JP2013026114A - 電池劣化判定装置および方法 - Google Patents

電池劣化判定装置および方法 Download PDF

Info

Publication number
JP2013026114A
JP2013026114A JP2011161762A JP2011161762A JP2013026114A JP 2013026114 A JP2013026114 A JP 2013026114A JP 2011161762 A JP2011161762 A JP 2011161762A JP 2011161762 A JP2011161762 A JP 2011161762A JP 2013026114 A JP2013026114 A JP 2013026114A
Authority
JP
Japan
Prior art keywords
battery
fitting
deterioration
value
equivalent circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011161762A
Other languages
English (en)
Other versions
JP5278508B2 (ja
Inventor
Ryuta Tanaka
竜太 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2011161762A priority Critical patent/JP5278508B2/ja
Priority to US13/556,740 priority patent/US9043176B2/en
Priority to EP12177703.1A priority patent/EP2551688B1/en
Priority to KR1020120080845A priority patent/KR101363195B1/ko
Priority to CN201210260429.5A priority patent/CN102901928B/zh
Publication of JP2013026114A publication Critical patent/JP2013026114A/ja
Application granted granted Critical
Publication of JP5278508B2 publication Critical patent/JP5278508B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】電池の劣化判定に用いる等価回路モデルの未知の回路定数を増やすことなくフィッティング誤差を小さくする。
【解決手段】交流インピーダンス測定データを、抵抗RとCPEとが並列接続された回路ブロックを1つ以上有する等価回路モデルにフィッティングし、等価回路モデルの回路定数を求めるフィッティング部と、基準となる電池の交流インピーダンス測定データを、等価回路モデルにフィッティングして得られたCPE指数P値を保管するP値保管部と、電池の劣化度と等価回路モデルの回路定数との相関を記録したデータベースを参照し、判定対象電池の交流インピーダンス測定データを、等価回路モデルにP値を固定値としてフィッティングを行なって得られた回路定数に基づいて、判定対象電池の劣化判定を行なう劣化判定部と、を備えた電池劣化判定装置。
【選択図】図1

Description

本発明は、電池の交流インピーダンス測定データに基づいて電池劣化度を判定する技術に関する。
二次電池、燃料電池等の電池は、充電回数や使用環境、保存状態等によって劣化していき、やがて寿命を迎えて使用不能となる。このため、従来から電池の劣化度を判定する方法が種々提案されており、例えば、電池の交流インピーダンス測定データを電池の等価回路モデルにフィッティングして得られた回路定数に基づいて劣化度を判定する方法が知られている。
等価回路モデルは、図9に示すような抵抗R1にRC並列回路ブロックを2段接続したRC2段モデルが広く用いられている。RC並列回路ブロックにおいて未知の回路定数は1段につきRとCの2つであり、RC2段モデルであれば未知の回路定数が多くならず、フィッティングを容易に行なうことができる。
交流インピーダンス特性は、一般に、ナイキスト線図で複素インピーダンス特性として表わされるが、図10に示すように、等価回路モデルとしてRC2段モデルを用いた場合、つぶれた円弧状の複素インピーダンス特性を持つ電池に対して、フィッティング誤差が大きくなる傾向がある。ここで、本図において、破線は実際に測定された複素インピーダンス特性を示し、実線はRC2段モデルにフィッティングして得られた回路定数による複素インピーダンス特性を示している。
現実の電池では、複素インピーダンス特性がきれいな半円状となることはまれであり、図10の破線のようにつぶれた円弧状の複素インピーダンス特性となることも多い。このため、RC2段モデルにフィッティングして得られた回路定数に基づく劣化度の判定結果は、必ずしも十分な妥当性を有しているとは言い切れない。
特開2004−241325号公報
一般に、RC並列回路ブロックを3段以上接続した等価回路を用いることで、つぶれた円弧状の複素インピーダンス特性に対してフィッティング誤差を小さくできる。しかし、その分フィッティングすべき未知の回路定数が増加することになる。
また、RとCPEとの並列回路ブロックを1つ以上用いることで、つぶれた円弧状の交流インピーダンス特性に対してフィッティング誤差を小さくできることが知られている。ここで、CPEは、[数1]に示すようなインピーダンスZCPEで表わされる非線形要素であり、回路定数としてCPE指数のPとCPE定数のTとが用いられる。
例えば、図11に示すようなRとCPEとの並列回路ブロックを2段接続した等価回路モデルを用いることで、図12に示すように、つぶれた円弧状の複素インピーダンス特性に対してフィッティング誤差を小さくできる。なお、図12において、破線は実際に測定された複素インピーダンス特性を示し、実線はRとCPEとの並列回路ブロックを2段接続した等価回路モデルにフィッティングして得られた回路定数による複素インピーダンス特性を示している。
しかし、RとCPEとの並列回路ブロックは1段についてフィッティングすべき未知の回路定数はRとPとTの3つになり、2段モデルであっても、RC2段モデルと比較してフィッティングすべき未知の回路定数が増加する。
フィッティングすべき未知の回路定数が多くなると、フィッティング処理が煩雑化し、得られる解が複数存在して劣化判定が不能となったり困難となる場合がある。このため、等価回路モデルの未知の回路定数を増やすことなくフィッティング誤差を小さくする技術が望まれている。
そこで、本発明は、電池の劣化判定に用いる等価回路モデルの未知の回路定数を増やすことなくフィッティング誤差を小さくする技術を提供することを目的とする。
上記課題を解決するため、本発明の第1の態様である電池劣化判定装置は、交流インピーダンス測定データを、抵抗RとCPE(Constant Phase Element)とが並列接続された回路ブロックを1つ以上有する等価回路モデルにフィッティングし、前記等価回路モデルの回路定数を求めるフィッティング部と、基準となる電池の交流インピーダンス測定データを、前記等価回路モデルにフィッティングして得られたCPE指数P値を保管するP値保管部と、電池の劣化度と前記等価回路モデルの回路定数との相関を記録したデータベースを参照し、判定対象電池の交流インピーダンス測定データを、前記等価回路モデルに前記P値を固定値としてフィッティングを行なって得られた回路定数に基づいて、前記判定対象電池の劣化判定を行なう劣化判定部と、を備えたことを特徴とする。
ここで、前記劣化判定部は、前記得られた回路定数によるフィッティング誤差があらかじめ設定した基準値以上の場合は、前記判定対象電池が使用不適当である旨の判定を行なうことができる。
また、前記フィッティング部によるフィッティングに先立ち、回路定数の初期値を設定するフィッティング初期値設定部をさらに備え、前記フィッティング初期値設定部は、交流インピーダンス測定データをナイキスト線図に表わした場合に、Zim=0となるゼロクロスポイントと、dZim/dZreの周波数特性線図の変曲点およびゼロを用いた楕円近似を利用して回路定数の初期値を設定するようにしてもよい。
上記課題を解決するため本発明の第2の態様である電池劣化判定方法は、基準となる電池の交流インピーダンス測定データを、抵抗RとCPE(Constant Phase Element)とが並列接続された回路ブロックを1つ以上有する等価回路モデルにフィッティングして得られたCPE指数P値を保管するP値保管ステップと、電池の劣化度と前記等価回路モデルの回路定数との相関を記録したデータベースを参照し、判定対象電池の交流インピーダンス測定データを前記等価回路モデルに前記P値を固定値としてフィッティングを行なって得られた回路定数に基づいて、前記判定対象電池の劣化判定を行なう劣化判定ステップと、を含むことを特徴とする。
ここで、既知の劣化度の電池の交流インピーダンス測定データを前記等価回路モデルに前記P値を固定値としてフィッティングを行なって得られた回路定数と前記既知の劣化度との相関を複数の劣化度について記録することで、前記データベースを作成するステップをさらに含めるようにしてもよい。
本発明によれば、電池の劣化判定に用いる等価回路モデルの未知の回路定数を増やすことなくフィッティング誤差を小さくする技術が提供される。
電池劣化判定システムの構成を示すブロック図である。 電池劣化判定装置の電池劣化判定動作の概要を示すフローチャートである。 電池劣化判定用等価回路モデルのP値を設定する処理の詳細な手順を説明するフローチャートである。 基準電池の交流インピーダンスを測定して得られたナイキスト線図の例を示す図である。 P2初期値、P3初期値の設定について説明する図である。 等価回路モデルの回路定数と劣化程度の相関データを作成する処理の詳細な手順を説明するフローチャートである。 回路定数と劣化度との相関例を示す図である。 判定対象電池の劣化判定処理の詳細な手順を説明するフローチャートである。 RC2段モデルの例を示す図である。 測定値と、RC2段モデルのフィッティング結果とを説明する図である。 RとCPEとの並列回路ブロックを2段接続した等価回路モデルを示す図である。 測定値と、RとCPEとの並列回路ブロックを2段接続した等価回路モデルのフィッティング結果とを説明する図である。
本発明の実施の形態について図面を参照して説明する。図1は、本実施形態に係る電池劣化判定システムの構成を示すブロック図である。本図に示すように電池劣化判定システム10は、電池劣化判定装置100と、回路定数−劣化度相関データベース200と、交流インピーダンス測定装置300を備えて構成される。電池劣化判定システム10は、これらを1台の装置として構成してもよいし、それぞれ独立した装置として構成してもよい。劣化判定対象の電池は、リチウムイオン電池等の二次電池が好適であるが、本発明は、燃料電池その他の電池の劣化判定に適用することができる。さらには、電池のSOC(State Of Charge)判定に適用することも可能である。
本実施形態においては、抵抗RとCPE(Constant Phase Element)とが並列接続された回路ブロックを1つ以上有する等価回路モデルをフィッティングに用いるものとする。これにより、つぶれた円弧状の複素インピーダンス特性に対してフィッティング誤差を小さくする。
具体的には、図11に示したように、抵抗R1と、抵抗R2とCPE2とが並列になった回路ブロックと、抵抗R3とCPE3とが並列になった回路ブロックと、CPE4と、抵抗R5とコイルL5とが並列になった回路ブロックとが接続された等価回路モデルを用いるものとする。ただし、本発明は、この等価回路モデルに限られず、抵抗RとCPEとが並列になった回路ブロックを1つ以上含んだ等価回路モデルであればよい。
交流インピーダンス測定装置300は、測定対象の電池400の交流インピーダンスを測定し、測定結果を記録する装置であり、交流インピーダンス測定部310、交流インピーダンス測定条件設定部320、測定データ格納部330を備えている。交流インピーダンス測定部は、交流インピーダンス測定条件設定部320がユーザから受け付けた測定条件にしたがって、電池400に交流電圧あるいは交流電流を印加し、電流あるいは電圧を測定することで交流インピーダンスを算出する。測定は複数の周波数について行ない、記憶領域である測定データ格納部330に、例えば、ナイキスト線図データとして格納する。
ただし、交流インピーダンスの測定方法は、上述の例に限られず種々の手法を用いることができる。例えば、複数の周波数信号が重畳された電圧波形あるいは電流波形を印加して、電流波形あるいは電圧波形を測定し、電圧波形、電流波形をそれぞれ離散フーリエ変換(DFT)して、周波数成分ごとの比を求めるようにしてもよい。また、交流インピーダンスを測定せずに別途取得したナイキスト線図データを測定データ格納部330に格納するようにしてもよい。
回路定数−劣化度相関データベース200は、等価回路パラメータの回路定数と電池の劣化度(容量劣化、出力劣化等)との相関関係を記録するデータベースである。劣化判定対象の電池の交流インピーダンスを測定し、得られた複素インピーダンス特性を等価回路モデルにフィッティングすることにより回路定数を取得し、回路定数−劣化度相関データベース200を参照することで、電池の劣化判定を行なうことができる。
電池劣化判定装置100は、コンピュータプログラムにしたがって動作を行なうPC等の情報処理装置を用いて構成することができ、制御部110、入出力部120、フィッティング初期値設定部130、フィッティング部140、P値保管部150、劣化判定部160を備えている。
制御部110は、電池劣化判定装置100の各機能部を後述するような手順で動作させることにより、電池劣化判定処理を制御する。入出力部120は、回路定数−劣化度相関データベース200に対するデータ入出力、交流インピーダンス測定装置300の測定データ格納部330からのデータ読込を制御するとともに、ユーザから操作・設定を受け付けたり、図示しない表示装置等に電池劣化判定結果等を出力する。
フィッティング初期値設定部130は、測定データ格納部330から取得したナイキスト線図データから、所定のアルゴリズムに基づいて等価回路モデルの回路定数のフィッティング初期値を設定する。
フィッティング部140は、フィッティング初期値設定部130が設定した初期値を用いて、等価回路モデルの回路定数のフィッティングを行なう。フィッティングアルゴリズムは既存の種々のアルゴリズムを採用することができる。
P値保管部150は、判定対象の電池の劣化判定処理に先立ち、あらかじめ所定の条件で取得したP値を保管する記憶領域である。
劣化判定部160は、回路定数−劣化度相関データベース200を参照して、劣化度測定対象の電池の複素インピーダンス特性を等価回路モデルにフィッティングして得られた回路定数から電池の劣化度を判定する。劣化度は、容量劣化量、出力劣化量等種々の態様で表現することができる。
次に、本実施形態の電池劣化判定装置100の電池劣化判定動作について説明する。図2は、電池劣化判定動作の概要を示すフローチャートである。
本実施形態では、まず、電池劣化判定用等価回路モデルのP値を設定する(S10)。すなわち、実際の電池劣化判定に先立ち、等価回路モデルのP値を設定しておき、設定されたP値を固定値として等価回路モデルのフィッティングを行なう。これにより、CPEの未知の回路定数はCPE定数Tのみとなるため、RとCPEとの並列回路ブロックを含んだ等価回路モデルであっても、未知の回路定数の数をCR並列回路ブロックと同数にすることができる。したがって、未知の回路定数を増やすことなくフィッティング誤差を小さくすることができる。
ここで、あらかじめ設定されたP値を用いて、劣化判定対象電池のフィッティングを行なうようにしているのは、P値は、同種の電池であれば、電池としての特性が大きく損なわれない程度の劣化度、SOC、温度等にかかわらず、一定の値とみなせることが、実験的に確かめられたためである。
次に、劣化度が既知の電池の回路定数を、設定されたP値を固定値としたフィッティングにより求めて、等価回路モデルの回路定数と劣化程度との相関データを作成する(S20)。相関データは、異なる劣化度について作成し、回路定数−劣化度相関データベース200に記録する。
以降は、設定されたP値と、回路定数−劣化度相関データベース200に記録された相関データに基づいて、判定対象電池の劣化判定を繰り返すことができる(S30)。
これらの処理の詳細な手順について説明する。まず、電池劣化判定用等価回路モデルのP値を設定する処理(S10)の詳細な手順について図3のフローチャートを参照して説明する。
本処理では、P値を設定するための基準となる電池を用意し、解が複数になったり発散せずにP値を特定できる複素インピーダンスが得られる電池状態にコンディションニングする(S101)。解が複数になったり発散せずにP値を特定できる複素インピーダンス特性は、例えば、低周波領域方向で線が広がるような形状であり、一般に、所定の劣化状態や、温度が低い場合、SOC(State Of Charge)が低い場合等に広がるような特性になる。上述のように、これらの条件が変化した場合であっても、P値は一定とみなせるため、フィッティングを容易に行なえる電池状態を任意に設定することができる。逆に、円弧が近接した複素インピーダンス特性は、フィッティングが発散する場合があるため、このような複素インピーダンス特性となる電池状態は避けるようにする。
そして、交流インピーダンス測定装置300を用いて基準電池の交流インピーダンスを測定する(S102)。得られた測定データは、測定データ格納部330にナイキスト線図として格納する。
次に、得られた基準電池のナイキスト線図について、フィッティング初期値設定部130を用いて、フィッティング初期値を設定する(S103)。フィッティング初期値は、例えば、以下のようなアルゴリズムで設定することができる。なお、基準電池の交流インピーダンスの測定の結果、図4に示すようなナイキスト線図が得られたものとする。
R1初期値については、ナイキスト線図のゼロクロスポイントにおけるZreであるZre0を求め、Zre0をR1初期値とする。
P2初期値、P3初期値については、図5に示すようなdZim(f)/DZre(f)の周波数特性を求め、周波数の高い方からdZim(f)/DZre(f)のゼロ、あるいは変曲点を探し、第1の周波数をf1、第2の周波数をf2とする。ただし、先に変曲点が現れた場合は、変曲点の周波数を使用し、ゼロは1回無視する。
そして、[数2]に示すように、dZim(f1)とDZre(f1)−Zre0との比から、P2初期値を求める。
次いで、Zreが、Zre(f2)−Zim(f2)×3/4、Zre(f2)−Zim(f2)/4、Zre(f2)+Zim(f2)/4、Zre(f2)+Zim(f2)×3/4となる点のZimを求める。データ点がない場合は直線補間すればよい。
求められた4つのデータ点から、長軸がZre方向と平行となる楕円を既存の方法で近似する。そして、求められた楕円の長軸長さをb、短軸長さをaとし、[数3]からP3初期値を求める。
また、R2初期値は、R2=(Zre(f1)−Zre0)×2で求め、T2初期値は、T2=1/[(2πf1)^P2×R2]で求め、R3初期値は、R3=bで求め、T3初期値は、T3=1/[(2πf2)^P3×R3]で求める。もちろん、他のアルゴリズムで各回路定数のフィッティング初期値を設定するようにしてもよい。
図3の説明に戻って、フィッティング用初期値が設定されると、フィッティング部140が、設定された初期値を用いて等価回路モデルのフィッティングを行なう(S104)。低周波領域方向で広がるような形状のナイキスト線図が得られるように基準電池をコンディショニングしているため、既存のアルゴリズムを用いてフィッティングすることにより、各回路定数を容易に求めることができる。
そして、フィッティングにより得られた回路定数のうち、P値(P2、P3)を、P値保管部150に格納し(S105)、電池劣化判定用等価回路モデルのP値を設定する処理(S10)を終了する。
次に、等価回路モデルの回路定数と劣化程度の相関データを作成する処理(S20)の詳細な手順について図6のフローチャートを参照して説明する。
まず、容量劣化や出力劣化等の劣化度が既知の電池を採択する(S201)。そして、採択された電池を劣化判定用のインピーダンス測定条件にコンディションニングし(S202)、交流インピーダンス測定装置300を用いて交流インピーダンスを測定する(S203)。劣化判定用のインピーダンス測定条件は、所定の温度、所定のSOC等とすることができる。得られた測定データは、測定データ格納部330にナイキスト線図として格納する。
次に、得られた既知劣化度の電池のナイキスト線図について、フィッティング初期値設定部130を用いて、フィッティング初期値を設定する(S204)。フィッティング初期値は、上述の処理(S103)と同様のアルゴリズムで設定することができる。ただし、P値については固定値とするため初期値を算出する必要がない。
そして、フィッティング部140が、P値保管部150に保管されているP値を固定の回路定数とし、設定された初期値を用いて等価回路モデルのフィッティングを行なう(S205)。P値を固定の回路定数としているため、未知の回路定数がRC2段モデルと同数である。したがって、既存のアルゴリズムを用いてフィッティングすることにより、各回路定数を容易に求めることができる。
求められた回路定数は、電池の既知の劣化度と関連付けて回路定数−劣化度相関データベース200に相関データとして登録する(S206)。
以上の処理を、異なる劣化度の電池に対して繰り返し行ない(S207:No)、登録された相関データの個数が充足すると(S207:Yes)、等価回路モデルの回路定数と劣化程度の相関データを作成する処理(S20)を終了する。図7は、回路定数R3と出力劣化量との相関例を示す図である。本図に示すように、等価回路モデルのRは、充放電サイクルを繰り返すことによって大きくなることが知られている。
次に、判定対象電池の劣化判定処理(S30)の詳細な手順について図8のフローチャートを参照して説明する。
まず、劣化判定対象電池を劣化判定用のインピーダンス測定条件にコンディションニングする(S301)。具体的には、温度、SOC等を、等価回路モデルの回路定数と劣化程度の相関データを作成する処理(S20)時と同等にコンディショニングする。
そして、交流インピーダンス測定装置300を用いて判定対象電池の交流インピーダンスを測定する(S302)。得られた測定データは、測定データ格納部330にナイキスト線図として格納する。
次に、得られた判定対象電池のナイキスト線図について、フィッティング初期値設定部130を用いて、フィッティング初期値を設定する(S303)。フィッティング初期値は、上述の処理(S103)と同様のアルゴリズムで設定することができる。ただし、P値については固定値とするため初期値を算出する必要がない。
そして、フィッティング部140が、P値保管部150に保管されているP値を固定の回路定数とし、設定された初期値を用いて等価回路モデルのフィッティングを行なう(S304)。P値を固定の回路定数としているため、未知の回路定数がRC2段モデルと同数である。したがって、既存のアルゴリズムを用いてフィッティングすることにより、各回路定数を容易に求めることができる。
そして、劣化判定部160が、回路定数−劣化度相関データベース200を参照して、求められた回路定数から判定対象電池の劣化度を判定する(S305)。判定結果は、図示しない表示装置や印刷装置等に出力し(S306)、判定対象電池の劣化判定処理(S30)を終了する。
なお、本実施形態ではフィッティング誤差を小さくすることができるが、電池の劣化が進んで使用不能状態となると、P値を含んだ特性が変動し、フィッティング誤差が大きくなる。
このため、劣化判定部160は、フィッティングの結果得られた回路定数を用いて算出された複素インピーダンス特性と、測定の結果得られた複素インピーダンス特性との2乗誤差を求め、2乗誤差があらかじめ設定した基準値以上となった場合には、その電池が使用不適当である旨の判定結果を、入出力部120を介して出力するようにしてもよい。
以上説明したように、本実施形態の劣化度判定は、抵抗RとCPEとが並列になった回路ブロックを含んだ等価回路モデルを用いてフィッティングを行なっているため、フィッティング誤差を小さくすることができる。したがって、判定結果の妥当性を高めることができる。また、CPEの回路定数のうち、P値を固定値としているため、フィッティングすべき未知の回路定数をRCモデルと同等となり、容易にフィッティングを行なうことができる。
10…電池劣化判定システム
100…電池劣化判定装置
110…制御部
120…入出力部
130…フィッティング初期値設定部
140…フィッティング部
150…P値保管部
160…劣化判定部
200…回路定数−劣化度相関データベース
300…交流インピーダンス測定装置
310…交流インピーダンス測定部
320…交流インピーダンス測定条件設定部
330…測定データ格納部
400…電池

Claims (5)

  1. 交流インピーダンス測定データを、抵抗RとCPE(Constant Phase Element)とが並列接続された回路ブロックを1つ以上有する等価回路モデルにフィッティングし、前記等価回路モデルの回路定数を求めるフィッティング部と、
    基準となる電池の交流インピーダンス測定データを、前記等価回路モデルにフィッティングして得られたCPE指数P値を保管するP値保管部と、
    電池の劣化度と前記等価回路モデルの回路定数との相関を記録したデータベースを参照し、判定対象電池の交流インピーダンス測定データを、前記等価回路モデルに前記P値を固定値としてフィッティングを行なって得られた回路定数に基づいて、前記判定対象電池の劣化判定を行なう劣化判定部と、
    を備えたことを特徴とする電池劣化判定装置。
  2. 前記劣化判定部は、前記得られた回路定数によるフィッティング誤差があらかじめ設定した基準値以上の場合は、前記判定対象電池が使用不適当である旨の判定を行なうことを特徴とする請求項1に記載の電池劣化判定装置。
  3. 前記フィッティング部によるフィッティングに先立ち、回路定数の初期値を設定するフィッティング初期値設定部をさらに備え、
    前記フィッティング初期値設定部は、交流インピーダンス測定データをナイキスト線図に表わした場合に、Zim=0となるゼロクロスポイントと、dZim/dZreの周波数特性線図の変曲点およびゼロを用いた楕円近似を利用して回路定数の初期値を設定することを特徴とする請求項1または2に記載の電池劣化判定装置。
  4. 基準となる電池の交流インピーダンス測定データを、抵抗RとCPE(Constant Phase Element)とが並列接続された回路ブロックを1つ以上有する等価回路モデルにフィッティングして得られたCPE指数P値を保管するP値保管ステップと、
    電池の劣化度と前記等価回路モデルの回路定数との相関を記録したデータベースを参照し、判定対象電池の交流インピーダンス測定データを前記等価回路モデルに前記P値を固定値としてフィッティングを行なって得られた回路定数に基づいて、前記判定対象電池の劣化判定を行なう劣化判定ステップと、
    を含むことを特徴とする電池劣化判定方法。
  5. 既知の劣化度の電池の交流インピーダンス測定データを前記等価回路モデルに前記P値を固定値としてフィッティングを行なって得られた回路定数と前記既知の劣化度との相関を複数の劣化度について記録することで、前記データベースを作成するステップをさらに含むことを特徴とする請求項4に記載の電池劣化判定方法。
JP2011161762A 2011-07-25 2011-07-25 電池劣化判定装置および方法 Expired - Fee Related JP5278508B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011161762A JP5278508B2 (ja) 2011-07-25 2011-07-25 電池劣化判定装置および方法
US13/556,740 US9043176B2 (en) 2011-07-25 2012-07-24 Battery degradation determination device, battery degradation determination method and battery degradation determination system
EP12177703.1A EP2551688B1 (en) 2011-07-25 2012-07-24 Device, method and system for determining battery degradation
KR1020120080845A KR101363195B1 (ko) 2011-07-25 2012-07-24 배터리 열화 판정 디바이스, 배터리 열화 판정 방법 및 배터리 열화 판정 시스템
CN201210260429.5A CN102901928B (zh) 2011-07-25 2012-07-25 电池劣化确定设备、方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161762A JP5278508B2 (ja) 2011-07-25 2011-07-25 電池劣化判定装置および方法

Publications (2)

Publication Number Publication Date
JP2013026114A true JP2013026114A (ja) 2013-02-04
JP5278508B2 JP5278508B2 (ja) 2013-09-04

Family

ID=46640560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161762A Expired - Fee Related JP5278508B2 (ja) 2011-07-25 2011-07-25 電池劣化判定装置および方法

Country Status (5)

Country Link
US (1) US9043176B2 (ja)
EP (1) EP2551688B1 (ja)
JP (1) JP5278508B2 (ja)
KR (1) KR101363195B1 (ja)
CN (1) CN102901928B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160613A (ja) * 2012-02-03 2013-08-19 Yokogawa Electric Corp 蓄電池特性導出装置
WO2019203111A1 (ja) * 2018-04-20 2019-10-24 株式会社Gsユアサ 状態推定方法、及び状態推定装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150346285A1 (en) * 2013-02-28 2015-12-03 Hitachi Vehicle Energy, Ltd. Device for Assessing Extent of Degradation of Secondary Battery
EP2821803A1 (en) * 2013-07-02 2015-01-07 Delphi Technologies, Inc. Battery deterioration determining system
KR101610530B1 (ko) 2014-10-24 2016-04-07 현대자동차주식회사 배터리의 내부 저항 측정 방법
CN106371018B (zh) * 2015-07-21 2019-05-24 上汽通用汽车有限公司 基于电池端电压估计的车辆动力电池故障诊断方法及设备
CN105203969B (zh) * 2015-10-23 2018-04-13 南昌航空大学 基于修正的rc电池模型的荷电状态估计方法
JP6339618B2 (ja) * 2016-03-29 2018-06-06 古河電気工業株式会社 二次電池劣化推定装置および二次電池劣化推定方法
JP6647111B2 (ja) 2016-03-29 2020-02-14 古河電気工業株式会社 二次電池劣化推定装置および二次電池劣化推定方法
DE102016106735A1 (de) * 2016-04-12 2017-10-12 Thyssenkrupp Marine Systems Gmbh Ersatzschaltbasiertes Brennstoffzellen-Prognosemodell
WO2018076325A1 (en) * 2016-10-31 2018-05-03 City University Of Hong Kong Method and apparatus for use in electric circuit
CN107329091B (zh) * 2017-07-13 2020-07-03 大唐恩智浦半导体有限公司 一种电池内部温度测量方法、装置和系统
JP6881154B2 (ja) * 2017-08-23 2021-06-02 トヨタ自動車株式会社 二次電池の劣化状態推定方法および二次電池システム
AT521175B1 (de) * 2018-05-14 2019-11-15 Avl List Gmbh Verfahren zur Ermittlung von Parametern einer Ersatzschaltung
WO2020261799A1 (ja) 2019-06-27 2020-12-30 ヌヴォトンテクノロジージャパン株式会社 電池管理回路、電池管理システムおよび電池管理ネットワーク
JP6842213B1 (ja) * 2019-12-27 2021-03-17 東洋システム株式会社 模擬電池構築方法および模擬電池構築装置
KR20230006855A (ko) * 2020-04-24 2023-01-11 후아웨이 테크놀러지 컴퍼니 리미티드 배터리 감지 방법 및 장치
JP2022029866A (ja) * 2020-08-05 2022-02-18 日置電機株式会社 状態測定装置、状態測定方法及びプログラム
KR20230021963A (ko) * 2021-08-06 2023-02-14 주식회사 엘지에너지솔루션 전지 셀의 전극 탭 단선 검사장치 및 단선 검사방법
JP7385696B2 (ja) 2022-03-23 2023-11-22 本田技研工業株式会社 測定装置、測定方法、及びプログラム
JP7385698B2 (ja) * 2022-03-30 2023-11-22 本田技研工業株式会社 バッテリ状態分析システム及びバッテリ状態分析方法
CN117214728B (zh) * 2023-11-09 2024-04-05 溧阳中科海钠科技有限责任公司 电池的劣化程度确定方法、装置、电子设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091867A (ja) * 1998-09-11 2000-03-31 Murata Mfg Co Ltd リアクタンス素子及びこのリアクタンス素子を用いた回路モジュール
JP2004241325A (ja) * 2003-02-07 2004-08-26 Espec Corp 電池状態診断装置および電池状態診断方法
JP2005044697A (ja) * 2003-07-24 2005-02-17 Nippon Oil Corp 光電変換素子
JP2006098135A (ja) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd バッテリの劣化度推定装置
JP2007265894A (ja) * 2006-03-29 2007-10-11 Yokogawa Electric Corp 燃料電池の特性測定装置及び方法
JP2010135290A (ja) * 2008-10-30 2010-06-17 Toyota Motor Corp 燃料電池の状態を推定する推定方法、および、状態推定装置
JP2010230469A (ja) * 2009-03-27 2010-10-14 Calsonic Kansei Corp 二次電池劣化判定装置及び方法
JP2011122951A (ja) * 2009-12-11 2011-06-23 Honda Motor Co Ltd 二次電池の充電状態推定装置および劣化状態推定装置
JP2011133443A (ja) * 2009-12-25 2011-07-07 Toshiba Corp 診断装置、電池パック及び電池価値指標の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020120906A1 (en) 2000-07-17 2002-08-29 Lei Xia Behavioral modeling and analysis of galvanic devices
US6778913B2 (en) 2002-04-29 2004-08-17 Cadex Electronics Inc. Multiple model systems and methods for testing electrochemical systems
KR100462661B1 (ko) * 2002-07-02 2004-12-20 금호석유화학 주식회사 임피던스 스펙트럼으로부터 모사된 등가회로 모델의 특정저항 인자 연산을 이용한 2차 전지의 용량 선별 방법
JP4038456B2 (ja) * 2003-08-25 2008-01-23 株式会社豊田中央研究所 電池特性検出方法
CN1938599B (zh) * 2004-03-26 2012-08-29 伊顿动力品质公司 测试电化学装置的方法
JP2007108063A (ja) * 2005-10-14 2007-04-26 Furukawa Electric Co Ltd:The 二次電池劣化判定方法、二次電池劣化判定装置、及び電源システム
CN1975444A (zh) * 2005-11-28 2007-06-06 孙斌 蓄电池内阻及劣化状态在线监测方法及系统
JP5088081B2 (ja) * 2007-10-12 2012-12-05 富士通株式会社 電池の測定方法及び電池の製造方法
CN101639522B (zh) * 2008-08-01 2014-06-04 株式会社杰士汤浅国际 二次电池的劣化状态诊断装置
JP5633227B2 (ja) * 2009-10-14 2014-12-03 ソニー株式会社 電池パックおよび電池パックの劣化度検出方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091867A (ja) * 1998-09-11 2000-03-31 Murata Mfg Co Ltd リアクタンス素子及びこのリアクタンス素子を用いた回路モジュール
JP2004241325A (ja) * 2003-02-07 2004-08-26 Espec Corp 電池状態診断装置および電池状態診断方法
JP2005044697A (ja) * 2003-07-24 2005-02-17 Nippon Oil Corp 光電変換素子
JP2006098135A (ja) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd バッテリの劣化度推定装置
JP2007265894A (ja) * 2006-03-29 2007-10-11 Yokogawa Electric Corp 燃料電池の特性測定装置及び方法
JP2010135290A (ja) * 2008-10-30 2010-06-17 Toyota Motor Corp 燃料電池の状態を推定する推定方法、および、状態推定装置
JP2010230469A (ja) * 2009-03-27 2010-10-14 Calsonic Kansei Corp 二次電池劣化判定装置及び方法
JP2011122951A (ja) * 2009-12-11 2011-06-23 Honda Motor Co Ltd 二次電池の充電状態推定装置および劣化状態推定装置
JP2011133443A (ja) * 2009-12-25 2011-07-07 Toshiba Corp 診断装置、電池パック及び電池価値指標の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160613A (ja) * 2012-02-03 2013-08-19 Yokogawa Electric Corp 蓄電池特性導出装置
WO2019203111A1 (ja) * 2018-04-20 2019-10-24 株式会社Gsユアサ 状態推定方法、及び状態推定装置

Also Published As

Publication number Publication date
EP2551688A1 (en) 2013-01-30
KR20130012569A (ko) 2013-02-04
KR101363195B1 (ko) 2014-02-12
CN102901928A (zh) 2013-01-30
EP2551688B1 (en) 2014-04-02
US9043176B2 (en) 2015-05-26
US20130030736A1 (en) 2013-01-31
JP5278508B2 (ja) 2013-09-04
CN102901928B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5278508B2 (ja) 電池劣化判定装置および方法
JP7015678B2 (ja) バッテリ充電方法、バッテリ充電情報生成方法、及びバッテリ充電装置
JP7249754B2 (ja) バッテリ充電方法及び装置
KR101866073B1 (ko) 배터리 soh 추정 방법
US9952289B2 (en) Storage battery evaluating apparatus and method
CN110146816B (zh) 电池剩余充电时间的确定方法、装置、设备及存储介质
JP6615011B2 (ja) 電池管理システム、電池システムおよびハイブリッド車両制御システム
JP5739788B2 (ja) 充放電計画立案システムおよび充放電計画立案方法
KR20220038789A (ko) 배터리 시뮬레이션
WO2015033503A1 (ja) 推定装置及び推定方法
KR20180134336A (ko) 전기 열 배터리 모델의 생성 및 사용을 위한 시스템 및 방법
JP7039499B2 (ja) 内部状態推定装置および方法、ならびに電池制御装置
JP6330605B2 (ja) 推定プログラム、推定方法および推定装置
JP6253137B2 (ja) 二次電池の電池状態推定装置
JP2006292565A (ja) 二次電池劣化状態判定方法及び二次電池劣化状態判定装置
JP6171897B2 (ja) 近似関数作成プログラム、近似関数作成方法、近似関数作成装置および充電率推定プログラム
EP3736585A1 (en) Method and device for predicting peak power of battery
JP6221884B2 (ja) 推定プログラム、推定方法および推定装置
US20150369876A1 (en) Deterioration determination method, manufacturing method of electric storage device, deterioration determination device, and storage medium
JP6161133B2 (ja) データ抽出装置、データ抽出方法およびデータ抽出プログラム
JP6541412B2 (ja) 充電率算出方法及び充電率算出装置
JP6421411B2 (ja) 電池の充電率を推定する推定プログラム、電池の充電率を推定する推定方法、および、電池の充電率を推定する推定装置
WO2017002953A1 (ja) データ抽出装置、データ抽出方法およびデータ抽出プログラム
CN108845268A (zh) 一种动力电池的老化趋势判断方法和装置
CN116736125A (zh) 用于车辆中动力电池充电剩余时间的预测方法及装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees