WO2015033503A1 - 推定装置及び推定方法 - Google Patents

推定装置及び推定方法 Download PDF

Info

Publication number
WO2015033503A1
WO2015033503A1 PCT/JP2014/003640 JP2014003640W WO2015033503A1 WO 2015033503 A1 WO2015033503 A1 WO 2015033503A1 JP 2014003640 W JP2014003640 W JP 2014003640W WO 2015033503 A1 WO2015033503 A1 WO 2015033503A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimation
phase
equation
state
prior
Prior art date
Application number
PCT/JP2014/003640
Other languages
English (en)
French (fr)
Inventor
厚志 馬場
修一 足立
Original Assignee
カルソニックカンセイ株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社, 学校法人慶應義塾 filed Critical カルソニックカンセイ株式会社
Priority to US14/895,989 priority Critical patent/US20160116542A1/en
Priority to CN201480031504.8A priority patent/CN105378496B/zh
Publication of WO2015033503A1 publication Critical patent/WO2015033503A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an estimation device and an estimation method for estimating an internal state quantity of a battery or the like.
  • a Kalman filter has been used to estimate a charging rate (SOC: StateSOf Charge) that is an internal state quantity of a battery mounted on an electric vehicle or the like, parameters, and the like. Since the internal state quantity of the battery is represented by a non-linear model, a non-linear Kalman filter is used to estimate the internal state quantity of the battery.
  • SOC StateSOf Charge
  • a non-linear Kalman filter is used to estimate the internal state quantity of the battery.
  • EKF Extended ⁇ Kalman Filter
  • UDF Unscented Kalman Filter
  • the estimation technique using EKF linearly approximates the system at one representative point.
  • the system to be estimated has a simple nonlinearity, that is, when the nonlinearity is weak, a relatively small amount of calculation is required. Can perform highly accurate estimation.
  • the target system to be estimated has complicated nonlinearity, that is, when nonlinearity is strong, linear approximation with one representative point is not sufficient, and estimation accuracy deteriorates.
  • the estimation technique using UKF performs estimation by generating a plurality of representative points (sigma points). Therefore, even when there is complex nonlinearity, that is, when nonlinearity is strong, high-precision estimation is performed. It can be performed. However, in the estimation technique using UKF, the calculation load increases because each sigma point is calculated.
  • an object of the present invention which has been made in view of the above problems, is an estimation that can reduce calculation load and increase estimation accuracy in estimation of internal state quantities in a nonlinear system such as an internal state quantity of a battery.
  • An apparatus and an estimation method are provided.
  • an estimation apparatus for estimating an internal state quantity in a nonlinear system using a nonlinear Kalman filter
  • the nonlinear Kalman filter includes a prior estimation prediction phase for calculating a prior state estimation value and a prior covariance matrix of a state based on a state equation relating to the nonlinear system, a prior output estimation value based on the output equation relating to the nonlinear system, and an output A covariance matrix and a pre-estimated update phase to calculate a state and output cross-covariance matrix;
  • One of the pre-estimation prediction phase and the pre-estimation update phase is performed by EKF, and the other phase is performed by UKF.
  • the estimation device is: The estimation apparatus according to claim 1, Based on the state equation and the output equation, a phase corresponding to an equation having weak nonlinearity is performed by EKF.
  • the estimation device is: The estimation apparatus according to claim 1, Based on the state equation and the output equation, a phase corresponding to a highly nonlinear equation is performed in UKF.
  • the estimation device is: The estimation apparatus according to claim 1,
  • the nonlinear system is a battery, and the internal state quantity includes a SOC of the battery;
  • the prior estimation prediction phase is performed by UKF, and the prior estimation update phase is performed by EKF.
  • the estimation method according to claim 5 is: An estimation method for estimating an internal state quantity in a nonlinear system using a nonlinear Kalman filter,
  • the nonlinear Kalman filter includes a prior estimation prediction phase for calculating a prior state estimation value and a state covariance matrix based on a state equation relating to the nonlinear system, and a prior output estimation value and an output based on the output equation relating to the nonlinear system.
  • a pre-estimation update phase that calculates a variance matrix and a mutual covariance matrix of states and outputs, One of the pre-estimation prediction phase and the pre-estimation update phase is performed by EKF, and the other phase is performed by UKF.
  • one of the pre-estimation prediction phase and the pre-estimation update phase is performed by EKF, and the other phase is performed by UKF.
  • a phase corresponding to an equation having weak nonlinearity is performed by EKF.
  • a phase corresponding to an equation with strong nonlinearity is performed by UKF.
  • estimation accuracy can be raised efficiently by using UKF.
  • the estimation device in estimating the internal state quantity including the SOC of the battery, the preliminary estimation prediction phase is performed by UKF, and the preliminary estimation update phase is performed by EKF.
  • the state equation relating to the internal state quantity of the battery has a strong nonlinearity, and the nonlinearity of the output equation is weak. Therefore, for the pre-estimation phase with weak non-linearity, EKF is used to maintain a constant estimation accuracy while reducing the calculation load, and for the pre-estimation update phase with weak non-linearity, the estimation accuracy is improved by using UKF. It can be increased efficiently.
  • either one of the pre-estimation prediction phase or the pre-estimation update phase is performed by EKF, and the other phase is performed by UKF.
  • This is measurement data related to a target system estimated by the estimation device. It is data of the estimation result by the estimation apparatus which concerns on Example 1 of this invention. It is reference data of the estimation result by EKF. It is reference data of the estimation result by UKF.
  • FIG. 1 is a conceptual diagram showing each phase of a nonlinear Kalman filter used in the estimation apparatus according to the embodiment of the present invention.
  • the nonlinear Kalman filter can be divided into an initialization phase, a prior estimation prediction phase, a prior estimation update phase, and a posterior estimation phase.
  • the present invention focuses on the fact that the prior estimation prediction phase and the prior estimation update phase in the nonlinear Kalman filter are separate and independent phases, and one of these two phases is performed by EKF and the other is performed by UKF. It is characterized by.
  • the nonlinear Kalman filter according to the present invention is called a Mixed Kalman Filter (MKF).
  • MKF Mixed Kalman Filter
  • each of the above two phases is performed by EKF or UKF is based on the strength of nonlinearity of the state equation and the output equation corresponding to the pre-estimation prediction phase and the pre-estimation update phase, respectively.
  • a phase corresponding to an equation with strong nonlinearity is performed by UKF.
  • the phase corresponding to the equation with weak nonlinearity is performed by EKF.
  • the prior estimation prediction phase is performed by UKF
  • the prior estimation update phase is performed by EKF.
  • the prior estimation prediction phase is performed by EKF
  • the prior estimation update phase is performed by UKF.
  • the prior state estimation value is calculated based on the following equation (12), and the state prior covariance matrix is calculated based on the equation (13).
  • the pre-estimation prediction phase to the post-estimation phase are repeatedly performed using the posterior state estimation value and the state posterior covariance matrix calculated in the posterior estimation phase.
  • FIG. 2 is a block diagram including the estimation apparatus 1 according to the first embodiment of the present invention.
  • the estimation device 1 according to the first embodiment of the present invention is connected to a battery 2 and includes a current sensor 11, a voltage sensor 12, and a control device 13.
  • the battery 2 is a rechargeable battery, and for example, a lithium ion battery is used in this embodiment.
  • the battery 2 is not limited to being a lithium ion battery, and other types of batteries such as a nickel metal hydride battery may be used.
  • the current sensor 11 detects the magnitude of the discharge current when power is supplied from the battery 2 to an electric motor or the like that drives the vehicle.
  • the current sensor 11 detects the magnitude of the charging current when the electric motor functions as a generator at the time of braking to recover a part of the braking energy or to charge from the ground power supply facility.
  • the detected charge / discharge current signal i is output to the control device 13 as an input signal.
  • the voltage sensor 12 detects the voltage value between the terminals of the battery 2.
  • the terminal voltage signal v detected here is output to the control device 13.
  • the current sensor 11 and the voltage sensor 12 can employ various structures and types as appropriate.
  • the control device 13 is composed of a microcomputer, for example.
  • the control device 13 includes an interface unit 131, a control unit 132, a storage unit 133, and an output unit 134.
  • the interface unit 131 receives the charge / discharge current signal i input from the current sensor 11 and the terminal voltage signal v input from the voltage sensor 12.
  • the control unit 132 performs various controls related to the control device 13. Specifically, the control unit 132 estimates the internal state quantity of the battery 2 according to the MKF based on the charge / discharge current signal i and the terminal voltage signal v received by the interface unit 131 and the battery equivalent circuit model related to the battery 2.
  • the storage unit 133 stores various programs necessary for the control device 13 to perform estimation.
  • the output unit 134 outputs the result estimated by the control unit 132.
  • FIG. 3 shows a battery equivalent circuit model used in this embodiment. This is a combination of an approximate model of Warburg impedance using a Foster circuit proposed by Kuhn et al. And an open circuit voltage OCV (OpenOCircuit Voltage) proposed by Plett et al.
  • OCV OpenOCircuit Voltage
  • Expression (34) and Expression (35) can be rewritten into the following state equation (Expression (46)) and output equation (Expression (47)), respectively, as an expansion system.
  • Expressions (48) and (49) are derived from Expressions (34) to (45).
  • the control unit 132 applies MKF to the expansion system represented by the equations (46) to (49).
  • the state equation represented by the equation (46) has strong nonlinearity
  • the output equation represented by the equation (47) has weak nonlinearity. Therefore, in this embodiment, the prior estimation prediction phase is performed by UKF, and the prior estimation update phase is performed by EKF.
  • the simulation operation of the estimation apparatus 1 according to the present invention will be described with reference to the flowchart shown in FIG.
  • the measurement data measured by the current sensor 11 and the voltage sensor 12 when using an electric vehicle from a certain point A to another point B is used.
  • the measurement data is shown in FIG. 6A and 6B show the current between terminals and the voltage between terminals of the battery 2, respectively.
  • FIGS. 6C, 6D, and 6E show the measurement data of the SOC, the temperature, and the vehicle speed of the battery 2, respectively.
  • 6 (a) to 6 (e) the horizontal axis represents time, starting from point A at 0 minutes and arriving at point B at about 600 minutes.
  • control unit 132 initializes each variable (step S11). Specifically, the following measured values are used as initial values.
  • the control unit 132 performs a prior estimation prediction phase with UKF (step S12), and calculates (predicts) the prior state estimation value and the state prior covariance matrix.
  • the prior estimation prediction phase is performed based on the state equation of Expression (46).
  • Equation (46) is a continuous-time equation of state, but in order to perform a numerical simulation in discrete time, it is converted into a discrete-time equation of state by the Runge-Kutta method. Note that the method of converting the continuous-time state equation into the discrete-time state equation is not limited to the Runge-Kutta method, and any discretization method such as the Euler method may be used.
  • K 0 to K 4 in the equation (54) are coefficient parameters.
  • control unit 132 corrects the prior state estimation value and the state prior covariance matrix based on the observation value measured by the current sensor 11 and the voltage sensor 12 and the prior output estimation value calculated in the prior estimation update phase. Calculate the posterior state estimate and state posterior covariance matrix.
  • the output unit 134 outputs the posterior state estimated value as an output value (step S14). Subsequently, returning to step S12, the processing of steps S12 to S14 is repeated.
  • FIG. 7 the estimation result estimated with the estimation apparatus 1 which concerns on this invention is shown.
  • FIG. 7A shows an estimated value of the SOC by the estimation device 1 and a reference value (true value).
  • FIG. 7B shows the SOC error rate.
  • FIGS. 7C to 7F show estimated values of parameters (R 0 , R d , C d , ⁇ 0 ) related to the battery 2.
  • a range (1 ⁇ range) that is 1 ⁇ away from the estimated value when the deviation of each estimated value is ⁇ is indicated by a broken line. It can be seen that the estimated values of the respective parameters related to the battery 2 converge to a constant value, and the 1 ⁇ range narrows with time, and the estimation accuracy is maintained.
  • a comparison table of the root mean square (RMSE) of the estimation error of the SOC when estimating the SOC of the battery 2 with each of EKF, UKF, and MKF is shown below.
  • RMSE root mean square
  • FIG. 8 and FIG. 9 show the estimation results of the SOC of the battery 2 and each parameter estimated by only EKF or UKF, respectively.
  • both EKF and UKF have a constant estimation accuracy (FIGS. 8A and 8B and FIGS. 9A and 9B).
  • the estimated values according to the present invention converge at the same speed as EKF in the initial stage. However, the range of deviation is suppressed. Therefore, MKF has the highest estimation accuracy.
  • the estimation is performed using the MKF in which EKF and UKF are combined.
  • the pre-estimation prediction phase in which estimation is performed by UKF
  • 15 sigma points in UKF are generated and calculated for each. Therefore, although the nonlinearity of the state equation is strong, the prior estimation prediction phase can be calculated with high accuracy.
  • the pre-estimated update phase is calculated by EKF. Since the nonlinearity of the output equation is weak, it can be estimated with high accuracy even by EKF.
  • estimation is performed with only one point, so the number of computations can be suppressed to about 1/15. That is, according to the estimation apparatus 1 of the first embodiment, it is possible to suppress the calculation load and increase the estimation accuracy.
  • Example 2 Estimation of internal state quantity in face recognition
  • the estimation apparatus according to the second embodiment is different from the configuration according to the first embodiment in that the preliminary estimation prediction phase is performed by EKF and the preliminary estimation update phase is performed by UKF.
  • the output equation for face recognition is It is.
  • is an angle viewed from the center of the ellipse.
  • the state equation represented by the equation (55) is relatively linear, that is, the nonlinearity is weak.
  • the output equation represented by the equation (58) is a complex nonlinearity, that is, the nonlinearity is strong. Therefore, when applying MKF to a present Example, a prior estimation prediction phase is performed by EKF, and a prior estimation update phase is performed by UKF. By doing in this way, the estimation apparatus according to the second embodiment can suppress the calculation load when estimating the internal state quantity in face recognition and can increase the estimation accuracy.
  • the MKF of the present invention can be applied to estimate the state of the internal state quantity.
  • a computer in order to function as an estimation device, a computer can be preferably used.
  • a computer stores a program describing processing contents for realizing each function of the estimation device in a storage unit of the computer. It can be realized by reading and executing this program by the central processing unit (CPU) of the computer.
  • CPU central processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 非線形システムにおける内部状態量の状態推定において、計算負荷を抑え、かつ推定精度を高めることができる推定装置及び推定方法を提供する。 非線形カルマンフィルタを用いて非線形システムにおける内部状態量を推定する推定装置(1)であって、非線形カルマンフィルタは、非線形システムに係る状態方程式に基づき事前状態推定値及び状態の事前共分散行列を算出する事前推定予測フェーズと、非線形システムに係る出力方程式に基づき事前出力推定値、出力の共分散行列、及び状態と出力の相互共分散行列を算出する事前推定更新フェーズとを含み、事前推定予測フェーズ又は事前推定更新フェーズのいずれか一方のフェーズをEKFで行い、他方のフェーズをUKFで行うことを特徴とする。

Description

推定装置及び推定方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2013-184483号(2013年9月5日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、バッテリ等の内部状態量を推定する推定装置及び推定方法に関する。
 従来、電気自動車等に搭載されるバッテリの内部状態量である充電率(SOC:State Of Charge)やパラメータ等を推定するために、カルマンフィルタが用いられている。バッテリの内部状態量は非線形のモデルにより表されるため、バッテリの内部状態量を推定するためには非線形カルマンフィルタが用いられている。具体的には、Extended Kalman Filter(EKF)を用いた推定技術(特許文献1等)や、Unscented Kalman Filter(UKF)を用いた推定技術(特許文献2等)が提案されている。
特表2008-519977号公報 特表2009-526220号公報
 EKFを用いた推定技術は、一つの代表点でシステムを線形近似するものであり、推定する対象のシステムが単純な非線形性を有する場合、すなわち非線形性が弱い場合には、比較的少ない計算量で高精度の推定を行うことができる。しかしながら、推定する対象のシステムが複雑な非線形性を有する場合、すなわち非線形性が強い場合には、一つの代表点による線形近似では不十分であり、推定精度が悪化してしまう。
 一方、UKFを用いた推定技術は、複数の代表点(シグマポイント)を生成して推定を行うため、複雑な非線形性を有する場合、すなわち非線形性が強い場合であっても、高精度の推定を行うことができる。しかしながらUKFを用いた推定技術においては、各シグマポイントについて夫々計算を行うため、計算負荷が増大してしまう。
 従って、上記のような問題点に鑑みてなされた本発明の目的は、バッテリの内部状態量等の非線形システムにおける内部状態量の推定において、計算負荷を抑え、かつ推定精度を高めることができる推定装置及び推定方法を提供することにある。
 上記課題を解決するために請求項1に記載の本発明に係る推定装置は、
 非線形カルマンフィルタを用いて非線形システムにおける内部状態量を推定する推定装置であって、
 前記非線形カルマンフィルタは、前記非線形システムに係る状態方程式に基づき事前状態推定値及び状態の事前共分散行列を算出する事前推定予測フェーズと、前記非線形システムに係る出力方程式に基づき事前出力推定値、出力の共分散行列、及び状態と出力の相互共分散行列を算出する事前推定更新フェーズとを含み、
 前記事前推定予測フェーズ又は前記事前推定更新フェーズのいずれか一方のフェーズをEKFで行い、他方のフェーズをUKFで行うことを特徴とする。
 また請求項2に記載の推定装置は、
 請求項1に記載の推定装置において、
 前記状態方程式及び前記出力方程式に基づき、非線形性の弱い方程式に対応するフェーズをEKFで行うことを特徴とする。
 また請求項3に記載の推定装置は、
 請求項1に記載の推定装置において、
 前記状態方程式及び前記出力方程式に基づき、非線形性の強い方程式に対応するフェーズをUKFで行うことを特徴とする。
 また請求項4に記載の推定装置は、
 請求項1に記載の推定装置において、
 前記非線形システムはバッテリであり、前記内部状態量は前記バッテリのSOCを含み、
 前記事前推定予測フェーズをUKFで行い、前記事前推定更新フェーズをEKFで行うことを特徴とする。
 また請求項5に記載の推定方法は、
 非線形カルマンフィルタを用いて非線形システムにおける内部状態量を推定する推定方法であって、
 前記非線形カルマンフィルタは、前記非線形システムに係る状態方程式に基づき事前状態推定値及び状態の共分散行列を算出する事前推定予測フェーズと、前記非線形システムに係る出力方程式に基づき事前出力推定値、出力の共分散行列、及び状態と出力の相互共分散行列を算出する事前推定更新フェーズとを含み、
 前記事前推定予測フェーズ又は前記事前推定更新フェーズのいずれか一方のフェーズをEKFで行い、他方のフェーズをUKFで行うことを特徴とする。
 本発明における請求項1に記載の推定装置によれば、事前推定予測フェーズ又は事前推定更新フェーズのいずれか一方のフェーズをEKFで行い、他方のフェーズをUKFで行う。これにより、EKFで計算を行うフェーズにおける計算負荷を抑え、かつUKFで計算を行うフェーズの推定精度を高めることができる。
 また本発明における請求項2に記載の推定装置によれば、非線形性の弱い方程式に対応するフェーズをEKFで行う。これにより非線形性の弱い方程式に対応するフェーズについては、EKFを用いることで計算負荷を抑えつつ一定の推定精度を保つことができる。
 また本発明における請求項3に記載の推定装置によれば、非線形性の強い方程式に対応するフェーズをUKFで行う。これにより非線形性の強い方程式に対応するフェーズについては、UKFを用いることで推定精度を効率的に高めることができる。
 また本発明における請求項4に記載の推定装置によれば、バッテリのSOCを含む内部状態量を推定するにあたり、事前推定予測フェーズをUKFで行い、事前推定更新フェーズをEKFで行う。ここでバッテリの内部状態量に係る状態方程式は非線形性が強く、出力方程式の非線形性は弱い。そのため、非線形性の弱い事前推定フェーズについては、EKFを用いることで計算負荷を抑えつつ一定の推定精度を保ち、かつ、非線形性の弱い事前推定更新フェーズについては、UKFを用いることで推定精度を効率的に高めることができる。
 また本発明における請求項5に記載の推定方法によれば、事前推定予測フェーズ又は事前推定更新フェーズのいずれか一方のフェーズをEKFで行い、他方のフェーズをUKFで行う。これにより、EKFで計算を行うフェーズにおける計算負荷を抑え、かつUKFで計算を行うフェーズの推定精度を高めることができる。
カルマンフィルタの各フェーズを示す概念図である。 本発明の実施例1に係る推定装置のブロック図である。 バッテリの等価回路を示す図である。 SOC-OCV特性を示すグラフである。 本発明の実施例1に係る推定装置の動作を示すフローチャートである。 推定装置で推定する対象のシステムに係る計測データである。 本発明の実施例1に係る推定装置による推定結果のデータである。 EKFによる推定結果の参考データである。 UKFによる推定結果の参考データである。
 以下、本発明の実施の形態について説明する。
(実施の形態)
 図1は、本発明の実施の形態に係る推定装置において用いられる非線形カルマンフィルタの各フェーズを示す概念図である。図1に示すように非線形カルマンフィルタは、初期化のフェーズと、事前推定予測フェーズと、事前推定更新フェーズと、事後推定フェーズとに分けて考えることができる。本発明は概略として、非線形カルマンフィルタにおける事前推定予測フェーズと事前推定更新フェーズとが別個独立のフェーズであることに着目し、これら2つのフェーズのうちの一方をEKFで行い、他方をUKFで行うことを特徴とする。ここで本発明ではEKF及びUKFの2つの非線形カルマンフィルタを混合するため、本発明による当該非線形カルマンフィルタを、Mixed Kalman Filter(MKF)と呼ぶ。
 上記2つの各フェーズをEKF又はUKFのいずれで行うかは、事前推定予測フェーズ及び事前推定更新フェーズに各々対応する状態方程式及び出力方程式の非線形性の強さに基づく。これらの方程式のうち、非線形性が強い方程式に対応するフェーズをUKFで行う。一方これらの方程式のうち、非線形性が弱い方程式に対応するフェーズをEKFで行う。例えば状態方程式の非線形性が強く、出力方程式に非線形性が弱い場合、事前推定予測フェーズをUKFで行い、事前推定更新フェーズをEKFで行う。一方で出力方程式の非線形性が強く、状態方程式の非線形性が弱い場合、事前推定予測フェーズをEKFで行い、事前推定更新フェーズをUKFで行う。
 なお、状態方程式及び出力方程式の非線形性の強弱の判断は、各種手法が考えられる。例えばある方程式(状態方程式又は出力方程式)が、所定の線形の方程式により一定の誤差範囲内で近似できる場合、当該方程式の非線形性は弱いとすることができる。一方である方程式が、所定の線形の方程式により一定の誤差範囲内で近似できない場合、当該方程式の非線形性は強いとすることができる。また、ある方程式が微分可能でない場合には当該方程式の非線形性は強いとすることができる。
 以下、図1に示す各フェーズの詳細について説明する。なおここでは、ノイズを考慮した離散系の非線形システムを対象とする。当該非線形システムに係る状態方程式は式(1)で表され、出力方程式は式(2)により表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-I000001
(1 初期化フェーズ)
 初期化のフェーズでは、状態推定値の初期値及び状態の共分散行列の初期値(状態の初期共分散行列)を与える。状態の初期値は式(3)、初期共分散行列は式(4)で表される。
Figure JPOXMLDOC01-appb-M000002
(2 事前推定予測フェーズ)
 次の事前推定予測フェーズでは、状態方程式に基づき事前状態推定値及び状態の事前共分散行列を算出(予測)する。状態方程式に基づいて事前推定値及び事前共分散行列を算出する方法は、EKFで行う場合とUKFで行う場合とで相違する。以下、本フェーズをEKF、又はUKFで行う場合について各々説明する。
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-I000004
 シグマポイントを生成後、状態方程式に基づく以下の式(11)からシグマポイント毎に推定値を算出する。
Figure JPOXMLDOC01-appb-M000005
 続いて、以下の式(12)に基づき事前状態推定値を算出し、また式(13)に基づき状態の事前共分散行列を算出する。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-M000007
(3 事前推定更新フェーズ)
 事前推定予測フェーズに続く事前推定予測フェーズでは、事前推定予測フェーズで算出された事前状態推定値、状態の事前共分散行列、及び出力方程式に基づき、事前出力推定値、出力の共分散行列、及び状態と出力の相互共分散行列を算出する。これらの値を算出する方法は、EKFで行う場合とUKFで行う場合とで相違する。以下、EKF、又はUKFで行う場合について各々説明する。
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-M000009
 続いて以下の式(22)に基づき事前出力推定値を算出し、また式(23)及び式(24)に基づき夫々出力の共分散行列及び状態と出力の相互共分散行列を算出(更新)する。
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-M000012
 そして事前推定予測フェーズに戻り、事後推定フェーズにより算出した当該事後状態推定値及び状態の事後共分散行列を用いて、事前推定予測フェーズ~事後推定フェーズを繰り返し行う。
(実施例1:バッテリの内部状態量の推定)
 上記MKFのアルゴリズムを用いたバッテリの内部状態量を推定する推定装置について以下説明する。バッテリの内部状態量は、バッテリの充電率(SOC)を含む。なおこの推定装置1は、例えば電気自動車に搭載される。図2は本発明の実施例1に係る推定装置1を含むブロック図である。本発明の実施例1に係る推定装置1は、バッテリ2に接続されており、電流センサ11と、電圧センサ12と、制御装置13とを備える。
 バッテリ2は、リチャージャブル・バッテリであって、本実施例では例えばリチウム・イオン・バッテリを用いる。なお、本実施例は、バッテリ2がリチウム・イオン・バッテリであることに限られることはなく、ニッケル水素バッテリなど他の種類のバッテリを用いてもよい。
 電流センサ11は、バッテリ2から車両を駆動する電気モータ等へ電力を供給する場合の放電電流の大きさを検出する。また、電流センサ11は、制動時に電気モータを発電機として機能させ制動エネルギの一部を回収したり地上の電源設備から充電したりする場合の充電電流の大きさを検出する。検出した充放電電流信号iは、入力信号として制御装置13へ出力される。
 電圧センサ12は、バッテリ2の端子間の電圧値を検出するものである。ここで検出された端子電圧信号vは制御装置13へ出力される。なお、電流センサ11、電圧センサ12は、種々の構造・形式のものを適宜採用することができる。
 制御装置13は、例えばマイクロコンピュータで構成される。制御装置13は、インタフェース部131と、制御部132と、記憶部133と、出力部134とを備える。
 インタフェース部131は、電流センサ11から入力された充放電電流信号iと、電圧センサ12から入力された端子電圧信号vと受け取る。
 制御部132は、制御装置13に係る各種制御を行う。具体的には制御部132は、インタフェース部131が受け取った充放電電流信号i及び端子電圧信号vと、バッテリ2に係るバッテリ等価回路モデルに基づき、MKFに従ってバッテリ2の内部状態量を推定する。記憶部133は、制御装置13が推定を行うために必要な各種プログラム等を記憶する。出力部134は、制御部132により推定された結果を出力する。
 図3は、本実施例において用いるバッテリ等価回路モデルを示す。これは、Kuhnらが提案するフォスター型回路を用いたワールブルグインピーダンスの近似モデルと、Plettなどが提案する開回路電圧OCV(Open Circuit Voltage)とを組み合わせたものである。
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-I000011
 このとき図3のバッテリ等価回路モデルの状態空間表現は、以下の式(34)~(38)により示される。
Figure JPOXMLDOC01-appb-M000014
ただし、
Figure JPOXMLDOC01-appb-M000015
である。
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-M000017
ただし、  
Figure JPOXMLDOC01-appb-M000018
とする。このとき式(34)及び式(35)は、拡大系のシステムとして夫々以下の状態方程式(式(46))及び出力方程式(式(47))に書き換えることができる。
Figure JPOXMLDOC01-appb-M000019
ただし、
Figure JPOXMLDOC01-appb-M000020
である。式(48)及び式(49)は、式(34)~(45)から導出される。式(46)~(49)で表される拡大系に対して、制御部132はMKFを適用する。
 ここで、式(46)で表される状態方程式は非線形性が強く、式(47)で表される出力方程式は非線形性が弱い。そこで本実施例の場合、事前推定予測フェーズをUKFで行い、事前推定更新フェーズをEKFで行う。
 次に、本発明に係る推定装置1について、図5に示すフローチャートによりそのシミュレーション動作を説明する。なおここでシミュレーションに必要な観測値については、実際にある地点Aから別の地点Bまで電気自動車で走行した際に電流センサ11及び電圧センサ12により計測した計測データを用いる。当該計測データを図6に示す。図6(a)、(b)はそれぞれバッテリ2の端子間電流、端子間電圧を示す。さらに図6(c)(d)(e)に、それぞれバッテリ2のSOC、温度、及び車速の計測データを参考として示す。図6(a)~(e)において横軸は時間であり、0分の時に地点Aを出発し、約600分の時に地点Bに到着している。
 図5に戻って、推定装置1の動作について説明する。はじめに制御部132は、各変数の初期化を行う(ステップS11)。具体的には初期値として以下の実測値を用いる。
Figure JPOXMLDOC01-appb-M000021
 続いて制御部132は、事前推定予測フェーズをUKFで行い(ステップS12)、事前状態推定値及び状態の事前共分散行列を算出(予測)する。事前推定予測フェーズは、式(46)の状態方程式に基づき行う。なお式(46)は連続時間状態方程式であるが、離散時間での数値シミュレーションを行うため、ルンゲクッタ法により離散時間状態方程式にする。なお連続時間状態方程式を離散時間状態方程式に変換する手法は、ルンゲクッタ法に限られず、例えばオイラー法等、如何なる離散化の手法を用いてもよい。
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-M000022
ここで式(54)におけるK~Kは係数パラメータである。
 続いて制御部132は、電流センサ11及び電圧センサ12により測定した観測値と、事前推定更新フェーズで算出した事前出力推定値とに基づき、事前状態推定値及び状態の事前共分散行列を補正し、事後状態推定値及び状態の事後共分散行列を算出する。出力部134は、当該事後状態推定値を、出力値として出力する(ステップS14)。続いてステップS12に戻り、ステップS12~ステップS14の処理を繰り返す。
 図7に、本発明に係る推定装置1により推定した推定結果を示す。図7(a)は推定装置1によるSOCの推定値と、参照値(真値)とを示す。図7(b)は、SOCの誤差率を示す。図7(a)(b)に示すように、本発明に係る推定装置1は参照値に極めて近い値が推定できていることがわかる。図7(c)~(f)は、バッテリ2に係る各パラメータ(R、R、C、τ)の推定値を示す。図7(c)~(f)では、各推定値の偏差をσとしたときの推定値から1σ離間した範囲(1σ範囲)を、それぞれ破線により示している。バッテリ2に係る各パラメータの推定値は夫々一定値に収束し、かつ1σ範囲は時間経過とともに狭まっており、推定精度が保たれていることが分かる。
 参考として、以下にEKF、UKF、MKFの各々でバッテリ2のSOCを推定した場合のSOCの推定誤差の二乗平均平方根(RMSE)の比較表を示す。以下の表に示すように、本発明に係る推定装置1が採用するMKFが最もRMSEが小さく、したがって推定精度が最も高いことが分かる。
Figure JPOXMLDOC01-appb-T000001
 さらに図8及び図9にそれぞれEKF、又はUKFのみで推定したバッテリ2のSOC及び各パラメータの推定結果を示す。SOCの推定結果に関してはEKF、UKF共に一定の推定精度である(図8(a)(b)及び図9(a)(b))。本発明に係るSOC推定結果(図7(a)(b))とこれらの結果とを比較すると、本発明に係る推定結果は、初期の段階においてEKFと同程度の速さで推定値が収束しつつ、かつ偏差の範囲が抑えられている。したがって、MKFが最も推定精度が高い結果となっている。
 またEKFによるバッテリ2の各種パラメータの推定結果(図8(c)~(f))に関しては、一部のパラメータが段階的に上昇し、かつ1σ範囲も収束していない(図8(e)(f))。したがってEKFではこれらのパラメータの推定の精度が悪化している。一方で、UKFによるバッテリ2の各種パラメータの推定結果(図9(c)~(f))に関しては、各パラメータが一定値に収束し、かつ1σの範囲が収束している。本発明に係る各パラメータの推定結果(図7(c)~(f))は、UKFによる各パラメータの推定結果と同等の結果となっている。
 このように実施例1の推定装置1によれば、EKFとUKFを組み合わせたMKFを用いて推定を行う。そしてUKFにより推定を行う事前推定予測フェーズについては、実施例1の場合状態変数が7個であるため、UKFにおけるシグマポイントを15個生成して夫々について計算をすることになる。そのため状態方程式の非線形性は強いものの、事前推定予測フェーズの計算を精度よく行うことができる。一方事前推定更新フェーズについてはEKFにより計算を行う。出力方程式については非線形性が弱いため、EKFでも高精度で推定できる。さらにシグマポイントを15個生成して夫々について計算する場合と比較し、EKFの場合は1点のみで推定を行うため、演算回数は1/15程度に抑えることができる。すなわち、実施例1の推定装置1によれば、計算負荷を抑え、かつ推定精度を高めることができる。
(実施例2:顔認識における内部状態量の推定)
 以下に、本発明のMKFのアルゴリズムを用いた、顔認識(Human Face Tracking)における内部状態量を推定する推定装置について説明する。実施例2に係る推定装置は概略として、事前推定予測フェーズをEKFで行い、事前推定更新フェーズをUKFで行う点が、実施例1にかかる構成と相違する。
 顔認識に係る状態方程式は、
Figure JPOXMLDOC01-appb-M000023
である(Rudolph van der Merwe、“Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models”、A dissertation submitted to the faculty of the OGI School of Science & Engineering at Oregon Health & Science University in partial fulfillment of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering、2004年4月、p.290)。ただしτはサンプリング周期である。また、
Figure JPOXMLDOC01-appb-M000024
である。
 一方、顔認識に係る出力方程式は、同論文より、
Figure JPOXMLDOC01-appb-M000025
である。ただし、
Figure JPOXMLDOC01-appb-M000026
であり、θは楕円の中心から見た角度である。本実施例では、式(55)で表される状態方程式は比較的線形に近く、すなわち非線形性が弱い。一方で、式(58)で表される出力方程式は複雑な非線形性であり、すなわち非線形性が強い。そのため本実施例にMKFを適用する場合は、事前推定予測フェーズをEKFで行い、事前推定更新フェーズをUKFで行う。このようにすることで実施例2に係る推定装置は、顔認識における内部状態量を推定する際の計算負荷を抑え、かつ推定精度を高めることができる。
 なお上記実施例1及び2においては、夫々バッテリの内部状態量の推定及び顔認識における内部状態量の推定においてMKFを適用する例について説明したが、本発明が適用可能なシステムはこれらに限られず、他の如何なる非線形システムにおいても本発明のMKFを適用して内部状態量の状態推定を行うことができる。
 ここで、推定装置として機能させるために、コンピュータを好適に用いることができ、そのようなコンピュータは、推定装置の各機能を実現する処理内容を記述したプログラムを、当該コンピュータの記憶部に格納しておき、当該コンピュータの中央演算処理装置(CPU)によってこのプログラムを読み出して実行させることで実現することができる。
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。
 1 推定装置
 2 バッテリ
 11 電流センサ
 12 電圧センサ
 13 制御装置
 131 インタフェース部
 132 制御部
 133 記憶部
 134 出力部

Claims (5)

  1.  非線形カルマンフィルタを用いて非線形システムにおける内部状態量を推定する推定装置であって、
     前記非線形カルマンフィルタは、前記非線形システムに係る状態方程式に基づき事前状態推定値及び状態の事前共分散行列を算出する事前推定予測フェーズと、前記非線形システムに係る出力方程式に基づき事前出力推定値、出力の共分散行列、及び状態と出力の相互共分散行列を算出する事前推定更新フェーズとを含み、
     前記事前推定予測フェーズ又は前記事前推定更新フェーズのいずれか一方のフェーズをEKFで行い、他方のフェーズをUKFで行うことを特徴とする推定装置。
  2.  前記状態方程式及び前記出力方程式に基づき、非線形性の弱い方程式に対応するフェーズをEKFで行うことを特徴とする、請求項1に記載の推定装置。
  3.  前記状態方程式及び前記出力方程式に基づき、非線形性の強い方程式に対応するフェーズをUKFで行うことを特徴とする、請求項1に記載の推定装置。
  4.  前記非線形システムはバッテリであり、前記内部状態量は前記バッテリのSOCを含み、
     前記事前推定予測フェーズをUKFで行い、前記事前推定更新フェーズをEKFで行うことを特徴とする、請求項1に記載の推定装置。
  5.  非線形カルマンフィルタを用いて非線形システムにおける内部状態量を推定する推定方法であって、
     前記非線形カルマンフィルタは、前記非線形システムに係る状態方程式に基づき事前状態推定値及び状態の共分散行列を算出する事前推定予測フェーズと、前記非線形システムに係る出力方程式に基づき事前出力推定値、出力の共分散行列、及び状態と出力の相互共分散行列を算出する事前推定更新フェーズとを含み、
     前記事前推定予測フェーズ又は前記事前推定更新フェーズのいずれか一方のフェーズをEKFで行い、他方のフェーズをUKFで行うことを特徴とする推定方法。
PCT/JP2014/003640 2013-09-05 2014-07-09 推定装置及び推定方法 WO2015033503A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/895,989 US20160116542A1 (en) 2013-09-05 2014-07-09 Estimation device and estimation method
CN201480031504.8A CN105378496B (zh) 2013-09-05 2014-07-09 估计装置以及估计方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013184483A JP6130275B2 (ja) 2013-09-05 2013-09-05 推定装置及び推定方法
JP2013-184483 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015033503A1 true WO2015033503A1 (ja) 2015-03-12

Family

ID=52628007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003640 WO2015033503A1 (ja) 2013-09-05 2014-07-09 推定装置及び推定方法

Country Status (4)

Country Link
US (1) US20160116542A1 (ja)
JP (1) JP6130275B2 (ja)
CN (1) CN105378496B (ja)
WO (1) WO2015033503A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865535A (zh) * 2015-06-05 2015-08-26 吉林大学 一种基于fpga的锂离子电池soc估计方法和估计设备
WO2017093875A1 (en) * 2015-12-01 2017-06-08 Biopharm Nz Limited Fungicide preparation
CN109471035A (zh) * 2018-10-17 2019-03-15 山东斯博科特电气技术有限公司 基于随机矩阵特征谱分析的燃料电池系统状态评估方法
CN109740209A (zh) * 2018-12-20 2019-05-10 北京空天技术研究所 高超声速飞行器参数在线辨识方法及使用其的力学模型
CN111273084A (zh) * 2020-02-24 2020-06-12 广东电网有限责任公司广州供电局 一种自适应强跟踪无迹卡尔曼滤波同步相量参数估计方法
CN111985093A (zh) * 2020-08-03 2020-11-24 哈尔滨工程大学 一种带噪声估计器的自适应无迹卡尔曼滤波状态估计方法
CN113504012A (zh) * 2021-07-14 2021-10-15 国网福建省电力有限公司检修分公司 基于卡尔曼滤波算法的sf6压力状态判别方法及装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006450B1 (fr) * 2013-06-04 2015-05-22 Renault Sa Procede pour estimer l'etat de sante d'une cellule electrochimique de stockage d'energie electrique
JP5946436B2 (ja) * 2013-10-21 2016-07-06 カルソニックカンセイ株式会社 バッテリのパラメータ推定装置及びパラメータ推定方法
US10436845B2 (en) * 2016-03-01 2019-10-08 Faraday & Future Inc. Electric vehicle battery monitoring system
EP3435102A1 (de) * 2017-07-26 2019-01-30 INVENOX GmbH Verfahren und vorrichtung zur detektion von batteriezellenzuständen und batteriezellenparametern
EP3435101A1 (de) * 2017-07-26 2019-01-30 INVENOX GmbH Verfahren und vorrichtung zur überwachung eines stabilen konvergenzverhaltens eines kalman-filters
KR102160274B1 (ko) * 2017-09-07 2020-09-25 주식회사 엘지화학 배터리 충전 상태 추정 장치 및 방법
CN110441691A (zh) * 2018-05-02 2019-11-12 西南科技大学 一种基于精简粒子无迹变换的soc估算方法
CN111505506A (zh) * 2020-05-15 2020-08-07 吉林大学 一种多尺度卡尔曼滤波与无迹卡尔曼滤波融合的电池soc估算方法
CN112115419B (zh) * 2020-09-14 2024-07-12 深圳大学 系统状态估计方法、系统状态估计装置
CN112327166B (zh) * 2020-10-21 2023-07-28 合肥工业大学 基于分数阶平方根无迹卡尔曼滤波的锂电池soc估计方法
CN112269373B (zh) * 2020-11-02 2021-08-31 湖南大学 一种车辆控制系统的状态估计模块
CN112671290B (zh) * 2020-12-23 2022-10-04 南京理工大学 基于单电阻采样的异步电机无速度传感器矢量控制方法
CN113204900B (zh) * 2021-07-06 2021-09-07 湖北东湖实验室 纯电池动力船舶综合电力系统的自适应状态估计方法
CN114936080B (zh) * 2022-05-25 2024-04-02 中山大学 一种分布式系统的容错性任务调度方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010420A (ja) * 2006-06-26 2008-01-17 Samsung Sdi Co Ltd バッテリー管理システム、バッテリーsocの推定方法及びバッテリー管理システムの駆動方法
WO2012098968A1 (ja) * 2011-01-17 2012-07-26 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006009643D1 (de) * 2006-08-03 2009-11-19 St Microelectronics Srl Verfahren zur Zustandsschätzung eines Systems und eine zugehörige Vorrichtung zur Ermittlung der Position und der Drehzahl eines bürstenlosen Motors
US7994755B2 (en) * 2008-01-30 2011-08-09 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
CN102062841B (zh) * 2009-11-11 2012-12-12 北汽福田汽车股份有限公司 动力电池荷电状态的估测方法及系统
US9077182B2 (en) * 2013-01-29 2015-07-07 Mitsubishi Electric Research Laboratories, Inc. Method for estimating state of charge for lithium-ion batteries
US10664562B2 (en) * 2013-02-24 2020-05-26 Fairchild Semiconductor Corporation and University of Connecticut Battery state of charge tracking, equivalent circuit selection and benchmarking

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010420A (ja) * 2006-06-26 2008-01-17 Samsung Sdi Co Ltd バッテリー管理システム、バッテリーsocの推定方法及びバッテリー管理システムの駆動方法
WO2012098968A1 (ja) * 2011-01-17 2012-07-26 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHIAKI TAKENO ET AL.: "State and Parameter Estimation for Dynamical Systems by Using Unscented Kalman Filter", TRANSACTION OF THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS, vol. 24, no. 9, 15 September 2011 (2011-09-15), pages 21 - 29 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865535A (zh) * 2015-06-05 2015-08-26 吉林大学 一种基于fpga的锂离子电池soc估计方法和估计设备
WO2017093875A1 (en) * 2015-12-01 2017-06-08 Biopharm Nz Limited Fungicide preparation
CN109471035A (zh) * 2018-10-17 2019-03-15 山东斯博科特电气技术有限公司 基于随机矩阵特征谱分析的燃料电池系统状态评估方法
CN109471035B (zh) * 2018-10-17 2020-11-06 山东斯博科特电气技术有限公司 基于随机矩阵特征谱分析的燃料电池系统状态评估方法
CN109740209A (zh) * 2018-12-20 2019-05-10 北京空天技术研究所 高超声速飞行器参数在线辨识方法及使用其的力学模型
CN111273084A (zh) * 2020-02-24 2020-06-12 广东电网有限责任公司广州供电局 一种自适应强跟踪无迹卡尔曼滤波同步相量参数估计方法
CN111273084B (zh) * 2020-02-24 2022-03-04 广东电网有限责任公司广州供电局 一种自适应强跟踪无迹卡尔曼滤波同步相量参数估计方法
CN111985093A (zh) * 2020-08-03 2020-11-24 哈尔滨工程大学 一种带噪声估计器的自适应无迹卡尔曼滤波状态估计方法
CN111985093B (zh) * 2020-08-03 2022-06-21 哈尔滨工程大学 一种带噪声估计器的自适应无迹卡尔曼滤波状态估计方法
CN113504012A (zh) * 2021-07-14 2021-10-15 国网福建省电力有限公司检修分公司 基于卡尔曼滤波算法的sf6压力状态判别方法及装置
CN113504012B (zh) * 2021-07-14 2023-12-22 国网福建省电力有限公司检修分公司 基于卡尔曼滤波算法的sf6压力状态判别方法及装置

Also Published As

Publication number Publication date
CN105378496A (zh) 2016-03-02
JP6130275B2 (ja) 2017-05-17
CN105378496B (zh) 2017-08-18
US20160116542A1 (en) 2016-04-28
JP2015052483A (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6130275B2 (ja) 推定装置及び推定方法
US20230152380A1 (en) Method and apparatus for determining state of charge and battery management system
CN107690585B (zh) 用于确定锂硫电池组的健康状况和充电状态的方法和装置
JP6507375B2 (ja) 電池の状態推定装置、および、電池の状態推定方法
Kwak et al. Parameter identification and SOC estimation of a battery under the hysteresis effect
Chen et al. A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles
Xiong et al. A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
Xiong et al. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles
JP4722857B2 (ja) 進歩セルモデル予測技術を用いたバッテリパックの電力容量の計算方法
US20180106868A1 (en) Method for estimating a battery state of health
JP6711981B2 (ja) バッテリのパラメータ推定装置
US20150219726A1 (en) Systems and methods for battery state estimation
JP2007147487A (ja) 二次電池の入出力可能電力推定装置
JP6221884B2 (ja) 推定プログラム、推定方法および推定装置
JP6455914B2 (ja) 蓄電残量推定装置、蓄電池の蓄電残量を推定する方法、及びコンピュータプログラム
US10310021B2 (en) Method for real time correction of ion concentration and Coulomb counting state-of-charge (SOC) in battery
Jiang et al. Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery
EP3896776A1 (en) Simulated battery construction method and simulated battery construction device
KR20170134193A (ko) 배터리의 충전 상태를 추정하는 방법 및 그 방법을 실행하는 배터리 관리 시스템
JP6421411B2 (ja) 電池の充電率を推定する推定プログラム、電池の充電率を推定する推定方法、および、電池の充電率を推定する推定装置
JP2016065828A (ja) 推定プログラム、推定方法および推定装置
Yun et al. State-of-charge estimation method for lithium-ion batteries using extended kalman filter with adaptive battery parameters
Riu et al. Time domain simulation of Li-ion batteries using non-integer order equivalent electrical circuit
JP2017040574A (ja) 二次電池の拡散抵抗同定装置
WO2018029849A1 (ja) 推定装置、推定プログラムおよび充電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14895989

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842483

Country of ref document: EP

Kind code of ref document: A1