WO2019203111A1 - 状態推定方法、及び状態推定装置 - Google Patents
状態推定方法、及び状態推定装置 Download PDFInfo
- Publication number
- WO2019203111A1 WO2019203111A1 PCT/JP2019/015759 JP2019015759W WO2019203111A1 WO 2019203111 A1 WO2019203111 A1 WO 2019203111A1 JP 2019015759 W JP2019015759 W JP 2019015759W WO 2019203111 A1 WO2019203111 A1 WO 2019203111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power storage
- storage element
- state
- deterioration state
- deterioration
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a state estimation method and a state estimation device for a storage element.
- Energy storage devices are widely used in uninterruptible power supply devices, DC or AC power supply devices included in stabilized power supplies, and the like.
- the use of power storage elements in large-scale systems that store generated power is expanding. Deterioration of the power storage element proceeds as time elapses and charge / discharge is repeated. As the battery deteriorates, the chargeable / dischargeable capacity (full charge capacity) of the power storage element gradually decreases, and the internal resistance increases.
- the full charge capacity is the amount of electricity stored in the power storage element when fully charged.
- the soundness level (SOH: State of Health) indicating the ratio of the current capacity of the power storage element to the capacity of the new power storage element is estimated.
- SOH State of Health
- the SOH of the electricity storage element can be estimated from the history data of the electricity storage element (including charge / discharge history, neglect history, and temperature history).
- the current, voltage, and temperature of the power storage element can be measured as needed, history data including the current, voltage, and temperature over time can be recorded, and the SOH of the power storage element can be estimated based on the recorded history data.
- Patent document 1 is disclosing the example of the technique which estimates the deterioration state of an electrical storage element.
- the deterioration state can be estimated based on the history data for the power storage element in which the history data is recorded.
- a deterioration state cannot be estimated by the same method for a storage element in which history data including charge / discharge history and neglect history is not recorded.
- An object of the present invention is to provide a state estimation method and a state estimation device capable of estimating a deterioration state even for a power storage element whose deterioration state is unknown.
- the first behavior data within a predetermined period is acquired for the first power storage element, and the second behavior data of the second power storage element whose degradation state is known and the above-mentioned Based on the relationship with the deterioration state of the second electricity storage element, the deterioration state at the first time point of the first electricity storage element is estimated according to the first behavior data acquired for the first electricity storage element, and the first Based on the deterioration state at one time point and the history data from the first time point to the second time point, the deterioration state at the second time point of the first power storage element is estimated.
- “the deterioration state is known” may mean that the deterioration state can be estimated.
- the first storage element can be operated in the same manner as the second storage element whose deterioration state is known.
- the state estimation method of a power storage element acquires first behavior data within a predetermined period for the first power storage element, the second behavior data of the second power storage element whose degradation state is known, and the second power storage. Based on the relationship with the deterioration state of the element, the deterioration state at the first time point of the first power storage element is estimated according to the first behavior data acquired for the first power storage element, and the deterioration at the first time point is determined. Based on the state and the history data from the first time point to the second time point, the deterioration state of the first power storage element at the second time point is estimated.
- the storage element state estimation device includes a first acquisition unit that acquires first behavior data within a predetermined period for the first storage element connected to the state estimation device, and a second deterioration state that is known. Based on the relationship between the second behavior data acquired in advance for the power storage element and the deterioration state of the second power storage element, the first power storage is performed according to the first behavior data acquired for the first power storage element. The deterioration state at the first time point of the element is estimated, and the deterioration state at the second time point of the first power storage element is determined based on the deterioration state at the first time point and the history data from the first time point to the second time point. A first estimation unit for estimation.
- the first storage element whose deterioration state is unknown is based on the relationship between the second behavior data in the predetermined period of the second storage element whose deterioration state is known and the deterioration state of the second storage element.
- the deterioration state of the first power storage element is estimated according to the first behavior data. Since the behavior data of the power storage element varies depending on the deterioration state of the power storage element, it is possible to estimate the deterioration state of the first power storage element.
- the second behavior data is acquired for the second power storage element in which the history data is recorded and the deterioration state can be grasped.
- the first behavior data is also acquired for the first power storage element in which the history data is not recorded. Since the behavior data differs depending on the deterioration state of the power storage element, the deterioration of the first power storage element is determined from the first behavior data of the first power storage element based on the relationship between the deterioration state of the second power storage element and the second behavior data.
- the state can be estimated.
- the deterioration state that can be estimated is the deterioration state at the first time point when the first behavior data is acquired.
- the deterioration state of the first power storage element can be estimated. That is, for a storage element in which history data is not recorded, once the deterioration state is estimated using behavior data, the deterioration state can be grasped thereafter by recording the history data.
- the first behavior data acquired for the first power storage element is obtained from a learning model in which the relationship between the second behavior data of the second power storage element and the deterioration state of the second power storage element is learned. Accordingly, the deterioration state of the first power storage element at the first time point may be estimated.
- the first estimation unit acquires the first behavior acquired for the first power storage element by a learning model that has learned the relationship between the second behavior data of the second power storage element and the deterioration state of the second power storage element. The deterioration state of the first power storage element at the first time point may be estimated according to the data.
- the first power storage is performed according to the first behavior data of the first power storage element by using a learning model in which the relationship between the second behavior data of the second power storage element and the deterioration state of the second power storage element is learned.
- the degradation state of the element is estimated.
- the state estimation method continuously acquires history data for the second power storage element, estimates a deterioration state of the second power storage element based on the acquired history data, and the deterioration state is a specific state.
- Second behavior data is acquired for the second power storage element, and the second behavior data acquired for the second power storage element whose deterioration state is a specific state, and when the second behavior data is acquired Machine learning of the learning model may be performed using the deterioration state of the second power storage element as teacher data.
- the state estimation device includes a second acquisition unit that continuously acquires history data for the second power storage element, and a second state that estimates a deterioration state of the second power storage element based on the acquired history data.
- An estimation unit a third acquisition unit that acquires second behavior data for the second power storage element having a specific deterioration state, and a second acquisition unit that acquires the second power storage element having a specific deterioration state.
- a learning unit that performs machine learning of the learning model may be further provided using two-behavior data and the deterioration state of the second power storage element when the second behavior data is acquired as teacher data.
- the deterioration state can be estimated based on the history data for the second storage element that has continuously acquired the history data, the second storage element in which the deterioration state is in a specific state.
- the relationship between the second behavior data and the deterioration state of the second power storage element is accurate teacher data. By using the teacher data, it is possible to learn a learning model that estimates the deterioration state of the first power storage element from the first behavior data of the first power storage cell.
- the state estimation method continuously acquires history data for the second power storage element, estimates a deterioration state of the second power storage element based on the acquired history data, and the deterioration state is a specific state.
- the second behavior data is acquired for the second power storage element, and the second behavior data acquired for the second power storage element whose deterioration state is a specific state and the first power data acquired for the first power storage element.
- the deterioration state of the first power storage element may be estimated based on the comparison with the behavior data.
- the state estimation device includes a second acquisition unit that continuously acquires history data for the second power storage element, and a second state that estimates a deterioration state of the second power storage element based on the acquired history data.
- An estimation unit a third acquisition unit that acquires second behavior data for the second power storage element having a specific deterioration state, and a second acquisition unit that acquires the second power storage element having a specific deterioration state.
- a third estimation unit that estimates a deterioration state of the first power storage element based on comparison between two behavior data and the first behavior data acquired for the first power storage element may be further included.
- the second storage element since the deterioration state can be estimated based on the history data for the second storage element that has continuously acquired the history data, the second storage element in which the deterioration state is in a specific state. It is possible to estimate the deterioration state of the first power storage element through a comparison between the second behavior data and the first behavior data of the first power storage element.
- the deterioration state of the electricity storage element may include the soundness level (SOH) of the electricity storage element, the calendar deterioration amount, and the cycle deterioration amount.
- SOH soundness level
- the deterioration state of the electricity storage element may include the soundness level (SOH) of the electricity storage element, the calendar deterioration amount, and the cycle deterioration amount.
- FIG. 1 is a diagram showing an overview of a remote monitoring system 100.
- the communication network N includes a public communication network (for example, the Internet) N1, a carrier network N2 that implements wireless communication according to mobile communication standards, and the like.
- the communication network N includes a rectifier (DC) disposed in a thermal power generation system F, a solar power generation system S, a wind power generation system W, an uninterruptible power supply (UPS) U, a stabilized power supply system for railways, and the like.
- Power supply device or AC power supply device) D is connected.
- the communication network N is connected to a communication device 1 (see FIG. 2), which will be described later, a server device 2 that collects information from the communication device 1, a client device 3 that acquires the collected information, and the like.
- the carrier network N2 includes a base station BS.
- the client device 3 can communicate with the server device 2 via the communication network N from the base station BS.
- An access point AP is connected to the public communication network N1.
- the client device 3 can transmit / receive information to / from the server device 2 via the communication network N from the access point AP.
- the solar power generation system S, the thermal power generation system F, and the wind power generation system W are provided with a power conditioner (PCS) P and a power storage system 101.
- the power storage system 101 is configured by arranging a plurality of containers C accommodating the power storage module group L in parallel.
- the power storage module group L has, for example, a hierarchical structure of a power storage module in which a plurality of power storage cells are connected in series, a bank in which a plurality of power storage modules are connected in series, and a domain in which a plurality of banks are connected in parallel.
- a power storage cell, a power storage module, or a bank corresponds to a power storage element.
- the storage element is preferably a rechargeable element such as a secondary battery such as a lead storage battery and a lithium ion battery, or a capacitor. A part of the power storage element may be a primary battery that cannot be recharged.
- FIG. 2 is a block diagram illustrating a configuration example of the remote monitoring system 100.
- the remote monitoring system 100 includes a communication device 1, a server device 2 that functions as a state estimation device, a client device 3, and a power storage system 101 (see FIG. 3).
- the power storage system 101 includes a management device M described later.
- the management device M manages power storage elements included in the power storage system 101.
- the power storage system 101 is not limited to the one installed in the power generation system.
- the power storage system 101 may be connected to the power transmission system via the power conditioner P.
- the communication device 1 is connected to a communication network N and is connected to target devices P, U, D, and M.
- the target devices P, U, D, and M are devices to be managed by the remote monitoring system 100.
- the target devices P, U, D, and M include a power conditioner P, an uninterruptible power supply device U, a rectifier D, and a management device M.
- the state of the storage element included in the storage system 101 (for example, voltage, current, temperature, charge state (SOC: State of Charge)) is monitored.
- history data including the history of the voltage, current and temperature of the storage element, and the ambient temperature is continuously acquired and monitored.
- the history data represents a history of operation of the power storage element.
- the history data may include a charging / discharging history and / or a leaving history representing a history of leaving a power storage element without charging / discharging.
- the deterioration state can be estimated based on the history data.
- SOH the amount of deterioration due to the passage of time (deterioration amount due to storage / storage of the electricity storage element; hereinafter referred to as calendar deterioration amount), and due to repeated charge / discharge
- calendar deterioration amount The amount of deterioration
- cycle deterioration amount can be exemplified.
- a deterioration state is estimated also about the electrical storage element from which historical data was not continuously acquired.
- the remote monitoring system 100 presents the state of the storage element (including the deterioration state, the abnormal state, etc.) so that the user or the operator (maintenance staff) can check.
- the communication device 1 includes a control unit 10, a storage unit 11, a first communication unit 12, and a second communication unit 13.
- the control unit 10 is composed of a CPU (Central Processing Unit) and the like, and controls the entire communication device 1 using a built-in memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
- ROM Read Only Memory
- RAM Random Access Memory
- the storage unit 11 is non-volatile.
- the storage unit 11 is configured using, for example, a nonvolatile memory such as a flash memory.
- the storage unit 11 stores a device program 1P that is read and executed by the control unit 10.
- the storage unit 11 stores information collected by processing of the control unit 10 and information such as an event log.
- the first communication unit 12 is a communication interface that realizes communication with the target devices P, U, D, and M.
- the first communication unit 12 is configured using a serial communication interface such as RS-232C or RS-485, for example.
- the second communication unit 13 is an interface that realizes communication via the communication network N.
- the second communication unit 13 is configured using, for example, a communication interface such as Ethernet (registered trademark) or a wireless communication antenna.
- the control unit 10 can communicate with the server device 2 via the second communication unit 13.
- the server device 2 includes a control unit 20, a storage unit 21, a communication unit 22, and a learning model 23.
- the server device 2 may be a single server computer or may be composed of a plurality of server computers.
- the control unit 20 is constituted by a CPU, for example.
- the control unit 20 controls the entire server device 2 using a built-in memory such as a ROM and a RAM.
- the control unit 20 may be configured using a CPU and a GPU (Graphics Processing Unit), a multi-core CPU, or a TPU (Tensor Processing Unit).
- the control unit 20 executes information processing based on the computer program 2P stored in the storage unit 21.
- the computer program 2P includes a web server program.
- the control unit 20 functions as a Web server that executes provision of a Web page to the client device 3, acceptance of login to the Web service, and the like.
- the control unit 20 can also collect information from the communication device 1 as an SNMP (Simple Network Management Protocol) server based on the computer program 2P.
- SNMP Simple Network Management Protocol
- the storage unit 21 may be a non-volatile memory such as a flash memory or a hard disk, for example.
- the storage unit 21 stores data including the states of the target devices P, U, D, and M to be monitored that are collected by the processing of the control unit 20.
- the communication unit 22 is a communication device that realizes communication connection and data transmission / reception via the communication network N.
- the communication unit 22 may be a network card corresponding to the communication network N.
- the learning model 23 can estimate the deterioration state of the storage element based on the input data regarding the storage element collected from the target devices P, U, D, and M via the communication device 1.
- the learning model 23 includes, for example, an algorithm for machine learning including deep learning.
- the learning model 23 may be realized using a CPU, a RAM, and a computer program 2P that is stored in the storage unit 21, loaded into the RAM, and executed by the CPU.
- the learning model 23 may be realized using a quantum computer.
- the client device 3 may be a computer used by an operator of the power storage system 101, an operator such as a maintenance staff of the target devices P, U, D, and M.
- the client device 3 may be a desktop or laptop personal computer, or may be a smartphone or tablet communication terminal.
- the client device 3 includes a control unit 30, a storage unit 31, a communication unit 32, a display unit 33, and an operation unit 34.
- the control unit 30 is a processor using a CPU.
- the control unit 30 causes the display unit 33 to display a web page provided by the server device 2 or the communication device 1 based on the web browser program stored in the storage unit 31.
- the storage unit 31 is, for example, a nonvolatile memory such as a flash memory or a hard disk.
- the storage unit 31 stores various programs including a web browser program.
- the communication unit 32 is, for example, a communication device such as a network card for wired communication, a wireless communication device for mobile communication connected to the base station BS (see FIG. 1), or a wireless communication device corresponding to connection to the access point AP. Can be used.
- the control unit 30 can perform communication connection or information transmission / reception with the server device 2 or the communication device 1 via the communication network N by the communication unit 32.
- the display unit 33 may be a display such as a liquid crystal display or an organic EL (Electro Luminescence) display.
- the display unit 33 can display an image of a Web page provided by the server device 2 by processing based on the Web browser program of the control unit 30.
- the operation unit 34 is a user interface such as a keyboard and a pointing device that can be input and output with the control unit 30 or a voice input unit.
- a touch panel of the display unit 33 or a physical button provided on the housing may be used.
- the operation unit 34 notifies the control unit 30 of operation information by the user.
- FIG. 3 is a block diagram illustrating a configuration example of the power storage system 101.
- the power storage system 101 has a hierarchical structure of a power storage module in which a plurality of power storage cells are connected in series, a bank in which a plurality of power storage modules are connected in series, and a domain in which the plurality of banks are connected in parallel.
- the power storage system 101 shown in FIG. 3 constitutes one domain.
- the power storage module may include power storage cells connected in parallel to other power storage cells.
- the bank may include power storage modules connected in parallel to other power storage modules.
- the power storage system 101 may include a power storage cell 621 whose history data is known and a power storage cell 611 whose history data is unknown. By continuously acquiring the voltage, current and temperature of the storage cell 621, and the ambient temperature, and history data including the history of the voltage, current and temperature and ambient temperature is stored in the management device M or the server device 2 as needed. The storage cell 621 is monitored.
- the power storage cell 621 may be a power storage cell that is continuously monitored from the beginning of use (the beginning of operation of the power storage system 101) and history data is acquired.
- the storage cell 611 whose history data is unknown is, for example, a storage cell that has not been monitored so far, a storage cell whose history data has been lost, or a storage that is newly added to the storage system 101 with unknown history data. It is a cell.
- the storage cell 611 corresponds to the first storage element
- the storage cell 621 corresponds to the second storage element.
- FIG. 3 shows an example in which the power storage module 61 is configured including a plurality of power storage cells 611 and the power storage module 62 is configured including a plurality of power storage cells 621.
- a bank 41 is configured including a plurality of power storage modules 61
- a bank 42 is configured including a plurality of power storage modules 62.
- the power storage module may include both the power storage cell 611 and the power storage cell 621.
- the bank may include both the power storage module 61 and the power storage module 62, and may include a power storage module including both the power storage cell 611 and the power storage cell 621.
- the power storage system 101 is connected to the power conditioner P.
- the respective banks 41 and 42 are connected to the power conditioner P through the power line 44. Electric power is supplied to the banks 41 and 42 through the power conditioner P, and the banks 41 and 42 are charged. The electric power discharged from the banks 41 and 42 is output to the outside through the power conditioner P.
- the power conditioner P is connected to the power generation system and / or the power transmission system.
- Each of the banks 41 and 42 includes a plurality of power storage modules 61 and 62 and battery management devices (BMU: Battery Management Units) 51 and 52.
- the bank 41 includes a plurality of power storage modules 61 and a battery management device 51
- the bank 42 includes a plurality of power storage modules 62 and a battery management device 52.
- Each of the power storage modules 61 and 62 includes control boards (CMU: Cell Monitoring Unit) 71 and 72.
- the power storage module 61 includes a control board 71
- the power storage module 62 includes a control board 72.
- the control boards 71 and 72 are connected to the battery management devices 51 and 52.
- the battery management devices 51 and 52 can communicate with the control boards 71 and 72, respectively.
- the power storage system 101 includes a management device M.
- the management device M is a BMU that manages power storage elements belonging to a domain.
- the battery management devices 51 and 52 provided in the respective banks 41 and 42 are connected to the management device M via the communication line 43.
- the communication device 1 is connected to the management apparatus M and / or the power conditioner P.
- the communication device 1 may include a communication device connected to the management apparatus M and a communication device connected to the power conditioner P.
- the battery management devices 51 and 52 exchange information with the management device M.
- the management apparatus M aggregates information from the plurality of battery management apparatuses 51 and 52 and outputs the information to the communication device 1.
- the ambient temperature of the domain (the outside air temperature or the temperature of the room where the power storage element is installed) or the ambient temperature of each bank may be acquired by a temperature acquisition unit (not shown).
- FIG. 4 is a block diagram illustrating a configuration example of the power storage modules 61 and 62.
- the control boards 71 and 72 include control units 711 and 721, voltage acquisition units 712 and 722, current acquisition units 713 and 723, temperature acquisition units 714 and 724, and communication units 715 and 725.
- the control units 711 and 721 are configured using a processor and a memory.
- the control units 711 and 721 control the operation of the control boards 71 and 72.
- the voltage acquisition units 712 and 722 acquire the voltages of the plurality of power storage cells 611 and 621, respectively.
- the current acquisition units 713 and 723 acquire current flowing through the storage cells 611 and 621.
- the current acquisition units 713 and 723 acquire the current flowing through the plurality of storage cells 611 and 621 connected in series, or individually acquire the current flowing through the storage cells 611 and 621.
- the temperature acquisition units 714 and 724 acquire temperatures at one or a plurality of locations in the power storage modules 61 and 62 using a temperature sensor.
- the temperature acquisition units 714 and 724 may acquire the temperatures inside the respective storage cells 611 and 621.
- the communication units 715 and 725 are connected to the battery management devices 51 and 52.
- the communication units 715 and 725 have a function of performing serial communication with the battery management devices 51 and 52, for example.
- the control units 711 and 721 cause the communication units 715 and 725 to transmit information indicating the acquired voltage, current, and temperature to the battery management devices 51 and 52.
- FIG. 5 is a block diagram illustrating a functional configuration example of the battery management devices 51 and 52 and the management device M.
- the battery management devices 51 and 52 include control units 511 and 521, first communication units 512 and 522, and second communication units 513 and 523.
- the control units 511 and 521 are processors using a CPU.
- the first communication units 512 and 522 are connected to a plurality of control boards 71 and 72 in the banks 41 and 42.
- the first communication units 512 and 522 receive information transmitted from the control boards 71 and 72.
- the second communication units 513 and 523 are connected to the management apparatus M via the communication line 43.
- the control units 511 and 521 cause the second communication units 513 and 523 to transmit the information received from the plurality of control boards 71 and 72 to the management apparatus M.
- the management apparatus M is configured using a computer.
- the management apparatus M includes a control unit 401, a first communication unit 402, and a second communication unit 403.
- the control unit 401 is a processor using a CPU.
- the first communication unit 402 is connected to the plurality of battery management devices 51 and 52.
- the first communication unit 402 receives information transmitted from the battery management devices 51 and 52.
- the second communication unit 403 is connected to the communication device 1.
- the control unit 401 causes the second communication unit 403 to transmit information received from the plurality of battery management devices 51 and 52 to the communication device 1.
- the communication device 1 transmits the information received from the management device M to the server device 2. That is, the management apparatus M transmits information to the server apparatus 2 via the communication device 1, and the battery management apparatuses 51 and 52 transmit information to the server apparatus 2 via the management apparatus M and the communication device 1.
- the server device 2 performs a process of continuously acquiring the history data of each storage cell 621.
- the voltage acquisition unit 722 acquires the voltage of each power storage cell 621
- the current acquisition unit 723 acquires the current flowing through the power storage cell 621
- the temperature acquisition unit 724 is stored in the power storage module 62. Get the temperature.
- the control unit 721 causes the communication unit 725 to transmit information indicating the acquired voltage, current, and temperature. Information indicating the voltage, current, and temperature is transmitted to the server device 2 via the battery management device 52, the management device M, the communication device 1, and the communication network N.
- the server device 2 receives information indicating the voltage, current, and temperature related to each storage cell 621 by the communication unit 22, and the control unit 20 stores the received information in the storage unit 21. Acquisition of the voltage, current, and temperature related to the storage cell 621 and storage of information indicating the voltage, current, and temperature are performed continuously (for example, periodically). Alternatively, information indicating the voltage, current, and temperature acquired a plurality of times for the storage cell 621 may be transmitted and stored in a batch. In this way, history data including voltage, current, temperature, and ambient temperature history regarding each power storage cell 621 is continuously acquired and stored in the server device 2. For example, history data since the start of the behavior of each power storage cell 621 is stored in the storage unit 21 of the server device 2. The process in which the server device 2 continuously acquires the history data of the storage cell 621 corresponds to the second acquisition unit. Alternatively, the history data may be stored in a storage device other than the server device 2.
- FIG. 6 is a graph conceptually showing a change in the deterioration state of the storage cell 621 according to the length of use time.
- the horizontal axis indicates the usage time of the storage cell 621
- the vertical axis indicates the SOH of the storage cell 621.
- SOH is the ratio of the capacity of the storage cell 621 after use to the capacity of the storage cell 621 at the start of use.
- a change in SOH of the storage cell 621 is indicated by a solid line.
- the SOH at the start of use is 100%.
- a line of SOH 100% is indicated by a broken line.
- the storage cell 621 deteriorates as the usage time elapses. That is, as the usage time elapses, the capacity of the storage cell 621 decreases and the SOH decreases.
- the deterioration of the storage cell 621 includes calendar deterioration due to the passage of time and cycle deterioration due to repeated charge / discharge.
- FIG. 6 the change of SOH according to cycle deterioration is shown with a dashed-dotted line.
- the difference between the one-dot chain line and the solid line corresponds to the calendar deterioration amount.
- the calendar deterioration amount and the cycle deterioration amount differ depending on the history data of the storage cell 621. For example, when the charge / discharge frequency is repeated, the amount of cycle deterioration is large.
- SOH also differs depending on the history data of the storage cell 621. Even if the SOH is the same, the calendar deterioration amount and the cycle deterioration amount may differ depending on the history data. That is, the deterioration state including the SOH, the calendar deterioration amount, and the cycle deterioration amount of the storage cell 621 is determined according to the history data. Therefore, the deterioration state of the storage cell 621 can be estimated from the history data.
- the server device 2 functions as a state estimation device.
- the server device 2 acquires behavior data including temporal changes in voltage, current, and temperature within a predetermined period regarding the storage cell 621 when the deterioration state of the storage cell 621 becomes a specific state.
- FIG. 7 is a flowchart illustrating a procedure of processing in which the server device 2 acquires behavior data regarding the storage cell 621 in a specific deterioration state.
- step is abbreviated as S.
- the control unit 20 of the server device 2 executes the following processing according to the computer program 2P.
- the control unit 20 estimates a deterioration state (for example, SOH) of each power storage cell 621 based on the history data of each power storage cell 621 stored in the storage unit 21 (S11).
- SOH a deterioration state
- the process of S11 may be performed using a computer other than the server device 2, or may be performed using a user's judgment.
- the process of S11 corresponds to a second estimation unit.
- the control unit 20 determines whether or not the estimated deterioration state of the storage cell 621 is any one of a plurality of predetermined specific states (S12). For example, it is determined whether or not the estimated SOH value matches any one of a plurality of specific values such as 95%, 90%, and 80%.
- the specific deterioration state may be determined by a combination of values of SOH, calendar deterioration amount, and cycle deterioration amount.
- a value indicating a specific deterioration state is stored in the storage unit 21, and the control unit 20 determines whether or not the stored value matches a value indicating the estimated deterioration state within an allowable range.
- the process of S11 may be performed using a computer other than the server device 2, or may be performed using a user's judgment.
- the control unit 20 ends the process.
- the server device 2 acquires behavior data including temporal changes in voltage, current, and temperature within a predetermined period related to the storage cell 621. (S13).
- the predetermined period is a period of less than one day, for example, 30 seconds.
- the control unit 20 causes the communication unit 22 to transmit a control signal for acquiring behavior data toward the control board 72 of the power storage module 62 including the target power storage cell 621.
- the control signal is transmitted to the control board 72 via the communication network N, the communication device 1, the management device M, and the battery management device 52.
- the voltage acquisition unit 722 acquires the voltage of the storage cell 621
- the current acquisition unit 723 acquires the current flowing through the storage cell 621
- the temperature acquisition unit 724 acquires the temperature.
- the control board 72 repeatedly acquires the voltage, current, and temperature related to the storage cell 621 for a predetermined period such as 30 seconds at a predetermined sampling period such as 1 second. In this way, the temporal changes in voltage, current and temperature within a predetermined period are acquired.
- the period required to acquire the behavior data is a period of less than one day such as 30 seconds, and the influence of the acquisition of the behavior data on the operation of the storage cell 621 is small.
- the sampling period for acquiring behavior data for a predetermined period is to continuously store the history data of the storage cell 621 for remote monitoring during normal times (for estimation of deterioration state and detection of abnormality). It is preferably shorter than the sampling period to be acquired (for example, 24 hours).
- the control board 72 may acquire temporal changes in voltage, current, and temperature related to the storage cell 621 under predetermined conditions. For example, the control board 72 adjusts the SOC of the power storage cell 621 to a predetermined value, discharges the power storage cell 621 at a predetermined rate, and acquires the voltage and current of the power storage cell 621 and the temperature in the power storage module 62. Alternatively, the control board 72 may acquire the voltage, current, and temperature related to the storage cell 621 during discharging while the storage cell 621 is in use.
- the control unit 721 of the control board 72 causes the communication unit 725 to sequentially transmit information indicating the acquired voltage, current, and temperature.
- Information indicating the voltage, current, and temperature is sequentially transmitted to the server device 2 via the battery management device 52, the management device M, the communication device 1, and the communication network N.
- the server device 2 receives information indicating the voltage, current, and temperature at the communication unit 22.
- Information indicating the voltage, current, and temperature acquired within a predetermined period is sequentially received as time passes.
- the control unit 20 of the server device 2 causes the storage unit 21 to sequentially store information indicating the received voltage, current, and temperature. In this way, the server device 2 acquires and stores behavior data including temporal changes in voltage, current, and temperature within a predetermined period related to the storage cell 621.
- control board 72 may collectively transmit behavior data including temporal changes in voltage, current, and temperature within a predetermined period.
- the server device 2 may receive the behavior data at once by the communication unit 22 and store the behavior data received at once in the storage unit 21.
- the behavior data related to the storage cell 621 may be stored in a storage device other than the server device 2.
- the behavior data is stored in association with information indicating the deterioration state of the storage cell 621 when the behavior data is acquired.
- the process of S13 corresponds to the third acquisition unit.
- the process for acquiring behavior data related to the storage cell 621 ends here.
- the time data within a predetermined period of voltage, current, and temperature for the plurality of storage cells 621 for which history data is continuously recorded and the deterioration state is determined to be the predetermined state are acquired.
- time changes in voltage, current, and temperature related to the storage cell 621 are obtained.
- FIG. 8A to FIG. 8C are graphs conceptually showing examples of voltage, current, and temperature change with respect to the storage cell 621 over time.
- the vertical axis in FIG. 8A indicates voltage
- the vertical axis in FIG. 8B indicates current
- the vertical axis in FIG. 8C indicates temperature
- the horizontal axis indicates time.
- the voltage behavior and the temperature behavior when the step-shaped current waveform shown in FIG. 8B is applied to the storage cell 621 are detected.
- This is an example in an environment where the ambient temperature is constant (an environment where air conditioning is managed).
- the temporal changes in voltage and temperature as shown in FIGS. 8A and 8C differ depending on the deterioration state of the storage cell 621.
- the temporal change in voltage and temperature varies depending on the value of SOH. Even if the SOH value is the same, the temporal changes in voltage and temperature differ depending on the combination of the calendar deterioration amount and the cycle deterioration amount value.
- the learning model 23 performs machine learning in order to estimate the deterioration state of the storage cell 611 whose history data is unknown.
- the learning model 23 performs machine learning using the relationship between the behavior data of the storage cell 621 and the deterioration state of the storage cell 621 as teacher data. For example, the machine learning is executed by the server device 2.
- the control unit 20 reads the behavior data of the power storage cell 621 and the information indicating the deterioration state of the power storage cell 621 from the storage unit 21, and causes the learning model 23 to perform machine learning.
- the ambient temperature changes when the storage element is installed outdoors or in an environment where air-conditioning management is not performed), the learning model 23 may be machine-learned together with the ambient temperature.
- FIG. 9 is a conceptual diagram showing a configuration example of the learning model 23.
- the learning model 23 includes an input layer having a plurality of nodes 231 to which time changes within a predetermined period of voltage, current, and temperature are input, and a plurality of nodes that perform output in response to inputs from the nodes 231 of the input layer
- a neural network including an intermediate layer having 232 and an output layer having a plurality of nodes 233 that output the estimation result of the deterioration state of the storage cell 611 is used.
- FIG. 9 shows an example in which the intermediate layer is a single layer, the intermediate layer may be a plurality of layers.
- the time series data of voltage, current, and temperature may be input to the node 231 in the input layer.
- an image of a graph showing temporal changes in voltage, current, and temperature as shown in FIGS. 8A to 8C may be input to the node 231 in the input layer.
- the value at each time point of the voltage, current, and temperature may be input to the node 231 of one input layer.
- the output layer node 233 may output values of SOH, calendar deterioration amount, and cycle deterioration amount, respectively.
- the learning model 23 may use a convolutional neural network (CNN) or a recurrent neural network (RNN) as a neural network.
- CNN convolutional neural network
- RNN recurrent neural network
- a change in voltage, current, and temperature of the storage cell 611 within a predetermined period can be input to the node 231 in the input layer, and the deterioration state of the storage cell 611 can be output from the node 233 in the output layer.
- the parameters of the intermediate layer are adjusted based on the teacher data.
- the control unit 20 of the server device 2 performs machine learning of the learning model 23 according to the computer program 2P.
- a learned learning model 23 is obtained by executing the machine learning process in the server device 2.
- the machine learning may be executed by a computer other than the server device 2.
- learning data representing the learning model 23 that has been learned by machine learning is created, and the created learning data is input to the server device 2.
- the server apparatus 2 obtains a learned learning model 23 by storing learning data in the storage unit 21.
- the machine learning process performed by the server device 2 corresponds to the learning unit.
- FIG. 10 is a flowchart showing a procedure of processing for estimating the deterioration state of the storage cell 611 whose history data is unknown.
- the server device 2 acquires behavior data including temporal changes in voltage, current, and temperature within a predetermined period related to the storage cell 611 (S21).
- the process of S21 is performed in the same manner as the process of S13 performed for the storage cell 621 for which history data can be grasped.
- the control unit 20 causes the communication unit 22 to transmit a control signal for acquiring behavior data toward the control board 71 of the power storage module 61 in which the target power storage cell 611 is included.
- the control signal is transmitted to the control board 71 via the communication network N, the communication device 1, the management device M, and the battery management device 51.
- the voltage acquisition unit 712 acquires the voltage of the storage cell 611
- the current acquisition unit 713 acquires the current flowing through the storage cell 611
- the temperature acquisition unit 714 acquires the temperature.
- the control board 71 acquires the voltage, current, and temperature related to the storage cell 621 under the same conditions as in the process of S13.
- the sampling period in which the control board 72 acquires the voltage, current, and temperature, and the predetermined period for acquiring the temporal change in voltage, current, and temperature are the same as when behavior data is acquired for the storage cell 621 in the process of S13. .
- the sampling period is 1 second
- the predetermined period is 30 seconds.
- the period required for acquiring the behavior data of the storage cell 611 is a period of less than one day such as 30 seconds, and the influence of the acquisition of the behavior data on the operation of the storage cell 611 is small.
- the control unit 711 of the control board 71 causes the communication unit 725 to sequentially transmit information indicating the acquired voltage, current, and temperature, or to collectively transmit behavior data.
- the behavior data is transmitted to the server device 2 via the battery management device 51, the management device M, the communication device 1, and the communication network N.
- the server device 2 receives the behavior data by the communication unit 22 and stores the behavior data in the storage unit 21.
- the process of S21 corresponds to the first acquisition unit.
- the learning model 23 estimates the deterioration state of the storage cell 611 according to behavior data including temporal changes in voltage, current, and temperature of the storage cell 611 (S22).
- the control unit 20 reads behavior data from the storage unit 21 and provides it to the learning model 23.
- the learning model 23 inputs information indicating temporal changes in the voltage, current, and temperature of the storage cell 611 within a predetermined period to the node 231 of the input layer, and the estimation result of the deterioration state of the storage cell 611 from the node 233 of the output layer Get the process.
- the learning model 23 can estimate the deterioration state of the power storage cell 611 according to the behavior data of the power storage cell 611. It can. For example, the values of SOH, calendar deterioration amount, and cycle deterioration amount are estimated.
- the processing of S21 and S22 may be performed for a single power storage cell 611 or may be performed for each of a plurality of power storage cells 611.
- the process of S22 corresponds to the first estimation unit.
- the control unit 20 outputs the estimation result of the deterioration state of the storage cell 611 (S23).
- the control unit 20 causes the communication unit 22 to transmit information indicating the estimation result to the client device 3 via the communication network N.
- the client device 3 receives the information indicating the estimation result by the communication unit 32, and the control unit 30 causes the display unit 33 to display the estimation result based on the received information.
- identification information is given to each power storage cell 611, and the identification information and information indicating the deterioration state of the power storage cell 611 identified by the identification information are displayed on the display unit 33.
- the administrator of the power storage system 101 can know the deterioration state of the power storage cell 611 by checking the output estimation result. Above, the process which estimates the deterioration state of the electrical storage cell 611 is complete
- the deterioration state at the first time point when the behavior data of the storage cell 611 is acquired is estimated.
- the estimation result of the deterioration state is used for the subsequent operation of the power storage system 101.
- the storage cell 611 whose estimated SOH is equal to or less than a predetermined allowable value is removed.
- the server device 2 continuously acquires history data for the storage cell 611 as well. Information indicating the estimated deterioration state and history data are stored in the storage unit 21 of the server device 2.
- the server device 2 determines the deterioration state of the storage cell 611 at the second time point based on the deterioration state and history data at the first time point. Is estimated. In this way, the deterioration state of the storage cell 611 can be grasped in the same manner as the storage cell 621.
- behavior data including temporal changes within a predetermined period of voltage, current, and temperature of the storage cell 611 whose history data is unknown is acquired, and the learning model 23 using supervised learning is used.
- the deterioration state of the storage cell 611 is estimated.
- the learning model 23 learns the behavior data of the storage cell 621 for which the history data can be grasped and the deterioration state of the storage cell 621 estimated from the history data as teacher data.
- the learning model 23 that estimates the deterioration state of the storage cell 611 from the behavior data of the storage cell 611 can be learned. By using the learning model 23, it is possible to estimate the deterioration state of the storage cell 611 with unknown history data with high accuracy.
- the storage cell 611 can also be operated in the same manner as the storage cell 621 using the estimated deterioration state and the history data acquired after the deterioration state is estimated.
- FIG. 11 is a block diagram illustrating a functional configuration example of the battery management device 51 that functions as a state estimation device.
- the battery management device 51 further includes a learning model 514 and a storage unit 515.
- the learning model 514 performs the same operation as the learning model 23 in the first embodiment.
- the storage unit 515 is a hard disk or a nonvolatile memory.
- FIG. 12 is a block diagram illustrating a functional configuration example of the management apparatus M that functions as a state estimation apparatus.
- the management apparatus M further includes a learning model 404 and a storage unit 405.
- the learning model 404 performs the same operation as the learning model 23 in the first embodiment.
- the storage unit 405 is a hard disk or a nonvolatile memory.
- the server device 2 may not include the learning model 23.
- Other configurations of the power storage system 101 and the remote monitoring system 100 are the same as those in the first embodiment.
- the machine learning of the learning model 514 or 404 is performed similarly to the machine learning of the learning model 23 in the first embodiment.
- the machine learning may be performed by the battery management device 51 or the management device M. Alternatively, it may be executed on another computer.
- learning data representing the learning model 514 or 404 that has been learned by machine learning is created, and the created learning data is input to the battery management device 51 or the management device M.
- the battery management device 51 or the management device M By storing the learning data in the storage unit 515 or 405, the learned learning model 514 or 404 is obtained.
- the battery management device 51 or the management device M as the state estimation device executes a process of estimating the deterioration state of the storage cell 611 as shown in the flowchart of FIG.
- the battery management device 51 or the management device M acquires behavior data including temporal changes in the voltage, current, and temperature of the storage cell 611 within a predetermined period (S21), and the storage cell according to the behavior data by the learning model 514 or 404
- the degradation state of 611 is estimated (S22), and the estimation result is output (S23).
- the battery management device 51 or the management device M transmits information indicating the estimation result to the client device 3 via the communication device 1 and the communication network N.
- the power storage cell 611 similarly to the first embodiment, it is possible to estimate the deterioration state of the storage cell 611 according to the behavior data of the storage cell 611 whose history data is unknown. After the degradation state is estimated, the power storage cell 611 can be operated in the same manner as the power storage cell 621 for which history data can be grasped.
- the power storage system 101 includes the power storage cell 621 for which the history data can be grasped and the power storage cell 611 for which the history data is unknown. Used as teacher data. Alternatively, behavior data and a deterioration state of a power storage cell provided outside the power storage system 101 may be used as teacher data. Moreover, the behavior data and the deterioration state of the storage cell that are not currently used may be used as the teacher data. Further, all the power storage cells included in the power storage system 101 may be power storage cells 611 with unknown history data. In this case, the deterioration state of the storage cell 611 is estimated based on the behavior data and deterioration state of the storage cell provided outside the storage system 101 or the behavior data and deterioration state of the storage cell that is not currently used. The
- the deterioration state of the storage cell 611 is estimated according to behavior data including temporal changes in the voltage, current, and temperature of the storage cell 611 within a predetermined period.
- the behavior data may be data including only a temporal change in the voltage of the storage cell 611 within a predetermined period. Since the time change of the voltage of the power storage cell varies depending on the deterioration state of the power storage cell, the deterioration state of the power storage cell 611 can be estimated even when behavior data including only the time change of the voltage is used.
- machine learning is performed using the time change of the voltage of the storage cell 621 and the deterioration state of the storage cell 621 as teacher data, and the deterioration of the storage cell 611 is performed according to behavior data including only the time change of the voltage of the storage cell 611.
- the state is estimated.
- the deterioration state of the storage cell 611 is estimated using a learning model.
- the state estimation device estimates the deterioration state of the storage cell 611 based on the behavior data of the storage cell 611 based on the relationship between the behavior data of the storage cell 621 and the deterioration state, without using a learning model. Also good. For example, the state estimation device compares the behavior data of the plurality of power storage cells 621 with the behavior data of the power storage cells 611 and complements the deterioration state of the power storage cells 621 according to the comparison result, thereby The estimated value may be calculated.
- the state estimation device may estimate that the deterioration state of the power storage cell 611 is the same as the deterioration state of the power storage cell 621 having the closest behavior data.
- the behavior data of any one of the storage cells 621 and the behavior data of the storage cell 611 match, it is estimated that the deterioration state of the storage cell 611 is the same as the deterioration state of the storage cell 621 that matches the behavior data.
- the process in which the state estimation device estimates the deterioration state of the storage cell 611 without using the learning model corresponds to the third estimation unit.
- the state estimation device may estimate the SOH and estimate the calendar deterioration amount and the cycle deterioration amount step by step when estimating the deterioration state of the storage cell 611. For example, the state estimation device estimates the SOH of the storage cell 611 by comparing the behavior data of the plurality of storage cells 621 and the behavior data of the storage cell 611. Next, the state estimation device compares the behavior data of the power storage cell 621 having the same SOH as the estimated SOH and the behavior data of the power storage cell 611, and estimates the calendar deterioration amount and the cycle deterioration amount of the power storage cell 611.
- the power storage element 611 that is a target for estimating the deterioration state is the power storage cell 611.
- the remote monitoring system 100 may use the power storage module 61 as a power storage element. Further, the remote monitoring system 100 may use the bank 41 as a storage element.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
蓄電素子の状態推定方法は、第1の蓄電素子(611)について、所定期間内の第1挙動データを取得し、劣化状態が判明している第2の蓄電素子(621)の第2挙動データと前記第2の蓄電素子の劣化状態との関係に基づき、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の第1時点における劣化状態を推定し、前記第1時点における劣化状態と、前記第1時点から第2時点までの履歴データとに基づき、前記第1の蓄電素子の前記第2時点における劣化状態を推定する。
Description
本発明は、蓄電素子の状態推定方法、及び状態推定装置に関する。
蓄電素子(Energy Storage Device)は、無停電電源装置、安定化電源に含まれる直流又は交流電源装置等に広く使用されている。また、発電された電力を蓄電しておく大規模なシステムでの蓄電素子の利用が拡大している。蓄電素子は、時間経過及び充放電の繰り返しに応じて劣化が進行する。劣化に伴い、蓄電素子の充放電可能な容量(満充電容量)は徐々に減少し、内部抵抗は増加する。満充電容量は、満充電時に蓄電素子に蓄えられる電気量である。
蓄電素子を運用する際には、蓄電素子の状態を推定し把握する必要がある。例えば、新品の蓄電素子の容量に対する現在の蓄電素子の容量の割合を示す健全度(SOH:State of Health )の推定が行われる。蓄電素子のSOHがある程度低くなった段階で、蓄電素子は交換される。蓄電素子のSOHは、蓄電素子の履歴データ(充放電履歴、放置履歴、温度履歴を含む)から推定することができる。例えば、蓄電素子の電流、電圧及び温度を随時測定し、時間経過に応じた電流、電圧及び温度を含む履歴データを記録し、記録した履歴データに基づいて、蓄電素子のSOHを推定できる。特許文献1は、蓄電素子の劣化状態を推定する技術の例を開示している。
前述したように、履歴データが記録された蓄電素子については、履歴データに基づいて劣化状態を推定できる。しかしながら、充放電履歴及び放置履歴を含む履歴データが記録されていない蓄電素子については、同じ方法で劣化状態を推定することはできない。
本発明の目的は、劣化状態が不明な蓄電素子についても劣化状態を推定できる状態推定方法、及び状態推定装置を提供することにある。
本発明の一局面に係る状態推定方法は、第1の蓄電素子について、所定期間内の第1挙動データを取得し、劣化状態が判明している第2の蓄電素子の第2挙動データと前記第2の蓄電素子の劣化状態との関係に基づき、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の第1時点における劣化状態を推定し、前記第1時点における劣化状態と、前記第1時点から第2時点までの履歴データとに基づき、前記第1の蓄電素子の前記第2時点における劣化状態を推定する。ここで「劣化状態が判明している」とは、劣化状態が推定できていることを意味してもよい。
上記構成によれば、劣化状態が不明な第1の蓄電素子の劣化状態を推定することができる。例えば、履歴データが記録されていない第1の蓄電素子の劣化状態を推定することができる。劣化状態の推定後は、劣化状態が判明している第2の蓄電素子と同様に、第1の蓄電素子を運用できる。
蓄電素子の状態推定方法は、第1の蓄電素子について、所定期間内の第1挙動データを取得し、劣化状態が判明している第2の蓄電素子の第2挙動データと前記第2の蓄電素子の劣化状態との関係に基づき、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の第1時点における劣化状態を推定し、前記第1時点における劣化状態と、前記第1時点から第2時点までの履歴データとに基づき、前記第1の蓄電素子の前記第2時点における劣化状態を推定する。蓄電素子の状態推定装置は、当該状態推定装置に接続された第1の蓄電素子について、所定期間内の第1挙動データを取得する第1取得部と、劣化状態が判明している第2の蓄電素子について予め取得されている第2挙動データと前記第2の蓄電素子の劣化状態との関係に基づき、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の第1時点における劣化状態を推定し、前記第1時点における劣化状態と前記第1時点から第2時点までの履歴データとに基づき前記第1の蓄電素子の前記第2時点における劣化状態を推定する第1推定部とを備える。この構成では、劣化状態の判明している第2の蓄電素子の所定期間内の第2挙動データと第2の蓄電素子の劣化状態との関係に基づき、劣化状態の不明な第1の蓄電素子の第1挙動データに応じて第1の蓄電素子の劣化状態を推定する。蓄電素子の挙動データは蓄電素子の劣化状態に応じて異なるので、第1の蓄電素子の劣化状態を推定することが可能である。
IoT(Internet of Thing)の社会への浸透と平行して、蓄電素子の遠隔監視(常時監視)の実現と、遠隔監視に基づく利便性の高い付加価値サービスの実現とに対する期待が高まっている。通信ネットワークを通じた遠隔監視システムが実現すると、使用当初から通信ネットワークに接続されて遠隔監視されている蓄電素子と、それまで通信ネットワークに接続されずに遠隔監視されてこなかった蓄電素子とが混在する。遠隔監視により履歴データが記録された蓄電素子については、履歴データに基づいて劣化状態を把握できる。履歴データが記録されていない蓄電素子については、遠隔監視を開始する時点で、何らかの手法により劣化状態を推定する必要がある。履歴データが記録され、劣化状態を把握できる第2の蓄電素子について、第2挙動データを取得しておく。履歴データが記録されていない第1の蓄電素子についても、第1挙動データを取得する。挙動データは蓄電素子の劣化状態によって異なるので、第2の蓄電素子の劣化状態と第2挙動データとの関係に基づき、第1の蓄電素子の第1挙動データから、第1の蓄電素子の劣化状態を推定することができる。推定できる劣化状態は、第1挙動データを取得した第1時点での劣化状態である。第1時点から第2時点まで、第1の蓄電素子の履歴データを記録すれば、第1時点での劣化状態と第1時点から第2時点までの履歴データとに基づいて、第2時点での第1の蓄電素子の劣化状態を推定することができる。即ち、履歴データが記録されていない蓄電素子についても、挙動データを用いて劣化状態を一度推定すれば、以降は、履歴データを記録することによって劣化状態を把握できる。
状態推定方法は、前記第2の蓄電素子の第2挙動データと前記第2の蓄電素子の劣化状態との関係を学習した学習モデルによって、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の前記第1時点における劣化状態を推定してもよい。前記第1推定部は、前記第2の蓄電素子の第2挙動データと前記第2の蓄電素子の劣化状態との関係を学習した学習モデルによって、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の前記第1時点における劣化状態を推定してもよい。この構成では、第2の蓄電素子の第2挙動データと第2の蓄電素子の劣化状態との関係を学習した学習モデルによって、第1の蓄電素子の第1挙動データに応じて第1の蓄電素子の劣化状態を推定する。学習モデルを利用することにより、劣化状態の不明な第1の蓄電素子の劣化状態を高い精度で推定することができる。
状態推定方法は、前記第2の蓄電素子について、履歴データを継続的に取得し、取得した前記履歴データに基づいて、前記第2の蓄電素子の劣化状態を推定し、劣化状態が特定の状態である前記第2の蓄電素子について第2挙動データを取得し、劣化状態が特定の状態である前記第2の蓄電素子について取得した第2挙動データと、前記第2挙動データを取得したときの前記第2の蓄電素子の劣化状態とを教師データとして、前記学習モデルの機械学習を行ってもよい。状態推定装置は、前記第2の蓄電素子について、履歴データを継続的に取得する第2取得部と、取得した前記履歴データに基づいて、前記第2の蓄電素子の劣化状態を推定する第2推定部と、劣化状態が特定の状態である前記第2の蓄電素子について第2挙動データを取得する第3取得部と、劣化状態が特定の状態である前記第2の蓄電素子について取得した第2挙動データと、前記第2挙動データを取得したときの前記第2の蓄電素子の劣化状態とを教師データとして、前記学習モデルの機械学習を行う学習部とを更に備えてもよい。この構成では、履歴データを継続的に取得した第2の蓄電素子については、履歴データに基づいて劣化状態を推定することが可能であるので、劣化状態が特定の状態である第2の蓄電素子の第2挙動データと第2の蓄電素子の劣化状態との関係は、正確な教師データとなる。この教師データを利用することにより、第1の蓄電セルの第1挙動データから第1の蓄電素子の劣化状態を推定する学習モデルを学習させることができる。
状態推定方法は、前記第2の蓄電素子について、履歴データを継続的に取得し、取得した前記履歴データに基づいて、前記第2の蓄電素子の劣化状態を推定し、劣化状態が特定の状態である前記第2の蓄電素子について第2挙動データを取得し、劣化状態が特定の状態である前記第2の蓄電素子について取得した第2挙動データと前記第1の蓄電素子について取得した第1挙動データとの比較に基づいて、前記第1の蓄電素子の劣化状態を推定してもよい。状態推定装置は、前記第2の蓄電素子について、履歴データを継続的に取得する第2取得部と、取得した前記履歴データに基づいて、前記第2の蓄電素子の劣化状態を推定する第2推定部と、劣化状態が特定の状態である前記第2の蓄電素子について第2挙動データを取得する第3取得部と、劣化状態が特定の状態である前記第2の蓄電素子について取得した第2挙動データと前記第1の蓄電素子について取得した第1挙動データとの比較に基づいて、前記第1の蓄電素子の劣化状態を推定する第3推定部とを更に備えてもよい。この構成では、履歴データを継続的に取得した第2の蓄電素子については、履歴データに基づいて劣化状態を推定することが可能であるので、劣化状態が特定の状態である第2の蓄電素子の第2挙動データと第1の蓄電素子の第1挙動データとの比較を通じて、第1の蓄電素子の劣化状態を推定することが可能である。
蓄電素子の劣化状態は、蓄電素子の健全度(SOH)、カレンダー劣化量、及びサイクル劣化量を含んでいてもよい。蓄電素子のSOH、カレンダー劣化量及びサイクル劣化量が推定されることにより、蓄電素子の適切な運用が可能となる。例えば、SOHが所定の許容値以下である蓄電素子の取り外し、又はサイクル劣化量の大きい蓄電素子の使用頻度を下げる等の運用が可能である。
以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
(実施形態1)
図1は、遠隔監視システム100の概要を示す図である。図1に示すように、通信ネットワークNは、公衆通信網(例えば、インターネット)N1及び移動通信規格による無線通信を実現するキャリアネットワークN2等を含む。通信ネットワークNには、火力発電システムF、ソーラー発電システムS、風力発電システムW、無停電電源装置(UPS:Uninterruptible Power Supply)U及び鉄道用の安定化電源システム等に配設される整流器(直流電源装置、又は交流電源装置)Dが接続されている。また、通信ネットワークNには、後述の通信デバイス1(図2参照)、通信デバイス1から情報を収集するサーバ装置2、及び収集された情報を取得するクライアント装置3等が接続されている。
(実施形態1)
図1は、遠隔監視システム100の概要を示す図である。図1に示すように、通信ネットワークNは、公衆通信網(例えば、インターネット)N1及び移動通信規格による無線通信を実現するキャリアネットワークN2等を含む。通信ネットワークNには、火力発電システムF、ソーラー発電システムS、風力発電システムW、無停電電源装置(UPS:Uninterruptible Power Supply)U及び鉄道用の安定化電源システム等に配設される整流器(直流電源装置、又は交流電源装置)Dが接続されている。また、通信ネットワークNには、後述の通信デバイス1(図2参照)、通信デバイス1から情報を収集するサーバ装置2、及び収集された情報を取得するクライアント装置3等が接続されている。
キャリアネットワークN2には基地局BSが含まれている。クライアント装置3は、基地局BSから通信ネットワークNを経由してサーバ装置2と通信することができる。公衆通信網N1にはアクセスポイントAPが接続されている。クライアント装置3は、アクセスポイントAPから通信ネットワークNを経由してサーバ装置2との間で情報を送受信することができる。
ソーラー発電システムS、火力発電システムF及び風力発電システムWには、パワーコンディショナ(PCS:Power Conditioning System)P、及び蓄電システム101が併設されている。蓄電システム101は、蓄電モジュール群Lを収容したコンテナCを複数並設して構成されている。蓄電モジュール群Lは、例えば、蓄電セルを複数直列に接続した蓄電モジュールと、蓄電モジュールを複数直列に接続したバンクと、バンクを複数並列に接続したドメインとの階層構造を有する。蓄電セル、蓄電モジュール又はバンクは蓄電素子に対応する。蓄電素子は、鉛蓄電池及びリチウムイオン電池等の二次電池、又はキャパシタ等の再充電可能な素子であることが好ましい。蓄電素子の一部は、再充電不可能な一次電池であってもよい。
図2は、遠隔監視システム100の構成例を示すブロック図である。遠隔監視システム100は、通信デバイス1、状態推定装置として機能するサーバ装置2、クライアント装置3、及び蓄電システム101(図3参照)を含んでいる。蓄電システム101は、後述する管理装置Mを含んでいる。管理装置Mは、蓄電システム101に含まれる蓄電素子を管理する。蓄電システム101は、発電システムに併設されたものに限らない。蓄電システム101は、パワーコンディショナPを介して送電システムに接続されていてもよい。
図2に示すように、通信デバイス1は、通信ネットワークNに接続されるとともに、対象装置P、U、D、Mに接続されている。対象装置P、U、D、Mは、遠隔監視システム100によって管理される対象となる装置である。対象装置P、U、D、Mは、パワーコンディショナP、無停電電源装置U、整流器D、及び管理装置Mを含む。
遠隔監視システム100では、各対象装置P、U、D、Mに接続した通信デバイス1を用いて、蓄電システム101に含まれる蓄電素子の状態(例えば、電圧、電流、温度、充電状態(SOC:State of Charge ))が監視される。例えば、蓄電素子の電圧、電流及び温度、並びに周囲温度の履歴を含む履歴データが継続的に取得されて、監視が行われる。履歴データは、蓄電素子の動作の履歴を表す。履歴データは、充放電履歴、及び/又は充放電を行わずに蓄電素子を放置した履歴を表す放置履歴を含んでいてもよい。履歴データが継続的に取得されている蓄電素子については、履歴データに基づいて、劣化状態の推定が可能である。推定される蓄電素子の劣化状態として、SOH、時間経過に起因する劣化量(蓄電素子の放置・保存に起因する劣化量。以下、カレンダー劣化量と言う。)、及び充放電の繰り返しに起因する劣化量(以下、サイクル劣化量と言う)が例示できる。履歴データが継続的に取得されていなかった蓄電素子についても、劣化状態が推定される。遠隔監視システム100は、蓄電素子の状態(劣化状態、異常状態などを含む)をユーザ又はオペレータ(保守担当者)が確認できるように提示する。
通信デバイス1は、制御部10、記憶部11、第1通信部12及び第2通信部13を備える。制御部10は、CPU(Central Processing Unit )などで構成され、内蔵するROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを用い、通信デバイス1全体を制御する。
記憶部11は、不揮発性である。記憶部11は、例えば、フラッシュメモリ等の不揮発性メモリを用いて構成されている。記憶部11には、制御部10が読み出して実行するデバイスプログラム1Pが記憶されている。記憶部11には、制御部10の処理によって収集された情報、イベントログ等の情報が記憶される。
第1通信部12は、対象装置P、U、D、Mとの通信を実現する通信インタフェースである。第1通信部12は、例えば、RS-232C又はRS-485等のシリアル通信インタフェースを用いて構成されている。第2通信部13は、通信ネットワークNを経由して通信を実現するインタフェースである。第2通信部13は、例えば、Ethernet(登録商標)、又は無線通信用アンテナ等の通信インタフェースを用いて構成されている。制御部10は、第2通信部13を介してサーバ装置2と通信することが可能である。
サーバ装置2は、制御部20、記憶部21、通信部22、及び学習モデル23を備える。サーバ装置2は、1台のサーバコンピュータであってもよく、複数台のサーバコンピュータで構成されてもよい。
制御部20は、例えば、CPUで構成されている。制御部20は、内蔵するROM及びRAM等のメモリを用いて、サーバ装置2全体を制御する。また、制御部20は、CPU及びGPU(Graphics Processing Unit)、マルチコアCPU、又はTPU(Tensor Processing Unit)を用いて構成されていてもよい。制御部20は、記憶部21に記憶されているコンピュータプログラム2Pに基づく情報処理を実行する。コンピュータプログラム2PにはWebサーバプログラムが含まれている。制御部20は、クライアント装置3へのWebページの提供、Webサービスへのログインの受け付け等を実行するWebサーバとして機能する。制御部20は、コンピュータプログラム2Pに基づき、SNMP(Simple Network Management Protocol)用サーバとして通信デバイス1から情報を収集することも可能である。
記憶部21は、例えば、フラッシュメモリ等の不揮発性メモリ又はハードディスクが用いられることができる。記憶部21は、制御部20の処理によって収集される監視対象となる対象装置P、U、D、Mの状態を含むデータを記憶する。通信部22は、通信ネットワークNを介した通信接続及びデータの送受信を実現する通信デバイスである。通信部22は、通信ネットワークNに対応したネットワークカードであってもよい。
学習モデル23は、通信デバイス1を経由して対象装置P、U、D、Mから収集された蓄電素子に関する入力データに基づいて、蓄電素子の劣化状態の推定を行うことができる。学習モデル23は、例えば、深層学習などを含む機械学習のためのアルゴリズムを含む。学習モデル23は、CPUと、RAMと、記憶部21に記憶され、RAMにロードされてCPUにより実行されるコンピュータプログラム2Pとを用いて実現されてもよい。学習モデル23は、量子コンピュータを用いて実現されてもよい。
クライアント装置3は、蓄電システム101の管理者、対象装置P、U、D、Mの保守担当者等のオペレータが使用するコンピュータであってもよい。クライアント装置3は、デスクトップ型又はラップトップ型のパーソナルコンピュータであってもよく、スマートフォン又はタブレット型の通信端末であってもよい。クライアント装置3は、制御部30、記憶部31、通信部32、表示部33、及び操作部34を備える。
制御部30は、CPUを用いたプロセッサである。制御部30は、記憶部31に記憶されているWebブラウザプログラムに基づき、サーバ装置2又は通信デバイス1により提供されるWebページを表示部33に表示させる。
記憶部31は、例えば、フラッシュメモリ等の不揮発性メモリ又はハードディスクが用いられている。記憶部31には、Webブラウザプログラムを含む各種プログラムが記憶されている。通信部32は、例えば、有線通信用のネットワークカード等の通信デバイス、基地局BS(図1参照)に接続する移動通信用の無線通信デバイス、又はアクセスポイントAPへの接続に対応する無線通信デバイスが用いられることができる。制御部30は、通信部32により、通信ネットワークNを介して、サーバ装置2又は通信デバイス1との間で通信接続又は情報の送受信が可能である。
表示部33は、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等のディスプレイが用いられてもよい。表示部33は、制御部30のWebブラウザプログラムに基づく処理により、サーバ装置2で提供されるWebページのイメージを表示することができる。
操作部34は、制御部30との間で入出力が可能なキーボード及びポインティングデバイス、若しくは音声入力部等のユーザインタフェースである。操作部34として、表示部33のタッチパネル、又は筐体に設けられた物理ボタンが用いられてもよい。操作部34は、ユーザによる操作情報を制御部30へ通知する。
図3は、蓄電システム101の構成例を示すブロック図である。蓄電システム101は、複数の蓄電セルを直列に接続した蓄電モジュールと、複数の蓄電モジュールを直列に接続したバンクと、複数のバンクを並列に接続したドメインとの階層構造を有する。図3に示す蓄電システム101は一つのドメインを構成している。蓄電モジュールは、他の蓄電セルに並列に接続された蓄電セルを含んでいてもよい。バンクは、他の蓄電モジュールに並列に接続された蓄電モジュールを含んでいてもよい。
蓄電システム101には、履歴データが把握できている蓄電セル621と、履歴データが不明な蓄電セル611とが含まれてもよい。蓄電セル621の電圧、電流及び温度、並びに周囲温度が継続的に取得され、電圧、電流及び温度、並びに周囲温度の履歴を含む履歴データが管理装置M又はサーバ装置2に随時記憶されることによって、蓄電セル621の監視が行われる。蓄電セル621は、使用当初(蓄電システム101の稼働当初)から、継続的に監視が行われ、履歴データが取得されている蓄電セルであってもよい。履歴データが不明な蓄電セル611は、例えば、これまで監視が行われていなかった蓄電セル、履歴データが喪失した蓄電セル、又は履歴データが不明な状態で蓄電システム101に新たに追加された蓄電セルである。
蓄電セル611は第1の蓄電素子に対応し、蓄電セル621は第2の蓄電素子に対応する。図3には、複数の蓄電セル611を含んで蓄電モジュール61が構成され、複数の蓄電セル621を含んで蓄電モジュール62が構成された例を示している。この例では、複数の蓄電モジュール61を含んでバンク41が構成され、複数の蓄電モジュール62を含んでバンク42が構成されている。蓄電モジュールは蓄電セル611と蓄電セル621との両方を含んでいてもよい。バンクは、蓄電モジュール61と蓄電モジュール62との両方を含んでいてもよく、蓄電セル611と蓄電セル621との両方を含んだ蓄電モジュールを含んでいてもよい。
蓄電システム101は、パワーコンディショナPに接続されている。夫々のバンク41,42が、電力線44を介してパワーコンディショナPに接続されている。パワーコンディショナPを通じてバンク41,42へ電力が供給され、バンク41,42が充電される。また、バンク41,42から放電された電力は、パワーコンディショナPを通じて外部へ出力される。例えば、パワーコンディショナPは、発電システム及び/又は送電システムに接続されている。
夫々のバンク41,42は、複数の蓄電モジュール61,62と、電池管理装置(BMU:Battery Management Unit)51,52とを備えている。バンク41が複数の蓄電モジュール61及び電池管理装置51を備え、バンク42が複数の蓄電モジュール62及び電池管理装置52を備えている。夫々の蓄電モジュール61,62は、制御基板(CMU:Cell Monitoring Unit)71,72を備えている。蓄電モジュール61が制御基板71を備え、蓄電モジュール62が制御基板72を備えている。制御基板71,72は、電池管理装置51,52に接続されている。電池管理装置51,52は、夫々の制御基板71,72との間で通信を行うことができる。
蓄電システム101は、管理装置Mを備えている。管理装置Mは、ドメインに属する蓄電素子を管理するBMUである。夫々のバンク41,42に備えられた電池管理装置51,52は、通信線43を介して管理装置Mに接続されている。通信デバイス1は、管理装置M及び/又はパワーコンディショナPに接続されている。通信デバイス1は、管理装置Mに接続される通信デバイスと、パワーコンディショナPに接続される通信デバイスとを有してもよい。電池管理装置51,52は、管理装置Mとの間で情報の送受信を行う。管理装置Mは、複数の電池管理装置51,52からの情報を集約し、通信デバイス1へ出力する。図示しない温度取得部によって、ドメインの周囲温度(外気温度や蓄電素子が設置された室内の温度)、又は、各バンクの周囲温度が取得されてもよい。
図4は、蓄電モジュール61,62の構成例を示すブロック図である。図4では、蓄電モジュール62に関する符号をカッコ内に示している。制御基板71,72は、制御部711,721、電圧取得部712,722、電流取得部713,723、温度取得部714,724及び通信部715,725を含んでいる。制御部711,721は、プロセッサ及びメモリを用いて構成されている。制御部711,721は、制御基板71,72の動作を制御する。電圧取得部712,722は、複数の蓄電セル611,621の夫々の電圧を取得する。電流取得部713,723は、蓄電セル611,621に流れる電流を取得する。例えば、電流取得部713,723は、直列に接続された複数の蓄電セル611,621に流れる電流を取得するか、又は夫々の蓄電セル611,621に流れる電流を個別に取得する。温度取得部714,724は、温度センサを用いて、蓄電モジュール61,62内の一又は複数の箇所での温度を取得する。温度取得部714,724は、夫々の蓄電セル611,621の内部の温度を取得してもよい。
通信部715,725は、電池管理装置51,52に接続される。通信部715,725は、電池管理装置51,52との間で、例えば、シリアル通信を行う機能を有する。制御部711,721は、通信部715,725に、取得された電圧、電流及び温度を示す情報を電池管理装置51,52へ送信させる。
図5は、電池管理装置51,52及び管理装置Mの機能構成例を示すブロック図である。図5では、制御基板72及び電池管理装置52に関する符号をカッコ内に示している。電池管理装置51,52は、制御部511,521、第1通信部512,522及び第2通信部513,523を備える。制御部511,521は、CPUを用いたプロセッサである。第1通信部512,522は、バンク41,42内の複数の制御基板71,72に接続されている。第1通信部512,522は、制御基板71,72から送信された情報を受信する。第2通信部513,523は、通信線43を介して管理装置Mに接続されている。制御部511,521は、第2通信部513,523に、複数の制御基板71,72から受信した情報を管理装置Mへ送信させる。
管理装置Mは、コンピュータを用いて構成されている。管理装置Mは、制御部401、第1通信部402及び第2通信部403を備える。制御部401は、CPUを用いたプロセッサである。第1通信部402は、複数の電池管理装置51,52に接続されている。第1通信部402は、電池管理装置51,52から送信された情報を受信する。第2通信部403は、通信デバイス1に接続されている。制御部401は、第2通信部403に、複数の電池管理装置51,52から受信した情報を通信デバイス1へ送信させる。通信デバイス1は、管理装置Mから受信した情報をサーバ装置2へ送信する。即ち、管理装置Mは通信デバイス1を介して情報をサーバ装置2へ送信し、電池管理装置51,52は、管理装置M及び通信デバイス1を介して情報をサーバ装置2へ送信する。
サーバ装置2は、夫々の蓄電セル621の履歴データを継続的に取得する処理を行う。夫々の蓄電モジュール62では、随時、電圧取得部722は夫々の蓄電セル621の電圧を取得し、電流取得部723は蓄電セル621に流れる電流を取得し、温度取得部724は蓄電モジュール62内の温度を取得する。制御部721は、通信部725に、取得した電圧、電流及び温度を示す情報を送信させる。電圧、電流及び温度を示す情報は、電池管理装置52、管理装置M、通信デバイス1及び通信ネットワークNを介してサーバ装置2へ送信される。
サーバ装置2は、夫々の蓄電セル621に関する電圧、電流及び温度を示す情報を通信部22で受信し、制御部20は、受信した情報を記憶部21に記憶させる。蓄電セル621に関する電圧、電流及び温度の取得並びに電圧、電流及び温度を示す情報の記憶は、継続的に(例えば、定期的に)実行される。代替的に、蓄電セル621に関して複数回取得された電圧、電流及び温度を示す情報が一括して送信され、記憶されてもよい。このようにして、夫々の蓄電セル621に関する電圧、電流及び温度、並びに周囲温度の履歴を含む履歴データが継続的に取得され、サーバ装置2に記憶される。例えば、夫々の蓄電セル621の挙動開始以来の履歴データが、サーバ装置2の記憶部21に記憶される。サーバ装置2が蓄電セル621の履歴データを継続的に取得する処理は、第2取得部に対応する。代替的に、履歴データはサーバ装置2以外の記憶装置に記憶されてもよい。
蓄電セル621の劣化状態は、履歴データから推定することが可能である。図6は、使用時間の長さに応じた蓄電セル621の劣化状態の変化を概念的に示したグラフである。図中の横軸は蓄電セル621の使用時間を示し、縦軸は蓄電セル621のSOHを示す。SOHは、使用開始時の蓄電セル621の容量に対する使用後の蓄電セル621の容量の割合である。蓄電セル621のSOHの変化を実線で示す。使用開始時のSOHは100%である。SOH=100%の線を破線で示す。使用時間の経過に従って、蓄電セル621は劣化する。即ち、使用時間の経過に従って、蓄電セル621の容量が低下し、SOHが低下する。
蓄電セル621の劣化には、時間経過に起因するカレンダー劣化と、充放電の繰り返しに起因するサイクル劣化とが含まれる。図6には、サイクル劣化に応じたSOHの変化を一点鎖線で示す。SOH=100%の線と一点鎖線との差がサイクル劣化量に対応し、一点鎖線と実線との差がカレンダー劣化量に対応する。カレンダー劣化量及びサイクル劣化量は、蓄電セル621の履歴データに応じて異なる。例えば、充放電を繰り返す頻度が多い場合は、サイクル劣化量が大きい。同様に、SOHも、蓄電セル621の履歴データに応じて異なる。SOHが同一であっても、履歴データに応じてカレンダー劣化量及びサイクル劣化量が異なることもある。即ち、蓄電セル621のSOH、カレンダー劣化量及びサイクル劣化量を含む劣化状態は、履歴データに応じて定まる。従って、蓄電セル621の劣化状態は、履歴データから推定することができる。
サーバ装置2は、状態推定装置として機能する。サーバ装置2は、遠隔監視システム100に、蓄電セル621の劣化状態が特定の状態になった場合に、蓄電セル621に関する所定期間内の電圧、電流及び温度の時間変化を含んだ挙動データを取得させる。図7は、サーバ装置2が特定の劣化状態の蓄電セル621に関する挙動データを取得する処理の手順を示すフローチャートである。以下、ステップをSと略す。サーバ装置2の制御部20は、コンピュータプログラム2Pに従って以下の処理を実行する。制御部20は、記憶部21に記憶されている夫々の蓄電セル621の履歴データに基づいて、夫々の蓄電セル621の劣化状態(例えば、SOH)を推定する(S11)。S11の処理はサーバ装置2以外のコンピュータを用いて行われてもよく、使用者の判断を利用して行われてもよい。S11の処理は、第2推定部に対応する。
制御部20は、次に、推定した蓄電セル621の劣化状態が、予め定められている複数の特定の状態の内のいずれか一つの特定の状態であるか否かを判定する(S12)。例えば、推定されたSOHの値が、95%、90%及び80%等の複数の特定の値のいずれか一つの特定の値と一致するか否かが判定される。特定の劣化状態は、SOH、カレンダー劣化量及びサイクル劣化量の値の組み合わせによって定められていてもよい。例えば、特定の劣化状態を示す値が記憶部21に記憶されており、制御部20は、記憶された値と推定された劣化状態を示す値とが許容範囲内で一致するか否かを判定する。S11の処理はサーバ装置2以外のコンピュータを用いて行われてもよく、使用者の判断を利用して行われてもよい。蓄電セル621の劣化状態が特定の状態ではない場合は(S12:NO)、制御部20は、処理を終了する。
蓄電セル621の劣化状態が特定の状態である場合は(S12:YES)、サーバ装置2は、蓄電セル621に関連する所定期間内の電圧、電流及び温度の時間変化を含んだ挙動データを取得する(S13)。所定期間は、一日間未満の期間であり、例えば30秒間である。例えば、制御部20は、通信部22に、挙動データを取得するための制御信号を、対象の蓄電セル621が含まれる蓄電モジュール62の制御基板72に向けて送信させる。制御信号は、通信ネットワークN、通信デバイス1、管理装置M及び電池管理装置52を介して制御基板72へ送信される。制御基板72では、制御信号に従って、電圧取得部722が蓄電セル621の電圧を取得し、電流取得部723が蓄電セル621に流れる電流を取得し、温度取得部724が温度を取得する。制御基板72は、1秒等の所定のサンプリング周期で、30秒間等の所定期間、蓄電セル621に関する電圧、電流及び温度を繰り返し取得する。このようにして、所定期間内の電圧、電流及び温度の時間変化が取得される。挙動データの取得に必要な期間は30秒間等の一日間未満の期間であり、挙動データの取得が蓄電セル621の運用に及ぼす影響は小さい。
このように所定期間(例えば、30秒間)の挙動データを取得するサンプリング周期は、平時の遠隔監視のために(劣化状態の推定、異常検知のために)蓄電セル621の履歴データを継続的に取得するサンプリング周期(例えば、24時間)よりも短いことが好ましい。短いサンプリング周期で取得した挙動データを、学習モデル23に供することで、後述する蓄電セル611の劣化状態を短時間で推定できる。
制御基板72は、所定の条件の下で、蓄電セル621に関する電圧、電流及び温度の時間変化を取得してもよい。例えば、制御基板72は、蓄電セル621のSOCを所定の値に調整し、蓄電セル621を所定のレートで放電させ、蓄電セル621の電圧及び電流並びに蓄電モジュール62内の温度を取得する。代替的に、制御基板72は、蓄電セル621の使用中に、放電時の蓄電セル621に関する電圧、電流及び温度を取得してもよい。
制御基板72の制御部721は、通信部725に、取得した電圧、電流及び温度を示す情報を順次送信させる。電圧、電流及び温度を示す情報は、電池管理装置52、管理装置M、通信デバイス1及び通信ネットワークNを介してサーバ装置2へ順次送信される。サーバ装置2は、電圧、電流及び温度を示す情報を通信部22で受信する。時間の経過に従って、所定期間内に取得された電圧、電流及び温度を示す情報は順次受信される。サーバ装置2の制御部20は、受信した電圧、電流及び温度を示す情報を、記憶部21に順次記憶させる。このようにして、サーバ装置2は、蓄電セル621に関連する所定期間内の電圧、電流及び温度の時間変化を含んだ挙動データを取得し、記憶する。
代替的に、制御基板72は、所定期間内の電圧、電流及び温度の時間変化を含んだ挙動データを一括して送信してもよい。サーバ装置2は、一括して挙動データを通信部22で受信し、一括して受信した挙動データを記憶部21に記憶してもよい。蓄電セル621に関する挙動データは、サーバ装置2以外の記憶装置に記憶されてもよい。挙動データは、挙動データを取得したときの蓄電セル621の劣化状態を示す情報と関連付けて記憶される。S13の処理は第3取得部に対応する。蓄電セル621に関する挙動データを取得する処理は以上で終了する。
S11~S13の処理により、履歴データが継続的に記録されており劣化状態が所定の状態であると判定された複数の蓄電セル621に関する電圧、電流及び温度の所定期間内の時間変化が取得される。例えば、蓄電セル621のSOHが、95%、90%及び80%等の値のときの電圧、電流及び温度の時間変化が得られる。SOH、カレンダー劣化量及びサイクル劣化量の値の組み合わせ別に、蓄電セル621に関する電圧、電流及び温度の時間変化が得られる。
図8A~図8Cは、蓄電セル621に関する電圧、電流及び温度の時間変化の例を概念的に示すグラフである。図8Aの縦軸は電圧を示し、図8Bの縦軸は電流を示し、図8Cの縦軸は温度を示し、いずれも横軸は時間を示す。この例では、図8Bに示すステップ状の電流波形を蓄電セル621に与えた時の、電圧挙動及び温度挙動を検出している。これは、周囲温度が一定である環境(空調管理されている環境)における例である。図8A及び図8Cに示す如き電圧及び温度の時間変化は、蓄電セル621の劣化状態に応じて異なる。例えば、電圧及び温度の時間変化は、SOHの値に応じて異なる。また、SOHの値が同一であっても、カレンダー劣化量及びサイクル劣化量の値の組み合わせに応じて電圧及び温度の時間変化は異なる。
学習モデル23は、履歴データが不明な蓄電セル611の劣化状態を推定するために、機械学習を行う。学習モデル23は、蓄電セル621の挙動データと蓄電セル621の劣化状態との関係を教師データとして、機械学習を行う。例えば、機械学習はサーバ装置2で実行される。制御部20は、記憶部21から、蓄電セル621の挙動データと蓄電セル621の劣化状態を示す情報とを読み出し、学習モデル23に機械学習を実行させる。周囲温度が変化する場合(蓄電素子が屋外設置される場合や、空調管理されていない環境の場合)は、周囲温度も併せて学習モデル23に機械学習させるとよい。
図9は、学習モデル23の構成例を示す概念図である。学習モデル23は、電圧、電流及び温度の所定期間内の時間変化が夫々に入力される複数のノード231を有する入力層と、入力層のノード231からの入力に応じて出力を行う複数のノード232を有する中間層と、蓄電セル611の劣化状態の推定結果を出力する複数のノード233を有する出力層とを備えたニューラルネットワークを用いる。図9には、中間層が一層である例を示しているが、中間層は複数層であってもよい。
入力層のノード231には、電圧、電流及び温度の時系列データが入力されてもよい。代替的に、入力層のノード231には、図8A~図8Cに示す如き電圧、電流及び温度の時間変化を示すグラフの画像が入力されてもよい。電圧、電流及び温度の時間変化として、電圧、電流及び温度の各時点における値が夫々一つの入力層のノード231に入力されてもよい。出力層のノード233では、SOH、カレンダー劣化量及びサイクル劣化量の値が夫々出力されてもよい。代替的に、SOH、カレンダー劣化量及びサイクル劣化量の複数の所定の値の夫々に対応する出力層のノード233に、SOH、カレンダー劣化量及びサイクル劣化量の夫々が各値である確率が出力されてもよい。学習モデル23は、ニューラルネットワークとして、畳みこみニューラルネットワーク(CNN:Convolutional Neural Network)、又は再帰型ニューラルネットワーク(RNN:Recurrent Neural Network)を用いてもよい。
機械学習では、蓄電セル611の電圧、電流及び温度の所定期間内の時間変化が入力層のノード231へ入力され、蓄電セル611の劣化状態が出力層のノード233から出力されることができるように、教師データに基づいて中間層のパラメータを調整する。例えば、サーバ装置2の制御部20は、コンピュータプログラム2Pに従って、学習モデル23の機械学習を行う。
サーバ装置2で機械学習の処理を実行することにより、学習済みの学習モデル23が得られる。機械学習は、サーバ装置2以外のコンピュータで実行されてもよい。その場合、機械学習により学習済みの学習モデル23を表す学習データが作成され、作成された学習データがサーバ装置2に入力される。サーバ装置2は、学習データを記憶部21に記憶することにより、学習済みの学習モデル23を得る。サーバ装置2が行う機械学習の処理は、学習部に対応する。
図10は、履歴データが不明な蓄電セル611の劣化状態を推定する処理の手順を示すフローチャートである。サーバ装置2は、蓄電セル611に関連する所定期間内の電圧、電流及び温度の時間変化を含んだ挙動データを取得する(S21)。S21の処理は、履歴データが把握できている蓄電セル621について行われたS13の処理と同様に行われる。例えば、制御部20は、通信部22に、挙動データを取得するための制御信号を、対象の蓄電セル611が含まれる蓄電モジュール61の制御基板71に向けて送信させる。制御信号は、通信ネットワークN、通信デバイス1、管理装置M及び電池管理装置51を介して制御基板71へ送信される。制御基板71では、制御信号に従って、電圧取得部712が蓄電セル611の電圧を取得し、電流取得部713が蓄電セル611に流れる電流を取得し、温度取得部714が温度を取得する。制御基板71は、S13の処理と同様の条件で、蓄電セル621に関する電圧、電流及び温度を取得する。制御基板72が電圧、電流及び温度を取得するサンプリング周期、及び電圧、電流及び温度の時間変化を取得する所定期間は、S13の処理において蓄電セル621について挙動データが取得されたときと同一である。例えば、サンプリング周期は1秒であり、所定期間は30秒間である。S13の処理と同様に、蓄電セル611の挙動データの取得に必要な期間は30秒間等の一日間未満の期間であり、挙動データの取得が蓄電セル611の運用に及ぼす影響は小さい。
制御基板71の制御部711は、通信部725に、取得した電圧、電流及び温度を示す情報を順次送信させるか、又は挙動データを一括して送信させる。挙動データは、電池管理装置51、管理装置M、通信デバイス1及び通信ネットワークNを介してサーバ装置2へ送信される。サーバ装置2は、挙動データを通信部22で受信し、記憶部21に記憶する。S21の処理は、第1取得部に対応する。
学習モデル23は、次に、蓄電セル611の電圧、電流及び温度の時間変化を含む挙動データに応じて、蓄電セル611の劣化状態を推定する(S22)。S22では、制御部20は、挙動データを記憶部21から読み出して学習モデル23に提供する。学習モデル23は、蓄電セル611に関する電圧、電流及び温度の所定期間内の時間変化を示す情報を入力層のノード231へ入力し、蓄電セル611の劣化状態の推定結果を出力層のノード233から得る処理を行う。
学習モデル23は、蓄電セル621の挙動データと蓄電セル621の劣化状態との関係を既に学習しているので、蓄電セル611の挙動データに応じて、蓄電セル611の劣化状態を推定することができる。例えば、SOH、カレンダー劣化量及びサイクル劣化量の夫々の値が推定される。S21及びS22の処理は、単一の蓄電セル611について行われてもよく、複数の蓄電セル611の夫々について行われてもよい。S22の処理は第1推定部に対応する。
制御部20は、次に、蓄電セル611の劣化状態の推定結果を出力する(S23)。例えば、制御部20は、通信部22に、推定結果を示す情報を、通信ネットワークNを介してクライアント装置3へ送信させる。クライアント装置3は、推定結果を示す情報を通信部32で受信し、制御部30は、受信した情報に基づいて、表示部33に推定結果を表示させる。例えば、夫々の蓄電セル611には識別情報が付与されており、識別情報と、識別情報により識別される蓄電セル611の劣化状態を示す情報とが表示部33に表示される。蓄電システム101の管理者は、出力された推定結果を確認することにより、蓄電セル611の劣化状態を知ることができる。以上で、蓄電セル611の劣化状態を推定する処理は終了する。
蓄電セル611の劣化状態を推定する処理により、蓄電セル611の挙動データを取得した第1時点での劣化状態が推定される。劣化状態の推定結果は、以降の蓄電システム101の運用に利用される。例えば、推定されたSOHが所定の許容値以下である蓄電セル611は、取り外される。また、第1時点以降は、サーバ装置2は、蓄電セル611についても履歴データを継続的に取得する。推定された劣化状態を示す情報及び履歴データがサーバ装置2の記憶部21に記憶される。第1時点から第2時点まで蓄電セル611の履歴データが取得された場合、サーバ装置2は、第1時点での劣化状態と履歴データとに基づき、第2時点での蓄電セル611の劣化状態を推定する。このようにして、蓄電セル621と同様に、蓄電セル611の劣化状態を把握できる。
以上詳述した如く、本実施形態においては、履歴データが不明な蓄電セル611の電圧、電流及び温度の所定期間内の時間変化を含む挙動データを取得し、教師あり学習を用いる学習モデル23により、蓄電セル611の劣化状態を推定する。学習モデル23は、履歴データが把握できている蓄電セル621の挙動データと履歴データから推定される蓄電セル621の劣化状態とを教師データとして、学習する。蓄電セル611の挙動データから蓄電セル611の劣化状態を推定する学習モデル23を学習させることができる。学習モデル23を利用することにより、履歴データが不明な蓄電セル611の劣化状態を高い精度で推定することができる。例えば、これまで監視が行われていなかった蓄電セル、履歴データが喪失した蓄電セル、又は履歴データが不明な状態で蓄電システム101に新たに追加された蓄電セルの劣化状態を推定することができる。劣化状態の推定後は、蓄電セル611についても、推定された劣化状態と劣化状態の推定後に取得された履歴データとを用いて、蓄電セル621と同様に運用を行うことが可能となる。
(実施形態2)
実施形態2では、電池管理装置51又は管理装置Mが状態推定装置として機能する。図11は、状態推定装置として機能する電池管理装置51の機能構成例を示すブロック図である。電池管理装置51は、学習モデル514及び記憶部515を更に備えている。学習モデル514は、実施形態1における学習モデル23と同様の動作を行う。記憶部515は、ハードディスク又は不揮発性メモリである。
実施形態2では、電池管理装置51又は管理装置Mが状態推定装置として機能する。図11は、状態推定装置として機能する電池管理装置51の機能構成例を示すブロック図である。電池管理装置51は、学習モデル514及び記憶部515を更に備えている。学習モデル514は、実施形態1における学習モデル23と同様の動作を行う。記憶部515は、ハードディスク又は不揮発性メモリである。
図12は、状態推定装置として機能する管理装置Mの機能構成例を示すブロック図である。管理装置Mは、学習モデル404及び記憶部405を更に備えている。学習モデル404は、実施形態1における学習モデル23と同様の動作を行う。記憶部405は、ハードディスク又は不揮発性メモリである。本実施形態では、サーバ装置2は学習モデル23を備えていなくてもよい。蓄電システム101及び遠隔監視システム100のその他の構成は、実施形態1と同様である。
実施形態1における学習モデル23の機械学習と同様に、学習モデル514又は404の機械学習が行われる。機械学習は、電池管理装置51又は管理装置Mで行われてもよい。代替的に、他のコンピュータで実行されてもよい。この場合、機械学習により学習済みの学習モデル514又は404を表す学習データが作成され、作成された学習データが電池管理装置51又は管理装置Mへ入力され、電池管理装置51又は管理装置Mは、学習データを記憶部515又は405に記憶することにより、学習済みの学習モデル514又は404を得る。
状態推定装置としての電池管理装置51又は管理装置Mは、実施形態1と同様に、図10のフローチャートに示すように、蓄電セル611の劣化状態を推定する処理を実行する。電池管理装置51又は管理装置Mは、蓄電セル611の電圧、電流及び温度の所定期間内の時間変化を含む挙動データを取得し(S21)、学習モデル514又は404により挙動データに応じて蓄電セル611の劣化状態を推定し(S22)、推定結果を出力する(S23)。例えば、電池管理装置51又は管理装置Mは、推定結果を示す情報を、通信デバイス1及び通信ネットワークNを介してクライアント装置3へ送信する。
本実施の形態においても、実施形態1と同様に、履歴データが不明な蓄電セル611の挙動データに応じて、蓄電セル611の劣化状態の推定が可能である。劣化状態の推定後は、蓄電セル611についても、履歴データが把握できている蓄電セル621と同様に運用を行うことが可能となる。
以上の実施形態1及び2においては、蓄電システム101に履歴データが把握できている蓄電セル621と履歴データが不明な蓄電セル611とが含まれており、蓄電セル621の挙動データ及び劣化状態を教師データとして用いた。代替的に、蓄電システム101の外部に設けられた蓄電セルの挙動データ及び劣化状態が教師データとして用いられてもよい。また、現在は用いられていない蓄電セルの挙動データ及び劣化状態が教師データとして用いられてもよい。また、蓄電システム101に含まれる全ての蓄電セルが、履歴データの不明な蓄電セル611であってもよい。この場合は、蓄電システム101の外部に設けられた蓄電セルの挙動データ及び劣化状態、又は現在は用いられていない蓄電セルの挙動データ及び劣化状態に基づいて、蓄電セル611の劣化状態が推定される。
実施形態1及び2においては、蓄電セル611の電圧、電流及び温度の所定期間内の時間変化を含む挙動データに応じて、蓄電セル611の劣化状態を推定する。代替的に、挙動データは蓄電セル611の電圧の所定期間内の時間変化のみを含むデータであってもよい。蓄電セルの電圧の時間変化は、蓄電セルの劣化状態に応じて異なるので、電圧の時間変化のみを含む挙動データを用いた場合でも、蓄電セル611の劣化状態を推定することは可能である。例えば、蓄電セル621の電圧の時間変化と蓄電セル621の劣化状態とを教師データとして機械学習が行われ、蓄電セル611の電圧の時間変化のみを含む挙動データに応じて、蓄電セル611の劣化状態が推定される。
実施形態1及び2においては、学習モデルを用いて蓄電セル611の劣化状態を推定する。代替的に、状態推定装置は、蓄電セル621の挙動データと劣化状態との関係に基づき、学習モデルを用いずに、蓄電セル611の挙動データに応じて蓄電セル611の劣化状態を推定してもよい。例えば、状態推定装置は、複数の蓄電セル621の挙動データと蓄電セル611の挙動データとを比較し、比較結果に応じて蓄電セル621の劣化状態を補完することにより、蓄電セル611の劣化状態の推定値を計算してもよい。また、状態推定装置は、蓄電セル611の劣化状態を、挙動データが最も近い蓄電セル621の劣化状態と同一であると推定してもよい。いずれかの蓄電セル621の挙動データと蓄電セル611の挙動データが一致した場合は、蓄電セル611の劣化状態は、挙動データが一致した蓄電セル621の劣化状態と同一であると推定される。状態推定装置が学習モデルを用いずに蓄電セル611の劣化状態を推定する処理は、第3推定部に対応する。
状態推定装置は、蓄電セル611の劣化状態を推定する際に、SOHの推定とカレンダー劣化量及びサイクル劣化量の推定とを段階的に行ってもよい。例えば、状態推定装置は、複数の蓄電セル621の挙動データと蓄電セル611の挙動データとを比較して、蓄電セル611のSOHを推定する。次に、状態推定装置は、推定したSOHと同じSOHを有する蓄電セル621の挙動データと蓄電セル611の挙動データとを比較して、蓄電セル611のカレンダー劣化量及びサイクル劣化量を推定する。
実施形態1及び2においては、劣化状態を推定する対象の蓄電素子が蓄電セル611である。代替的に、遠隔監視システム100は、蓄電モジュール61を蓄電素子としてもよい。また、遠隔監視システム100は、バンク41を蓄電素子としてもよい。
本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
100 遠隔監視システム
101 蓄電システム
2 サーバ装置
20 制御部
21 記憶部
23、404、514 学習モデル
41、42 バンク
51、52 電池管理装置
61、62 蓄電モジュール
611、621 蓄電セル
71、72 制御基板
712、722 電圧取得部
713、723 電流取得部
714、724 温度取得部
M 管理装置
101 蓄電システム
2 サーバ装置
20 制御部
21 記憶部
23、404、514 学習モデル
41、42 バンク
51、52 電池管理装置
61、62 蓄電モジュール
611、621 蓄電セル
71、72 制御基板
712、722 電圧取得部
713、723 電流取得部
714、724 温度取得部
M 管理装置
Claims (10)
- 第1の蓄電素子について、所定期間内の第1挙動データを取得し、
劣化状態が判明している第2の蓄電素子の第2挙動データと前記第2の蓄電素子の劣化状態との関係に基づき、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の第1時点における劣化状態を推定し、
前記第1時点における劣化状態と、前記第1時点から第2時点までの履歴データとに基づき、前記第1の蓄電素子の前記第2時点における劣化状態を推定する
状態推定方法。 - 前記第2の蓄電素子の第2挙動データと前記第2の蓄電素子の劣化状態との関係を学習した学習モデルによって、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の前記第1時点における劣化状態を推定する
請求項1に記載の状態推定方法。 - 前記第2の蓄電素子について、履歴データを継続的に取得し、
取得した前記履歴データに基づいて、前記第2の蓄電素子の劣化状態を推定し、
劣化状態が特定の状態である前記第2の蓄電素子について第2挙動データを取得し、
劣化状態が特定の状態である前記第2の蓄電素子について取得した第2挙動データと、前記第2挙動データを取得したときの前記第2の蓄電素子の劣化状態とを教師データとして、前記学習モデルの機械学習を行う
請求項2に記載の状態推定方法。 - 前記第2の蓄電素子について、履歴データを継続的に取得し、
取得した前記履歴データに基づいて、前記第2の蓄電素子の劣化状態を推定し、
劣化状態が特定の状態である前記第2の蓄電素子について第2挙動データを取得し、
劣化状態が特定の状態である前記第2の蓄電素子について取得した第2挙動データと前記第1の蓄電素子について取得した第1挙動データとの比較に基づいて、前記第1の蓄電素子の劣化状態を推定する
請求項1に記載の状態推定方法。 - 蓄電素子の劣化状態は、蓄電素子の健全度、カレンダー劣化量、及びサイクル劣化量を含んでいる
請求項1乃至4のいずれか一つに記載の状態推定方法。 - 蓄電素子の状態推定装置であって、
当該状態推定装置に接続された第1の蓄電素子について、所定期間内の第1挙動データを取得する第1取得部と、
劣化状態が判明している第2の蓄電素子について予め取得されている第2挙動データと前記第2の蓄電素子の劣化状態との関係に基づき、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の第1時点における劣化状態を推定し、前記第1時点における劣化状態と前記第1時点から第2時点までの履歴データとに基づき前記第1の蓄電素子の前記第2時点における劣化状態を推定する第1推定部と
を備える状態推定装置。 - 前記第1推定部は、前記第2の蓄電素子の第2挙動データと前記第2の蓄電素子の劣化状態との関係を学習した学習モデルによって、前記第1の蓄電素子について取得した第1挙動データに応じて、前記第1の蓄電素子の前記第1時点における劣化状態を推定する
請求項6に記載の状態推定装置。 - 前記第2の蓄電素子について、履歴データを継続的に取得する第2取得部と、
取得した前記履歴データに基づいて、前記第2の蓄電素子の劣化状態を推定する第2推定部と、
劣化状態が特定の状態である前記第2の蓄電素子について第2挙動データを取得する第3取得部と、
劣化状態が特定の状態である前記第2の蓄電素子について取得した第2挙動データと、前記第2挙動データを取得したときの前記第2の蓄電素子の劣化状態とを教師データとして、前記学習モデルの機械学習を行う学習部と
を更に備える請求項7に記載の状態推定装置。 - 前記第2の蓄電素子について、履歴データを継続的に取得する第2取得部と、
取得した前記履歴データに基づいて、前記第2の蓄電素子の劣化状態を推定する第2推定部と、
劣化状態が特定の状態である前記第2の蓄電素子について第2挙動データを取得する第3取得部と、
劣化状態が特定の状態である前記第2の蓄電素子について取得した第2挙動データと前記第1の蓄電素子について取得した第1挙動データとの比較に基づいて、前記第1の蓄電素子の劣化状態を推定する第3推定部と
を更に備える請求項6に記載の状態推定装置。 - 蓄電素子の劣化状態は、蓄電素子の健全度、カレンダー劣化量、及びサイクル劣化量を含んでいる
請求項6乃至9のいずれか一つに記載の状態推定装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-081434 | 2018-04-20 | ||
JP2018081434A JP2019190905A (ja) | 2018-04-20 | 2018-04-20 | 状態推定方法、及び状態推定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203111A1 true WO2019203111A1 (ja) | 2019-10-24 |
Family
ID=68239069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015759 WO2019203111A1 (ja) | 2018-04-20 | 2019-04-11 | 状態推定方法、及び状態推定装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019190905A (ja) |
WO (1) | WO2019203111A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023047867A1 (ja) * | 2021-09-24 | 2023-03-30 | 株式会社Gsユアサ | 情報処理装置及び情報処理方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114651183A (zh) * | 2019-11-07 | 2022-06-21 | 巴斯夫欧洲公司 | 电池性能预测 |
JP2021092404A (ja) * | 2019-12-06 | 2021-06-17 | 株式会社Gsユアサ | 劣化推定装置、劣化推定システム、劣化推定方法、及びコンピュータプログラム |
JP2021163600A (ja) * | 2020-03-31 | 2021-10-11 | Apb株式会社 | リチウムイオン電池システムおよび電池状態推定システム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002093468A (ja) * | 2000-09-12 | 2002-03-29 | Yuasa Corp | 鉛蓄電池の劣化状態検知方法 |
JP2013026114A (ja) * | 2011-07-25 | 2013-02-04 | Yokogawa Electric Corp | 電池劣化判定装置および方法 |
WO2015079559A1 (ja) * | 2013-11-29 | 2015-06-04 | 株式会社日立製作所 | 非水系蓄電素子の内部状態推定装置 |
-
2018
- 2018-04-20 JP JP2018081434A patent/JP2019190905A/ja active Pending
-
2019
- 2019-04-11 WO PCT/JP2019/015759 patent/WO2019203111A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002093468A (ja) * | 2000-09-12 | 2002-03-29 | Yuasa Corp | 鉛蓄電池の劣化状態検知方法 |
JP2013026114A (ja) * | 2011-07-25 | 2013-02-04 | Yokogawa Electric Corp | 電池劣化判定装置および方法 |
WO2015079559A1 (ja) * | 2013-11-29 | 2015-06-04 | 株式会社日立製作所 | 非水系蓄電素子の内部状態推定装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023047867A1 (ja) * | 2021-09-24 | 2023-03-30 | 株式会社Gsユアサ | 情報処理装置及び情報処理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019190905A (ja) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11243262B2 (en) | Degradation estimation apparatus, computer program, and degradation estimation method | |
JP6555440B1 (ja) | 異常要因判定装置、劣化判定装置、コンピュータプログラム、劣化判定方法及び異常要因判定方法 | |
JP6579287B1 (ja) | 劣化推定装置、コンピュータプログラム及び劣化推定方法 | |
WO2019203111A1 (ja) | 状態推定方法、及び状態推定装置 | |
JP6590029B1 (ja) | 行動生成装置、蓄電素子評価装置、コンピュータプログラム、学習方法及び評価方法 | |
WO2020004163A1 (ja) | 状態推定方法、及び状態推定装置 | |
EP3905424B1 (en) | Data processing device, data processing method and computer program | |
JP2019158666A (ja) | 劣化判定方法、劣化判定装置、及び劣化判定システム | |
US11677253B2 (en) | Monitoring device, monitoring method, computer program, deterioration determination method, deterioration determination device, and deterioration determination system | |
JP6973099B2 (ja) | 監視装置、監視方法及びコンピュータプログラム | |
JP6721170B1 (ja) | 非常用充放電器の遠隔監視システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19788460 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19788460 Country of ref document: EP Kind code of ref document: A1 |