える際よりも過渡電流が発生し易く、さらにその過渡電流が継続し易いことによる。
図3は、インバータ制御部15による処理手順の一例を部分的に示している。インバータ制御部15は、各制御周期(図5に示す“T1”とほぼ等価)において実行制御方式を切り換えたか否かを判定する(#101)。実行制御方式を切り換えた場合には、制御方式切換フラグSWを“1”に設定する(#102)。図5のタイミングチャートには、時刻t1において実行制御方式が空間ベクトルパルス幅変調(SVPWM)制御から不連続パルス幅変調(DPWM)制御に切り換わり、制御方式切換フラグSWが“1”に設定された例を示している。実行制御方式が切り換わっていない場合には、制御方式切換フラグSWの値はそのまま維持される。次に、出力制限フラグSDの状態が判定され(#103)、“1”の場合には、インバータ5の出力制限が実行される。具体的には、インバータ制御部15により、インバータ5の各IGBTがオフ状態に制御され、インバータ5は停止状態に制御される(#104)。一方、出力制限フラグSDの状態が“0”の場合には、インバータ制御部15により、インバータ5は、実行制御方式に応じてスイッチング制御される(#105)。
以下、さらに、図4〜図7も参照して、電流検出部11、過電流判定部12、出力制限判定部13、判定猶予期間設定部14を中核とした処理手順の一例を説明する。図4から図6を経て図7に至る一連の処理は、予め規定された制御周期T1(図5参照)毎に実行される。各制御周期T1の先頭において図4に示すフローチャートの処理が実行される。はじめに、待機期間カウンタWCの値が“0”であるか否かが判定される(#01)。待機期間カウンタWCの値が“0”でない場合には、出力制限フラグSDが“1”となって、インバータ5が停止状態に制御されてから、規定の待機期間(ここでは、制御周期T1×300)が経過していないことになる。従って、待機期間カウンタWCの値が“0”でない場合には、$3を経由して図7のステップ#43に移行し、カウンタ値が1つデクリメントされる。尚、$1又は$2を経由しても結果は同様である。
ステップ#01において待機期間カウンタWCの値が“0”であると判定されると、次に判定猶予期間設定部14により、制御方式切換フラグSWが“1”であるか否かが判定される(#02)。制御方式切換フラグSWが“1”でなければ、インバータ制御部15による実行制御方式が変更されておらず、判定猶予期間MTを設定する必要もないので、電流センサ7による電流の測定値(測定電流Mu,Mv,Mw)を取得するステップ#05へ移行する。一方、制御方式切換フラグSWが“1”である場合には、判定猶予期間設定部14は、判定猶予期間MTを設定するために、カウンタ(タイマ)を起動し、猶予期間カウンタMCにプリセット値“3”を設定する(#03)。このプリセット値“3”の設定は、制御方式切換フラグSWが“1”となった後に実行されたステップ#02の判定結果に基づいて実行される。図5にも示すように、判定猶予期間設定部14は、猶予期間カウンタMCにプリセット値“3”を設定すると、制御方式切換フラグSWを“0”にリセットする(#04)。
猶予期間カウンタMCの値は、図5に示すように、制御周期T1ごとに1つずつデクリメントされる。猶予期間カウンタMCの値が“0”でない期間は、判定猶予期間MTとなる。尚、判定猶予期間MT内において再度実行制御方式が切り換わり、制御方式切換フラグSWが“1”に設定された場合には、猶予期間カウンタMCの値は、再度プリセットされ、再度“3”からのデクリメントが行われ、判定猶予期間MTが実質的に延長される。判定猶予期間設定部14を実行主体としたステップ#02〜#04の一連の処理を終えると、電流検出部11は、電流センサ7による電流の測定値(測定電流Mu,Mv,Mw)を取得する(#05)。取得した測定電流Mu,Mv,Mwを用いた一連の処理(図6及び図7)は、本実施形態では、図5における演算期間T2において実行される。つまり、猶予期間カウンタMCが適切に設定され、判定猶予期間MTが適切に設定された後に図6及び図7に示す一連の処理が実行される。
図6のステップ#11〜#16に示すように、測定電流Mu,Mv,Mwが取得されると、過電流判定部12は、各測定電流Miが過電流判定しきい値THOC以上であるか否かを判定し、判定結果に基づいて過電流相フラグCを設定する。ステップ#11〜#12はU相、ステップ#13〜#14はV相、ステップ#15〜#16はW相についての処理であるが、U,V,W相に対する処理の順序は任意である。ステップ#11,#13,#15において、測定電流Mu,Mv,Mwが過電流判定しきい値THOC以上であるか否かが判定される。測定電流Mu,Mv,Mwが過電流判定しきい値THOC以上の場合には、各相の過電流相フラグCu,Cv,Cwが“1”に設定される(#12a,#14a,#16a)。一方、測定電流Mu,Mv,Mwが過電流判定しきい値THOC未満の場合には、各相の過電流相フラグCu,Cv,Cwが“0”に設定される(#12b,#14b,#16b)。
過電流相フラグCの設定が完了すると、過電流判定部12は、判定猶予期間MT中であるか否かを判定する。本実施形態では、猶予期間カウンタMCの値が“0”であるか否かによって判定猶予期間MT中であるか否かが判定される(#21)。猶予期間カウンタMCの値が“0”である場合には、判定猶予期間MT中ではないので、過電流相フラグCの値は、信頼性が高いものである。従って、過電流相フラグCの何れかのビットが“1”の場合には、当該ビットに対応する相の電流センサ7が故障していたり、実際に過電流が生じていたりする可能性が高い。従って、過電流相フラグCの値が“1”となっている相については、故障相フラグFの値も“1”に設定する。また、既に故障相フラグFの値が“1”となっている相については、そのまま値“1”を保持する必要がある。そこで、過電流判定部12は、故障相フラグFと過電流相フラグCとのビット論理和を取って故障相フラグFの値を更新する(#23)。続いて、電流検出部11による電流検出演算に電流センサ7による測定結果を用いる相と、用いない相とを区別するために、故障相フラグFの値が、除外相フラグEに設定される(#25a)。
一方、ステップ21において猶予期間カウンタMCの値が“0”ではないと判定された場合には、猶予期間カウンタMCの値が1つデクリメントされる(#22)。そして、この場合には、判定猶予期間MT中であるから、過電流相フラグCの値は信頼性が高いものではなく、過電流相フラグCの値に基づいて故障相フラグFの値の更新は行われない。但し、電流検出部11による電流検出演算には、過電流相フラグCが“1”である相と、故障相フラグFが“1”である相との双方が利用不可である。従って、過電流相フラグCの値と故障相フラグFの値とのビット論理和が演算されて過電流相フラグCの値が更新される(#24)。そして、電流検出部11による電流検出演算において電流センサ7による測定結果を用いることができない相を除外するために、更新された過電流相フラグCの値が除外相フラグEに設定される(#25b)。
尚、ステップ#21〜#25aまでの一連の処理、及びステップ#21〜#25bまでの一連の処理におけるステップ#23及び#25a、及びステップ#24及び#25bは、電流検出部11による電流検出演算に電流センサ7による測定結果を用いる相を選別する処理である。従って、ステップ#23及び#25a、及びステップ#24及び#25bを、除外相設定ステップ#25と称してもよい。
図6に示すように、電流検出部11による電流検出演算において電流センサ7の測定結果を利用しない(除外する)相が設定されると、$2を経て電流検出部11による電流検出演算に移行する。図7に示すように、電流検出部11(又は出力制限判定部13)は、まず、除外相フラグEの値が全てゼロの“000”であるか否かを判定する。除外相フラグEの値が“000”である場合には、電流センサ7には、制御方式の切り換えによる過渡電流の影響も故障もない。従って、出力制限判定部13は、出力制限フラグSDの値を“0”に設定する(#35a)。また、電流検出部11は、U相測定電流Muに基づいてU相の実電流Iuを演算し、V相測定電流Mvに基づいてV相の実電流Ivを演算し、W相測定電流Mwに基づいてW相の実電流Iwを演算する(#37a(#37))。
ステップ#31において除外相フラグEの値が“000”ではないと判定された場合には、除外相フラグEの何れか1ビットが“1”で他の2ビットが“0”であるか否かが順に判定される(#32〜#34)。除外相フラグEの値が“001”,“010”,“100”の何れかである場合には、除外相フラグEの値が“0”の2相の測定電流Miを用いて3相全ての実電流Iu,Iv,Iwを演算することが可能である。従って、出力制限判定部13は、出力制限フラグSDの値を“0”に設定する(#35u,#35v,#35w)。また、電流検出部11は、除外相フラグEの値が“1”である相の実電流を他の2相の測定電流に基づいて演算し、除外相フラグEの値が“0”である相の実電流を当該相の測定電流に基づいて演算して、3相の実電流Iu,Iv,Iwを検出する(#37u,#37v,#37w)。
具体的には、U相の除外相フラグEuのみが“1”の場合には、電流検出部11は、V相測定電流MvとW相測定電流Mwに基づいてU相の実電流Iuを演算し、V相測定電流Mvに基づいてV相の実電流Iuを演算し、W相測定電流Mwに基づいてW相の実電流Iwを演算して、3相全ての実電流を検出する(#37u)。同様に、V相の除外相フラグEvのみが“1”の場合には、電流検出部11は、U相測定電流MuとW相測定電流Mwに基づいてV相の実電流Ivを演算し、U相測定電流Muに基づいてU相の実電流Iuを演算し、W相測定電流Mwに基づいてW相の実電流Iwを演算して、3相全ての実電流を検出する(#37v)。また、W相の除外相フラグEwのみが“1”の場合には、電流検出部11は、U相測定電流MuとV相測定電流Mvに基づいてW相の実電流Iwを演算し、U相測定電流Muに基づいてU相の実電流Iuを演算し、V相測定電流Mvに基づいてV相の実電流Ivを演算して、3相全ての実電流を検出する(#37w)。
ステップ#31〜#34の何れの条件も満たさなかった場合には、除外相フラグEの少なくとも2ビットが“1”である。つまり、除外相フラグEの何れか2ビットが“1”あるいは全てのビットが“1”である。この場合には、2相の測定電流Miを用いて残りの1相の実電流を演算することが不可能であるから電流検出部11は電流検出演算を行わず、出力制限判定部13は、出力制限フラグSDの値を“1”に設定する(#35z)。上述したステップ#35a,#35u,#35v,#35w,#35zは、出力制限判定部13による出力制限フラグ設定ステップ#35と総称することができる。また、上述したステップ#37a、#37u,#37v,#37wは、電流検出部11による実電流検出ステップ(実電流演算ステップ)と総称することができる。
出力制限判定部13は、ステップ#35zにおいて出力制限フラグSDの値を“1”に設定した後、待機期間カウンタWCの値が“0”であるか否かを判定する(#41)。待機期間カウンタWCの値が“0”の場合には、出力制限判定部13は、カウンタ(タイマ)を起動して、待機期間カウンタWCの値を“300”にプリセットする(#42)。待機期間カウンタWCの値が“0”以外の場合には、既にカウンタ(タイマ)は起動されているので、待機期間カウンタWCの値を1つデクリメントする(#43)。以上の処理を持って、1つの制御周期T1における一連の処理を完了し、再び図4に示すステップ#01からの一連の処理が次の制御周期T1において実行される。
以上、説明したように、過電流判定部12により、3相の内の2相以上が過電流相であると判定された場合(図7ステップ#34:No)には、出力制限判定部13は、判定猶予期間MTに拘わらず要制限状態であると判定して、出力制限フラグSDの値を“1”に設定する。つまり、判定猶予期間MTであるか否かに拘わらず(図6のステップ#21における分岐方向に拘わらず)、3相の内の2相以上が過電流相である場合には、出力制限判定部13は、出力制限フラグSDの値を“1”に設定する。一方、過電流判定部12により3相の内の何れか1相が過電流相であると判定された場合には、出力制限判定部13は、判定猶予期間MTが経過するまで要制限状態であるとの判定を保留する(ステップ#31〜#34、及びこれらのYes分岐)。また、判定猶予期間MT中であれば(図6のステップ#21:No)、故障相フラグFの値を更新しないから(#24)、判定猶予期間MT中に故障相が認定されることもなく、故障相の判定を保留していることにもなる。
また、過電流判定部12により3相の内の何れか1相が過電流相であると判定された場合には、電流検出部11は、少なくとも判定猶予期間MTの間、過電流相とは別の2相に対応する電流センサ7の測定結果に基づいて過電流相の電流値を演算して3相全ての実電流Iu,Iv,Iwを検出する(図6ステップ#21:Noを経由した図7のステップ#37)。尚、本実施形態では、判定猶予期間MTの経過後など、判定猶予期間MT外であっても、出力制限判定部13により3相の内の何れか1相のみに対応する電流センサ7が故障している故障電流センサであると判定されている場合、電流検出部11が、故障電流センサとは別の2つの電流センサ7の測定結果(測定電流Mi)に基づいて故障電流センサに対応する相の電流値を演算して3相の実電流Iu,Iv,Iwを検出する(図6#21:Yes、#23を経由した図7のステップ#37)。
1つの態様として、出力制限判定部13は、判定猶予期間MTの経過後に過電流判定部12により3相の内の1相が過電流相であると判定された場合には、当該過電流相に対応する電流センサ7が故障している故障電流センサであると判定して、当該相の故障相フラグFの値を“1”に設定する(図6#23)。電流検出部11は、故障電流センサとは別の2つの電流センサ7の測定結果(測定電流Mi)に基づいて過電流相の電流値を演算して3相の実電流Iu,Iv,Iwを検出する。但し、出力制限判定部13は、さらに他の少なくとも1相が過電流判定部12により過電流相であると判定された場合には、要制限状態であると判定して出力制限フラグSDの値を“1”に設定する(図7#35z)。
尚、上記の説明では、説明を容易にするために、図3に示すフローチャートを独立させて説明したが、当然ながら図4、図6、図7と合わせた一連の手順に含めてもよい。例えば、図3のステップ#101及び#102を図4のステップ#01の前(スタートの後)に実行し、図3のステップ#103〜#105を図7のステップ#37、#42、#43の後(リターンの前)に実行してもよい。
本発明は、直流電力と3相交流電力との間で電力変換するインバータを備えて交流の回転電機を駆動する回転電機駆動装置を制御対象とし、前記回転電機に流れる実電流を検出して電流フィードバック制御する回転電機制御装置に適用することができる。
ω :回転速度
1 :駆動装置(回転電機駆動装置)
5 :インバータ
7 :電流センサ
10 :制御装置(回転電機制御装置)
11 :電流検出部
12 :過電流判定部
13 :出力制限判定部
14 :判定猶予期間設定部
15 :インバータ制御部
Iu :実電流
Iv :実電流
Iw :実電流
MG :モータ(回転電機)
MT :判定猶予期間
M :測定電流
Mu :U相測定電流
Mv :V相測定電流
Mw :W相測定電流
SD :出力制限フラグ(出力制限)
TM :目標トルク

Claims (6)

  1. 直流電力と3相交流電力との間で電力変換するインバータを備えて交流の回転電機を駆動する回転電機駆動装置を制御対象とし、前記回転電機に流れる実電流を検出して電流フィードバック制御する回転電機制御装置であって、
    3相各相に対応して設けられて各相に流れる電流を測定する電流センサの測定結果に基づいて、各相の前記実電流を検出する電流検出部と、
    前記測定結果が、前記電流センサの予め定められた測定精度保証範囲内の値に設定された過電流判定しきい値以上の前記電流センサに対応する相を、過電流状態の過電流相であると判定する過電流判定部と、
    前記過電流判定部の判定結果に基づいて、前記回転電機の出力を制限する必要のある要制限状態であるか否かを判定する出力制限判定部と、
    前記回転電機の目標トルク及び回転速度に応じて少なくとも2つの異なる制御方式から1つの実行制御方式を決定して前記インバータをスイッチング制御すると共に、前記要制限状態であると判定された場合には、前記インバータの動作状態を停止状態とするインバータ制御部と、
    前記インバータ制御部が前記実行制御方式を切り換えた制御方式切換時から予め規定された期間の判定猶予期間を設定する判定猶予期間設定部と、を備え、
    前記過電流判定部により、3相の内の2相以上が前記過電流相であると判定された場合には、前記出力制限判定部は、前記判定猶予期間に拘わらず前記要制限状態であると判定し、
    前記過電流判定部により3相の内の何れか1相が前記過電流相であると判定された場合には、前記出力制限判定部は、前記判定猶予期間が経過するまで判定を保留し、前記電流検出部は、少なくとも前記判定猶予期間の間、前記過電流相とは別の2相に対応する前記電流センサの測定結果に基づいて前記過電流相の電流値を演算して3相全ての前記実電流を検出する回転電機制御装置。
  2. 前記インバータ制御部は、前記インバータの動作状態を前記停止状態としてから、予め定められた待機期間以上経過した後、前記インバータのスイッチング制御を再開する請求項1に記載の回転電機制御装置。
  3. 前記インバータ制御部は、少なくとも3つの異なる方式から前記実行制御方式を決定可能であり、前記判定猶予期間は、切り換え前後の前記制御方式の組み合わせに応じて異なる値に設定される請求項1又は2に記載の回転電機制御装置。
  4. 前記インバータ制御部は、前記回転電機の回転に同期してスイッチングを行う同期制御方式と、前記回転電機の回転に拘束される必要なく設定される制御周期に応じてスイッチングを行う非同期制御方式との間で前記実行制御方式を切り換え可能であり、さらに、前記同期制御方式及び前記非同期制御方式のそれぞれにおいて、異なるスイッチングパターンを有するそれぞれ少なくとも2つの制御方式の間で前記実行制御方式を切り換え可能であり、
    前記判定猶予期間は、前記同期制御方式及び前記非同期制御方式の中で前記実行制御方式を切り換える際の期間よりも、前記同期制御方式と前記非同期制御方式との間で前記実行制御方式を切り換える際の期間の方が長く設定されている請求項3に記載の回転電機制御装置。
  5. 前記出力制限判定部は、前記判定猶予期間の経過後に前記過電流判定部により3相の内の1相が前記過電流相であると判定された場合には、当該過電流相に対応する前記電流センサが故障している故障電流センサであると判定し、
    前記電流検出部は、前記故障電流センサとは別の2つの前記電流センサの測定結果に基づいて前記過電流相の電流値を演算して3相の前記実電流を検出する請求項1から4の何れか一項に記載の回転電機制御装置。
  6. 前記出力制限判定部は、さらに他の少なくとも1相が前記過電流判定部により前記過電流相であると判定された場合、前記要制限状態であると判定する請求項5に記載の回転電機制御装置。
JP2011280154A 2011-12-21 2011-12-21 回転電機制御装置 Active JP5664928B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280154A JP5664928B2 (ja) 2011-12-21 2011-12-21 回転電機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280154A JP5664928B2 (ja) 2011-12-21 2011-12-21 回転電機制御装置

Publications (2)

Publication Number Publication Date
JP2013132135A true JP2013132135A (ja) 2013-07-04
JP5664928B2 JP5664928B2 (ja) 2015-02-04

Family

ID=48909303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280154A Active JP5664928B2 (ja) 2011-12-21 2011-12-21 回転電機制御装置

Country Status (1)

Country Link
JP (1) JP5664928B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136699A1 (ja) * 2014-03-14 2015-09-17 東芝三菱電機産業システム株式会社 電力変換装置の監視装置
WO2016084170A1 (ja) * 2014-11-26 2016-06-02 日産自動車株式会社 電動機の制御装置及び制御方法
WO2016195033A1 (ja) * 2015-06-05 2016-12-08 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
KR20170121103A (ko) * 2013-11-29 2017-11-01 코웨이 주식회사 제습장치 및 제습장치의 동작제어방법
JP2017225236A (ja) * 2016-06-15 2017-12-21 富士電機株式会社 電動機駆動装置
JP2018113734A (ja) * 2017-01-06 2018-07-19 株式会社デンソー モータ制御装置
KR101915991B1 (ko) 2017-04-28 2018-11-07 엘지전자 주식회사 전력 변환 장치 및 이를 포함하는 공기 조화기
WO2020045636A1 (ja) * 2018-08-31 2020-03-05 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
CN111669181A (zh) * 2019-02-01 2020-09-15 美蓓亚三美株式会社 半导体装置、电机驱动控制装置及电机组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670498U (ja) * 1993-03-09 1994-09-30 株式会社東芝 インバータ装置
JP2000350487A (ja) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd ブラシレスモータの制御装置
JP2001320894A (ja) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2002233160A (ja) * 2001-01-31 2002-08-16 Toshiba Corp インバータ制御装置
JP2011083068A (ja) * 2009-10-02 2011-04-21 Aisin Aw Co Ltd 電動機駆動装置の制御装置
JP2012016102A (ja) * 2010-06-30 2012-01-19 Hitachi Automotive Systems Ltd 電力変換システムおよび電力変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670498U (ja) * 1993-03-09 1994-09-30 株式会社東芝 インバータ装置
JP2000350487A (ja) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd ブラシレスモータの制御装置
JP2001320894A (ja) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2002233160A (ja) * 2001-01-31 2002-08-16 Toshiba Corp インバータ制御装置
JP2011083068A (ja) * 2009-10-02 2011-04-21 Aisin Aw Co Ltd 電動機駆動装置の制御装置
JP2012016102A (ja) * 2010-06-30 2012-01-19 Hitachi Automotive Systems Ltd 電力変換システムおよび電力変換装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102075918B1 (ko) 2013-11-29 2020-02-11 웅진코웨이 주식회사 제습장치 및 제습장치의 동작제어방법
KR20170121103A (ko) * 2013-11-29 2017-11-01 코웨이 주식회사 제습장치 및 제습장치의 동작제어방법
WO2015136699A1 (ja) * 2014-03-14 2015-09-17 東芝三菱電機産業システム株式会社 電力変換装置の監視装置
JPWO2015136699A1 (ja) * 2014-03-14 2017-04-06 東芝三菱電機産業システム株式会社 電力変換装置の監視装置
US20170327062A1 (en) * 2014-11-26 2017-11-16 Nissan Motor Co., Ltd. Electric motor control device and control method
WO2016084170A1 (ja) * 2014-11-26 2016-06-02 日産自動車株式会社 電動機の制御装置及び制御方法
JPWO2016084170A1 (ja) * 2014-11-26 2017-08-17 日産自動車株式会社 電動機の制御装置及び制御方法
US10027271B2 (en) 2015-06-05 2018-07-17 Aisin Aw Co., Ltd. Rotating electrical machine control device
CN107710596B (zh) * 2015-06-05 2020-02-14 爱信艾达株式会社 旋转电机控制装置
CN107710596A (zh) * 2015-06-05 2018-02-16 爱信艾达株式会社 旋转电机控制装置
JP2017005809A (ja) * 2015-06-05 2017-01-05 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
DE112016002537B4 (de) 2015-06-05 2022-12-15 Aisin Corporation Steuerungsvorrichtung einer rotierenden elektrischen maschine
WO2016195033A1 (ja) * 2015-06-05 2016-12-08 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP2017225236A (ja) * 2016-06-15 2017-12-21 富士電機株式会社 電動機駆動装置
JP2018113734A (ja) * 2017-01-06 2018-07-19 株式会社デンソー モータ制御装置
KR101915991B1 (ko) 2017-04-28 2018-11-07 엘지전자 주식회사 전력 변환 장치 및 이를 포함하는 공기 조화기
WO2020045636A1 (ja) * 2018-08-31 2020-03-05 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP2020036516A (ja) * 2018-08-31 2020-03-05 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
CN112534709A (zh) * 2018-08-31 2021-03-19 爱信艾达株式会社 旋转电机控制装置
JP7135604B2 (ja) 2018-08-31 2022-09-13 株式会社アイシン 回転電機制御装置
US11456686B2 (en) 2018-08-31 2022-09-27 Aisin Corporation Rotating electrical machine control device
CN111669181A (zh) * 2019-02-01 2020-09-15 美蓓亚三美株式会社 半导体装置、电机驱动控制装置及电机组件

Also Published As

Publication number Publication date
JP5664928B2 (ja) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5664928B2 (ja) 回転電機制御装置
JP5409678B2 (ja) 電動機制御装置
JP2001025282A (ja) センサレスブラシレスモータの脱調検出装置
JP5402403B2 (ja) 電動機制御システム
JP5910460B2 (ja) 断線検出装置
JP4926492B2 (ja) モータ制御装置
US8754603B2 (en) Methods, systems and apparatus for reducing power loss in an electric motor drive system
JP5414893B2 (ja) ブラシレスモータの駆動装置
JP6954149B2 (ja) 交流電動機の制御装置
JP5316551B2 (ja) 回転機の制御装置
JP6591089B2 (ja) 回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP2020068596A (ja) モータの制御装置および制御方法
JP2019208329A (ja) センサレスベクトル制御装置及びセンサレスベクトル制御方法
JP2011004538A (ja) インバータ装置
JP2012138982A (ja) モータ制御装置及び電気機器
JP6674765B2 (ja) 電動機の制御装置及びそれを用いた電動車両
JP2008005646A (ja) 永久磁石式同期電動機の初期磁極位置推定装置
JP5482050B2 (ja) モータ制御装置およびモータの欠相診断方法
JP2017103918A (ja) 回転電機の制御装置およびその制御方法
JP2003047793A (ja) 洗濯機のモータ駆動装置
JP2010268599A (ja) 永久磁石モータの制御装置
JP2020014266A (ja) 電動機の制御装置
JP7456834B2 (ja) モータ制御装置、モータシステム及びモータ制御方法
JP2014212602A (ja) モータ駆動装置
JP5762794B2 (ja) モータ駆動用の電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5664928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150