JP2013008584A - リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 - Google Patents

リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 Download PDF

Info

Publication number
JP2013008584A
JP2013008584A JP2011141002A JP2011141002A JP2013008584A JP 2013008584 A JP2013008584 A JP 2013008584A JP 2011141002 A JP2011141002 A JP 2011141002A JP 2011141002 A JP2011141002 A JP 2011141002A JP 2013008584 A JP2013008584 A JP 2013008584A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
lithium ion
ion secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011141002A
Other languages
English (en)
Other versions
JP6003015B2 (ja
JP2013008584A5 (ja
Inventor
Kiichi Hirose
貴一 廣瀬
takuji Fujinaga
卓士 藤永
Ko Koizumi
公 小泉
Norihiro Shimoi
法弘 下位
Kenichi Kawase
賢一 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011141002A priority Critical patent/JP6003015B2/ja
Priority to CN201210202893.9A priority patent/CN102842733B/zh
Priority to US13/527,284 priority patent/US9083054B2/en
Publication of JP2013008584A publication Critical patent/JP2013008584A/ja
Publication of JP2013008584A5 publication Critical patent/JP2013008584A5/ja
Application granted granted Critical
Publication of JP6003015B2 publication Critical patent/JP6003015B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】優れた電池特性を得ることが可能なリチウムイオン二次電池を提供する。
【解決手段】リチウムイオン二次電池は、正極と、活物質を含む負極と、電解液とを備える。活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた非結晶性または低結晶性の被覆部と、その被覆部の表面のうちの少なくとも一部に設けられた繊維状炭素部とを含む。被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8である。
【選択図】図4

Description

本技術は、リチウムイオンを吸蔵放出可能な負極活物質を含むリチウムイオン二次電池用負極、その負極を用いたリチウムイオン二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。
近年、携帯電話機または携帯情報端末機器(PDA)などに代表される電子機器が広く普及しており、そのさらなる小型化、軽量化および長寿命化が強く求められている。これに伴い、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、最近では、上記した電子機器に限らず、電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、または電動ドリルなどの電動工具に代表される多様な用途への適用も検討されている。
二次電池としては、さまざまな充放電原理を利用するものが広く提案されているが、中でも、リチウムイオンの吸蔵放出を利用するリチウムイオン二次電池が有望視されている。鉛電池およびニッケルカドミウム電池などよりも高いエネルギー密度が得られるからである。
リチウムイオン二次電池は、正極および負極と共に電解液を備えており、その負極は、リチウムイオンを吸蔵放出可能である負極活物質を含んでいる。負極活物質としては、黒鉛などの炭素材料が広く用いられているが、最近では、電池容量のさらなる向上が求められていることから、Siを用いることが検討されている。Siの理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも格段に大きいため、電池容量の大幅な向上を期待できるからである。
ところが、負極活物質としてSiを用いると、充放電時に負極活物質が激しく膨張収縮するため、その負極活物質が主に表層近傍で割れやすくなる。負極活物質が割れると、高反応性の新生面(活性面)が生じるため、その負極活物質の表面積(反応面積)が増加する。これにより、新生面で電解液の分解反応が生じると共に、その新生面に電解液由来の被膜を形成するために電解液が消費されるため、サイクル特性などの電池特性が低下しやすくなる。
そこで、サイクル特性などの電池特性を向上させるために、リチウムイオン二次電池の構成についてさまざまな検討がなされている。
具体的には、サイクル特性および安全性を向上させるために、スパッタ法を用いてSiおよび非晶質SiO2 を同時に堆積させている(例えば、特許文献1参照。)。優れた電池容量および安全性能を得るために、SiOx 粒子の表面に電子伝導性材料層(炭素材料)を設けている(例えば、特許文献2参照。)。ハイレート充放電特性およびサイクル特性を向上させるために、SiおよびOを含有すると共に負極集電体に近い側で酸素比率が大きくなるように負極活物質層を形成している(例えば、特許文献3参照。)。サイクル特性を向上させるために、SiおよびOを含有し、全体の平均酸素含有量が40原子%以下になると共に負極集電体に近い側で平均酸素含有量が大きくなるように負極活物質層を形成している(例えば、特許文献4参照。)。この場合には、負極集電体に近い側における平均酸素含有量と遠い側における平均酸素含有量との差を4原子%〜30原子%としている。
また、初回充放電特性などを向上させるために、Si相、SiO2 およびMy O金属酸化物を含むナノ複合体を用いている(例えば、特許文献5参照。)。サイクル特性を向上させるために、粉末状のSiOx (0.8≦x≦1.5,粒径範囲=1μm〜50μm)と炭素質材料とを混合して、800℃〜1600℃×3時間〜12時間焼成している(例えば、特許文献6参照。)。初回充電時間を短縮するために、Lia SiOx (0.5≦a−x≦1.1および0.2≦x≦1.2)で表される負極活物質を用いている(例えば、特許文献7参照。)。この場合には、SiおよびOを含む活物質前駆体にLiを蒸着させている。充放電サイクル特性を向上させるために、負極活物質体におけるSi量に対するO量のモル比が0.1〜1.2になると共に、負極活物質体と集電体との界面近傍におけるSi量に対するO量のモル比の最大値と最小値との差が0.4以下になるように、SiOx の組成を制御している(例えば、特許文献8参照。)。負荷特性を向上させるために、Li含有多孔質金属酸化物(Lix SiO:2.1≦x≦4)を用いている(例えば、特許文献9参照。)。
さらに、充放電サイクル特性を向上させるために、Siを含む薄膜の上に、シラン化合物またはシロキサン化合物などの疎水化層を形成している(例えば、特許文献10参照。)。サイクル特性を向上させるために、SiOx (0.5≦x<1.6)の表面が黒鉛被膜により被覆された導電性粉末を用いている(例えば、特許文献11参照。)。この場合には、黒鉛被膜に関するラマンスペクトルのラマンシフトにおいて1330cm-1および1580cm-1にブロードなピークが現れると共に、それらの強度比I1330/I1580を1.5<I1330/I1580<3としている。電池容量およびサイクル特性を向上させるために、Siの微結晶(結晶の大きさ=1nm〜500nm)がSiO2 に分散された構造を有する粒子を1質量%〜30質量%含む粉末を用いている(例えば、特許文献12参照。)。この場合には、レーザ回折散乱式粒度分布測定法による粒度分布において、粉末の累積90%径(D90)を50μm以下、粒子の粒子径を2μm未満にしている。サイクル特性を向上させるために、SiOx (0.3≦x≦1.6)を用いると共に、充放電時に電極ユニットを3kgf/cm2 以上で加圧している(例えば、特許文献13参照。)。過充電特性および過放電特性などを向上させるために、SiとOの原子数比が1:y(0<y<2)であるSiの酸化物を用いている(例えば、特許文献14参照。)。
この他、電気化学的に多量のリチウムイオンを蓄積または放出するために、Siなどの一次粒子の表面に非晶質の金属酸化物を設けている(例えば、特許文献15参照。)。この金属酸化物を形成するための金属酸化時におけるギブスの自由エネルギーは、Siなどの酸化時におけるギブスの自由エネルギーよりも小さくなっている。高容量、高効率、高動作電圧および長寿命を実現するために、Si原子の酸化数が所定の条件を満たす負極材料を用いることが提案されている(例えば、特許文献16参照。)。この負極材料は、酸化数が0であるSiと、酸化数が+4のSi原子を有するSi化合物と、酸化数が0よりも大きいと共に+4未満であるSi低級酸化物とを含む。
また、負極全体のインピーダンスの増大を抑制するために、含Si粒子と、その含Si粒子の表面に付着されたカーボンナノファイバと、そのカーボンナノファイバの成長を促進させるCuなどの触媒元素とを含む複合負極活物質を用いることが提案されている(例えば、特許文献17参照。)。
特開2001−185127号公報 特開2002−042806号公報 特開2006−164954号公報 特開2006−114454号公報 特開2009−070825号公報 特開2008−282819号公報 国際公開第2007/010922号パンフレット 特開2008−251369号公報 特開2008−177346号公報 特開2007−234255号公報 特開2009−212074号公報 特開2009−205950号公報 特開2009−076373号公報 特許第2997741号明細書 特開2009−164104号公報 特開2005−183264号公報 特開2007−165078号公報
電子機器などは益々高性能化および多機能化しており、その使用頻度も増加しているため、リチウムイオン二次電池は頻繁に充放電される傾向にある。そこで、リチウムイオン二次電池の電池特性についてより一層の向上が望まれている。
本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能なリチウムイオン二次電池用負極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することにある。
本技術のリチウムイオン二次電池用負極は、活物質を含み、その活物質がリチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた非結晶性または低結晶性の被覆部と、その被覆部の表面のうちの少なくとも一部に設けられた繊維状炭素部とを含むものである。この被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8である。また、本技術のリチウムイオン二次電池は、正極および負極と共に電解液を備え、その負極が上記したリチウムイオン二次電池用負極と同様の構成を有するものである。さらに、本技術の電子機器、電動工具、電池パック、電動車両および電力貯蔵システムは、本技術のリチウムイオン二次電池を用いたものである。
本技術のリチウムイオン二次電池用負極またはリチウムイオン二次電池によれば、活物質がコア部の表面に設けられた非結晶性または低結晶性の被覆部とその被覆部の表面に設けられた繊維状炭素部とを含む。この被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8である。よって、優れた電池特性を得ることができる。また、本技術のリチウムイオン二次電池を用いた電子機器、電動工具、電池パック、電動車両および電力貯蔵システムによれば、上記したサイクル特性などの特性向上を図ることができる。
本技術の一実施形態のリチウムイオン二次電池用負極の構成を表す断面図である。 負極活物質の構成を模式的に表す断面図である。 本技術の一実施形態のリチウムイオン二次電池(角型)の構成を表す断面図である。 図3に示したリチウムイオン二次電池のIV−IV線に沿った断面図である。 図4に示した正極および負極の構成を模式的に表す平面図である。 本技術の一実施形態のリチウムイオン二次電池(円筒型)の構成を表す断面図である。 図6に示した巻回電極体の一部を拡大して表す断面図である。 本技術の一実施形態のリチウムイオン二次電池(ラミネートフィルム型)の構成を表す分解斜視図である。 図8に示した巻回電極体のIX−IX線に沿った断面図である。 リチウムイオン二次電池の適用例(電池パック)の構成を表すブロック図である。 リチウムイオン二次電池の適用例(電動車両)の構成を表すブロック図である。 リチウムイオン二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。 リチウムイオン二次電池の適用例(電動工具)の構成を表すブロック図である。
以下、本技術の実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

1.リチウムイオン二次電池用負極
2.リチウムイオン二次電池
2−1.角型
2−2.円筒型
2−3.ラミネートフィルム型
3.リチウムイオン二次電池の用途
3−1.電池パック
3−2.電動車両
3−3.電力貯蔵システム
3−4.電動工具
<1.リチウムイオン二次電池用負極>
図1は、本技術の一実施形態のリチウムイオン二次電池用負極(以下、単に「負極」という。)の断面構成を表している。また、図2は、負極に含まれる活物質(負極活物質)の断面構成を模式的に表している。
[負極の全体構成]
負極は、例えば、図1に示したように、負極集電体1の上に負極活物質層2を有している。この負極では、負極活物質層2が負極集電体1の両面に設けられていてもよいし、片面だけに設けられていてもよい。ただし、負極集電体1はなくてもよい。
[負極集電体]
負極集電体1は、例えば、電気化学的安定性、電気伝導性および機械的強度に優れた導電性材料により形成されている。このような導電性材料は、例えば、Cu、Niまたはステンレスなどである。中でも、Liと金属間化合物を形成しないと共に負極活物質層2と合金化する材料が好ましい。
この負極集電体1は、CおよびSを構成元素として含んでいることが好ましい。負極集電体1の物理的強度が向上するため、充放電時に負極活物質層2が膨張収縮しても負極集電体1が変形しにくくなるからである。このような負極集電体1は、例えば、CおよびSがドープされた金属箔などである。CおよびSの含有量は、特に限定されないが、中でも、いずれも100ppm以下であることが好ましい。より高い効果が得られるからである。
負極集電体1の表面は、粗面化されていてもよいし、粗面化されていなくてもよい。粗面化されていない負極集電体1は、例えば、圧延金属箔などであり、粗面化された負極集電体1は、例えば、電解処理またはサンドブラスト処理された金属箔などである。電解処理とは、電解槽中で電解法を用いて金属箔などの表面に微粒子を形成して凹凸を設ける方法である。電解法により作製された金属箔は、一般に電解箔(例えば電解Cu箔など)と呼ばれている。
中でも、負極集電体1の表面は、粗面化されていることが好ましい。アンカー効果により負極集電体1に対する負極活物質層2の密着性が向上するからである。負極集電体1の表面粗さ(例えば十点平均粗さRz)は、特に限定されないが、アンカー効果により負極活物質層2の密着性を向上させるためにはできるだけ大きいことが好ましい。ただし、表面粗さが大きすぎると、かえって負極活物質層2の密着性が低下する可能性がある。
[負極活物質層]
負極活物質層2は、図2に示したように、リチウムイオンを吸蔵放出可能である複数の粒子状の負極活物質200を含んでおり、必要に応じて、さらに負極結着剤または負極導電剤などの他の材料を含んでいてもよい。
負極活物質200は、例えば、コア部201と、被覆部202と、導電部203と、繊維状炭素部204とを含んでいる。この負極活物質200の構成は、例えば、SEMにより確認できる。
[コア部]
コア部201は、リチウムイオンを吸蔵放出可能である負極活物質200の主要部分である。コア部201の組成は、リチウムイオンを吸蔵放出可能であれば、特に限定されない。中でも、コア部201は、SiおよびSnのうちの少なくとも一方を構成元素として含んでいることが好ましい。高いエネルギー密度が得られるからである。このコア部201は、Siの単体でもよいし、Siの化合物でもよいし、Siの合金でもよいし、それらを2種類以上含むものでもよい。このように単体、化合物または合金のいずれでもよいことは、Snについても同様である。なお、「単体」とは、あくまで一般的な意味での単体(微量の不純物(酸素以外の元素)を含んでいてもよい)であり、必ずしも純度100%を意味しているわけではない。
Siの合金は、例えば、Siと共に、Sn、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、SbまたはCrなどのいずれか1種類または2種類以上の元素を含んでいる。また、Siの化合物は、例えば、Siと共に、CまたはOなどのいずれか1種類または2種類以上の元素を含んでいる。なお、Siの化合物は、例えば、Siの合金について説明した一連の元素のいずれか1種類または2種類以上の元素を含んでいてもよい。Siの合金または化合物は、例えば、SiB4 、SiB6 、Mg2 Si、Ni2 Si、TiSi2 、MoSi2 、CoSi2 、NiSi2 、CaSi2 、CrSi2 、Cu5 Si、FeSi2 、MnSi2 、NbSi2 、TaSi2 、VSi2 、WSi2 、ZnSi2 、SiC、Si3 4 、Si2 2 O、SiOv (0<v≦2)またはLiSiOなどである。
Snの合金は、例えば、Snと共に、Si、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、SbまたはCrなどのいずれか1種類または2種類以上の元素を含んでいる。Snの化合物は、例えば、Snと共に、CまたはOなどのいずれか1種類または2種類以上の元素を含んでいる。なお、Snの化合物は、例えば、Snの合金について説明した一連の元素のいずれか1種類または2種類以上を含んでいてもよい。Snの合金または化合物は、例えば、SnOw (0<w≦2)、SnSiO3 、LiSnO、Mg2 Sn、SnCo、SnCoTiまたはSnFeCoなどである。
中でも、コア部201は、例えば、SiおよびOを構成元素として含んでおり、そのSiに対するOの原子比x(O/Si)は、0≦x<0.5であることが好ましい。原子比xが範囲外である場合(0.5≦x)と比較して、充放電時にコア部201がリチウムイオンを吸蔵放出しやすくなると共に、不可逆容量が減少するため、高い電池容量が得られるからである。
このコア部201の形成材料は、上記した組成(原子比x)から明らかなように、Siの単体(x=0)でもよいし、SiOx (0<x<0.5)でもよい。ただし、xはできるだけ小さいことが好ましく、x=0であること(Siの単体)がより好ましい。より高いエネルギー密度が得られるからである。また、コア部201の劣化が抑制されるため、充放電サイクルの初期から放電容量が低下しにくくなるからである。
このコア部201は、結晶性(高結晶性)、低結晶性または非結晶性のいずれでもよいが、中でも、高結晶性または低結晶性であることが好ましく、高結晶性であることがより好ましい。充放電時にコア部201がリチウムイオンを吸蔵放出しやすくなるため、高い電池容量などが得られるからである。また、充放電時にコア部201が膨張収縮しにくくなるからである。中でも、コア部201において、X線回折により得られるSiの(111)結晶面に起因する回折ピークの半値幅(2θ)は20°以下であると共に、その(111)結晶面に起因する結晶子サイズは10nm以上であることが好ましい。より高い効果が得られるからである。
また、コア部201のメジアン径は、特に限定されないが、中でも、0.3μm〜20μmであることが好ましい。充放電時にコア部201がリチウムイオンを吸蔵放出しやすくなると共に、そのコア部201が割れにくくなるからである。詳細には、メジアン径が0.3μmよりも小さいと、コア部201の総表面積が大きくなりすぎるため、充放電時に膨張収縮しやすくなる可能性がある。一方、メジアン径が20μmよりも大きいと、充放電時にコア部201が割れやすくなる可能性がある。
なお、コア部201は、SiおよびSnと共に、他の元素(SiおよびSnを除く。)のいずれか1種類または2種類以上を構成元素として含んでいてもよい。
具体的には、コア部201は、FeおよびAlのうちの少なくとも一方の元素M2を含んでいることが好ましい。ただし、SiおよびOに対するM2の割合(M2/(Si+O))は、0.01原子%〜50原子%であることが好ましい。コア部201の電気抵抗が低下すると共に、リチウムイオンの拡散性が向上するからである。
コア部201中において、M2のうちの少なくとも一部は、SiおよびOとは別個(遊離状態)に存在していてもよいし、SiおよびOのうちの少なくとも一方と合金または化合物を形成していてもよい。このM2を含むコア部201の組成(M2の結合状態など)については、例えば、EDXにより確認できる。これらの結合状態および確認方法は、後述するM3およびM4についても同様である。
中でも、コア部201は、Alを含んでいることが好ましい。コア部201が低結晶化するため、充放電時にコア部201が膨張収縮しにくくなると共に、リチウムイオンの拡散性がより向上するからである。このAlを含むコア部201において、X線回折により得られるSiの(111)結晶面に起因する回折ピークの半値幅(2θ)は、0.6°以上であることが好ましい。また、上記した(111)結晶面に起因する結晶子サイズは、90nm以下であることが好ましい。この半値幅を調べる場合には、HFなどで被覆部202を溶解除去してからコア部201を分析することが好ましい。
詳細には、コア部201がAlを含んでおらず、そのコア部201が高結晶性であると、充放電時にコア部201が膨張収縮しやすくなる。これに対して、コア部201がAlを含んでいると、そのコア部201が高結晶性であるか低結晶性であるかに依存せずに、充放電時にコア部201が膨張収縮しにくくなる。この場合には、コア部201が低結晶性であると、コア部201の膨張収縮が抑制されるだけでなく、リチウムイオンの拡散性も向上する。
また、コア部201は、CrおよびNiのうちの少なくとも一方の元素M3を構成元素として含んでいることが好ましい。ただし、SiおよびOに対するM3の割合(M3/(Si+O))は、1原子%〜50原子%であることが好ましい。この場合でも、コア部201の電気抵抗が低下すると共に、リチウムイオンの拡散性が向上するからである。コア部201の電気抵抗が低下するからである。
また、コア部201は、B、Mg、Ca、Ti、V、Mn、Co、Cu、Ge、Y、Zr、Mo、Ag、In、Sn、Sb、Ta、W、Pb、La、Ce、PrおよびNdのうちの少なくとも1種の元素M4を構成元素として含んでいることが好ましい。ただし、SiおよびOに対するM4の割合(M4/(Si+O))は、0.01原子%〜30原子%であることが好ましい。この場合でも、コア部201の電気抵抗が低下すると共に、リチウムイオンの拡散性が向上するからである。
[被覆部]
被覆部202は、コア部201の表面のうちの少なくとも一部に設けられている。このため、被覆部202は、コア部201の表面の一部だけを被覆していてもよいし、全部を被覆していてもよい。前者の場合には、被覆部202がコア部201の表面を複数箇所に点在しながら被覆していてもよい。
この被覆部202は、SiおよびOを構成元素として含んでおり、そのSiに対するOの原子比y(O/Si)は、0.5≦y≦1.8である。充放電を繰り返した場合でも、負極活物質200の劣化が抑制されるからである。これにより、コア部201におけるリチウムイオンの出入りを確保しつつ、被覆部202によりコア部201が化学的および物理的に保護される。
詳細には、コア部201と電解液との間に被覆部202が介在すると、高反応性のコア部201が電解液と接触しにくくなるため、その電解液の分解反応が抑制される。この場合には、被覆部202がコア部201と同系統の材料(共通のSiを構成元素として含む材料)により形成されていれば、そのコア部201に対する被覆部202の密着性も高くなる。
また、被覆部202が柔軟性(変形しやすい性質)を有するため、充放電時にコア部201が膨張収縮しても、それに追随して被覆部202も膨張収縮(伸縮)しやすくなる。これにより、コア部201が膨張収縮しても、被覆部202が破損(断裂等)しにくくなるため、被覆部202によるコア部201の被覆状態が充放電を繰り返しても維持される。よって、充放電時にコア部201が割れても新生面が露出しにくくなると共に、その新生面が電解液と接触しにくくなるため、電解液の分解反応が抑制される。
被覆部202の形成材料は、上記した組成(原子比y)から明らかなように、SiOy である。中でも、原子比yは、0.7≦y≦1.3であることが好ましく、y=1.2であることがより好ましい。より高い効果が得られるからである。
この被覆部202は、非結晶性(非晶質)または低結晶性である。結晶性(高結晶性)である場合と比較して、リチウムイオンが拡散されやすいため、コア部201の表面が被覆部202により被覆されていても、そのコア部201がリチウムイオンを円滑に吸蔵放出しやすくなるからである。
中でも、被覆部202は、非結晶性であることが好ましい。被覆部202の柔軟性が向上するため、充放電時にコア部201の膨張収縮に追随しやすくなるからである。また、被覆部202がリチウムイオンをトラップしにくくなるため、コア部201におけるリチウムイオンの出入りが阻害されにくくなるからである。
「低結晶性」とは、被覆部202の形成材料が非結晶領域および結晶領域(結晶粒)の双方を含むことを意味しており、非結晶領域だけを含む「非結晶性」とは異なっている。この結晶粒は、非結晶領域の中に点在している場合が多い。被覆部202が低結晶性であるかどうかを確認するためには、例えば、高角散乱暗視野走査型透過電子顕微鏡(HAADF STEM)などにより被覆部202を観察すればよい。TEM写真から非結晶領域と結晶領域とが混在している様子を確認できれば、その被覆部202は低結晶性である。なお、非結晶領域と結晶領域とが混在している場合、その結晶領域は、粒状の輪郭を有する領域(結晶粒)として観察される。この結晶粒の内部には、結晶性に起因する縞状の模様(結晶格子縞)が観察されるため、その結晶粒を非結晶領域から識別できる。
また、被覆部202は、単層でもよいし、多層でもよいが、中でも、多層であることが好ましい。充放電時にコア部201が膨張収縮しても、被覆部202が破損しにくくなるからである。詳細には、単層の被覆部202では、その厚さによっては被覆部202の内部応力が緩和されにくいため、充放電時に膨張収縮したコア部201の影響を受けて被覆部202が破損(割れおよび剥がれなど)する可能性がある。これに対して、多層の被覆部202では、層間に生じた微小な隙間が応力緩和用のギャップとして機能することで内部応力が緩和されるため、被覆部202が破損しにくくなる。ただし、被覆部202は、全体に渡って多層でもよいし、一部だけ多層でもよい。
この被覆部202の平均厚さは、特に限定されないが、中でも、できるだけ薄いことが好ましく、1nm〜3000nmであることがより好ましい。コア部201がリチウムイオンを吸蔵放出しやすくなると共に、被覆部202による保護機能が効果的に発揮されるからである。詳細には、平均厚さが1nmよりも小さいと、被覆部202がコア部201を保護しにくくなる可能性がある。一方、平均厚さが10000nmよりも大きいと、電気抵抗が高くなると共に、充放電時にコア部201がリチウムイオンイオンを吸蔵放出しにくくなる可能性がある。被覆部202の形成材料がSiOy である場合、そのSiOy はリチウムイオンを吸蔵しやすい一方で、いったん吸蔵したリチウムイオンを放出しにくい性質を有するからである。
被覆部202の平均厚さは、以下の手順により算出される。まず、SEMにより1個の負極活物質200を観察する。この観察時の倍率は、被覆部202の厚さを測定するために、コア部201と被覆部202との境界を目視で確認(決定)できるような倍率であることが好ましい。続いて、任意の10点で被覆部202の厚さを測定したのち、その平均値(1個当たりの平均厚さ)を算出する。この場合には、できるだけ特定の場所周辺に集中せずに広く分散されるように測定位置を設定することが好ましい。続いて、SEMによる観察個数の総数が100個になるまで、上記した平均値の算出作業を繰り返す。最後に、100個の負極活物質200について算出された平均値(1個当たりの平均厚さ)の平均値(平均厚さの平均値)を算出して、被覆部202の平均厚さとする。
また、コア部201に対する被覆部202の平均被覆率は、特に限定されないが、できるだけ大きいことが好ましく、中でも、30%〜100%であることがより好ましい。被覆部202の保護機能がより向上するからである。
被覆部202の平均被覆率は、以下の手順により算出される。まず、平均厚さを算出した場合と同様に、SEMにより1個の負極活物質200を観察する。この観察時の倍率は、コア部201のうち、被覆部202により被覆されている部分と被覆されていない部分とを目視で識別できるような倍率であることが好ましい。続いて、コア部201の外縁(輪郭)のうち、被覆部202により被覆されている部分の長さと被覆されていない部分の長さとを測定する。そして、被覆率(1個当たりの被覆率:%)=(被覆部202により被覆されている部分の長さ/コア部201の外縁の長さ)×100を算出する。続いて、SEMによる観察個数の総数が100個になるまで、上記した被覆率の算出作業を繰り返す。最後に、100個の負極活物質200について算出された被覆率(1個当たりの被覆率)の平均値を算出して、被覆部202の平均被覆率とする。
なお、被覆部202はコア部201に隣接していることが好ましいが、コア部201の表面に自然酸化膜(SiO2 )が介在していてもよい。この自然酸化膜は、例えば、コア部201の表層近傍が大気中で酸化されたものである。負極活物質200の中心にコア部201が存在すると共に外側に被覆部202が存在すれば、自然酸化膜の存在はコア部201および被覆部202の機能にほとんど影響を及ぼさない。
ここで、負極活物質200がコア部201および被覆部202を含んでいることを確認するためには、上記したSEM観察の他、例えば、X線光電子分光法(XPS)またはエネルギー分散型X線分析法(EDX)により負極活物質200を分析してもよい。
この場合には、負極活物質200の中心部および表層部の酸化度(原子x,y)などを測定すれば、コア部201および被覆部202の組成を確認できる。なお、被覆部202により被覆されているコア部201の組成を調べるためには、HFなどで被覆部202を溶解除去すればよい。
酸化度の測定に関する詳細な手順は、例えば、下記の通りである。最初に、燃焼法を用いて負極活物質200(被覆部202により被覆されたコア部201)を定量して、全体のSi量およびO量を算出する。続いて、HFで被覆部202を洗浄除去したのち、燃焼法を用いてコア部202を定量してSi量およびO量を算出する。最後に、全体のSi量およびO量からコア部201のSi量およびO量を差し引いて、被覆部202のSi量およびO量を算出する。これにより、コア部201および被覆部202についてSi量およびO量が特定されるため、それぞれの酸化度を特定できる。なお、被覆部202を洗浄除去する代わりに、被覆部202により被覆されたコア部201と共に未被覆のコア部201を用いて酸化度を測定してもよい。
なお、被覆部202は、SiおよびOと共に、さらに他の元素のいずれか1種類または2種類以上を構成元素として含んでいてもよい。
具体的には、被覆部202は、Feを構成元素として含んでいることが好ましい。被覆部202の電気抵抗が低下するからである。被覆部202に対するFeの割合(Fe/(Si+O))は、特に限定されないが、中でも、0.005重量%〜0.5重量%であることが好ましい。コア部201の電気抵抗が低下するだけでなく、リチウムイオンの拡散性が向上するからである。
被覆部202中において、Feのうちの少なくとも一部は、SiおよびOとは別個(遊離状態)に存在していてもよいし、SiおよびOのうちの少なくとも一方と合金または化合物を形成していてもよい。このことは、後述するM1等についても同様である。このFeを含むコア部201の組成(Feの結合状態など)については、例えば、EDXにより確認できる。
また、被覆部202は、Li、C、Mg、Al、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Ge、Zr、Mo、Ag、Sn、Ba、W、Ta、NaおよびKのうちの少なくとも1種の元素M1を構成元素として含んでいてもよい。SiおよびOに対するM1の割合(M1/(Si+O)は、20原子%以下であることが好ましい。被覆部202の電気抵抗が低下するからである。なお、被覆部202がAlを含んでいると、その被覆部202が低結晶化するため、充放電時に膨張収縮しにくくなると共に、リチウムイオンの拡散性がより向上する。
もちろん、被覆部202は、Feを含んでいる場合において、さらにM1を含んでいてもよい。
被覆部202が元素M1を含んでいる場合には、その被覆部202中にSiとOとM1との化合物(Si−M1−O)が形成されていることが好ましい。不可逆容量が減少するからである。SiOy は、一般に、サイクル特性などを向上させる一方で、不可逆容量の増大に起因して電池容量を低下させる傾向にあるが、Si−M1−Oが形成されると、不可逆容量が減少する。これにより、不可逆容量が減少すると共に、負極活物質200の電気抵抗が低下する。
なお、被覆部202中では、M1のうちの少なくとも一部がSi−M1−Oを形成していればよい。この場合でも、上記した利点が得られるからである。残りのM1は、遊離の単体として存在していてもよいし、Siと合金を形成していたり、Oと化合物を形成していてもよいし、それらの2種類以上が混在していてもよい。
詳細には、Siのうちの少なくとも一部とOのうちの少なくとも一部とが結合されている場合には、Si原子のO原子に対する結合状態(価数)は、0価(Si0+)、1価(Si1+)、2価(Si2+)、3価(Si3+)および4価(Si4+)を含む。各結合状態にあるSi原子の有無およびそれらの存在比(原子比)については、例えば、XPSにより負極活物質を分析することで確認できる。なお、負極活物質の最表層が意図せずに酸化されている(SiO2 が形成されている)場合には、HFなどでSiO2 を溶解除去してから分析することが好ましい。
被覆部202中にSi−M1−Oが形成される場合には、0価〜4価の結合状態のうち、充放電時に不可逆容量を生じさやすいと共に高抵抗である4価の存在比が相対的に減少する共に、それとは反対の傾向を有する0価の存在比が相対的に増加する。これにより、コア部201の表面に被覆部202を設けても、その被覆部202の存在に起因して不可逆容量が生じにくくなる。
なお、被覆部202は、コア部201と同様に、リチウムイオンを吸蔵放出可能であることが好ましい。コア部20でリチウムイオンを吸蔵放出しやすくなるからである。
[導電部および繊維状炭素部]
導電部203は、被覆部202の表面から繊維状炭素部204を成長させるための触媒として働くものであり、その被覆部202の表面のうちの少なくとも一部に設けられている。このため、導電部203は、被覆部202の一部だけを被覆していてもよいし、全部を被覆していてもよい。前者の場合には、導電部203が複数箇所に点在していてもよい。
この導電部203は、Cu、Fe、CoまたはNiのいずれか1種類または2種類以上を構成元素として含んでおり、それらの単体、化合物または合金のいずれでもよい。
なお、導電部203は、粒子状でもよいし、膜状でもよいし、それらの混合でもよい。図2では、例えば、導電部203が粒子状である場合を示している。この粒子状の導電部203のメジアン径は、特に限定されないが、例えば、10nm〜200nmである。
繊維状炭素部204は、例えば、導電部203を基点として成長した繊維状の炭素材料であり、被覆部202の表面に導電部203を介して連結されている。負極活物質200が繊維状炭素部204を含んでいるのは、負極活物質200同士が繊維状炭素部204を介して接続されやすくなるため、その負極活物質200の電気抵抗が著しく低下するからである。すなわち、負極活物質200間に接点(電気的接続点)が形成されやすくなるため、その負極活物質200間に電流経路が生じやすくなる。この繊維状炭素部204の数は、特に限定されないが、中でも、できるだけ多いことが好ましい。負極活物質200間に接点がより形成されやすくなるからである。
この繊維状炭素部204は、いわゆるカーボンナノワイヤーであり、その形成材料(炭素材料)の種類は、特に限定されない。この繊維状炭素部204は、例えば、炭化水素ガスを熱分解法や、高温処理して炭化させた繊維セルロースなどにより形成される。特に、繊維状炭素部204のうちの少なくとも一部は、黒鉛化されていることが好ましい。負極活物質200の電気抵抗がより低下するからである。
なお、繊維状炭素部204の形状は、全体として細長い繊維状であれば、特に限定されない。この繊維状炭素部204は、例えば、真っ直ぐに延びていてもよいし、湾曲していてもよいし、1または2以上の分岐状でもよいし、チューブ状でもよいし、コイル状でもよいし、それらの混合でもよい。
この繊維状炭素部204の平均長さは、特に限定されないが、中でも、50nm〜50000nmであることが好ましい。異なる負極活物質200の繊維状炭素部204同士が接触しやすくなるため、その負極活物質200の電気抵抗がより低下するからである。詳細には、平均長さが50nmよりも短いと、繊維状炭素部204の構造的安定性が低下する可能性があり、一方、5000nmよりも長いと、かえって電池容量の低下を招く可能性がある。
この繊維状炭素部204の平均長さは、以下の手順により算出される。まず、SEMで1個の負極活物質200を観察する。この観察時の倍率は、1個の負極活物質200に設けられている複数の繊維状炭素部204を識別できるような倍率であることが好ましい。続いて、任意の10点で繊維状炭素部204の長さLを測定したのち、その平均値(1個当たりの平均長さL)を算出する。この場合には、できるだけ特定の場所周辺に集中せずに広く分散されるように測定位置を設定することが好ましい。続いて、SEMによる観察個数の総数が100個になるまで、上記した平均値の算出作業を繰り返す。最後に、100個の負極活物質200について算出された平均値(1個当たりの平均長さL)の平均値(平均長さLの平均値)を算出して、繊維状炭素部200の平均長さとする。
また、繊維状炭素部204の平均径は、特に限定されないが、中でも、5nm〜500nmであることが好ましい。繊維状炭素物204が電流経路として機能しやすくなるため、負極活物質200の電気抵抗がより低下するからである。
この繊維状炭素部204の平均径は、以下の手順により算出される。まず、SEMで1個の負極活物質200を観察する。この観察時の倍率は、1個の負極活物質200に設けられている複数の繊維状炭素部204を識別できるような倍率であることが好ましい。続いて、任意の10点で繊維状炭素部204の径Dを測定したのち、その平均値(1個当たりの平均径D)を算出する。この場合には、できるだけ特定の場所周辺に集中せずに広く分散されるように測定位置を設定することが好ましい。続いて、SEMによる観察個数の総数が100個になるまで、上記した平均値の算出作業を繰り返す。最後に、100個の負極活物質200について算出された平均値(1個当たりの平均径D)の平均値(平均径Dの平均値)を算出して、繊維状炭素部200の平均径とする。
また、コア部201および被覆部202に対する繊維状炭素部204の割合(繊維状炭素部/(コア部+被覆部))は、特に限定されないが、中でも、1重量%〜20重量%であることが好ましい。負極活物質200がリチウムイオンを吸蔵放出することを維持しつつ、その負極活物質200の電気抵抗が低下するからである。
なお、被覆部202がFeまたはM1のいずれか1種類または2種類以上を構成元素として含んでいれば、負極活物質200は導電部203を含んでいなくてもよい。Fe等が導電部と同様の機能を果たすため、繊維状炭素部204は被覆部202のうちのFe等を基点として成長できるからである。ただし、被覆部202がFe等を含んでいる上、負極活物質200が導電部203を含んでいてもよい。
[追加導電部]
なお、負極活物質200は、被覆部202の表面に追加導電部を含んでいてもよい。この追加導電部は、被覆部202の表面のうちの少なくとも一部(導電部203および繊維状炭素部204の形成領域を除く)に設けられており、コア部201および被覆部202よりも低い電気抵抗を有している。コア部201が電解液とより接触しにくくなるため、その電解液の分解反応が抑制されると共に、負極活物質200の電気抵抗がより低下するからである。この追加導電部は、例えば、炭素材料、金属材料または無機化合物などのいずれか1種類または2種類以上を含んでいる。炭素材料は、例えば、黒鉛などである。金属材料は、例えば、Fe、CuまたはAlなどである。無機化合物は、例えば、SiO2 などである。中でも、炭素材料または金属材料が好ましく、炭素材料がより好ましい。負極活物質200の電気抵抗がより低下するからである。なお、追加導電部の平均被覆率および平均厚さは任意であり、それらの算出手順は被覆部202と同様である。
負極結着剤は、例えば、合成ゴムまたは高分子材料などのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、ポリマレイン酸またはこれらの共重合体などである。この他、高分子材料は、例えば、カルボキシメチルセルロース、スチレンブタジエンゴムまたはポリビニルアルコールなどでもよい。
負極導電剤は、例えば、黒鉛、カーボンブラック、アセチレンブラックまたはケチェンブラックなどの炭素材料のいずれか1種類または2種類以上を含んでいる。なお、負極導電剤は、導電性を有する材料であれば、金属材料または導電性高分子などでもよい。
なお、負極活物質層2は、必要に応じて、上記したコア部201および被覆部202を含む負極活物質200と共に、他の種類の負極活物質を含んでいてもよい。
このような他の負極活物質は、例えば、炭素材料である。負極活物質層2の電気抵抗が低下すると共に、その負極活物質層2が充放電時に膨張収縮しにくくなるからである。この炭素材料は、例えば、易黒鉛化性炭素、(002)面の面間隔が0.37nm以上の難黒鉛化性炭素、または(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭またはカーボンブラック類などがある。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭素化したものをいう。炭素材料の形状は、繊維状、球状、粒状または鱗片状のいずれでもよい。なお、負極活物質層2における炭素材料の含有量は、特に限定されないが、中でも、60%重量%以下、さらに10重量%〜60重量%であることが好ましい。
また、他の負極活物質は、金属酸化物または高分子化合物でもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンまたはポリピロールなどである。
負極活物質層2は、例えば、塗布法、焼成法(焼結法)またはそれらの2種類以上の方法により形成されている。塗布法とは、例えば、負極活物質を負極結着剤などと混合したのち、有機溶剤などに分散させて塗布する方法である。焼成法とは、例えば、塗布法と同様の手順で塗布したのち、負極結着剤などの融点よりも高い温度で熱処理する方法である。焼成法については、公知の手法を用いることができる。一例としては、雰囲気焼成法、反応焼成法またはホットプレス焼成法などが挙げられる。
[負極の製造方法]
この負極は、例えば、以下の手順により製造される。なお、負極集電体1および負極活物質層2の形成材料については既に詳細に説明したので、その説明を随時省略する。
最初に、例えば、ガスアトマイズ法、水アトマイズ法または溶融粉砕法などを用いて、上記した組成を有する粒子状(粉末状)のコア部201を得る。
続いて、例えば、蒸着法またはスパッタ法などの気相成長法を用いて、コア部201の表面に、上記した組成を有する被覆部202を形成する。このように気相成長法を用いて被覆部202の形成材料を堆積させた場合には、その被覆部202が非結晶性になりやすい傾向がある。この場合には、誘導加熱、抵抗加熱または電子ビーム加熱などにより被覆部202の形成材料を加熱しながら堆積させてもよいし、被覆部202を形成後に加熱して、その被覆部202を低結晶性にしてもよい。低結晶性の程度は、例えば、加熱時の温度および時間などの条件に応じて制御される。この加熱処理により、被覆部202中の水分が除去されると共に、コア部201に対する被覆部202の密着性が向上する。
特に、気相成長法を用いる場合には、被覆部202の形成材料を加熱させるだけでなく、成膜用の基盤も加熱することで、その被覆部202中にSi−M1−Oを形成しやすくなる。この基盤温度は、例えば、200℃以上である共に900℃未満であることが好ましい。なお、被覆部202を形成する際に、チャンバ内に導入するO2 およびH2 などの導入量を調整したり、コア部201の温度を調整することで、Si原子のO原子に対する結合状態の存在比を制御できる。これにより、被覆部202によりコア部201が被覆されるため、負極活物質200が得られる。
続いて、導電部の構成元素である金属元素を含む金属塩の溶液を準備したのち、その溶液を被覆部202の表面に供給して金属塩を析出させる。この金属塩は、金属元素の種類に応じて選択可能であり、例えば、硝酸ニッケル、硝酸コバルト、硝酸鉄、硝酸銅、酢酸鉄、酢酸ニッケル、酢酸コバルトまたは酢酸銅などのいずれか1種類または2種類以上である。また、溶液の溶媒は、例えば、水、エタノール、ヘキサンまたはイソプロピルアルコールなどのいずれか1種類または2種類以上である。続いて、H2 などを用いて還元することにより、被覆部202の表面に粒子状または膜状の導電部203が形成される。
最後に、導電部203を触媒としてメタンなどの炭化水素ガスを熱分解させることにより、その導電部203から繊維状の炭素材料を成長させて、繊維状炭素部204を形成する。これにより、負極活物質200が得られる。
なお、負極活物質200を形成する場合には、蒸着法、スパッタ法または化学蒸着(CVD)法などの気相成長法、または湿式コート法などを用いて、被覆部202の表面に追加導電部を形成してもよい。
蒸着法を用いる場合には、例えば、負極活物質200の表面に蒸気を直接吹き付けて導電部を形成する。スパッタ法を用いる場合には、例えば、Arガスを導入しながら粉体スパッタ法を用いて導電部を形成する。CVD法を用いる場合には、例えば、金属塩化物を昇華させたガスとH2 およびN2 などの混合ガスとを、金属塩化物のモル比が0.03〜0.3となるように混合したのち、1000℃以上に加熱して被覆部202の表面に導電部を形成する。湿式コート法を用いる場合には、例えば、負極活物質200を含むスラリーに含金属溶液を添加しながらアルカリ溶液を添加して金属水酸化物を形成したのち、450℃でH2 による還元処理を行って被覆部202の表面に導電部を形成する。なお、導電部の形成材料として炭素材料を用いる場合には、負極活物質200をチャンバ内に投入し、そのチャンバ内に有機ガスを導入したのち、10000Paおよび1000℃以上の条件で加熱処理を5時間行って被覆部202の表面に導電部を形成する。この有機ガスの種類は、加熱分解により炭素を生じさせるものであれば特に限定されないが、例えば、メタン、エタン、エチレン、アセチレンまたはプロパンなどである。
続いて、負極活物質200と負極結着剤などの他の材料とを混合して負極合剤としたのち、有機溶剤などの溶媒に溶解させて負極合剤スラリーとする。最後に、負極集電体1の表面に負極合剤スラリーを塗布してから乾燥させて負極活物質層2を形成する。こののち、必要に応じて負極活物質層2を圧縮成型および加熱(焼成)してもよい。
[本実施形態の作用および効果]
この負極によれば、負極活物質200は、コア部201の表面に設けられた非結晶性または低結晶性の被覆部202と、その被覆部202の表面に設けられた繊維状炭素部204とを含んでいる。この被覆部202は、SiおよびOを構成元素として含んでおり、そのSiに対するOの原子比yは、0.5≦y≦1.8である。これにより、コア部201がリチウムイオンを円滑に吸蔵放出しやすくなると共に、その円滑な吸蔵放出を維持したまま充放電時に新生面が露出しないようにコア部201が被覆部202により保護される。しかも、異なる負極活物質200同士が繊維状炭素部204を介して電気的に接続されるため、その負極活物質200の電気抵抗が著しく低下する。よって、負極を用いたリチウムイオン二次電池の性能向上、具体的にはサイクル特性、初回充放電特性および負荷特性などの向上に寄与できる。
特に、繊維状炭素部204の平均長さが50nm〜50000nm、平均径が5nm〜500nm、またはコア部201および被覆部202に対する繊維状炭素部204の割合が1重量%〜20重量%であれば、より高い効果を得ることができる。
<2.リチウムイオン二次電池>
次に、上記したリチウムイオン二次電池用負極を用いたリチウムイオン二次電池(以下、単に「二次電池」という。について説明する。
<2−1.角型>
図3および図4は、角型の二次電池の断面構成を表しており、図4では、図3に示したIV−IV線に沿った断面を示している。また、図5は、図5に示した正極21および負極22の平面構成を表している。
[二次電池の全体構成]
角型の二次電池は、主に、電池缶11の内部に電池素子20が収納されたものである。この電池素子20は、セパレータ23を介して正極21と負極22とが積層および巻回された巻回積層体であり、電池缶11の形状に応じて扁平状になっている。
電池缶11は、例えば、角型の外装部材である。この角型の外装部材は、図4に示したように、長手方向における断面が矩形型または略矩形型(一部に曲線を含む)の形状を有しており、矩形状だけでなくオーバル形状の角型電池にも適用される。すなわち、角型の外装部材とは、矩形状または円弧を直線で結んだ略矩形状(長円形状)の開口部を有する有底矩形型または有底長円形状型の器状部材である。なお、図4では、電池缶11が矩形型の断面形状を有する場合を示している。
この電池缶11は、例えば、Fe、Alまたはそれらの合金などの導電性材料により形成されており、電極端子としての機能を有している場合もある。中でも、充放電時に固さ(変形しにくさ)を利用して電池缶11の膨れを抑えるためには、Alよりも固いFeが好ましい。なお、電池缶11がFe製である場合、その表面にNiなどが鍍金されていてもよい。
また、電池缶11は、一端部が開放されると共に他端部が閉鎖された中空構造を有しており、その開放端部に取り付けられた絶縁板12および電池蓋13により密閉されている。絶縁板12は、電池素子20と電池蓋13との間に設けられていると共に、例えば、ポリプロピレンなどの絶縁性材料により形成されている。電池蓋13は、例えば、電池缶11と同様の材料により形成されており、その電池缶11と同様に電極端子としての機能を有していてもよい。
電池蓋13の外側には、正極端子となる端子板14が設けられており、その端子板14は、絶縁ケース16を介して電池蓋13から電気的に絶縁されている。この絶縁ケース16は、例えば、ポリブチレンテレフタレートなどの絶縁性材料により形成されている。電池蓋13のほぼ中央には貫通孔が設けられており、その貫通孔には、端子板14と電気的に接続されると共にガスケット17を介して電池蓋13から電気的に絶縁されるように正極ピン15が挿入されている。このガスケット17は、例えば、絶縁性材料により形成されており、その表面にはアスファルトが塗布されている。
電池蓋13の周縁付近には、開裂弁18および注入孔19が設けられている。開裂弁18は、電池蓋13と電気的に接続されており、内部短絡、または外部からの加熱などに起因して電池の内圧が一定以上となった場合に、電池蓋13から切り離されて内圧を開放するようになっている。注入孔19は、例えば、ステンレス鋼球からなる封止部材19Aにより塞がれている。
正極21の端部(例えば内終端部)には、Alなどの導電性材料により形成された正極リード24が取り付けられていると共に、負極22の端部(例えば外終端部)には、Niなどの導電性材料により形成された負極リード25が取り付けられている。正極リード24は、正極ピン15の一端に溶接されていると共に端子板14と電気的に接続されており、負極リード25は、電池缶11に溶接されていると共にその電池缶11と電気的に接続されている。
[正極]
正極21は、例えば、正極集電体21Aの両面に正極活物質層21Bを有している。ただし、正極活物質層21Bは、正極集電体21Aの片面だけに設けられていてもよい。
正極集電体21Aは、例えば、Al、Niまたはステンレスなどの導電性材料により形成されている。
正極活物質層21Bは、正極活物質として、リチウムイオンを吸蔵放出可能である正極材料のいずれか1種類または2種類以上を含んでおり、必要に応じて正極結着剤または正極導電剤などの他の材料を含んでいてもよい。なお、正極結着剤または正極導電剤に関する詳細は、例えば、既に説明した負極結着剤および負極導電剤と同様である。
正極材料としては、Li含有化合物が好ましい。高いエネルギー密度が得られるからである。このLi含有化合物は、例えば、Liと遷移金属元素とを構成元素として含む複合酸化物や、Liと遷移金属元素とを構成元素として含むリン酸化合物などである。中でも、遷移金属元素は、Co、Ni、MnおよびFeのいずれか1種類または2種類以上であることが好ましい。より高い電圧が得られるからである。その化学式は、例えば、Lix M11O2 またはLiy M12PO4 で表される。式中、M11およびM12は、1種類以上の遷移金属元素を表している。xおよびyの値は、充放電状態に応じて異なるが、通常、0.05≦x≦1.10、0.05≦y≦1.10である。特に、正極材料がNiまたはMnを含んでいると、体積安定率が向上する傾向にある。
Liと遷移金属元素とを含む複合酸化物は、例えば、Lix CoO2 、Lix NiO2 、または式(1)で表されるLiNi系複合酸化物などである。Liと遷移金属元素とを含むリン酸化合物は、例えば、LiFePO4 またはLiFe1-u Mnu PO4 (u<1)などである。高い電池容量が得られると共に、優れたサイクル特性も得られるからである。なお、正極材料は、上記以外の材料でもよい。例えば、Lix M14y 2 (M14はNIと式(1)に示したM13のうちの少なくとも1種とであると共に、x>1であり、yは任意である。)で表される材料などである。
LiNi1-x M13x 2 …(1)
(M13はCo、Mn、Fe、Al、V、Sn、Mg、Ti、Sr、Ca、Zr、Mo、Tc、Ru、Ta、W、Re、Y、Cu、Zn、Ba、B、Cr、Si、Ga、P、SbおよびNbのうちの少なくとも1種である。xは0.005<x<0.5である。)
この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子などである。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンまたは硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンまたはポリチオフェンなどである。
[負極]
負極22は、上記したリチウムイオン二次電池用負極と同様の構成を有しており、例えば、負極集電体22Aの両面に負極活物質層22Bを有している。負極集電体22Aおよび負極活物質層22Bの構成は、それぞれ負極集電体1および負極活物質層2の構成と同様である。リチウムイオンを吸蔵放出可能である負極材料の充電可能な容量は、正極21の放電容量よりも大きくなっていることが好ましい。充放電時に意図せずにLi金属が析出することを防止するためである。
図5に示したように、正極活物質層21Bは、例えば、正極集電体21Aの表面の一部(例えば長手方向における中央領域)に設けられている。これに対して、負極活物質層22Bは、例えば、負極集電体22Aの全面に設けられている。これにより、負極活物質層22Bは、負極集電体22Aのうち、正極活物質層21Bと対向する領域(対向領域R1)および対向しない領域(非対向領域R2)に設けられている。この場合には、負極活物質層22Bのうち、対向領域R1に設けられている部分が充放電に関与するが、非対向領域R2に設けられている部分は充放電にほとんど関与しない。なお、図5では、正極活物質層21Bおよび負極活物質層22Bに網掛けしている。
上記したように、負極活物質層22Bに含まれる負極活物質200(図2参照)は、コア部201および被覆部202を含んでいる。しかしながら、充放電時の膨張収縮に起因して負極活物質層22Bが変形または破損する可能性があるため、コア部201および被覆部202の形成状態が負極活物質層22Bの形成時の状態から変動し得る。しかしながら、非対向領域R2では、充放電の影響をほとんど受けず、負極活物質層22Bの形成状態が維持される。このため、コア部201および被覆部202の有無および組成(原子比x,y)、ならびに繊維状炭素部の構成(平均長さおよび割合など)など、上記した一連のパラメータについては、非対向領域R2の負極活物質層22Bにおいて調べることが好ましい。充放電の履歴(充放電の有無および回数など)に依存せずに、コア部201および被覆部202の有無および組成などを再現性よく正確に調べることができるからである。
この負極22の満充電状態における最大利用率(以下、単に「負極利用率」という。)は、特に限定されず、正極21の容量と負極22の容量との割合に応じて任意に設定可能である。
上記した「負極利用率」は、利用率Z(%)=(X/Y)×100で表される。ここで、Xは、負極22の満充電状態における単位面積当たりのリチウムイオンの吸蔵量であり、Yは、負極22の単位面積当たりにおける電気化学的に吸蔵可能なリチウムイオンの量である。
吸蔵量Xについては、例えば、以下の手順で求めることができる。最初に、満充電状態になるまで二次電池を充電させたのち、その二次電池を解体して、負極22のうちの正極21と対向している部分(検査負極)を切り出す。続いて、検査負極を用いて、金属リチウムを対極とした評価電池を組み立てる。最後に、評価電池を放電させて初回放電時の放電容量を測定したのち、その放電容量を検査負極の面積で割って吸蔵量Xを算出する。この場合の「放電」とは、検査負極からリチウムイオンが放出される方向へ通電することを意味しており、例えば、0.1mA/cm2 の電流密度で電池電圧が1.5Vに達するまで定電流放電する。
一方、吸蔵量Yについては、例えば、上記した放電済みの評価電池を電池電圧が0Vになるまで定電流定電圧充電して充電容量を測定したのち、その充電容量を検査負極の面積で割って算出する。この場合の「充電」とは、検査負極にリチウムイオンが吸蔵される方向へ通電することを意味しており、例えば、電流密度が0.1mA/cm2 であると共に電池電圧が0Vである定電圧充電において、電流密度が0.02mA/cm2 に達するまで行う。
中でも、負極利用率は、35%〜80%であることが好ましい。優れたサイクル特性、初回充放電特性および負荷特性が得られるからである。
[セパレータ]
セパレータ23は、正極21と負極22とを隔離して、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させるものである。このセパレータ23は、例えば、合成樹脂またはセラミックからなる多孔質膜により形成されており、2種類以上の多孔質膜が積層された積層膜でもよい。合成樹脂としては、例えば、ポリテトラフルオロエチレン、ポリプロピレンまたはポリエチレンなどが挙げられる。
[電解液]
セパレータ23には、液状の電解質である電解液が含浸されている。この電解液は、溶媒に電解質塩が溶解されたものであり、必要に応じて添加剤などの他の材料を含んでいてもよい。
溶媒は、例えば、有機溶剤などの非水溶媒のいずれか1種類または2種類以上を含んでいる。この非水溶媒は、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,3−ジオキサン、1,4−ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、N,N−ジメチルホルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N’−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルまたはジメチルスルホキシドなどである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのうちの少なくとも1種が好ましい。より優れた特性が得られるからである。この場合には、炭酸エチレンまたは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルまたは炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
特に、非水溶媒は、ハロゲン化鎖状炭酸エステルおよびハロゲン化環状炭酸エステルのうちの少なくとも一方を含んでいることが好ましい。充放電時に負極22の表面に安定な被膜が形成されるため、電解液の分解反応が抑制されるからである。ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として含む(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として含む(少なくとも1つのHがハロゲンにより置換された)環状炭酸エステルである。
ハロゲンの種類は、特に限定されないが、中でも、F、ClまたはBrが好ましく、Fがより好ましい。他のハロゲンよりも高い効果が得られるからである。ただし、ハロゲンの数は、1つよりも2つが好ましく、さらに3つ以上でもよい。保護膜を形成する能力が高くなると共に、より強固で安定な被膜が形成されるため、電解液の分解反応がより抑制されるからである。
ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)または炭酸ジフルオロメチルメチルなどである。ハロゲン化環状炭酸エステルは、4−フルオロ−1,3−ジオキソラン−2−オンまたは4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどである。このハロゲン化環状炭酸エステルには、幾何異性体も含まれる。非水溶媒中におけるハロゲン化鎖状炭酸エステルおよびハロゲン化環状炭酸エステルの含有量は、例えば、0.01重量%〜50重量%である。
また、非水溶媒は、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極22の表面に安定な被膜が形成されるため、電解液の分解反応が抑制されるからである。不飽和炭素結合環状炭酸エステルとは、1または2以上の不飽和炭素結合を含む(いずれかの箇所に不飽和炭素結合が導入された)環状炭酸エステルである。不飽和炭素結合環状炭酸エステルは、例えば、炭酸ビニレンまたは炭酸ビニルエチレンなどである。非水溶媒中における不飽和炭素結合環状炭酸エステルの含有量は、例えば、0.01重量%〜10重量%である。
また、非水溶媒は、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電解液の化学的安定性が向上するからである。スルトンは、例えば、プロパンスルトンまたはプロペンスルトンなどである。非水溶媒中におけるスルトンの含有量は、例えば、0.5重量%〜5重量%である。
さらに、非水溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物は、例えば、例えば、カルボン酸無水物、ジスルホン酸無水物またはカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸または無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸または無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸または無水スルホ酪酸などである。非水溶媒中における酸無水物の含有量は、例えば、0.5重量%〜5重量%である。
電解質塩は、例えば、Li塩などの軽金属塩のいずれか1種類または2種類以上を含んでいる。Li塩は、例えば、LiPF6 、LiBF4 、LiClO4 、LiAsF6 、LiB(C6 5 4 、LiCH3 SO3 、LiCF3 SO3 、LiAlCl4 、Li2 SiF6 、LiClまたはLiBrなどであり、その他の種類のLi塩でもよい。優れた電池容量、サイクル特性および保存特性などが得られるからである。
中でも、LiPF6 、LiBF4 、LiClO4 およびLiAsF6 のいずれか1種類または2種類以上が好ましく、LiPF6 またはLiBF4 が好ましく、LiPF6 がより好ましい。内部抵抗が低下するため、より優れた特性が得られるからである。
電解質塩の含有量は、溶媒に対して0.3mol/kg以上3.0mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[二次電池の動作]
この角型の二次電池では、例えば、充電時に正極21から放出されたリチウムイオンが電解液を介して負極22に吸蔵される。また、例えば、放電時に負極22から放出されたリチウムイオンが電解液を介して正極21に吸蔵される。
[二次電池の製造方法]
この二次電池は、例えば、以下の手順により製造される。
まず、正極21を作製する。最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合して正極合剤としたのち、有機溶剤などに分散させてペースト状の正極合剤スラリーとする。続いて、ドクタブレードまたはバーコータなどのコーティング装置を用いて正極集電体21Aに正極合剤スラリーを塗布してから乾燥させて正極活物質層21Bを形成する。最後に、必要に応じて加熱しながら、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、圧縮成型を複数回繰り返してもよい。
次に、上記したリチウムイオン二次電池用負極と同様の作製手順により、負極集電体22Aに負極活物質層22Bを形成して負極22を作製する。
次に、電池素子20を作製する。最初に、溶接法などにより正極集電体21Aに正極リード24を取り付けると共に負極集電体22Aに負極リード25を取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層させたのち、それらを長手方向において巻回させる。最後に、扁平な形状となるように巻回体を成型する。
最後に、二次電池を組み立てる。最初に、電池缶11の内部に電池素子20を収納したのち、その電池素子20の上に絶縁板12を載せる。続いて、溶接法などで正極リード24を正極ピン15に取り付けると共に負極リード25を電池缶11に取り付ける。この場合には、レーザ溶接法などにより電池缶11の開放端部に電池蓋13を固定する。最後に、注入孔19から電池缶11の内部に電解液を注入してセパレータ23に含浸させたのち、その注入孔19を封止部材19Aで塞ぐ。
[二次電池の作用および効果]
この角型の二次電池によれば、負極22が上記したリチウムイオン二次電池用負極と同様の構成を有しているので、同様の作用が得られる。よって、サイクル特性、初回充放電特性および負荷特性などの優れた電池特性を得ることができる。これ以外の効果は、リチウムイオン二次電池用負極と同様である。
<2−2.円筒型>
図6および図7は、円筒型二次電池の断面構成を表しており、図7では、図6に示した巻回電極体40の一部を拡大している。以下では、既に説明した角型の二次電池の構成要素を随時引用する。
[二次電池の構成]
円筒型の二次電池は、主に、ほぼ中空円柱状の電池缶31の内部に巻回電極体40および一対の絶縁板32,33が収納されたものである。この巻回電極体40は、セパレータ43を介して正極41と負極42とが積層および巻回された巻回積層体である。
電池缶31は、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、例えば、電池缶11と同様の材料により形成されている。一対の絶縁板32,33は、巻回電極体40を上下から挟むと共にその巻回周面に対して垂直に延在するように配置されている。
電池缶31の開放端部には電池蓋34、安全弁機構35および熱感抵抗素子(PTC素子)36がガスケット37を介してかしめられており、その電池缶31は密閉されている。電池蓋34は、例えば、電池缶31と同様の材料により形成されている。安全弁機構35および熱感抵抗素子36は電池蓋34の内側に設けられており、その安全弁機構35は熱感抵抗素子36を介して電池蓋34と電気的に接続されている。この安全弁機構35では、内部短絡、または外部からの加熱などに起因して内圧が一定以上となった場合に、ディスク板35Aが反転して電池蓋34と巻回電極体40との間の電気的接続を切断するようになっている。熱感抵抗素子36は、温度上昇に応じた抵抗増加により、大電流に起因する異常な発熱を防止するものである。ガスケット37は、例えば、絶縁材料により形成されており、その表面にはアスファルトが塗布されていてもよい。
巻回電極体40の中心には、センターピン44が挿入されていてもよい。正極41には、Alなどの導電性材料により形成された正極リード45が接続されていると共に、負極42には、Niなどの導電性材料により形成された負極リード46が接続されている。正極リード45は、安全弁機構35に溶接などされ、電池蓋34と電気的に接続されていると共に、負極リード46は電池缶31に溶接などされ、それと電気的に接続されている。
正極41は、例えば、正極集電体41Aの両面に正極活物質層41Bを有している。負極42は、上記したリチウムイオン二次電池用負極と同様の構成を有しており、例えば、負極集電体42Aの両面に負極活物質層42Bを有している。正極集電体41A、正極活物質層41B、負極集電体42A、負極活物質層42Bおよびセパレータ43の構成は、それぞれ正極集電体21A、正極活物質層21B、負極集電体22A、負極活物質層22Bおよびセパレータ23の構成と同様である。また、セパレータ35に含浸されている電解液の組成は、角型の二次電池における電解液の組成と同様である。
[二次電池の動作]
この円筒型の二次電池では、例えば、充電時に正極41から放出されたリチウムイオンが電解液を介して負極42に吸蔵される。また、例えば、放電時に負極42から放出されたリチウムイオンが電解液を介して正極41に吸蔵される。
[二次電池の製造方法]
この円筒型の二次電池は、例えば、以下の手順により製造される。最初に、例えば、正極21および負極22と同様の作製手順により、正極集電体41Aの両面に正極活物質層41Bを形成して正極41を作製すると共に、負極集電体42Aの両面に負極活物質層42Bを形成して負極42を作製する。続いて、溶接法などにより正極41に正極リード45を取り付けると共に負極42に負極リード46を取り付ける。続いて、セパレータ43を介して正極41と負極42とを積層および巻回させて巻回電極体40を作製したのち、その巻回中心にセンターピン44を挿入する。続いて、一対の絶縁板32,33で挟みながら巻回電極体40を電池缶31の内部に収納する。この場合には、溶接法などにより正極リード45を安全弁機構35に取り付けると共に負極リード46の先端部を電池缶31に取り付ける。続いて、電池缶31の内部に電解液を注入してセパレータ43に含浸させる。最後に、電池缶31の開口端部に電池蓋34、安全弁機構35および熱感抵抗素子36を取り付けたのち、それらをガスケット37を介してかしめる。
[二次電池の作用および効果]
この円筒型の二次電池では、負極42が上記したリチウムイオン二次電池用負極と同様の構成を有しているので、角型の二次電池と同様の効果を得ることができる。
<2−3.ラミネートフィルム型>
図8は、ラミネートフィルム型二次電池の分解斜視構成を表しており、図9は、図8に示した巻回電極体50のIX−IX線に沿った断面を拡大している。
[二次電池の構成]
ラミネートフィルム型の二次電池は、主に、フィルム状の外装部材60の内部に巻回電極体50が収納されたものである。この巻回電極体50は、セパレータ55および電解質層56を介して正極53と負極54とが積層および巻回された巻回積層体である。正極53には正極リード51が取り付けられていると共に、負極54には負極リード52が取り付けられている。巻回電極体50の最外周部は、保護テープ57により保護されている。
正極リード51および負極リード52は、例えば、外装部材60の内部から外部に向かって同一方向に導出されている。正極リード51は、例えば、Alなどの導電性材料により形成されていると共に、負極リード52は、例えば、Cu、Niまたはステンレスなどの導電性材料により形成されている。これらの材料は、例えば、薄板状または網目状になっている。
外装部材60は、例えば、融着層、金属層および表面保護層がこの順に積層されたラミネートフィルムである。このラミネートフィルムでは、例えば、融着層が巻回電極体50と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、または接着剤などにより貼り合わされている。融着層は、例えば、ポリエチレンまたはポリプロピレンなどのフィルムである。金属層は、例えば、Al箔などである。表面保護層は、例えば、ナイロンまたはポリエチレンテレフタレートなどのフィルムである。
中でも、外装部材60としては、ポリエチレンフィルム、アルミニウム箔およびナイロンフィルムがこの順に積層されたアルミラミネートフィルムが好ましい。ただし、外装部材60は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルムまたは金属フィルムでもよい。
外装部材60と正極リード51および負極リード52との間には、外気の侵入を防止するための密着フィルム61が挿入されている。この密着フィルム61は、正極リード51および負極リード52に対して密着性を有する材料により形成されている。このような材料は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂である。
正極53は、例えば、正極集電体53Aの両面に正極活物質層53Bを有している。負極54は、上記したリチウムイオン二次電池用負極と同様の構成を有しており、例えば、負極集電体54Aの両面に負極活物質層54Bを有している。正極集電体53A、正極活物質層53B、負極集電体54Aおよび負極活物質層54Bの構成は、それぞれ正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bの構成と同様である。また、セパレータ55の構成は、セパレータ23の構成と同様である。
電解質層56は、高分子化合物により電解液が保持されたものであり、必要に応じて添加剤などの他の材料を含んでいてもよい。この電解質層56は、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に電解液の漏液が防止されるので好ましい。
高分子化合物は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、ポリカーボネート、またはフッ化ビニリデンとヘキサフルオロピレンとの共重合体などのいずれか1種類または2種類以上を含んでいる。である。中でも、ポリフッ化ビニリデン、またはフッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましい。電気化学的に安定だからである。
電解液の組成は、例えば、角型の二次電池における電解液の組成と同様である。ただし、ゲル状の電解質である電解質層56において、電解液の溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。このため、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
なお、ゲル状の電解質層56に代えて、電解液を用いてもよい。この場合には、電解液がセパレータ55に含浸される。
[二次電池の動作]
このラミネートフィルム型の二次電池では、例えば、充電時に正極53から放出されたリチウムイオンが電解質層56を介して負極54に吸蔵される。また、例えば、放電時に負極54から放出されたリチウムイオンが電解質層56を介して正極53に吸蔵される。
[二次電池の製造方法]
このゲル状の電解質層56を備えたラミネートフィルム型の二次電池は、例えば、以下の3種類の手順により製造される。
第1手順では、最初に、正極21および負極22と同様の作製手順により、正極53および負極54を作製する。この場合には、正極集電体53Aの両面に正極活物質層53Bを形成して正極53を作製すると共に、負極集電体54Aの両面に負極活物質層54Bを形成して負極54を作製する。続いて、電解液と、高分子化合物と、有機溶剤などとを含む前駆溶液を調製したのち、その前駆溶液を正極53および負極54に塗布してゲル状の電解質層56を形成する。続いて、溶接法などにより正極集電体53Aに正極リード51を取り付けると共に負極集電体54Aに負極リード52を取り付ける。続いて、電解質層56が形成された正極53と負極54とをセパレータ55を介して積層および巻回させて巻回電極体50を作製したのち、その最外周部に保護テープ57を接着させる。最後に、2枚のフィルム状の外装部材60の間に巻回電極体50を挟み込んだのち、熱融着法などにより外装部材60の外周縁部同士を接着させて、その外装部材60に巻回電極体50を封入する。この場合には、正極リード51および負極リード52と外装部材60との間に密着フィルム61を挿入する。
第2手順では、最初に、正極53に正極リード51を取り付けると共に、負極54に負極リード52を取り付ける。続いて、セパレータ55を介して正極53と負極54とを積層および巻回させて、巻回電極体50の前駆体である巻回体を作製したのち、その最外周部に保護テープ57を接着させる。続いて、2枚のフィルム状の外装部材60の間に巻回体を挟み込んだのち、熱融着法などで一辺の外周縁部を除いた残りの外周縁部を接着させて、袋状の外装部材60の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を調製して袋状の外装部材60の内部に注入したのち、熱融着法などにより外装部材60の開口部を密封する。最後に、モノマーを熱重合させて高分子化合物とし、ゲル状の電解質層56を形成する。
第3手順では、最初に、高分子化合物が両面に塗布されたセパレータ55を用いることを除き、上記した第2手順と同様に、巻回体を作製して袋状の外装部材60の内部に収納する。このセパレータ55に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体(単独重合体、共重合体または多元共重合体など)が挙げられる。具体的には、ポリフッ化ビニリデン、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体、またはフッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体などである。なお、フッ化ビニリデンを成分とする重合体と一緒に、他の1種類または2種類以上の高分子化合物を用いてもよい。続いて、電解液を調製して外装部材60の内部に注入したのち、熱融着法などで外装部材60の開口部を密封する。最後に、外装部材60に加重をかけながら加熱して、高分子化合物を介してセパレータ55を正極53および負極54に密着させる。これにより、電解液が高分子化合物に含浸するため、その高分子化合物がゲル化して電解質層56が形成される。
この第3手順では、第1手順よりも電池膨れが抑制される。また、第2手順よりも高分子化合物の原料であるモノマーまたは有機溶剤などが電解質層56中にほとんど残らないため、高分子化合物の形成工程が良好に制御される。このため、正極53、負極54およびセパレータ55と電解質層56との間において十分な密着性が得られる。
<3.リチウムイオン二次電池の用途>
次に、上記したリチウムイオン二次電池の適用例について説明する。
リチウムイオン二次電池の用途は、それを駆動用の電源または電力蓄積用の電力貯蔵源などとして用いることが可能な機械、機器、器具、装置またはシステム(複数の機器などの集合体)などであれば、特に限定されない。リチウムイオン二次電池が電源として用いられる場合、それは主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。この主電源の種類は、リチウムイオン二次電池に限られない。
リチウムイオン二次電池の用途としては、例えば、以下の用途などが挙げられる。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビまたは携帯用情報端末などの携帯用電子機器である。電気シェーバなどの携帯用生活器具である。バックアップ電源またはメモリーカードなどの記憶用装置である。電動ドリルまたは電動のこぎりなどの電動工具である。ノート型パソコンなどの電源として用いられる電池パックである。ペースメーカーまたは補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、上記以外の用途でもよい。
中でも、リチウムイオン二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具または電子機器などに適用されることが有効である。優れた電池特性が要求されるため、本技術のリチウムイオン二次電池を用いることにより、有効に特性向上を図ることができるからである。なお、電池パックは、リチウムイオン二次電池を用いた電源であり、いわゆる組電池などである。電動車両は、リチウムイオン二次電池を駆動用電源として作動(走行)する車両であり、上記したように、リチウムイオン二次電池以外の駆動源も併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、リチウムイオン二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源であるリチウムイオン二次電池に電力が蓄積されており、その電力が必要に応じて消費されるため、家庭用の電気製品などが使用可能になる。電動工具は、リチウムイオン二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、リチウムイオン二次電池を駆動用の電源として各種機能を発揮する機器である。
ここで、リチウムイオン二次電池のいくつかの適用例について具体的に説明する。なお、以下で説明する各適用例の構成はあくまで一例であるため、適宜変更可能である。
<3−1.電池パック>
図10は、電池パックのブロック構成を表している。この電池パックは、例えば、図10に示したように、プラスチック材料などにより形成された筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。
制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御するものであり、例えば、中央演算処理装置(CPU)などを含んでいる。電源62は、1または2以上のリチウムイオン二次電池(図示せず)を含んでいる。この電源62は、例えば、2以上のリチウムイオン二次電池を含む組電池であり、それらの接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つのリチウムイオン二次電池を含んでいる。
スイッチ部63は、制御部61の指示に応じて電源62の使用状態(電源62と外部機器との接続の可否)を切り換えるものである。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオード(いずれも図示せず)などを含んでいる。充電制御スイッチおよび放電制御スイッチは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。
電流測定部64は、電流検出抵抗70を用いて電流を測定して、その測定結果を制御部61に出力するものである。温度検出部65は、温度検出素子69を用いて温度を測定して、その測定結果を制御部61に出力するようになっている。この温度測定結果は、例えば、異常発熱時に制御部61が充放電制御を行う場合や、制御部61が残容量の算出時に補正処理を行うために用いられる。電圧検出部66は、電源62中におけるリチウムイオン二次電池の電圧を測定して、その測定電圧アナログ/デジタル変換(A/D)変換して制御部61に供給するものである。
スイッチ制御部67は、電流測定部66および電圧測定部66から入力される信号に応じて、スイッチ部63の動作を制御するものである。
このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達した場合に、スイッチ部67(充電制御スイッチ)を切断して、電源62の電流経路に充電電流が流れないように制御するようになっている。これにより、電源62では、放電用ダイオードを介して放電のみが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れた場合に、充電電流を遮断するようになっている。
また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達した場合に、スイッチ部67(放電制御スイッチ)を切断して、電源62の電流経路に放電電流が流れないように制御するようになっている。これにより、電源62では、充電用ダイオードを介して充電のみが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れた場合に、放電電流を遮断するようになっている。
なお、リチウムイオン二次電池では、例えば、過充電検出電圧は4.20V±0.05Vであり、過放電検出電圧は2.4V±0.1Vである。
メモリ68は、例えば、不揮発性メモリであるEEPROMなどである。このメモリ68には、例えば、制御部61により演算された数値や、製造工程段階で測定されたリチウムイオン二次電池の情報(例えば、初期状態の内部抵抗など)が記憶されている。なお、メモリ68にリチウムイオン二次電池の満充電容量を記憶させておけば、制御部10が残容量などの情報を把握できる。
温度検出素子69は、電源62の温度を測定して、その測定結果を制御部61に出力するものであり、例えば、サーミスタなどである。
正極端子71および負極端子72は、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)または電池パックを充電するために用いられる外部機器(例えば充電器など)に接続される端子である。電源62の充放電は、正極端子71および負極端子72を介して行われる。
<3−2.電動車両>
図11は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、例えば、図11に示したように、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。
この電動車両は、エンジン75またはモータ77のいずれか一方を駆動源として走行可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合、エンジン75の駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。なお、エンジン75の回転力は発電機79にも伝達され、その回転力により発電機79が交流電力を発生させると共に、その交流電力はインバータ83を介して直流電力に変換され、電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換され、その交流電力によりモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。
なお、図示しない制動機構により電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達され、その回転力によりモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換され、その直流回生電力は電源76に蓄積されることが好ましい。
制御部74は、電動車両全体の動作を制御するものであり、例えば、CPUなどを含んでいる。電源76は、1または2以上のリチウムイオン二次電池(図示せず)を含んでいる。この電源76は、外部電源と接続され、その外部電源から電力供給を受けることで電力を蓄積可能になっていてもよい。各種センサ84は、例えば、エンジン75の回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサ、エンジン回転数センサなどを含んでいる。
なお、上記では電動車両としてハイブリッド自動車について説明したが、電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。
<3−3.電力貯蔵システム>
図12は、電力貯蔵システムのブロック構成を表している。この電力貯蔵システムは、例えば、図12に示したように、一般住宅または商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。
ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続可能になっている。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続可能になっている。
なお、電気機器94は、例えば、冷蔵庫、エアコン、テレビまたは給湯器などの1または2以上の家電製品を含んでいる。自家発電機95は、例えば、太陽光発電機または風力発電機などの1種類または2種類以上である。電動車両96は、例えば、電気自動車、電気バイクまたはハイブリッド自動車などの1種類または2種類以上である。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所または風力発電所などの1種類または2種類以上である。
制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源91は、1または2以上のリチウムイオン二次電池(図示せず)を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信可能になっている。これに伴い、スマートメータ92は、例えば、必要に応じて外部と通信しながら、家屋89における需要・供給のバランスを制御し、効率的で安定したエネルギー供給を可能にするようになっている。
この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である太陽光発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部91の指示に応じて、必要に応じて電気機器94または電動車両96に供給されるため、その電気機器94が稼働可能になると共に、電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。
電源91に蓄積された電力は、任意に利用可能である。このため、例えば、電気使用量が安い深夜に集中型電力系統97から電源91に電力を蓄積しておき、その電源91に蓄積しておいた電力を電気使用量が高い日中に用いることができる。
なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。
<3−4.電動工具>
図13は、電動工具のブロック構成を表している。この電動工具は、例えば、図13に示したように、電動ドリルであり、プラスチック材料などにより形成された工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。
制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源100は、1または2以上のリチウムイオン二次電池(図示せず)を含んでいる。この制御物99は、図示しない動作スイッチの操作に応じて、必要に応じて電源100からドリル部101に電力を供給して可動させるようになっている。
本技術の実施例について、詳細に説明する。
(実施例1−1〜1−14)
以下の手順により、図8および図9に示したラミネートフィルム型の二次電池を作製した。
最初に、正極53を作製した。まず、正極活物質(LiCoO2 )91質量部と、正極導電剤(グラファイト)6質量部と、正極結着剤(ポリフッ化ビニリデン:PVDF)3質量部とを混合して正極合剤とした。続いて、正極合剤を有機溶剤(N−メチル−2−ピロリドン:NMP)に分散させてペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体53Aの両面に正極合剤スラリーを塗布してから乾燥させて正極活物質層53Bを形成した。この正極集電体53Aとしては、帯状のAl箔(厚さ=12μm)を用いた。最後に、ロールプレス機を用いて正極活物質層53Bを圧縮成型した。なお、満充電時に負極54にLi金属が析出しないように正極活物質層53Bの厚さを調整した。
次に、負極54を作製した。最初に、ガスアトマイズ法を用いてコア部(SiOx )を得たのち、必要に応じて、粉体蒸着法を用いてコア部の表面に単層の被覆部(SiOy )を形成した。コア部および被覆部の組成(原子比x,y)は、表1に示した通りである。この場合には、コア部の半値幅=0.6°、結晶子サイズ=90nm、メジアン径=4μmとし、被覆部の平均厚さ=200nm、平均被覆率=70%とした。
コア部を得る場合には、原材料(Si)の溶融凝固時に酸素導入量を調整して原子比xを制御した。被覆部を形成する場合には、原材料(Si)の堆積時にO2 またはH2 の導入量を調整して原子比yを制御した。粉体蒸着法では、偏向式電子ビーム蒸着源を用いると共に、堆積速度=2nm/秒とし、ターボ分子ポンプを用いて圧力=1×10-3Paの真空状態とした。
続いて、必要に応じて、被覆部が形成されたコア部を酢酸鉄の水溶液中に浸漬させて、その表面に酢酸鉄を析出させたのち、H2 などで還元して導電部(Fe等)を形成した。こののち、導電部を触媒としてメタンなどの炭化水素ガスを熱分解して、その導電部から炭素材料を成長させて繊維状炭素部を形成した。繊維状炭素部の平均長さ、平均径および割合(C割合)は、表1に示した通りである。この場合には、熱分解温度、炭化水素ガスの種類または処理チャンバー内の圧力を調整して平均長さを制御した。
続いて、負極活物質と負極結着剤の前駆体とを90:10の乾燥重量比で混合したのち、NMPで希釈してペースト状の負極合剤スラリーとした。この場合には、NMPおよびN,N−ジメチルアセトアミド(DMAC)を含むポリアミック酸を用いた。続いて、コーティング装置を用いて負極集電体54Aの両面に負極合剤スラリーを塗布してから乾燥させた。この負極集電体54Aとしては、圧延Cu箔(厚さ=15μm,十点平均粗さRz<0.5μm)を用いた。最後に、結着性を高めるために塗膜を熱プレスしたのち、真空雰囲気中で400℃×1時間焼成した。これにより、負極結着剤(ポリアミドイミド)が形成されたため、負極活物質および負極結着剤を含む負極活物質層54Bが形成された。なお、負極利用率が65%となるように負極活物質層54Bの厚さを調整した。
次に、溶媒(炭酸エチレン(EC)および炭酸ジエチル(DEC))に電解質塩(LiPF6 )を溶解させて電解液を調製した。この場合には、溶媒の組成を重量比でEC:DEC=50:50とし、電解質塩の含有量を溶媒に対して1mol/kgとした。
最後に、二次電池を組み立てた。最初に、正極集電体53Aの一端にAl製の正極リード51を溶接すると共に、負極集電体54Aの一端にNi製の負極リード52を溶接した。続いて、正極53、セパレータ55、負極54およびセパレータ55をこの順に積層してから長手方向に巻回させて、巻回電極体50の前駆体である巻回体を形成したのち、その巻き終わり部分を保護テープ57(粘着テープ)で固定した。この場合には、セパレータ55として、多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムが挟まれた積層フィルム(厚さ=20μm)を用いた。続いて、外装部材60の間に巻回体を挟み込んだのち、一辺を除く外周縁部同士を熱融着して、袋状の外装部材60の内部に巻回体を収納した。この場合には、外装部材60として、外側からナイロンフィルム(厚さ=30μm)、Al箔(厚さ=40μm)および無延伸ポリプロピレンフィルム(厚さ=30μm)が積層されたアルミラミネートフィルムを用いた。続いて、外装部材60の開口部から電解液を注入し、セパレータ55に含浸させて巻回電極体50を作製した。最後に、真空雰囲気中で外装部材60の開口部を熱融着して封止した。
二次電池のサイクル特性、初回充放電特性および負荷特性を調べたところ、表1に示した結果が得られた。
サイクル特性を調べる場合には、最初に、電池状態を安定化させるために23℃の雰囲気中で1サイクル充放電したのち、再び充放電して放電容量を測定した。続いて、サイクル数の総数が100サイクルになるまで充放電して放電容量を測定した。最後に、サイクル維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充電時には、3mA/cm2 の定電流密度で電圧が4.2Vに達するまで充電したのち、4.2Vの定電圧で電流密度が0.3mA/cm2 に達するまで充電した。放電時には、3mA/cm2 の定電流密度で電圧が2.5Vに達するまで放電した。
初回充放電特性を調べる場合には、最初に、電池状態を安定化させるために1サイクル充放電した。続いて、再び充電して充電容量を測定したのち、放電して放電容量を測定した。最後に、初回効率(%)=(放電容量/充電容量)×100を算出した。雰囲気温度および充放電条件は、サイクル特性を調べた場合と同様にした。
負荷特性を調べる場合には、最初に、電池状態を安定化させるために1サイクル充放電した。続いて、2サイクル目の充電および放電を行って充電容量を測定したのち、3サイクル目の放電および放電を行って放電容量を測定した。最後に、負荷維持率(%)=(3サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。2サイクル目の放電時の電流密度を0.2mA/cm2 とし、3サイクル目の放電時の電流密度を1mA/cm2 に変更したことを除き、雰囲気温度および充放電条件はサイクル特性を調べた場合と同様にした。
Figure 2013008584
負極活物質がコア部と共に被覆部および繊維状炭素部を含んでいると、高いサイクル維持率、初期効率および負荷維持率が得られた。
詳細には、負極活物質が被覆部だけを含んでいると、被覆部も繊維状炭素部も含んでいない場合と比較して、サイクル維持率は増加するが、初期効率および負荷維持率は減少してしまう。また、負極活物質が繊維状炭素部だけを含んでいると、同様の比較により、サイクル維持率および負荷維持率は僅かに増加するが、初期効率は増減しない。これに対して、負極活物質が被覆部および繊維状炭素部を含んでいると、同様の比較により、高い初期効率および負荷維持率を維持したまま、サイクル維持率は著しく増加した。このように初期効率および負荷維持率の低下が最低限に抑制されたままでサイクル維持率が増加するという有利な傾向は、被覆部および繊維状炭素部の組み合わせにより初めて得られる特異的な傾向である。
上記した有利な傾向は、導電部がFeである場合に限られず、Cu、CoまたはNiでも同様に得られた。また、繊維状炭素部の平均長さが50nm以上であると、サイクル維持率、初期効率および負荷維持率がより増加すると共に、50000nm以下であると、電池容量の低下が抑制された。
(実験例2−1〜2−6)
表2に示したように、繊維状炭素部の平均径を変更して二次電池の諸特性を調べた。この場合には、熱分解温度、炭化水素ガスの種類または処理チャンバー内の圧力を調整して平均径を制御した。
Figure 2013008584
平均径が5nm以上であると、繊維状炭素部の存在に起因する副反応が抑制されたため、サイクル維持率、初期効率および負荷維持率がより増加すると共に、500nm以下であると、電池容量の低下が抑制された。
(実験例3−1〜3−6)
表3に示したように、C割合を変更して二次電池の諸特性を調べた。この場合には、熱分解温度、炭化水素ガスの種類または処理チャンバー内の圧力を調整してC割合を制御した。
Figure 2013008584
C割合が1重量%以上であると、サイクル維持率、初期効率および負荷維持率がより増加すると共に、20重量%以下であると、電池容量の低下が抑制された。
(実験例4−1〜4−7)
表4に示したように、被覆部の組成(原子比y)を変更して二次電池の諸特性を調べた。この場合には、原材料(Si)の堆積時にO2 またはH2 の導入量を調整して原子比yを制御した。
Figure 2013008584
原子比yが0.5≦y≦1.8であると、サイクル維持率が著しく増加した。
(実験例5−1〜5−9,6−1〜6−10)
表5および表6に示したように、被覆部の平均被覆率および平均厚さを変更して二次電池の諸特性を調べた。この場合には、被覆部を形成する際に、投入電力および堆積時間を変化させて平均被覆率を制御すると共に、堆積速度および堆積時間を変化させて平均厚さを制御した。
Figure 2013008584
Figure 2013008584
平均被覆率が30%〜100%であると、サイクル維持率がより増加した。また、平均厚さが1nm〜10000nmであると、初期効率がより増加した。
(実験例7−1〜7−4)
表7に示したように、被覆部にFeを含有させて二次電池の諸特性を調べた。この場合には、被覆部を形成する際に、SiOy 粉と一緒に金属粉(Fe)を共蒸着すると共に、その金属粉の投入量を変化させてFeの割合(Fe割合)を制御した。
Figure 2013008584
被覆部がFeを含んでいると、サイクル維持率、初回効率および負荷維持率がより増加すると共に、Fe割合が0.005重量%〜0.5重量%であると、高いサイクル維持率、初回効率および負荷維持率が得られた。
(実験例8−1〜8−125)
表8〜表13に示したように、被覆部に1種類または2種類以上の元素M1(Ni等)を含有させて二次電池の諸特性を調べた。この場合には、被覆部を形成する際に、SiOy 粉と一緒に金属粉M1を共蒸着すると共に、その金属粉の投入量を変化させてM1の割合(M1割合)を制御した。
Figure 2013008584
Figure 2013008584
Figure 2013008584
Figure 2013008584
Figure 2013008584
Figure 2013008584
被覆部がM1(Ni等)を含んでいると、サイクル維持率、初回効率および負荷維持率がより増加した。この場合には、M1の割合が20原子%以下であると、電池容量の低下が抑制された。しかも、被覆部がFeと共にM1を含んでいると、サイクル維持率、初回効率および負荷維持率がさらに増加した。
(実験例9−1〜9−6)
表14に示したように、被覆部の層構造および状態を変更して二次電池の諸特性を調べた。この場合には、形成工程を2回に分けて行うことで被覆部を多層にすると共に、被覆部を形成する際に基盤温度を調整することで被覆部中の状態を制御した。「SiNiO+Ni」または「SiOy +Ni」は、被覆部中にSiの化合物(SiNiOまたはSiOy )が形成されていると共に遊離(単体)のNiが存在していることを表している。
Figure 2013008584
被覆部が多層であると、サイクル維持率および初回効率がより増加した。この傾向は、被覆部がM1(Ni)を含む場合でも同様に得られた。また、被覆部中に化合物(SiNiO)が形成されていると、より良好な結果が得られた。
(実験例10−1〜10−11)
表15に示したように、コア部の組成(原子比x)および種類を変更して二次電池の諸特性を調べた。この場合には、原材料(Si)の溶融凝固時に酸素導入量を調整して原子比xを制御した。
Figure 2013008584
コア部の組成(原子比x)および種類を変更しても、高いサイクル維持率および初回効率が得られた。この場合には、原子比xが0≦x<0.5であると、サイクル維持率および初回効率がより増加した。
(実験例11−1〜11−20)
表16に示したように、コア部にM2(Al等)を含有させて二次電池の諸特性を調べた。この場合には、原材料としてSiOx 粉および金属粉M2を用いてガスアトマイズ法によりコア部を得ると共に、その金属粉の投入量を変化させてM2の割合(M2割合)を制御した。
Figure 2013008584
コア部にM2(Al等)を含有させると、サイクル維持率および初期効率がより増加した。この場合には、M2割合が0.01原子%〜50原子%であると、電池容量の低下が抑制された。
(実験例12−1〜12−63)
表17〜表19に示したように、コア部にM3(Cr等)またはM4(B等)を含有させて二次電池の諸特性を調べた。この場合には、原材料としてSiOx 粉および金属粉M3等(Cr等)を用いてガスアトマイズ法によりコア部を得ると共に、その金属粉の投入量を変化させてM3またはM4の割合を制御した。
Figure 2013008584
Figure 2013008584
Figure 2013008584
コア部にM3またはM4を含有させると、サイクル維持率および初期効率がより増加した。この場合には、M3の割合が1原子%〜50原子%、M4の割合が0.01原子%〜30原子%であると、電池容量の低下が抑えられた。
(実験例13−1〜13−6)
表20に示したように、コア部のメジアン径を変更して二次電池の諸特性を調べた。この場合には、ガスアトマイズ法により得たコア部の中から、所望のメジアン径を有するものを随時選択した。
Figure 2013008584
メジアン径が0.3μm〜20μmであると、サイクル維持率および初期効率がより増加した。
(実験例14−1〜14−8)
表21に示したように、被覆部の表面に追加導電部(C:黒鉛)を形成して二次電池の諸特性を調べた。この場合には、被覆部を形成した場合と同様の手順により導電部を形成した。この追加導電部の平均厚さおよび平均被覆率は、表21に示した通りである。
Figure 2013008584
追加導電部を形成すると、サイクル維持率および初期効率がより増加した。
(実験例15−1〜15−21)
表22に示したように、負極結着剤の種類を変更して二次電池の諸特性を調べた。この場合には、負極結着剤として、ポリイミド(PI)、ポリフッ化ビニリデン(PVDF)、ポリアミド(PA)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAAL)または炭化ポリイミド(炭化PI)を用いた。なお、PAAまたはPAALを用いる場合には、それらが溶解された17体積%の水溶液を用いて負極合剤スラリーを準備すると共に、熱プレスしたのちに焼成しないで負極活物質層54Bを形成した。
Figure 2013008584
負極結着剤の種類を変更しても、高いサイクル維持率、初回効率および負荷維持率が得られた。
(実験例16−1〜16−12)
表23に示したように、正極活物質の種類を変更して二次電池の諸特性を調べた。
Figure 2013008584
正極活物質の種類を変更しても、高いサイクル維持率、初回効率および負荷維持率が得られた。
表1〜表23の結果から、負極活物質がコア部、被覆部および繊維状炭素部を含み、SiおよびOを構成元素として含む被覆部の原子比yが0.5≦y≦1.8であると、高いサイクル特性、初回充放電特性および負荷特性が得られる。
以上、実施形態および実施例を挙げて本技術を説明したが、本技術はそれらで説明した態様に限定されず、種々の変形が可能である。例えば、負極の容量がリチウムイオンの吸蔵放出により表される場合について説明したが、必ずしもこれに限られない。本技術は、負極の容量がリチウムイオンの吸蔵放出による容量とLi金属の析出溶解による容量とを含み、かつ、それらの容量の和により表される場合についても適用可能である。この場合には、負極活物質としてリチウムイオンを吸蔵放出可能な負極材料が用いられると共に、負極材料の充電可能な容量が正極の放電容量よりも小さくなるように設定される。
また、電池構造が角型、円筒型またはラミネートフィルム型であると共に電池素子が巻回構造を有する場合について説明したが、必ずしもこれに限られない。本技術は、電池構造が角型またはボタン型などである場合、または、電池素子が積層構造などを有する場合についても適用可能である。
1,42A,54A…負極集電体、2,42B,54B…負極活物質層、22,42,54…負極、20…電池素子、21,41,53…正極、21A,22A,41A,53A…正極集電体、21B,22B,41B,53B…正極活物質層、23,43,55…セパレータ、40,50…巻回電極体、56…電解質層、60…外装部材、200…負極活物質、201…コア部、202…被覆部、203…導電部、204…繊維状炭素部。

Claims (20)

  1. 正極と、活物質を含む負極と、電解液とを備え、
    前記活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた非結晶性または低結晶性の被覆部と、その被覆部の表面のうちの少なくとも一部に設けられた繊維状炭素部とを含み、
    前記被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8である、
    リチウムイオン二次電池。
  2. 前記繊維状炭素部の平均長さは50nm〜50000nm、平均径は5nm〜500nmである、請求項1記載のリチウムイオン二次電池。
  3. 前記コア部および被覆部に対する前記繊維状炭素部の割合(繊維状炭素部/(コア部+被覆部))は1重量%〜20重量%である、請求項1記載のリチウムイオン二次電池。
  4. 前記繊維状炭素部は前記被覆部の表面のうちの少なくとも一部に設けられた導電部から成長しており、その導電部はCu、Fe、CoおよびNiのうちの少なくとも1種を構成元素として含む、請求項1記載のリチウムイオン二次電池。
  5. 前記被覆部はLi、C、Mg、Al、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Ge、Zr、Mo、Ag、Sn、Ba、W、Ta、NaおよびKのうちの少なくとも1種の元素M1を構成元素として含み、SiおよびOに対するM1の割合(M1/(Si+O)は20原子%以下であると共に、
    前記繊維状炭素部は前記被覆部のうちのM1から成長している、
    請求項1記載のリチウムイオン二次電池。
  6. 前記被覆部はFeを構成元素として含み、その被覆部に対するFeの割合(Fe/被覆部)は0.005重量%〜0.5重量%である、請求項1記載のリチウムイオン二次電池。
  7. 前記コア部に対する前記被覆部の平均被覆率は30%〜100%であると共に、前記被覆部の平均厚さは1nm〜10000nmである、請求項1記載のリチウムイオン二次電池。
  8. 前記被覆部は多層である、請求項1記載のリチウムイオン二次電池。
  9. 低結晶性の前記被覆部は非結晶領域および結晶領域(結晶粒)を含み、前記結晶粒は前記非結晶領域の中に点在する、請求項1記載のリチウムイオン二次電池。
  10. 前記コア部はSiおよびSnのうちの少なくとも一方を構成元素として含む、請求項1記載のリチウムイオン二次電池。
  11. 前記コア部はSiおよびOを構成元素として含み、そのSiに対するOの原子比x(O/Si)は0≦x<0.5である、請求項1記載のリチウムイオン二次電池。
  12. 前記コア部のメジアン径は0.3μm〜20μmである、請求項1記載のリチウムイオン二次電池。
  13. 前記コア部はFeおよびAlのうちの少なくとも一方の元素M2を構成元素として含み、そのSiおよびOに対するM2の割合(M2/(Si+O))は0.01原子%〜50原子%であり、
    または、前記コア部はCrおよびNiのうちの少なくとも一方の元素M3を構成元素として含み、そのSiおよびOに対するM3の割合(M3/(Si+O))は1原子%〜50原子%であり、
    または、前記コア部はB、Mg、Ca、Ti、V、Mn、Co、Cu、Ge、Y、Zr、Mo、Ag、In、Sn、Sb、Ta、W、Pb、La、Ce、PrおよびNdのうちの少なくとも1種の元素M4を構成元素として含み、そのSiおよびOに対するM4の割合(M4/(Si+O))は0.01原子%〜30原子%である、
    請求項1記載のリチウムイオン二次電池。
  14. 前記負極活物質は前記被覆部の表面のうちの少なくとも一部に設けられると共に前記コア部および被覆部よりも電気抵抗が低い追加導電部を含む、請求項1記載のリチウムイオン二次電池。
  15. 活物質を含み、その活物質は、リチウムイオンを吸蔵放出可能であるコア部と、そのコア部の表面のうちの少なくとも一部に設けられた非結晶性または低結晶性の被覆部と、その被覆部の表面のうちの少なくとも一部に設けられた繊維状炭素部とを含み、
    前記被覆部はSiおよびOを構成元素として含み、そのSiに対するOの原子比y(O/Si)は0.5≦y≦1.8である、
    リチウムイオン二次電池用負極。
  16. 請求項1ないし請求項14に記載したリチウムイオン二次電池と、そのリチウムイオン二次電池の使用状態を制御する制御部と、その制御部の指示に応じて前記リチウムイオン二次電池の使用状態を切り換えるスイッチ部とを備えた、電池パック。
  17. 請求項1ないし請求項14に記載したリチウムイオン二次電池と、そのリチウムイオン二次電池から電力を供給された電力を駆動力に変換する変換部と、その駆動力に応じて駆動する駆動部と、前記リチウムイオン二次電池の使用状態を制御する制御部とを備えた、電動車両。
  18. 請求項1ないし請求項14に記載したリチウムイオン二次電池と、1または2以上の電気機器と、前記リチウムイオン二次電池から前記電気機器に対する電力供給を制御する制御部とを備えた、電力貯蔵システム。
  19. 請求項1ないし請求項14に記載したリチウムイオン二次電池と、そのリチウムイオン二次電池から電力を供給される可動部とを備えた、電動工具。
  20. 請求項1ないし請求項14に記載したリチウムイオン二次電池を備え、そのリチウムイオン二次電池から電力を供給される、電子機器。
JP2011141002A 2011-06-24 2011-06-24 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 Active JP6003015B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011141002A JP6003015B2 (ja) 2011-06-24 2011-06-24 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN201210202893.9A CN102842733B (zh) 2011-06-24 2012-06-15 锂离子二次电池、锂离子二次电池负极和电池组
US13/527,284 US9083054B2 (en) 2011-06-24 2012-06-19 Lithium ion secondary battery, lithium ion secondary battery negative electrode, battery pack, electric vehicle, electricity storage system, power tool, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011141002A JP6003015B2 (ja) 2011-06-24 2011-06-24 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Publications (3)

Publication Number Publication Date
JP2013008584A true JP2013008584A (ja) 2013-01-10
JP2013008584A5 JP2013008584A5 (ja) 2014-07-17
JP6003015B2 JP6003015B2 (ja) 2016-10-05

Family

ID=47362142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011141002A Active JP6003015B2 (ja) 2011-06-24 2011-06-24 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Country Status (3)

Country Link
US (1) US9083054B2 (ja)
JP (1) JP6003015B2 (ja)
CN (1) CN102842733B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172378A1 (ja) * 2012-05-15 2013-11-21 三井金属鉱業株式会社 非水電解液二次電池用負極活物質
WO2014178113A1 (ja) * 2013-04-30 2014-11-06 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
JP2015138716A (ja) * 2014-01-23 2015-07-30 Jfeエンジニアリング株式会社 シリコン系ナノ材料複合体、その製造方法、装置及びシリコン系ナノ材料複合体を含むリチウムイオン二次電池用負極活物質、電極並びに蓄電デバイス
JP2016524799A (ja) * 2013-06-04 2016-08-18 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. リチウム二次バッテリーのためのコア−シェル型アノード活物質、同物質を調製するための方法、および同物質を含有するリチウム二次バッテリー
KR20170004673A (ko) * 2015-07-03 2017-01-11 삼성에스디아이 주식회사 음극 활물질, 이를 채용한 리튬 전지 및 이의 제조 방법
JP2018181858A (ja) * 2013-01-25 2018-11-15 帝人株式会社 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法
JP2020532825A (ja) * 2017-08-31 2020-11-12 エー123 システムズ エルエルシーA123 Systems LLC 電気化学的活性粉末のメタライゼーションプロセス

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136679B2 (ja) * 2012-08-09 2017-05-31 株式会社Gsユアサ 蓄電装置及び電力経路開閉装置
JP2014157738A (ja) * 2013-02-15 2014-08-28 Sony Corp 非水二次電池用電解液、非水二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR101656326B1 (ko) * 2013-03-27 2016-09-09 주식회사 엘지화학 애노드 활물질 슬러리, 그 슬러리를 이용한 애노드 및 그를 포함하는 전기화학소자
JP6398170B2 (ja) * 2013-10-11 2018-10-03 株式会社村田製作所 リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
EP2874197B1 (en) 2013-11-15 2017-10-18 Saft Groupe S.A. Battery design and method of assembly
JP6722454B2 (ja) * 2013-12-13 2020-07-15 株式会社三徳 正極活物質粉末、該粉末を有する正極及び二次電池
KR20160121547A (ko) * 2014-02-11 2016-10-19 코닝 인코포레이티드 안정화된 리튬 복합 입자들을 포함한 리튬 이온 배터리들
WO2017116783A1 (en) * 2015-12-28 2017-07-06 3M Innovative Properties Company Silicon based materials for and methods of making and using same
EP3373376A4 (en) * 2016-01-06 2019-07-17 Murata Manufacturing Co., Ltd. SECONDARY BATTERIES WITH A WATER-FREE ELECTROLYTE, POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERIES WITH A WATER-FREE ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF
CN107346831A (zh) * 2016-05-04 2017-11-14 上海奇谋能源技术开发有限公司 一种提高锂离子电池使用寿命的方法
DE102016225691A1 (de) * 2016-12-20 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Hochvolt-Batterie für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
CN115806290B (zh) * 2022-12-06 2024-08-13 广东凯金新能源科技股份有限公司 人造石墨锂离子电池负极材料及其制备方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210835B1 (en) * 1998-02-20 2001-04-03 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
JP2002170561A (ja) * 2000-11-30 2002-06-14 Denki Kagaku Kogyo Kk 電極活物質及び非水系二次電池
JP2004349056A (ja) * 2003-05-21 2004-12-09 Mitsui Mining Co Ltd リチウム二次電池用負極材料及びその製造方法
JP2005085717A (ja) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd 非水電解質電池
JP2005183264A (ja) * 2003-12-22 2005-07-07 Nec Corp 二次電池用負極材料及びその製造方法並びにそれを用いた二次電池
JP2005340223A (ja) * 1998-02-20 2005-12-08 Hitachi Ltd リチウム2次電池とその電解液及び電気機器
WO2006067891A1 (ja) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. 複合負極活物質およびその製造法ならびに非水電解質二次電池
JP2006244984A (ja) * 2004-08-26 2006-09-14 Matsushita Electric Ind Co Ltd 電極用複合粒子およびその製造法、ならびに非水電解質二次電池
US20070020521A1 (en) * 2005-07-25 2007-01-25 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US20070111100A1 (en) * 2005-11-17 2007-05-17 Yasuhiko Bito Non-aqueous electrolyte secondary battery and method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2007165300A (ja) * 2005-11-17 2007-06-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池、および非水電解質二次電池用負極材料の製造方法
US20070190416A1 (en) * 2006-02-13 2007-08-16 Hitachi Maxell, Ltd. Non-aqueous secondary battery and method for producing the same
JP2007242590A (ja) * 2006-02-13 2007-09-20 Hitachi Maxell Ltd 非水二次電池
JP2007329001A (ja) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極材料およびその製造方法、ならびにそれを用いる非水電解質二次電池
US20080160409A1 (en) * 2004-08-26 2008-07-03 Sumihito Ishida Composite Particle for Electrode, Method for Producing the Same and Secondary Battery
JP2008199767A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 電池パックの制御装置
US20090053608A1 (en) * 2007-06-29 2009-02-26 Im Goo Choi Anode active material hybridizing carbon nanofiber for lithium secondary battery
US20090142665A1 (en) * 2007-11-22 2009-06-04 Kyeu-Yoon Sheem Active material for rechargeable lithium battery and rechargeable lithium battery including the same
US20110115441A1 (en) * 2009-11-18 2011-05-19 Takahiro Matsuyama Charging control method, charging control computer program, charging control device, secondary cell system, secondary cell power supply, and cell application device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP4367311B2 (ja) 2004-10-18 2009-11-18 ソニー株式会社 電池
JP4994634B2 (ja) 2004-11-11 2012-08-08 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
KR100738054B1 (ko) * 2004-12-18 2007-07-12 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
US20090104536A1 (en) 2005-07-21 2009-04-23 Yasutaka Kogetsu Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP5162825B2 (ja) 2005-12-13 2013-03-13 パナソニック株式会社 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
JP4911990B2 (ja) 2006-02-27 2012-04-04 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP5108355B2 (ja) 2007-03-30 2012-12-26 パナソニック株式会社 リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
CN101849306B (zh) * 2007-09-06 2013-06-12 佳能株式会社 锂离子储存/释放材料的制备方法、锂离子储存/释放材料、使用该材料的电极结构体和储能器件
KR100913177B1 (ko) 2007-09-17 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
JP5182477B2 (ja) 2007-09-21 2013-04-17 信越化学工業株式会社 非水系二次電池
JP5188795B2 (ja) * 2007-12-14 2013-04-24 パナソニック株式会社 リチウム二次電池用正極形成用塗工液、リチウム二次電池用正極およびリチウム二次電池
JP5196149B2 (ja) 2008-02-07 2013-05-15 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5555978B2 (ja) 2008-02-28 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP5329858B2 (ja) 2008-07-10 2013-10-30 株式会社東芝 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2010157442A (ja) * 2008-12-26 2010-07-15 Sony Corp 電子機器およびバッテリパック
DE102009027111A1 (de) * 2009-06-23 2010-12-30 Robert Bosch Gmbh Elektrische Werkzeugmaschine
US9764632B2 (en) * 2010-01-07 2017-09-19 Ford Global Technologies, Llc Plug-in hybrid electric vehicle battery state of charge hold function and energy management
JP5617265B2 (ja) * 2010-02-05 2014-11-05 ソニー株式会社 リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340223A (ja) * 1998-02-20 2005-12-08 Hitachi Ltd リチウム2次電池とその電解液及び電気機器
US6210835B1 (en) * 1998-02-20 2001-04-03 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
JP2002170561A (ja) * 2000-11-30 2002-06-14 Denki Kagaku Kogyo Kk 電極活物質及び非水系二次電池
JP2004349056A (ja) * 2003-05-21 2004-12-09 Mitsui Mining Co Ltd リチウム二次電池用負極材料及びその製造方法
JP2005085717A (ja) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd 非水電解質電池
JP2005183264A (ja) * 2003-12-22 2005-07-07 Nec Corp 二次電池用負極材料及びその製造方法並びにそれを用いた二次電池
US20080160409A1 (en) * 2004-08-26 2008-07-03 Sumihito Ishida Composite Particle for Electrode, Method for Producing the Same and Secondary Battery
JP2006244984A (ja) * 2004-08-26 2006-09-14 Matsushita Electric Ind Co Ltd 電極用複合粒子およびその製造法、ならびに非水電解質二次電池
WO2006067891A1 (ja) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. 複合負極活物質およびその製造法ならびに非水電解質二次電池
US20090004564A1 (en) * 2004-12-22 2009-01-01 Matsushita Electric Industrial Co., Ltd. Composite Negative Electrode Active Material, Method For Producing The Same And Non-Aqueous Electrolyte Secondary Battery
US20070020521A1 (en) * 2005-07-25 2007-01-25 3M Innovative Properties Company Alloy compositions for lithium ion batteries
JP2009503786A (ja) * 2005-07-25 2009-01-29 スリーエム イノベイティブ プロパティズ カンパニー リチウムイオン電池のための合金組成物
JP2007165300A (ja) * 2005-11-17 2007-06-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池、および非水電解質二次電池用負極材料の製造方法
US20070111100A1 (en) * 2005-11-17 2007-05-17 Yasuhiko Bito Non-aqueous electrolyte secondary battery and method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2007242590A (ja) * 2006-02-13 2007-09-20 Hitachi Maxell Ltd 非水二次電池
US20070190416A1 (en) * 2006-02-13 2007-08-16 Hitachi Maxell, Ltd. Non-aqueous secondary battery and method for producing the same
JP2007329001A (ja) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極材料およびその製造方法、ならびにそれを用いる非水電解質二次電池
JP2008199767A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 電池パックの制御装置
US20090053608A1 (en) * 2007-06-29 2009-02-26 Im Goo Choi Anode active material hybridizing carbon nanofiber for lithium secondary battery
US20090142665A1 (en) * 2007-11-22 2009-06-04 Kyeu-Yoon Sheem Active material for rechargeable lithium battery and rechargeable lithium battery including the same
US20110115441A1 (en) * 2009-11-18 2011-05-19 Takahiro Matsuyama Charging control method, charging control computer program, charging control device, secondary cell system, secondary cell power supply, and cell application device
JP2011109824A (ja) * 2009-11-18 2011-06-02 Sharp Corp 充電制御方法、充電制御コンピュータプログラム、充電制御装置、2次電池システム、2次電池電力源、および、電池応用装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172378A1 (ja) * 2012-05-15 2013-11-21 三井金属鉱業株式会社 非水電解液二次電池用負極活物質
JP5513689B1 (ja) * 2012-05-15 2014-06-04 三井金属鉱業株式会社 非水電解液二次電池用負極活物質
US9478800B2 (en) 2012-05-15 2016-10-25 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
JP2018181858A (ja) * 2013-01-25 2018-11-15 帝人株式会社 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法
WO2014178113A1 (ja) * 2013-04-30 2014-11-06 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
JP2016524799A (ja) * 2013-06-04 2016-08-18 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. リチウム二次バッテリーのためのコア−シェル型アノード活物質、同物質を調製するための方法、および同物質を含有するリチウム二次バッテリー
JP2015138716A (ja) * 2014-01-23 2015-07-30 Jfeエンジニアリング株式会社 シリコン系ナノ材料複合体、その製造方法、装置及びシリコン系ナノ材料複合体を含むリチウムイオン二次電池用負極活物質、電極並びに蓄電デバイス
KR20170004673A (ko) * 2015-07-03 2017-01-11 삼성에스디아이 주식회사 음극 활물질, 이를 채용한 리튬 전지 및 이의 제조 방법
KR102341405B1 (ko) * 2015-07-03 2021-12-20 삼성에스디아이 주식회사 음극 활물질, 이를 채용한 리튬 전지 및 이의 제조 방법
JP2020532825A (ja) * 2017-08-31 2020-11-12 エー123 システムズ エルエルシーA123 Systems LLC 電気化学的活性粉末のメタライゼーションプロセス
JP7116159B2 (ja) 2017-08-31 2022-08-09 エー123 システムズ エルエルシー 電気化学的活性粉末のメタライゼーションプロセス

Also Published As

Publication number Publication date
JP6003015B2 (ja) 2016-10-05
CN102842733A (zh) 2012-12-26
CN102842733B (zh) 2016-08-17
US9083054B2 (en) 2015-07-14
US20120328945A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP6003015B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5935246B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5982811B2 (ja) 二次電池用活物質、二次電池および電子機器
JP5861444B2 (ja) 二次電池用活物質、二次電池および電子機器
JP5659696B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP6237859B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、リチウムイオン二次電池用負極活物質、電動工具、電気自動車および電力貯蔵システム
JP5807749B2 (ja) 非水電解液二次電池用正極、非水電解液二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2013008586A (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6413766B2 (ja) 活物質、活物質の製造方法、電極および二次電池
JP6208957B2 (ja) 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6332258B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5807747B2 (ja) 電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2013048053A (ja) 活物質、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2011124047A (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP2013008585A (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6183443B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6686650B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器
JP6288062B2 (ja) 二次電池用活物質、二次電池、電子機器、電動車両および電動工具

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250