JP2020036516A - 回転電機制御装置 - Google Patents

回転電機制御装置 Download PDF

Info

Publication number
JP2020036516A
JP2020036516A JP2018163679A JP2018163679A JP2020036516A JP 2020036516 A JP2020036516 A JP 2020036516A JP 2018163679 A JP2018163679 A JP 2018163679A JP 2018163679 A JP2018163679 A JP 2018163679A JP 2020036516 A JP2020036516 A JP 2020036516A
Authority
JP
Japan
Prior art keywords
inverter
control
electric machine
pulse width
width modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018163679A
Other languages
English (en)
Other versions
JP7135604B2 (ja
Inventor
スブラタ サハ
Suburata Saha
スブラタ サハ
藤原 勲
Isao Fujiwara
勲 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2018163679A priority Critical patent/JP7135604B2/ja
Priority to EP19853386.1A priority patent/EP3800782B1/en
Priority to US17/258,598 priority patent/US11456686B2/en
Priority to CN201980052793.2A priority patent/CN112534709A/zh
Priority to PCT/JP2019/034145 priority patent/WO2020045636A1/ja
Publication of JP2020036516A publication Critical patent/JP2020036516A/ja
Application granted granted Critical
Publication of JP7135604B2 publication Critical patent/JP7135604B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/005Arrangements for controlling doubly fed motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】オープン巻線の両端にそれぞれ備えられた2つのインバータを適切に制御する。【解決手段】第1インバータ11及び第2インバータ12のそれぞれを、スイッチングパターン及びスイッチング周波数の少なくとも一方が異なる複数の制御方式により制御可能であると共に、互いに独立した制御方式で制御可能な回転電機制御装置1は、回転電機80の回転速度が第1速度域において第1インバータ11と第2インバータ12とを同じ制御方式で制御し、回転電機80の回転速度が第1速度域よりも高い第2速度域において第1インバータ11と第2インバータ12とを異なる制御方式で制御する制御モードを有する。【選択図】図1

Description

本発明は、オープン巻線を有する回転電機を、2つのインバータを介して駆動制御する回転電機制御装置に関する。
V. Oleschukらによる2007年発表のIEEEの論文「Dual Inverter-Fed Traction Drive with DC Sources Power Balancing Based on Synchronized PWM」には、3相交流型の回転電機が備える3相オープン巻線の両端にそれぞれ1つずつ備えられたインバータをスイッチング制御して回転電機を駆動制御する制御装置が開示されている。一方、良く知られた形態として、例えば3相の巻線のそれぞれの一端側が接続されたY型巻線の他端側に1つのインバータをスイッチング制御して回転電機を駆動制御するものもある。オープン巻線と2つのインバータを用いたシステムでは、Y型巻線と1つのインバータを用いたシステムに比べて、直流の電圧が同じであれば、巻線の交流電圧の線間電圧を高くすることができ、回転電機をより高い出力で動作させることができる。
V. Oleschukらの論文の前書き(Introduction)には、2つのインバータをスイッチング制御するためのパルスを生成するキャリア信号の位相をそれぞれ異ならせることによって、巻線に流れる電流のリップルの大きさを低減できることが記載されている。V. Oleschukらは、さらに、キャリア信号を用いた非同期方式ではなく、同期方式でパルスを生成することで、中/高出力のアプリケーションにも、より適した制御が可能となることに言及している。但し、非同期方式、同期方式の何れにおいても、2つのインバータは、同じ制御方式でスイッチング制御されている。
スイッチング制御の方式は、回転電機に要求されるトルクや、回転速度、直流側の電圧など、種々の要素(動作条件)によって、より高いシステム効率での動作が可能なように、決定されることが好ましい。また、回転電機は、しばしば可聴ノイズを生じさせる場合があり、このような場合には、スイッチング周波数の調整などによってノイズの周波数を可聴周波数帯域から外すようなことも試みられる。つまり、スイッチング制御の方式は、高いシステム効率での動作と、可聴ノイズの低減とが両立できるように、動作条件に応じて決定されることが望ましい。V. Oleschukらの技術は優れたものであるが、オープン巻線の両端にそれぞれ備えられた2つのインバータを適切に制御する上では、まだ改善の余地がある。
V. Oleschuk、R. Bojoi、G. Griva、F. Profumo、"Dual Inverter-Fed Traction Drive with DC Sources Power Balancing Based on Synchronized PWM"、Conference Paper/June 2007、1-4244-0743-5/07、IEEE、p.260-265
上記背景に鑑みて、オープン巻線の両端にそれぞれ備えられた2つのインバータを適切に制御する技術の提供が望まれる。
上記に鑑みた、互いに独立した複数相のオープン巻線を有する回転電機を、第1インバータ及び第2インバータを介して駆動制御する回転電機制御装置は、1つの態様として、前記第1インバータが、前記複数相のオープン巻線の一端側に接続されて直流と複数相の交流との間で電力を変換し、前記第2インバータが、前記複数相のオープン巻線の他端側に接続されて直流と複数相の交流との間で電力を変換し、前記第1インバータ及び前記第2インバータのそれぞれを、スイッチングパターン及びスイッチング周波数の少なくとも一方が異なる複数の制御方式により制御可能であると共に、互いに独立した前記制御方式で制御可能であり、
前記回転電機の制御領域として、同じトルクにおいて前記回転電機の回転速度が相対的に低い第1速度域と、前記回転電機の回転速度が前記第1速度域よりも高い第2速度域とが設定され、前記第1速度域において前記第1インバータと前記第2インバータとを同じ制御方式で制御し、前記第2速度域において前記第1インバータと前記第2インバータとを異なる制御方式で制御する制御モードを有する。
インバータを制御する制御方式には、回転電機の回転速度やトルクになどの動作条件に応じた種々の方式が知られている。第1インバータ及び第2インバータを、それぞれ独立した制御方式で制御することで、回転電機の動作条件に応じて、柔軟に2つのインバータを制御することができる。さらに、第1インバータと第2インバータとを異なる制御方式で制御する制御モードを有することによって、制御の柔軟性を高め、回転電機の動作条件に応じて高い効率で回転電機を駆動制御することができる。
一方、インバータをスイッチング制御した場合、交流電流の基本波に重畳される脈動成分が可聴周波数帯域のノイズを発生させる場合がある。特に回転電機の回転速度が低速の場合、脈動成分の周波数(或いはそのサイドバンド周波数)が可聴周波数帯域に含まれる可能性が高くなる。また、2つのインバータがそれぞれ異なる制御方式で制御される場合には、それぞれの制御方式に応じた脈動が生じ、可聴周波数帯域のノイズが増加するおそれがある。回転電機の回転速度が相対的に低い第1速度域において、第1インバータと前記第2インバータとを同じ制御方式で制御することによって、可聴周波数帯域のノイズが増加することを抑制することができる。また、オープン巻線に電流を流す2つのインバータは、電流の位相がほぼ180度異なる。2つのインバータが同じ制御方式で制御された場合には、脈動成分を含めて電流の位相がほぼ180度異なることになる。従って、脈動成分の少なくとも一部を互いに打ち消し合うことができ、可聴周波数帯域のノイズを低減することもできる。
本構成によれば、第1速度域において第1インバータと第2インバータとを同じ制御方式で制御し、回転電機の回転速度が第1速度域よりも高い第2速度域において第1インバータと前記第2インバータとを異なる制御方式で制御する制御モードを有する。従って、回転電機の回転速度が相対的に低速の場合には、可聴周波数帯域のノイズを抑制し、回転電機の回転速度が相対的に高速の場合には、回転電機の動作条件に応じて高い効率で回転電機を駆動制御することができる。即ち、本構成によれば、オープン巻線の両端にそれぞれ備えられた2つのインバータを適切に制御することができる。
回転電機制御装置のさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
回転電機駆動システムの模式的ブロック図 2つのインバータを用いた回転電機駆動システムのベクトル図 回転電機の動作領域における制御領域の一例を示す図 第1制御モード(mode1)のU相電圧指令の一例を示す波形図 第1高速度域制御モード(mode2-1)のU相電圧指令の一例を示す波形図 第2高速度域制御モード(mode2-2)のU相電圧指令の一例を示す波形図 第2高速度域制御モード(mode2-2)のU相電圧指令の他の例を示す波形図 第3高速度域制御モード(mode2-3)のU相電圧指令の一例を示す波形図 2つのインバータを同一の制御方式で制御した場合のノイズの周波数特性の一例を示すグラフ 2つのインバータを異なる制御方式で制御した場合のノイズの周波数特性の一例を示すグラフ 2つのインバータを同一の制御方式で制御した場合のノイズの周波数特性の他の例を示すグラフ 2つのインバータを異なる制御方式で制御した場合のノイズの周波数特性の他の例を示すグラフ 回転電機の動作領域における制御領域の他の例を示す図 第2低速度域制御モード(mode1-2)のU相電圧指令の一例を示す波形図
以下、互いに独立した複数相のオープン巻線を有する回転電機を、2つのインバータを介して駆動制御する回転電機制御装置の実施形態を図面に基づいて説明する。図1は、回転電機制御装置1(MG-CTRL)を含む回転電機駆動システムの模式的ブロック図である。回転電機80は、例えば、電気自動車やハイブリッド自動車などの車両において車輪の駆動力源となるものである。回転電機80は、互いに独立した複数相(本実施形態では3相)のステータコイル8(オープン巻線)を有するオープン巻線型の回転電機である。ステータコイル8の両端には、それぞれ独立して制御されて直流と複数相(ここでは3相)の交流との間で電力を変換するインバータ10が1つずつ接続されている。つまり、ステータコイル8の一端側には第1インバータ11(INV1)が接続され、ステータコイル8の他端側には第2インバータ12(INV2)が接続されている。以下、第1インバータ11と第2インバータ12とを区別する必要がない場合には単にインバータ10と称して説明する。
インバータ10は、複数のスイッチング素子3を有して構成される。スイッチング素子3には、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)が用いられる。図1には、スイッチング素子3としてIGBTが用いられる形態を例示している。第1インバータ11と第2インバータ12とは、回路の接続形態は同一であるが、同じ種類のスイッチング素子3を用いて構成されていてもよいし、異なる種類のスイッチング素子3を用いて構成されていてもよい。詳細は後述するが、例えば、第1インバータ11を構成する第1スイッチング素子31が、Si−IGBTやSi−MOSFETであり、第2インバータ12を構成する第2スイッチング素子32が、SiC−MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC−SIT(SiC - Static Induction Transistor)、GaN−MOSFET(Gallium Nitride - MOSFET)など、Si−IGBTやSi−MOSFETに比べてオフ状態とオン状態との間での遷移時のスイッチング損失が相対的に小さいスイッチング素子であると好適である。
2つのインバータ10は、それぞれ交流1相分のアーム3Aが上段側スイッチング素子3Hと下段側スイッチング素子3Lとの直列回路により構成されている。各スイッチング素子3には、負極FGから正極Pへ向かう方向(下段側から上段側へ向かう方向)を順方向として、並列にフリーホイールダイオード35が備えられている。また、本実施形態では、2つのインバータ10はそれぞれ独立した直流電源6に接続されている。つまり第1インバータ11の負極FGである第1フローティンググラウンドFG1と第2インバータ12の負極FGである第2フローティンググラウンドFG2とは、互いに独立している。また、インバータ10と直流電源6との間には、それぞれ直流電圧を平滑する直流リンクコンデンサ4(平滑コンデンサ)が備えられている。
具体的には、交流1相分のアーム3Aが第1上段側スイッチング素子31Hと第1下段側スイッチング素子31Lとの直列回路により構成された第1インバータ11は、直流側に第1直流リンクコンデンサ41(第1平滑コンデンサ)が接続されると共に、直流側が第1直流電源61に接続され、交流側が複数相のステータコイル8の一端側に接続されて、直流と複数相の交流との間で電力を変換する。交流1相分のアーム3Aが第2上段側スイッチング素子32Hと第2下段側スイッチング素子32Lとの直列回路により構成された第2インバータ12は、直流側に第2直流リンクコンデンサ42(第2平滑コンデンサ)が接続されると共に、直流側が第2直流電源62に接続され、交流側が複数相のステータコイル8の他端側に接続されて、直流と複数相の交流との間で電力を変換する。
本実施形態では、第1直流電源61及び第2直流電源62は、電圧などの定格が同等の直流電源であり、第1直流リンクコンデンサ41及び第2直流リンクコンデンサも、容量などの定格が同等のコンデンサである。直流電源6の定格電圧は、48ボルトから400ボルト程度である。直流電源6は、例えば、ニッケル水素電池やリチウムイオン電池などの二次電池(バッテリ)や、電気二重層キャパシタなどにより構成されている。回転電機80は、電動機としても発電機としても機能することができる。回転電機80は、インバータ10を介して直流電源6からの電力を動力に変換する(力行)。或いは、回転電機80は、車輪等から伝達される回転駆動力を電力に変換し、インバータ10を介して直流電源6を充電する(回生)。
図1に示すように、インバータ10は、回転電機制御装置1により制御される。回転電機制御装置1は、マイクロコンピュータ等の論理回路を中核部材として構築されている。例えば、回転電機制御装置1は、不図示の車両制御装置等の他の制御装置等から提供される回転電機80の目標トルクに基づいて、ベクトル制御法を用いた電流フィードバック制御を行って、インバータ10を介して回転電機80を制御する。インバータ10の制御方式には、トルク制御、電流制御、電圧制御などの複数の制御方式があるが、本実施形態では電圧制御によって、インバータ10を制御する。
回転電機80の各相のステータコイル8を流れる実電流は電流センサ15により検出され、回転電機80のロータの各時点での磁極位置は、レゾルバなどの回転センサ13により検出される。回転電機制御装置1は、電流センサ15及び回転センサ13の検出結果を用いて、電流フィードバック制御を実行する。回転電機制御装置1は、電流フィードバック制御のために種々の機能部を有して構成されており、各機能部は、マイクロコンピュータ等のハードウエアとソフトウエア(プログラム)との協働により実現される。
図1に示すように、インバータ10を構成する各スイッチング素子3の制御端子(IGBTやFETの場合はゲート端子)は、ドライブ回路2(DRV)を介して回転電機制御装置1に接続されており、それぞれ個別にスイッチング制御される。インバータ10などの回転電機80を駆動するための高圧系回路(直流電源6に接続された系統)と、マイクロコンピュータなどを中核とする回転電機制御装置1などの低圧系回路(3.3ボルトから5ボルト程度の動作電圧の系統)とは、動作電圧(回路の電源電圧)が大きく異なる。ドライブ回路2は、各スイッチング素子3に対する駆動信号(スイッチング制御信号)の駆動能力(例えば電圧振幅や出力電流など、後段の回路を動作させる能力)をそれぞれ高めて中継する。第1ドライブ回路21は第1インバータ11にスイッチング制御信号を中継し、第2ドライブ回路22は第2インバータ12にスイッチング制御信号を中継する。
回転電機制御装置1は、第1インバータ11及び第2インバータ12を構成するスイッチング素子3のスイッチングパターンの形態(電圧波形制御の形態)として、例えばパルス幅変調(PWM:Pulse Width Modulation)制御と矩形波制御(1パルス制御(1-Pulse))との2つの制御形態を有している。
パルス幅変調には、正弦波パルス幅変調(SPWM : Sinusoidal PWM)や空間ベクトルパルス幅変調(SVPWM : Space Vector PWM)などの連続パルス幅変調(CPWM:Continuous PWM)や、不連続パルス幅変調(DPWM:Discontinuous PWM)などの方式がある。不連続パルス幅変調では、例えば3相の交流電力の内の1相に対応するインバータのスイッチング制御信号の信号レベルを順次固定して、他の2相に対応するスイッチング制御信号の信号レベルを変動させる。連続パルス幅変調では、このように何れかの相に対応するスイッチング制御信号が固定されることなく、全ての相が変調される。これらの変調方式は、回転電機80に求められる回転速度やトルクなどの動作条件、そして、その動作条件を満足するために必要な変調率(直流電圧に対する3相交流の相間電圧の実効値の割合)に応じて決定される。
パルス幅変調では、出力指令としての交流波形(例えば交流電圧波形)の振幅と三角波(鋸波を含む)状のキャリアの波形の振幅との大小関係に基づいてパルスが生成される(図4等参照。)。キャリアとの比較によらずにデジタル演算により直接PWM波形を生成する場合もあるが、その場合でも、指令値としての交流波形の振幅と仮想的なキャリア波形の振幅とは相関関係を有する。
デジタル演算によるパルス幅変調において、キャリアは例えばマイクロコンピュータの演算周期や電子回路の動作周期など、回転電機制御装置1の制御周期に応じて定まる。つまり、複数相の交流電力が交流の回転電機80の駆動に利用される場合であっても、キャリアは回転電機80の回転速度や回転角度(電気角)には拘束されない周期(同期しない周期)を有している。従って、キャリアも、キャリアに基づいて生成される各パルスも、回転電機80の回転には同期していない。従って、正弦波パルス幅変調、空間ベクトルパルス幅変調などの変調方式は、非同期変調(asynchronous modulation)と称される場合がある。これに対して、回転電機80の回転に同期してパルスが生成される変調方式は、同期変調(synchronous modulation)と称される。例えば矩形波制御(矩形波変調)では、回転電機80の電気角1周期に付き1つのパルスが出力されるため、矩形波変調は同期変調である。
ところで、直流電圧から交流電圧への変換率を示す指標として、直流電圧に対する複数相の交流電圧の線間電圧の実効値の割合を示す変調率がある。一般的に、正弦波パルス幅変調の最大変調率は約0.61(≒0.612)、空間ベクトルパルス幅変調制御の最大変調率は約0.71(≒0.707)である。約0.71を越える変調率を有する変調方式は、通常よりも変調率を高くした変調方式として、“過変調パルス幅変調”と称される。“過変調パルス幅変調”の最大変調率は、約0.78である。この変調率0.78は、直流から交流への電力変換における物理的(数学的)な限界値である。過変調パルス幅変調において、変調率が0.78に達すると、電気角の1周期において1つのパルスが出力される矩形波変調(1パルス変調)となる。矩形波変調では、変調率は物理的な限界値である約0.78に固定されることになる。
変調率が0.78未満の過変調パルス幅変調は、同期変調方式、非同期変調方式の何れの原理を用いても実現することができる。過変調パルス幅変調の代表的な変調方式は、不連続パルス幅変調である。不連続パルス幅変調は、同期変調方式、非同期変調方式の何れの原理を用いても実現することができる。例えば、同期変調方式を用いる場合、矩形波変調では、電気角の1周期において1つのパルスが出力されるが、不連続パルス幅変調では、電気角の1周期において複数のパルスが出力される。電気角の1周期に複数のパルスが存在すると、パルスの有効期間がその分減少するため、変調率は低下する。従って、約0.78に固定された変調率に限らず、0.78未満の任意の変調率を同期変調方式によって実現することができる。例えば、電気角の1周期において、9パルスを出力する9パルス変調(9-Pulses)、5パルスを出力する5パルス変調(5-Pulses)などの複数パルス変調(Multi-Pulses)とすることも可能である。
また、回転電機制御装置1は、インバータ10や回転電機80に異常が検出されたような場合のフェールセーフ制御として、シャットダウン制御(SDN)やアクティブショートサーキット制御(ASC)を実行することができる。シャットダウン制御は、インバータ10を構成する全てのスイッチング素子3へのスイッチング制御信号を非アクティブ状態にしてインバータ10をオフ状態にする制御である。アクティブショートサーキット制御は、複数相全てのアーム3Aの上段側スイッチング素子3H或いは複数相全てのアーム3Aの下段側スイッチング素子3Lの何れか一方側をオン状態とし、他方側をオフ状態とする制御である。尚、複数相全てのアーム3Aの上段側スイッチング素子3Hをオン状態とし、複数相全てのアーム3Aの下段側スイッチング素子3Lをオフ状態とする場合を上段側アクティブショートサーキット制御と称する。また、複数相全てのアーム3Aの下段側スイッチング素子3Lをオン状態とし、複数相全てのアーム3Aの上段側スイッチング素子3Hをオフ状態とする場合を下段側アクティブショートサーキット制御と称する。
本実施形態のように、ステータコイル8の両端にそれぞれインバータ10が接続されている場合、一方のインバータ10をアクティブショートサーキット制御によって短絡させると、複数相のステータコイル8が当該一方のインバータ10において短絡される。つまり、当該一方のインバータ10が中性点となって、ステータコイル8がY型結線されることになる。このため、回転電機制御装置1は、2つのインバータ10を介してオープン巻線型の回転電機80を制御する形態と、1つのインバータ10(アクティブショートサーキット制御されていない側のインバータ10)を介してY型結線の回転電機80を制御する形態とを実現することができる。このため、本実施形態では、フェールセーフ制御に限らず、通常制御で選択可能な制御形態として、アクティブショートサーキット制御も含める。
ところで、1つのインバータ10をベクトル制御する場合、3相のアーム3Aの状態によって、8つの空間ベクトルを定義することができる。具体的には、上段側スイッチング素子3Hのスイッチング制御信号の2種類の信号レベルの3相分の組み合わせによって8つの空間ベクトルを定義することができる(2^3=8)。尚、下段側スイッチング素子3Lの3相のスイッチング制御信号の信号レベルは、それぞれ上段側スイッチング素子3Hのスイッチング制御信号と相補的な信号レベルとなる。このため、上段側又は下段側の何れか一方のスイッチング制御信号の信号レベルによって空間ベクトルを定義することができる。
各スイッチング制御信号の信号レベルがハイレベルの場合を“1”、ローレベルの場合を“0”として、U相、V相、W相のスイッチング制御信号の信号レベルを(UVW)で示すと、空間ベクトルは、(000),(001),(010),(011),(100),(101),(110),(111)の8つとなる。尚、8つの空間ベクトルの内、(000),(111)は、相間電圧がゼロとなって回転電機80に電圧が印加されないためにゼロベクトル又はヌルベクトルと称され、dq軸ベクトル座標系において同一の座標を示す。これに対して、他の6つの空間ベクトルは、アクティブベクトルと称され、dq軸ベクトル座標系においてそれぞれ異なる座標を示す。
図1に示すように、2つのインバータ10をベクトル制御する場合には、上段側又は下段側の何れか一方のスイッチング制御信号の信号レベルによって64個の空間ベクトルを定義することができる(2^(3・2)=2^6=64)。この内、10個はヌルベクトルである。第1インバータ11のU相(U1相)、V相(V1相)、W相(W1相)の信号レベルと第2インバータ12のU相(U2相)、V相(V2相)、W相(W2相)の信号レベルとを(U1V1W1−U2V2W2)で示すと、(000−000),(001−001),(010−010),(011−011),(100−100),(101−101),(110−110),(111−111),(000−111),(111−000)の10個は、相間電圧がゼロとなるヌルベクトルである。残りの54個は、dq軸ベクトル座標系で原点(ヌルベクトルの座標)から18の異なる座標への有効な大きさを持つアクティブベクトルとなる。
図2には、ヌルベクトルの座標と、18箇所のアクティブベクトルの座標とをプロットしている。Z0は、dq軸ベクトル座標系におけるヌルベクトルの座標を示している(10個のベクトルが同一座標)。Z1〜Z6は、dq軸ベクトル座標系において実質的に1つのインバータ10によって実現されるアクティブベクトルの座標を示している。Z7〜Z18は、dq軸ベクトル座標系において2つのインバータ10によって実現されるアクティブベクトルに対応する座標を示している。
Z1は(000−011),(100−000),(100−111),(111−011)、Z2は(000−001),(110−000),(110−111),(111−001)、Z3は(000−101),(010−000),(010−111),(111−101)、Z4は(000−100),(011−000),(011−111),(111−100)、Z5は(000−110),(001−000)、(001−111),(111−110)、Z6は(000−010),(101−000),(101−111),(111−010)を含む。これら24個の空間ベクトルは、一方のインバータ10の空間ベクトルがヌルベクトルであり、他方のインバータ10の空間ベクトルがアクティブベクトルである組み合わせである。
尚、Z1:(101−001),(110−010)、Z2:(010−011),(100−101)、Z3:(011−001),(110−100)、Z4:(001−101),(010−110)、Z5:(011−010),(101−100)、Z6:(001−011),(100−110)の12個の空間ベクトルも、それぞれZ1〜Z6の座標を示す。但し、一方のインバータ10がヌルベクトルではなく、2つのインバータ10が共にアクティブベクトルである組み合わせである。
Z7は(100−001),(110−011)、Z8は(010−001),(110−101)、Z9は(010−100),(011−101)、Z10は(001−100),(011−110)、Z11は(001−010),(101−110)、Z12は(100−010),(101−011)の12個の空間ベクトルに対応する。また、Z13は(100−011)、Z14は(110−001)、Z15は(010−101)、Z16は(011−100)、Z17は(001−110)、Z18は(101−010)の6個の空間ベクトルに対応する。
本実施形態のように、互いに独立した複数相のオープン巻線を有する回転電機80を、2つのインバータ10を介して駆動制御する場合、一般的には、2つのインバータ10は、同じ制御方式でスイッチング制御される。しかし、スイッチング制御の方式は、回転電機80に要求されるトルクや、回転速度、直流側の電圧など、種々の要素(動作条件)によって、より高いシステム効率での動作が可能なように、決定されることが好ましい。このため、回転電機制御装置1は、第1インバータ11と第2インバータ12とを異なる制御方式で制御する制御モードを有している。発明者らの実験やシミュレーションによって、回転電機80の動作条件に応じて、第1インバータ11と第2インバータ12とを異なる制御方式で制御する制御モードを有することで、システム効率を高くすることができることが確かめられている。
一方、インバータ10をスイッチング制御した場合、交流電流の基本波に重畳される脈動成分が可聴周波数帯域のノイズを発生させる場合がある。2つのインバータ10がそれぞれ異なる制御方式で制御される場合には、それぞれの制御方式に応じた脈動が生じ、可聴周波数帯域のノイズが増加するおそれがある。特に回転電機80の回転速度が低速の場合、脈動成分の周波数(或いはそのサイドバンド周波数)が可聴周波数帯域に含まれる可能性が高くなる。回転電機80の制御方式、つまりインバータ10の制御方式は、高いシステム効率での動作と、可聴ノイズの低減とが両立できるように、動作条件に応じて適切設定されることが望ましい。
そこで、本実施形態では、図3に示すように、回転電機80の制御領域として、同じトルクにおいて回転電機80の回転速度が相対的に低い第1速度域VR1と、回転電機80の回転速度が第1速度域VR1よりも高い第2速度域VR2とが設定され、回転電機制御装置1は、それぞれの制御領域に応じた制御方式でインバータ10を制御している。図3は、回転電機80の回転速度とトルクとの関係を示している。回転電機制御装置1は、第1速度域VR1において第1インバータ11と第2インバータ12とを同じ制御方式で制御し、第2速度域VR2において第1インバータ11と第2インバータ12とを異なる制御方式で制御する制御モードを有する。
本実施形態では、回転電機制御装置1は、下記の表1で示すような大きく2つの制御モード(第1制御モード(mode1)、第2制御モード(mode2))を有している。第1制御モードは、第1速度域VR1で実行される制御方式であり、第2制御モードは、第2速度域VR2で実行される制御方式である。図3に示すように、第2速度域VR2は、さらに3つの速度領域を有する(第1高速度域VR2−1、第2高速度域VR2−2、第3高速度域VR2−3)。そして、表1に示すように、これら3つの速度領域に応じて、第2制御モードは、3つの制御モード(mode2-1、mode2-2、mode2-3)を有している。これら3つの制御モードについては後述する。
Figure 2020036516
第1速度域VR1では、第1インバータ11及び第2インバータ12が、同じ制御方式(ここでは連続パルス幅変調(CPWM))で制御される(第1制御モード(mode1))。第2速度域VR2では、第1インバータ11及び第2インバータ12のそれぞれの制御方式が、回転電機80の回転速度に応じて設定される。第1高速度域VR2−1では、第1インバータ11が不連続パルス幅変調(DPWM)で制御され、第2インバータ12が連続パルス幅変調(CPWM)で制御される(第1高速度域制御モード(mode2-1))。第2高速度域VR2−2では、第1インバータ11が矩形波制御(1-Pulse)により制御され、第2インバータ12が連続パルス幅変調(CPWM)及び不連続パルス幅変調(DPWM)の何れかのパルス幅変調(PWM)により制御される(第2高速度域制御モード(mode2-2))。第3高速度域VR2−3では、第1インバータ11及び第2インバータ12が、同じ制御方式(ここでは矩形波制御(1-Pulse))により制御される(第3高速度域制御モード(mode2-3))。
図3に示すように、回転電機80の制御領域として、同じトルクにおいて回転電機80の回転速度が相対的に低い第1速度域VR1と、回転電機80の回転速度が第1速度域VR1よりも高い第2速度域VR2とが設定されている。さらに、第2速度域VR2には、同じトルクにおける回転速度に応じて、回転速度が低い側から順に、第1高速度域VR2−1、第2高速度域VR2−2、第3高速度域VR2−3が設定されている。図3に示すトルクマップにおいて、第1速度域VR1に対応する動作領域を第1領域R1、第1高速度域VR2−1に対応する動作領域を第2領域R2、第2高速度域VR2−2に対応する動作領域を第3領域R3、第3高速度域VR2−3に対応する動作領域を第4領域R4と称する。
第1領域R1は、最も低回転速度・低トルクの動作領域である。このような低回転速度・低トルクの動作領域では、可聴周波数帯域のノイズが目立ち易い。従って、回転電機制御装置1は、第1インバータ11及び第2インバータ12を同じ制御方式で制御する。2つのインバータ10がそれぞれ異なる制御方式で制御される場合には、それぞれの制御方式に応じた脈動が生じ、可聴周波数帯域のノイズが増加するおそれがある。しかし、可聴周波数帯域のノイズが生じ易い第1速度域VR1(第1領域R1)において、第1インバータ11と第2インバータ12とが同じ制御方式で制御されることによって、可聴周波数帯域のノイズが増加することを抑制することができる。また、ステータコイル8に電流を流す2つのインバータ10は、電流の位相がほぼ180度異なる。2つのインバータ10が同じ制御方式で制御された場合には、脈動成分を含めて電流の位相がほぼ180度異なることになる。従って、脈動成分の少なくとも一部を互いに打ち消し合うことができ、可聴周波数帯域のノイズを低減することもできる。
第2領域R2は、第1領域R1よりも高回転速度・高トルクの動作領域であるが、第3領域R3及び第4領域R4よりも低回転速度・低トルクの動作領域である。つまり、第2領域R2は、全動作領域の中で相対的に低回転速度・低トルクの動作領域であるため、高い変調率は必要ではない。このため、第1インバータ11及び第2インバータ12の双方がパルス幅変調によって制御される。但し、第2領域R2は、第1領域R1よりも高回転速度・高トルクの動作領域であるので、表1に示すように、本実施形態では、第1インバータ11が連続パルス幅変調(CPWM)よりも、高い変調率での変調が可能な不連続パルス幅変調(DPWM)により制御され、第2インバータ12が連続パルス幅変調(CPWM)で制御される形態を例示している。
第3領域R3は、第2領域R2よりも高回転速度・高トルクの動作領域であるが、第4領域R4よりも低回転速度・低トルクの動作領域である。つまり、第3領域R3は、全動作領域の中で相対的に高回転速度・高トルクの動作領域であるため、高い変調率が求められる。本実施形態では、表1に示したように、第1インバータ11を矩形波制御(1-Pulse)により制御し、第2インバータ12をパルス幅変調(CPWM又はDPWM)により制御する。
第3領域R3におけるパルス幅変調は、表1に示すように、連続パルス幅変調(CPWM)又は連続パルス幅変調よりも高い変調率の出力が可能な不連続パルス幅変調(DPWM)を用いると好適である。不連続パルス幅変調(DPWM)には、上述したように非同期変調と同期変調とがある。第1インバータ11が同期変調(矩形波変調)によって制御されるため、第2インバータ12も同期変調の不連続パルス幅変調(複数パルス変調)によって制御されると、第1インバータ11の交流電圧の位相と、第2インバータ12の交流電圧の位相とを180度異ならせることが容易である。当然ながら、第2領域R2との連続性を考慮して、第2インバータ12が非同期変調の不連続パルス幅変調によって制御されてもよい。
尚、第3領域R3におけるパルス幅変調は、下記の表2に示すように、さらに回転速度などの動作条件に応じて、異なる制御方式に変更されてもよい。つまり、連続パルス幅変調(CPWM)、非同期変調の不連続パルス幅変調、同期変調の不連続パルス幅変調が、回転速度などの動作条件に応じて選択的に実行されてもよい。
Figure 2020036516
第4領域R4は、最も高回転速度・高トルクの動作領域である。表1及び表2に示したように、第4領域R4では、2つのインバータ10が共に矩形波制御(1-Pulse)により制御される。
上記においては、回転電機制御装置1が、第2速度域VR2において、第1インバータ11及び第2インバータ12のそれぞれの制御方式を、回転電機80の回転速度に応じて設定する形態を例示した。しかし、回転電機制御装置1は、第2速度域VR2において、第1インバータ11及び第2インバータ12のそれぞれの制御方式を、直流電力に対する複数相の交流電力の実効値の割合(変調率)に応じて設定しても良い。その他、回転電機制御装置1は、例えば、回転電機80の出力トルクに基づいて制御方式を設定しても良い。或いは、回転電機制御装置1は、3相交流電力、3相交流電流、3相交流電圧や、これらの実効値に基づいて制御方式を設定しても良い。
上述したように、回転電機制御装置1は、直流電力に対する3相交流電力の実効値の割合(例えば変調率(指令値であっても出力電圧からの換算値でもよい))に基づいて、それぞれの制御方式を変更してもよい。本実施形態では、第1直流電源61の端子間電圧“E1”と第2直流電源62の端子間電圧“E2”は同じである(共に電圧“E”)。第1インバータ11の交流側の実効値を“Va_inv1”、第2インバータ12の交流側の実効値を“Va_inv2”とすると、第1インバータ11の変調率“Mi_inv1”は、及び第2インバータ12の変調率“Mi_inv2”は下記式(1)、(2)のようになる。また、システム全体の変調率“Mi_sys”は、下記式(3)のようになる。
Mi_inv1=Va_inv1/E1=Va_inv1/E ・・・(1)
Mi_inv2=Va_inv2/E2=Va_inv2/E ・・・(2)
Mi_sys =(Va_inv1+Va_inv2)/(E1+E2)
=(Va_inv1+Va_inv2)/2E ・・・(3)
電圧の瞬時値については、瞬時におけるベクトルを考慮する必要があるが、単純に変調率だけを考えると、式(1)〜(3)より、システム全体の変調率“Mi_sys”は、“(Mi_inv1+Mi_inv2)/2”となる。
例えば、表1及び表2に示す第1制御モード(mode1)は、システム全体の変調率“Mi_sys”が、第1基準変調率M1(例えば“0.25”)未満の場合に選択される。第1インバータ11及び第2インバータ12は、制御モード間のハンチングを防止するためのマージンα(例えば“0.05”)を含めて、変調率“Mi_inv1”及び“Mi_inv2”が“0.3”未満の範囲で、連続パルス幅変調制御(CPWM)により制御される。
表1及び表2に示す第1高速度域制御モード(mode2-1)は、システム全体の変調率“Mi_sys”が、第1基準変調率M1(例えば“0.25”)以上、第2基準変調率M2(例えば“0.5”)未満の場合に選択される。第1インバータ11と第2インバータ12とが同じ制御方式で制御される場合には、両インバータの変調率“Mi_inv1”、“Mi_inv2”が、“0.25〜0.5”の範囲となるように、連続パルス幅変調制御(CPWM)又は不連続パルス幅変調制御(DPWM)により、第1インバータ11及び第2インバータ12が制御される。表1及び表2に示すように、第1インバータ11と第2インバータ12とが異なるパルス幅制御方式で制御される場合には、システム全体の変調率“Mi_sys”が“0.25〜0.5”の範囲となり、“Mi_inv1>Mi_inv2”となるように、第1インバータ11が不連続パルス幅変調制御(DPWM)により制御され、第2インバータ12が連続パルス幅変調制御(CPWM)により制御される。ここでは、例えば、第2制御モードにおける第1インバータ11の変調率“Mi_inv1”の最大値が“0.56”、第2インバータ12の変調率“Mi_inv2”の最大値が“0.44”であるとする。尚、第1制御モードのマージンαと同様に制御モード間のハンチングを防止するために、例えば、変調率の範囲の上限側にマージンが設定されていてもよい。
表1及び表2に示す第2高速度域制御モード(mode2-2)は、システム全体の変調率“Mi_sys”が、第2基準変調率M2(例えば“0.5”)以上、最大変調率“0.78”未満の場合に選択される。第1インバータ11は矩形波制御(1-Pulse)により制御されるため、その変調率“Mi_inv1”は“0.78”固定となる。システム全体の変調率“Mi_sys”を満たすために、第2インバータ12は、変調率“Mi_inv2”が“0.22”以上、“0.78”未満となる範囲内で制御される。例えば、この範囲内での下限の変調率“0.22”に近い側では、表2に示すように、連続パルス幅変調(CPWM)により第2インバータ12が制御される。また、この範囲内での上限の変調率“0.78”に近い側では、表2に示すように、複数パルス変調(Multi-Pulses)により第2インバータ12が制御される。この範囲内での中間の変調率では、非同期の不連続パルス幅変調(DPWM)により第2インバータ12が制御される。尚、第1制御モードのマージンαと同様に制御モード間のハンチングを防止するために、例えば、変調率の範囲の下限側にマージンが設定されていてもよい。
表1及び表2に示す第3高速度域制御モード(mode2-3)は、システム全体の変調率“Mi_sys”が、最大変調率“0.78”に固定される。第1インバータ11及び第2インバータ12の双方が矩形波制御(1-Pulse)により制御されるため、両インバータの変調率“Mi_inv1”、“Mi_inv2”は“0.78”固定となる。このように、回転電機制御装置1は、変調率(変調率の指令値であっても出力電圧からの換算値であってもよい)に基づいて、制御方式を変更することができる。下記の表3は、表2の制御形態に上述した変調率による区分を加えたものである。尚、表3中の“a”、“b”は、任意の値であり、例えば“a”は、“0.3〜0.5”程度、“b”は“0.5〜0.7”程度であると好適である。
Figure 2020036516
尚、変調率と等価な指標であるが、回転電機制御装置1は、電圧指令(第1インバータ11の電圧指令“V1”、第2インバータ12の電圧指令“V2”)に基づいて制御方式を変更してもよい(図4等に例示する電圧指令Vu**等を参照)。例えば、第1制御モードは、第1インバータ11の電圧指令“V1”及び第2インバータ12の電圧指令“V2”が、第1電圧指令基準値(第1基準変調率M1に対応する電圧指令の値)未満の場合に選択される。第4制御モードは、第1インバータ11の電圧指令“V1”及び第2インバータ12の電圧指令“V2”が最大値の場合に選択される。上記の説明により、容易に理解可能であるため、詳細な説明や例示は省略するが、第2制御モード(第1高速度域制御モード、第2高速度域制御モード、第3高速度域制御モード)についても同様に、回転電機制御装置1は、電圧指令に基づいて制御方式を変更することができる。
以下、表2に例示した形態を中心に、第1制御モード、第1高速度域制御モード、第2高速度域制御モード、第3高速度域制御モードについて、電圧指令の波形例を参照して説明する。
図4の波形図は、第1制御モード(mode1)における第1インバータ11のU相電圧指令である第1U相電圧指令Vu1**と、第2インバータ12のU相電圧指令である第2U相電圧指令Vu2**と、キャリアCAの一例とを示している。本実施形態において、キャリアCAは波高が“1”、つまり、“0”から“1”の間で変化する三角波である。電圧指令は、最小値が“0”より大きく、最大値が“1”よりも小さい範囲で変化する。正弦波パルス幅変調では、電圧指令が正弦波状となるが最大変調率が約0.61に留まる。本実施形態では、最大変調率が約0.71程度となる空間ベクトルパルス幅変調を行うため、正弦波状の電圧指令が補正されている。第1U相電圧指令Vu1**及び第2U相電圧指令Vu2**は、第1インバータ11及び第2インバータ12が連続パルス幅変調(CPWM)で変調される場合の電圧指令を示している。
図5の波形図は、第1高速度域制御モード(mode2-1)における第1U相電圧指令Vu1**と、第2U相電圧指令Vu2**と、キャリアCAの一例とを示している。図5の第1U相電圧指令Vu1**は、第1インバータ11が不連続パルス幅変調(DPWM)で変調される場合の電圧指令を示し、第2U相電圧指令Vu2**は、第2インバータ12が連続パルス幅変調(CPWM)で変調される場合の電圧指令を示している。
図4及び図5に示すように、第1U相電圧指令Vu1**と第2U相電圧指令Vu2**とは、概ね180度異なる位相である。変調率が同じ場合、電流のベクトルと第2インバータ12による電圧のベクトルとが同一直線上で180度異なる向きであると、第2インバータ12の力率が“1”となる。その結果、第2インバータ12を高い効率で動作させて、システム損失を最適化することができる。
U相電圧の最大振幅は “(4/3)E”となり(図2のベクトル図も参照)、相間電圧の最大振幅は、“2E”となる。尚、第1直流電源61と第2直流電源62とは独立しており、第1直流電源61の第1直流電圧E1と、第2直流電源62の第2直流電圧E2とは、異なる値であってもよい。例えば、正確には、U相電圧の最大振幅は、“((2/3)E1)+(2/3)E2”であるが、以下の説明も含めて、本明細書中では“E1=E2=E”として説明する。
図6及び図7の波形図は、第2高速度域制御モード(mode2-2)における第1U相電圧指令Vu1**と、第2U相電圧指令Vu2**と、キャリアCAの一例とを示している。第2高速度域制御モードでは、第1インバータ11が矩形波制御されるため、第1U相電圧指令Vu1**も矩形波状となる。図6は、第2U相電圧指令Vu2**が、空間ベクトルパルス幅変調(SVPWM)など連続パルス幅変調(CPWM)の場合の電圧指令を例示している。図7は、第2U相電圧指令Vu2**が、非同期変調による不連続パルス幅変調(DPWM)の場合の電圧指令を例示している。図示は省略するが、第2インバータ12は、上述したように、同期変調による不連続パルス幅変調(複数パルス変調(Multi-Pulses))により制御されてもよい。尚、第1インバータ11及び第2インバータ12の双方が同期変調される場合には、キャリアCAは不要である。
第2高速度域制御モードでも第1制御モード及び第1高速度域制御モードと同様に、U相電圧の最大振幅は“(4/3)E”となり、相間電圧の最大振幅は、“2E”となる。
図8の波形図は、第2高速度域制御モード(mode2-3)における第1インバータ11のU相電圧指令である第1U相電圧指令Vu1**と、第2インバータ12のU相電圧指令である第2U相電圧指令Vu2**と、キャリアCAの一例とを示している。第4制御モードでは、第1インバータ11に加えて第2インバータ12も矩形波制御されるため、第1U相電圧指令Vu1**及び第2U相電圧指令Vu2**の双方が矩形波状となる。尚、第1インバータ11及び第2インバータ12の双方が矩形波変調(同期変調)される場合には、キャリアCAは不要であるが、変調率などについて、第1制御モード、第1高速度域制御モード、第2高速度域制御モードとの比較が容易なようにキャリアCAも図示している。
ここで、図9から図12も参照して、可聴周波数帯域のノイズについて説明する。図9及び図10は、同じ動作条件(回転速度・トルク・直流リンク電圧等)においてインバータ10を同一の制御方式で制御した場合(図9)と、異なる制御方式で制御した場合(図10)とのノイズの周波数分布(シミュレーション結果)を示している。図9は、2つのインバータ10が共に不連続パルス幅変調(DPWM)で制御された場合、図10は、一方のインバータ10が矩形波制御(1-Pulse)により制御され、他方のインバータ10が連続パルス幅変調(CPWM)により制御されている形態を例示している。
同様に、図11及び図12は、同じ動作条件(回転速度・トルク・直流リンク電圧)においてインバータ10を同一の制御方式で制御した場合(図11)と、異なる制御方式で制御した場合(図12)とのノイズの周波数分布を示している。図11は、2つのインバータ10が共に連続パルス幅変調(CPWM)で制御された場合、図12は、一方のインバータ10が不連続パルス幅変調(DPWM)により制御され、他方のインバータ10が連続パルス幅変調(CPWM)により制御されている形態を例示している。尚、回転電機80の回転速度、直流側の電圧、キャリア周波数(ここでは5[kHz])は、図9〜図12において全て同一である。回転電機のトルクは、図9及び図10に比べて、図11及び図12の方が高く、おおよそ1.7倍である。
図9と図10との比較により明らかなように、インバータ10を異なる制御方式で制御した場合(図10)には、5[kHz]よりも低周波数側と、10[kHz]の周辺とに高いノイズが生じている。インバータ10を同一の制御方式で制御した場合(図9)には、5[kHz]よりも低周波数側におけるノイズが抑制されている。即ち、インバータ10を同一の制御方式で制御した場合には、インバータ10を異なる制御方式で制御した場合に比べて、可聴周波数帯域(おおむね10[Hz]〜20[kHz]と言われている。)のノイズが抑制されている。
同様に、図11と図12との比較により明らかなように、インバータ10を異なる制御方式で制御した場合(図12)には、5[kHz]の周辺と、10[kHz]の周辺とに高いノイズが生じている。インバータ10を同一の制御方式で制御した場合(図11)には、5[kHz]周辺のノイズが抑制されている。即ち、インバータ10を同一の制御方式で制御した場合には、インバータ10を異なる制御方式で制御した場合に比べて、可聴周波数帯域のノイズが抑制されている。尚、10[kHz]の周辺のノイズのピーク値については、インバータ10を異なる制御方式で制御した場合(図12)の方が、概ね20%程度低い値となっている。
以上説明したように、回転電機制御装置1は、第1速度域VR1において第1インバータ11と第2インバータ12とを同じ制御方式で制御し、第2速度域VR2において第1インバータ11と第2インバータ12とを異なる制御方式で制御する制御モードを有する。これにより、回転電機80の回転速度が相対的に低速の場合には、可聴周波数帯域のノイズを抑制し、回転電機80の回転速度が相対的に高速の場合には、回転電機80の動作条件に応じて高い効率で回転電機80を駆動制御することができる。
ところで、図3に示した回転電機80の動作領域において、一点鎖線は、1つのインバータ10を用いて実現可能な動作領域を示している。第1領域R1の全ての領域は、1つのインバータ10を用いて実現可能な動作領域に含まれている。上述したように、ステータコイル8の両端にそれぞれインバータ10が接続されている場合、一方のインバータ10をアクティブショートサーキット制御によって短絡させると、複数相のステータコイル8が当該一方のインバータ10において短絡される。つまり、回転電機制御装置1は、実質的に1つのインバータ10(アクティブショートサーキット制御されていない側のインバータ10)を介して回転電機80を駆動することができる。第1領域R1では、一方のインバータ10をアクティブショートサーキット制御によって短絡させ、他方のインバータ10をスイッチング制御することによって、回転電機80を駆動することができる。
例えば、第1領域R1において可聴周波数帯域のノイズが問題となる領域と、可聴周波数帯域のノイズが問題とはならない領域とが存在した場合、可聴周波数帯域のノイズが問題となる領域では双方のインバータ10を同一の制御方式で制御し、可聴周波数帯域のノイズが問題とはならない領域では、一方をアクティブショートサーキット制御することができる。回転電機80が自動車の駆動力源の場合、運転モードや、動作条件(回転速度やトルク)に応じて、可聴周波数帯域のノイズが問題となる領域と、可聴周波数帯域のノイズが問題とはならない領域とを区別できる場合がある。ここで、運転モードとは、市街地走行モード、高速道路走行モード等である。
図13は、図3における第1領域R1の中に第5領域R5を設定した例を示している。第5領域R5では、回転電機制御装置1は、例えば、第2インバータ12をアクティブショートサーキット制御によって短絡状態として、第1インバータ11をパルス幅変調制御する第1制御モードによって回転電機80を駆動制御する。第1制御モード(mode1)は、下記の表4に示すように、第1低速度域制御モード(mode1-1)と第2低速度域制御モード(mode1-2)とを有することができる。
Figure 2020036516
これにより、回転電機80の回転速度が相対的に低速の場合で可聴ノイズが問題となる場合には、可聴周波数帯域のノイズを抑制し、回転電機80の回転速度が相対的に低速の場合であっても可聴ノイズが問題とならない場合、及び、回転電機80の回転速度が相対的に高速の場合には、回転電機80の動作条件に応じて高い効率で回転電機80を駆動制御することができる。
図14の波形図は、第2低速度域制御モード(mode1-2)における第1インバータ11のU相電圧指令である第1U相電圧指令Vu1**と、第2インバータ12のU相電圧指令である第2U相電圧指令Vu2**と、パルス幅変調の際のキャリアCAの一例とを示している。アクティブショートサーキット制御される第2インバータ12の第2U相電圧指令Vu2**はゼロである。第2低速度域制御モード(mode1-2)では、第1インバータ11のみがインバータ10として機能している。例えば、U相電圧の最大振幅は直流電源6の電圧を“E”として“(2/3)E”であり(図2のベクトル図も参照)、相間電圧の最大振幅は同様に直流電源6の電圧を“E”として“E”である。
上記においては、第1制御モード(=第1低速度域制御モード)について、第1インバータ11及び第2インバータ12が、変調率“Mi_inv1” 及び“Mi_inv2”が“0.3”未満の範囲で、連続パルス幅変調制御(CPWM)により制御されると説明した(表3も参照)。第2低速度域制御モードでは、第2インバータ12はアクティブショートサーキット制御されているため、変調率“Mi_inv2”はゼロである。従って、システム全体の変調率“Mi_sys”を第1インバータ11のみで達成する必要がある。第1低速度域制御モードも第1制御モードに含まれるから、システム全体の変調率“Mi_sys”が、第1基準変調率M1(ここでは“0.25”)の場合に選択される。このため、第1インバータ11は、制御モード間のハンチングを防止するためのマージンα(例えば“0.1”)を含めて、変調率“Mi_inv1”が“0.6=0.25×2+0.1”未満の範囲で、連続パルス幅変調制御(CPWM)により制御される。
ところで、上述したように、第3領域R3は、全制御領域の中で相対的に高回転速度・高トルクの制御領域である。このため、第2高速度域制御モード(mode2-2)において第2インバータ12を制御するパルス幅変調として、同期変調による不連続パルス幅変調(複数パルス変調)が用いられた場合、同期する回転速度も速くなり、パルスの周波数も高くなる。また、第2インバータ12を制御するパルス幅変調として、非同期変調(空間ベクトルパルス幅変調や、非同期変調による不連続パルス幅変調)が用いられた場合も、回転速度が高いため、キャリアの周波数が高くなり、パルスの周波数も高くなる傾向がある。
第2高速度域制御モードにおける第1インバータ11の制御方式は、矩形波制御であるから、第1インバータ11を制御するパルスの周波数は、第2インバータ12よりも低くなる。第1高速度域制御モードでは、第1インバータ11の制御方式が不連続パルス幅変調であり、第2インバータ12の制御方式が空間ベクトルパルス幅変調などの連続パルス幅変調である。従って、パルスの周波数は、同等若しくは第2インバータ12の方が高くなる。第1制御モードでは、2つのインバータ10が共にパルス幅変調制御されるため、パルスの周波数は同等である。
このように、本実施形態において、第1インバータ11は、パルス幅変調制御が実行される場合に相対的に低いスイッチング周波数のパルスで制御されるインバータ10である。一方、第2インバータ12は、パルス幅変調制御が実行される場合に相対的に高いスイッチング周波数のパルスで制御されるインバータ10である。尚、表4、図13及び図14を参照して上述した第2低速度域制御モード(mode1-2)では、第1インバータ11のみがパルス幅変調されるため、第1インバータ11の方が第2インバータ12よりもスイッチング周波数が高い。しかし、第2低速度域制御モードは、第1速度域VR1で実行される制御であり、回転電機80の回転速度が低く、パルスの周波数も、第2速度域VR2で実行される制御に比べて低くなる。従って、第2低速度域制御モードについてはスイッチング周波数について考慮する必要性が低い。
上述したように、パルス幅変調制御が実行される場合に、第1インバータ11に比べて第2インバータ12の方が相対的に高いスイッチング周波数のパルスで制御される。このため、第1インバータ11を、オフ状態とオン状態との間での遷移時のスイッチング損失が相対的に大きい第1スイッチング素子31を用いて構成し、第2インバータ12を、スイッチング損失が相対的に小さい第2スイッチング素子32を用いて構成すると好適である。例えば、第1スイッチング素子31として、Si−IGBT又はSi−MOSFETを用い、第2スイッチング素子32として、SiC−MOSFET、GaN−MOSFET、又はSiC−IGBTを用いることができる。
炭化ケイ素(SiC)はケイ素(Si)と炭素(C)とで構成される化合物半導体材料である。SiCは、絶縁破壊電界強度がSiの10倍程度であり、バンドギャップがSiの3倍程度のワイドバンドギャップであるという優れた物性を持つ。さらに、SiCは、デバイス作製に必要なp型、n型の制御が広い範囲で可能である。SiCの絶縁破壊電界強度がSiよりも高いことより、SiCを用いて高耐圧パワーデバイスを構成する場合には、Siにより当該デバイスを構成する場合と比較して、高い不純物濃度且つ薄い膜厚でドリフト層を形成することができる。高耐圧パワーデバイスの抵抗成分のほとんどはドリフト層の抵抗となるので、SiCデバイスは、Siデバイスに比べて単位面積当たりのオン抵抗が非常に低くなる。例えば、理論上は同じ耐圧であれば、SiCデバイスのドリフト層抵抗は、Siデバイスのドリフト層抵抗と比較して面積あたり1/300程度に低減することができる。
また、Siデバイスでは高耐圧化に伴うオン抵抗の増大を改善するためにIGBTなどの少数キャリアデバイス(バイポーラデバイス)として構成されることが多い。但し、IGBTは、スイッチング損失が大きく、高周波駆動では発熱も大きくなる。一方、SiCデバイスでは、高速なデバイス構造である多数キャリアデバイス(ショットキーバリアダイオードやMOSFET)で高耐圧を実現することができる。つまり、SiCデバイスでは、Siデバイスに比べて、高耐圧化、低オン抵抗化、高速化が実現できる。また、SiCは、ワイドバンドギャップであるため、Siよりも高温においても動作が可能なパワーデバイスを実現できる。窒化ガリウム(GaN)についても同様のことが言える。従って、第2スイッチング素子32として、特に、SiC−MOSFET、GaN−MOSFETが用いられると好適である。
尚、上記においては、第1インバータ11が、第1直流電源61に接続されて直流と複数相の交流との間で電力を変換し、第2インバータ12が、第1直流電源61とは独立した第2直流電源62に接続されて直流と複数相の交流との間で電力を変換する形態を例示して説明した。しかし、同一の直流電源6に接続された第1インバータ11及び第2インバータ12が、それぞれ独立に制御される形態であってもよい。
〔実施形態の概要〕
以下、上記において説明した回転電機制御装置(1)の概要について簡単に説明する。
互いに独立した複数相のオープン巻線(8)を有する回転電機(80)を、第1インバータ(11)及び第2インバータ(12)を介して駆動制御する回転電機制御装置(1)は、1つの態様として、前記第1インバータ(11)が、前記複数相のオープン巻線(8)の一端側に接続されて直流と複数相の交流との間で電力を変換し、前記第2インバータ(12)が、前記複数相のオープン巻線(8)の他端側に接続されて直流と複数相の交流との間で電力を変換し、前記第1インバータ(11)及び前記第2インバータ(12)のそれぞれを、スイッチングパターン及びスイッチング周波数の少なくとも一方が異なる複数の制御方式により制御可能であると共に、互いに独立した前記制御方式で制御可能であり、
前記回転電機(80)の制御領域として、同じトルクにおいて前記回転電機(80)の回転速度が相対的に低い第1速度域(VR1)と、前記回転電機(80)の回転速度が前記第1速度域(VR1)よりも高い第2速度域(VR2)とが設定され、前記第1速度域(VR1)において前記第1インバータ(11)と前記第2インバータ(12)とを同じ制御方式で制御し、前記第2速度域(VR2)において前記第1インバータ(11)と前記第2インバータ(12)とを異なる制御方式で制御する制御モードを有する。
インバータ(10)を制御する制御方式には、回転電機(80)の回転速度やトルクになどの動作条件に応じた種々の方式が知られている。第1インバータ(11)及び第2インバータ(12)を、それぞれ独立した制御方式で制御することで、回転電機(80)の動作条件に応じて、柔軟に2つのインバータ(10)を制御することができる。さらに、第1インバータ(11)と第2インバータ(12)とを異なる制御方式で制御する制御モードを有することによって、制御の柔軟性を高め、回転電機(80)の動作条件に応じて高い効率で回転電機(80)を駆動制御することができる。
一方、インバータ(10)をスイッチング制御した場合、交流電流の基本波に重畳される脈動成分が可聴周波数帯域のノイズを発生させる場合がある。特に回転電機(80)の回転速度が低速の場合、脈動成分の周波数(或いはそのサイドバンド周波数)が可聴周波数帯域に含まれる可能性が高くなる。また、2つのインバータ(10)がそれぞれ異なる制御方式で制御される場合には、それぞれの制御方式に応じた脈動が生じ、可聴周波数帯域のノイズが増加するおそれがある。回転電機(80)の回転速度が相対的に低い第1速度域(VR1)において、第1インバータ(11)と前記第2インバータ(12)とを同じ制御方式で制御することによって、可聴周波数帯域のノイズが増加することを抑制することができる。また、オープン巻線(8)に電流を流す2つのインバータ(10)は、電流の位相がほぼ180度異なる。2つのインバータ(10)が同じ制御方式で制御された場合には、脈動成分を含めて電流の位相がほぼ180度異なることになる。従って、脈動成分の少なくとも一部を互いに打ち消し合うことができ、可聴周波数帯域のノイズを低減することもできる。
本構成によれば、第1速度域(VR1)において第1インバータ(11)と第2インバータ(12)とを同じ制御方式で制御し、回転電機(80)の回転速度が第1速度域(VR1)よりも高い第2速度域(VR2)において第1インバータ(11)と前記第2インバータ(12)とを異なる制御方式で制御する制御モードを有する。従って、回転電機(80)の回転速度が相対的に低速の場合には、可聴周波数帯域のノイズを抑制し、回転電機(80)の回転速度が相対的に高速の場合には、回転電機(80)の動作条件に応じて高い効率で回転電機(80)を駆動制御することができる。即ち、本構成によれば、オープン巻線(8)の両端にそれぞれ備えられた2つのインバータ(10)を適切に制御することができる。
また、前記第2速度域(VR2)では、前記第1インバータ(11)及び前記第2インバータ(12)のそれぞれの制御方式を、前記回転電機(80)の回転速度に応じて設定すると好適である。
回転電機(80)の動作条件は、しばしば回転速度とトルクとの関係で定義される。回転電機制御装置(1)が、1つのパラメータである回転速度に基づいて、第1インバータ(11)及び第2インバータ(12)を制御する制御方式を変更すると、回転電機(80)の動作条件に応じて高い効率で回転電機(80)を駆動制御することができる。
或いは、前記第2速度域(VR2)では、前記第1インバータ(11)及び前記第2インバータ(12)のそれぞれの制御方式を、直流電力に対する複数相の交流電力の実効値の割合に応じて設定すると好適である。
例えば、回転電機(80)に高い出力(速い回転速度や高いトルク)が要求される場合、電圧型のインバータでは、直流電圧を高くすることや、直流電圧が交流電圧に変換される割合を高くすることで当該要求が実現される。直流電圧が一定の場合には、直流電圧が交流電圧に変換される割合を高くすることで当該要求を実現することができる。この割合は、直流電力に対する3相交流電力の実効値の割合(電圧型のインバータの場合には、直流電圧に対する3相交流電圧の実効値の割合と等価)として示すことができる。インバータ(10)を制御する制御方式には、この割合が低いものから高いものまで種々の方式が存在する。回転電機(80)に対する要求に応じて定まる直流電力に対する3相交流電力の実効値の割合に基づいて、制御方式を変更することによって、回転電機(80)の動作条件に応じて高い効率で回転電機(80)を駆動制御することができる。
ここで、前記スイッチングパターンが異なる制御方式には、電気角の一周期においてパターンの異なる複数のパルスが出力されるパルス幅変調制御と、電気角の一周期において1つのパルスが出力される矩形波制御とが含まれると好適である。
回転電機の制御方式には、種々の異なる方式が存在する。パルス幅変調制御は、広い変調率(直流電力に対する複数相の交流電力の実効値の割合)に亘って、滑らかに回転電機を駆動することができる。矩形波制御は、滑らかさはパルス幅変調制御に譲るが、物理的(数学的)に最高値の変調率によって回転電機を駆動することができる。スイッチングパターンが異なる制御方式として、パルス幅変調制御と矩形波制御とが実行可能であれば、制御の柔軟性を高め、回転電機(80)の動作条件に応じて高い効率で回転電機(80)を駆動制御することができる。
ここで、前記パルス幅変調制御は、それぞれ異なる複数の前記制御方式として、連続パルス幅変調及び不連続パルス幅変調を含み、前記連続パルス幅変調は、それぞれ異なる複数の前記制御方式として、正弦波パルス幅変調及び空間ベクトルパルス幅変調を含み、前記不連続パルス幅変調は、それぞれ異なる複数の前記制御方式として、前記回転電機の回転に同期せずにパルスが出力される非同期変調と、前記回転電機の回転に同期したパルスが出力される同期変調とを含み、前記同期変調は、前記回転電機の電気角の1周期に付き複数のパルスが出力される複数パルス変調を含むと好適である。
パルス幅変調制御には、種々の異なる方式が存在する。第1インバータ(11)及び第2インバータ(12)を、それぞれ異なる方式のパルス幅変調制御により制御する場合、回転電機(80)の動作条件に応じて、柔軟に2つのインバータ(10)を制御することができる。
また、前記第1インバータ(11)及び前記第2インバータ(12)は、それぞれ交流1相分のアーム(3A)が上段側スイッチング素子(3H)と下段側スイッチング素子(3L)との直列回路により構成され、前記スイッチングパターンが異なる制御方式には、複数相全ての前記アームの前記上段側スイッチング素子をオン状態とする又は複数相全ての前記アームの前記下段側スイッチング素子をオン状態とするアクティブショートサーキット制御を含むと好適である。
本構成のように、2つのインバータ(10)を備えている場合には、それぞれのインバータ(10)の直流側の電圧よりも大きい振幅の交流電圧を生成することができる。但し、回転電機制御装置(1)は、常に交流の振幅が大きくなるように2つのインバータ(10)を制御する必要はなく、例えば回転電機(80)の回転速度が低速の場合には、1つのインバータ(10)によって生成可能な交流電圧を生成すれば充分な場合がある。2つのインバータ(10)の内の一方をアクティブショートサーキット制御により制御すると、オープン巻線同士が当該一方のインバータ(10)において短絡されることになる。この場合、他方のインバータ(10)は、中性点を有するように接続された巻線を有する回転電機(80)を駆動制御することになる。つまり、一方のインバータ(10)をアクティブショートサーキット制御することによって、他方のインバータ(10)のみで回転電機(80)を駆動することができる。一方のインバータ(10)はスイッチング動作をしないので、システム全体の損失を抑制して回転電機(80)を駆動することができる。
また、前記第1インバータ(11)及び前記第2インバータ(12)の内、前記パルス幅変調制御が実行される場合に相対的に低いスイッチング周波数のパルスで制御される一方のインバータ(10)は、オフ状態とオン状態との間での遷移時のスイッチング損失が相対的に大きい第1スイッチング素子(31)を用いて構成され、前記パルス幅変調制御が実行される場合に相対的に高いスイッチング周波数のパルスで制御される他方のインバータ(10)は、前記スイッチング損失が相対的に小さい第2スイッチング素子(32)を用いて構成されていると好適である。
2つのインバータ(10)のそれぞれを異なる制御方式で制御する場合、例えば、第1インバータ(11)を矩形波制御により制御し、第2インバータ(12)をパルス幅変調制御により制御する場合がある。矩形波制御におけるパルスの周期と、パルス幅変調制御におけるパルスの周期とを比較すれば、電気角の1周期に同期して1周期のパルスが出力される矩形波制御のパルスに比べて、電気角の1周期において多数のパルスが出力されるパルス幅変調制御のパルスの方がパルスの周期が短くなり、スイッチング周波数が高くなる。この場合、第1インバータ(11)のスイッチング周波数に比べて、第2インバータ(12)のスイッチング周波数が高くなる。逆の場合、例えば、第1インバータ(11)をパルス幅変調制御により制御し、第2インバータ(12)を矩形波制御により制御する場合も、同様の考え方により、第2インバータ(12)のスイッチング周波数に比べて、第1インバータ(11)のスイッチング周波数が高くなる。
回転電機(80)に高い出力(速い回転速度や高いトルク)が要求される場合には、パルス幅変調制御におけるスイッチング周波数も高くなる傾向がある。当然ながら、同じスイッチング損失であれば、スイッチング周波数が高くなるほど、損失の総量が多くなる。第1インバータ(11)と第2インバータ(12)とは、独立して制御されるため、それぞれの回路を独立して構成することができる。従って、スイッチング周波数が高くなる可能性のある側のインバータ(10)については、スイッチング損失が相対的に小さくなるような回路構成であると好適である。即ち、パルス幅変調制御が実行される場合に相対的に高いスイッチング周波数のパルスで制御される方のインバータ(10)が、第1スイッチング素子(31)に比べてスイッチング損失が相対的に小さい第2スイッチング素子(32)を用いて構成されることによって、損失を低減させることができる。
ここで、前記第1スイッチング素子(31)が、Si−IGBT又はSi−MOSFETであり、前記第2スイッチング素子(32)が、SiC−MOSFET、GaN−MOSFET、又はSiC−IGBTであると好適である。
例えば、炭化ケイ素(SiC)は、絶縁破壊電界強度がケイ素(Si)よりも高いことより、高耐圧パワーデバイスを構成する場合に、高い不純物濃度且つ薄い膜厚でドリフト層を形成することができる。高耐圧パワーデバイスの抵抗成分のほとんどはドリフト層の抵抗となるので、SiCデバイスは、Siデバイスに比べて単位面積当たりのオン抵抗が低くなる。つまり、SiCデバイスは、Siデバイスに比べてスイッチング損失を小さくすることができる。窒化ガリウム(GaN)を用いたデバイスも同様である。従って、第1スイッチング素子(31)がSiデバイスの場合に、SiCデバイスやGaNデバイスを第2スイッチング素子(32)とすることで、第1スイッチング素子(31)に比べてスイッチング損失が相対的に小さい第2スイッチング素子(32)を用いてインバータ(10)を構成することができる。
1 :回転電機制御装置
3 :スイッチング素子
3A :アーム
3H :上段側スイッチング素子
3L :下段側スイッチング素子
8 :ステータコイル(オープン巻線)
10 :インバータ
11 :第1インバータ
12 :第2インバータ
31 :第1スイッチング素子
32 :第2スイッチング素子
80 :回転電機
VR1:第1速度域
VR2:第2速度域

Claims (8)

  1. 互いに独立した複数相のオープン巻線を有する回転電機を、第1インバータ及び第2インバータを介して駆動制御する回転電機制御装置であって、
    前記第1インバータは、前記複数相のオープン巻線の一端側に接続されて直流と複数相の交流との間で電力を変換し、
    前記第2インバータは、前記複数相のオープン巻線の他端側に接続されて直流と複数相の交流との間で電力を変換し、
    前記第1インバータ及び前記第2インバータのそれぞれを、スイッチングパターン及びスイッチング周波数の少なくとも一方が異なる複数の制御方式により制御可能であると共に、互いに独立した前記制御方式で制御可能であり、
    前記回転電機の制御領域として、同じトルクにおいて前記回転電機の回転速度が相対的に低い第1速度域と、前記回転電機の回転速度が前記第1速度域よりも高い第2速度域とが設定され、
    前記第1速度域において前記第1インバータと前記第2インバータとを同じ制御方式で制御し、前記第2速度域において前記第1インバータと前記第2インバータとを異なる制御方式で制御する制御モードを有する、回転電機制御装置。
  2. 前記第2速度域では、前記第1インバータ及び前記第2インバータのそれぞれの制御方式を、前記回転電機の回転速度に応じて設定する、請求項1に記載の回転電機制御装置。
  3. 前記第2速度域では、前記第1インバータ及び前記第2インバータのそれぞれの制御方式を、直流電力に対する複数相の交流電力の実効値の割合に応じて設定する、請求項1に記載の回転電機制御装置。
  4. 前記スイッチングパターンが異なる制御方式には、電気角の一周期においてパターンの異なる複数のパルスが出力されるパルス幅変調制御と、電気角の一周期において1つのパルスが出力される矩形波制御とが含まれる、請求項1から3の何れか一項に記載の回転電機制御装置。
  5. 前記パルス幅変調制御は、それぞれ異なる複数の前記制御方式として、連続パルス幅変調及び不連続パルス幅変調を含み、
    前記連続パルス幅変調は、それぞれ異なる複数の前記制御方式として、正弦波パルス幅変調及び空間ベクトルパルス幅変調を含み、
    前記不連続パルス幅変調は、それぞれ異なる複数の前記制御方式として、前記回転電機の回転に同期せずにパルスが出力される非同期変調と、前記回転電機の回転に同期したパルスが出力される同期変調とを含み、
    前記同期変調は、前記回転電機の電気角の1周期に付き複数のパルスが出力される複数パルス変調を含む、請求項4に記載の回転電機制御装置。
  6. 前記第1インバータ及び前記第2インバータは、それぞれ交流1相分のアームが上段側スイッチング素子と下段側スイッチング素子との直列回路により構成され、
    前記スイッチングパターンが異なる制御方式には、複数相全ての前記アームの前記上段側スイッチング素子をオン状態とする又は複数相全ての前記アームの前記下段側スイッチング素子をオン状態とするアクティブショートサーキット制御を含む、請求項4又は5に記載の回転電機制御装置。
  7. 前記第1インバータ及び前記第2インバータの内、前記パルス幅変調制御が実行される場合に相対的に低いスイッチング周波数のパルスで制御される一方のインバータは、オフ状態とオン状態との間での遷移時のスイッチング損失が相対的に大きい第1スイッチング素子を用いて構成され、前記パルス幅変調制御が実行される場合に相対的に高いスイッチング周波数のパルスで制御される他方のインバータは、前記スイッチング損失が相対的に小さい第2スイッチング素子を用いて構成されている、請求項4から6の何れか一項に記載の回転電機制御装置。
  8. 前記第1スイッチング素子は、Si−IGBT又はSi−MOSFETであり、前記第2スイッチング素子は、SiC−MOSFET、GaN−MOSFET、又はSiC−IGBTである、請求項7に記載の回転電機制御装置。
JP2018163679A 2018-08-31 2018-08-31 回転電機制御装置 Active JP7135604B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018163679A JP7135604B2 (ja) 2018-08-31 2018-08-31 回転電機制御装置
EP19853386.1A EP3800782B1 (en) 2018-08-31 2019-08-30 Rotating electrical machine control device
US17/258,598 US11456686B2 (en) 2018-08-31 2019-08-30 Rotating electrical machine control device
CN201980052793.2A CN112534709A (zh) 2018-08-31 2019-08-30 旋转电机控制装置
PCT/JP2019/034145 WO2020045636A1 (ja) 2018-08-31 2019-08-30 回転電機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018163679A JP7135604B2 (ja) 2018-08-31 2018-08-31 回転電機制御装置

Publications (2)

Publication Number Publication Date
JP2020036516A true JP2020036516A (ja) 2020-03-05
JP7135604B2 JP7135604B2 (ja) 2022-09-13

Family

ID=69642805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163679A Active JP7135604B2 (ja) 2018-08-31 2018-08-31 回転電機制御装置

Country Status (5)

Country Link
US (1) US11456686B2 (ja)
EP (1) EP3800782B1 (ja)
JP (1) JP7135604B2 (ja)
CN (1) CN112534709A (ja)
WO (1) WO2020045636A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11336206B2 (en) * 2020-09-23 2022-05-17 Rockwell Automation Technoligies, Inc. Switching frequency and PWM control to extend power converter lifetime
US11712967B2 (en) * 2021-07-29 2023-08-01 Rivian Ip Holdings, Llc Torque-equalizing fault response for electric vehicle
CN115459670B (zh) * 2022-11-10 2023-06-20 西南交通大学 一种永磁牵引变流器的多模式调制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219956A (ja) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp 電動機駆動制御装置及び電動機
JP2013132135A (ja) * 2011-12-21 2013-07-04 Aisin Aw Co Ltd 回転電機制御装置
JP2014171362A (ja) * 2013-03-05 2014-09-18 Nippon Soken Inc 電力変換装置
JP2015139341A (ja) * 2014-01-24 2015-07-30 株式会社日本自動車部品総合研究所 電力変換装置
JP2016092946A (ja) * 2014-11-04 2016-05-23 株式会社デンソー 電力変換装置
JP2016123168A (ja) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 駆動装置
JP2017005810A (ja) * 2015-06-05 2017-01-05 アイシン・エィ・ダブリュ株式会社 回転電機制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511385B2 (en) * 2005-11-11 2009-03-31 Converteam Ltd Power converters
US9056603B2 (en) * 2012-05-01 2015-06-16 GM Global Technology Operations LLC System and method for controlling engine torque to prevent driveline bump during a downshift when a throttle valve is closed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219956A (ja) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp 電動機駆動制御装置及び電動機
JP2013132135A (ja) * 2011-12-21 2013-07-04 Aisin Aw Co Ltd 回転電機制御装置
JP2014171362A (ja) * 2013-03-05 2014-09-18 Nippon Soken Inc 電力変換装置
JP2015139341A (ja) * 2014-01-24 2015-07-30 株式会社日本自動車部品総合研究所 電力変換装置
JP2016092946A (ja) * 2014-11-04 2016-05-23 株式会社デンソー 電力変換装置
JP2016123168A (ja) * 2014-12-24 2016-07-07 トヨタ自動車株式会社 駆動装置
JP2017005810A (ja) * 2015-06-05 2017-01-05 アイシン・エィ・ダブリュ株式会社 回転電機制御装置

Also Published As

Publication number Publication date
EP3800782A4 (en) 2021-08-18
EP3800782B1 (en) 2024-03-20
CN112534709A (zh) 2021-03-19
US20210167702A1 (en) 2021-06-03
EP3800782A1 (en) 2021-04-07
US11456686B2 (en) 2022-09-27
JP7135604B2 (ja) 2022-09-13
WO2020045636A1 (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
JP7074144B2 (ja) 回転電機制御装置
JP2014171362A (ja) 電力変換装置
US10978983B2 (en) Rotary electric machine control device
WO2020045636A1 (ja) 回転電機制御装置
US10944349B2 (en) Multi-inverter electronic motor controller
CN107710596B (zh) 旋转电机控制装置
WO2021145029A1 (ja) 回転電機制御装置
WO2020116226A1 (ja) 電力変換装置
US6040989A (en) Device and method for generating three-phase sine waves using two pulse-width modulators
JP7269576B2 (ja) 回転電機制御装置
Mizukoshi et al. Improvement of output voltage waveform in dual inverter fed open-winding induction motor at low speed area
JP2017192207A (ja) 回転電機システムおよび回転電機システムの制御方法
Tiapkin et al. Selection of three-level low voltage inverter circuit topology for a high speed electric drive
Yoon et al. New approach to SRM drive with six-switch converter
Lee et al. Discontinuous PWM Scheme for an Open-end Winding Induction Motor Drives Fed by Dual Inverter
JP2022179964A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7135604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150