JP2012509830A - 高cteガラスのレーザ援用フリット封着及び得られる封着ガラスパッケージ - Google Patents

高cteガラスのレーザ援用フリット封着及び得られる封着ガラスパッケージ Download PDF

Info

Publication number
JP2012509830A
JP2012509830A JP2011537643A JP2011537643A JP2012509830A JP 2012509830 A JP2012509830 A JP 2012509830A JP 2011537643 A JP2011537643 A JP 2011537643A JP 2011537643 A JP2011537643 A JP 2011537643A JP 2012509830 A JP2012509830 A JP 2012509830A
Authority
JP
Japan
Prior art keywords
glass
glass plate
frit
sealing
cte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011537643A
Other languages
English (en)
Inventor
エル ログノフ,ステファン
マルジャノヴィック,サシャ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2012509830A publication Critical patent/JP2012509830A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

(CTEが約80〜90×10−7−1と比較的高い)第1のガラスプレート、第2のガラスプレート及び(CTEが少なくとも約35×10−7−1の)フリットを有し、第1のガラスプレートを第2のガラスプレートに結合するシール(例えば気密シール)をフリットが形成する、ガラスパッケージを作製するために用いられるレーザ援用フリット封着方法が説明される。

Description

関連出願の説明
本出願は2008年11月24日に出願された、名称を「高CTEガラスのレーザ援用フリット封着及び得られる封着ガラスパッケージ(Laser Assisted Frit Sealing of High CTE Glasses and the Resulting Sealed Glass Package)」とする、米国特許出願第12/276631号の恩典を特許請求する。
本発明は、(CTEが約80〜90×10−7−1と比較的高い)第1のガラスプレート、第2のガラスプレート、及び(CTEが少なくとも約35×10−7−1の)フリットを有し、第1のガラスプレートを第2のガラスプレートに結合するシール(例えば気密シール)をフリットが形成する、ガラスパッケージの作製に用いられる、レーザ援用フリット封着方法に関する。
水分及び酸素に敏感なデバイスの封入は、有機発光ダイオード(OLED)ディスプレイ製造の重要な一環である。フリットで隔てられた約30〜40×10−7−1の中程度の熱膨張係数(CTE)を有する2枚のディスプレイガラスプレートの、OLEDを間においた、レーザ援用フリット封着は、20〜50mm/秒までの高速で実行できることが示されている。20〜50mm/秒までの比較的高い封着速度は、費用効果が高い製造プロセスを可能にするための重要な要件である。このレーザ援用フリット封着プロセスは、名称を「ディスプレイ素子の封入方法(Method of Encapsulating a Display Element)」とする共通に譲渡された出願特許の特許文献1及び名称を「ガラス外囲器の作製方法(Method of Making a Glass Envelope)」とする共通に譲渡された出願特許の特許文献2に説明されている。これらの2つの特許文献の内容は本明細書に参照として含まれる。
しかし、材料コストの低減がさらに一層重要である、固体照明または太陽電池のような、ディスプレイ用途とは異なる用途において、ディスプレイ品質ガラスの使用は限定要因である。すなわち、そのようなタイプの用途にはソーダ石灰ガラスプレートのような安価なガラスプレートを使用するほうが製造業者にとって好ましい。しかし、そのようなタイプのガラスプレートのCTEはかなり高く、〜80〜90×10−7−1である。問題は、例えば固体照明または太陽電池のような用途に用いることができるガラスパッケージを作製するために高CTEガラスプレートのレーザ援用フリット封着を可能にするには封着プロセス及び/またはフリット特性にどのような変更が必要になるかである。対処すべき別の問題は、高CTEガラスプレートの高速レーザ援用フリット封着を可能にするには封着プロセス及び/またはフリット特性にどのような変更が必要になるかである。これらの問題及びその他の問題は本発明によって解決される。
米国特許出願公開第2007/0128966号明細書 米国特許出願公開第2007/0128967号明細書
本発明の課題は、高CTEガラスプレートのレーザ援用フリット封着及びその高速化を可能にするための手段を提供することである。
概括的に、本発明の実施形態は、ガラスパッケージ及びガラスパッケージの作製方法に向けられる。ガラスパッケージは、例えば、電気光学コンポーネントのようなエレクトロニクスコンポーネントを収めているガラスパッケージとすることができる。例えば、ガラスパッケージは、一層ないしさらに多くの層の、有機電界発光材料のような有機材料を収めることができる。ガラスパッケージは有機発光ダイオード(OLED)ディスプレイのようなディスプレイデバイスを構成することができ、あるいはガラスパッケージは光起電力デバイス(例えば太陽電池)を構成することができる。
一態様において、本発明の実施形態は、(a)CTEが約80〜90×10−7−1の範囲の第1のガラスプレート、(b)第2のガラスプレート、及び(c)CTEが少なくとも約35×10−7−1のフリットを有し、第1のガラスプレートを第2のガラスプレートに結合するシールをフリットが形成する、ガラスパッケージを含む。
別の態様において、本発明の実施形態は、(a)CTEが約80〜90×10−7−1の範囲の第1のガラスプレートを提供する工程、(b)第2のガラスプレートを提供する工程、(c)CTEが少なくとも約35×10−7−1のフリットを提供する工程、(d)第1のガラスプレート上または第2のガラスプレート上にフリットを布置する工程、(e)フリットを第1のガラスプレートと第2のガラスプレートの間において第1のガラスプレートを第2のガラスプレートに重ねる工程、及び(f)レーザを用いて第1のガラスプレートまたは第2のガラスプレートを通してフリットにレーザビームを向け、次いで、フリットが溶融して第1のガラスプレートを第2のガラスプレートに結合するシールを形成するようにフリットを加熱するためにフリットに沿って所定の封着速度でレーザビームを移動させる工程を含み、レーザビームがフリット上にビーム投影面積を形成し、ビーム投影面積内のフリットの与えられた点上で、100ミリ秒以上、200ミリ秒以上または400ミリ秒以上の、滞留時間を有する、ガラスパッケージを作製する方法を含む。
本発明の別の態様は、ある程度は、詳細な説明、図面及び添付される特許請求項のいずれかに述べられ、ある程度は、詳細な説明から導かれるであろうし、あるいは本発明の実施によって習得され得る。上述の全般的説明及び以下の詳細な説明はいずれも例示及び説明に過ぎず、開示されるような本発明の限定ではないことは当然である。
以下の詳細な説明を添付図面とともに参照することにより、本発明のさらに完全な理解を得ることができる。
図1Aは、本発明の一実施形態にしたがう、封着デバイスの基本コンポーネント及び封着ガラスパッケージを示す上面図である。 図1Bは、本発明の一実施形態にしたがう、封着デバイスの基本コンポーネント及び封着ガラスパッケージを示す側断面図である。 図2は、本発明の一実施形態にしたがう、図1A及び図1Bに示されるガラスパッケージを作製するための封着方法例の工程を示すフローチャートである。 図3は、本発明の一実施形態にしたがう封着方法及びガラスパッケージを試験するために行われた様々な実験の結果の1つを示すために用いられる写真である。 図4は、本発明の一実施形態にしたがう封着方法及びガラスパッケージを試験するために行われた様々な実験の結果の1つを示すために用いられる写真である。 図5は、本発明の一実施形態にしたがう封着方法及びガラスパッケージを試験するために行われた様々な実験の結果の1つを示すために用いられるグラフである。 図6Aは、本発明の一実施形態にしたがう封着方法及びガラスパッケージを試験するために行われた様々な実験の結果の1つを示すために用いられる写真である。 図6Bは本発明の一実施形態にしたがう封着方法及びガラスパッケージを試験するために行われた様々な実験の結果の1つを示すために用いられる写真である。 図7は、本発明の一実施形態にしたがう封着方法及びガラスパッケージを試験するために行われた様々な実験の結果の1つを示すために用いられるグラフである。 図8は、本発明の一実施形態にしたがう封着方法及びガラスパッケージを試験するために行われた様々な実験の結果の1つを示すために用いられるグラフである。 図9は、本発明の一実施形態にしたがう封着方法及びガラスパッケージを試験するために行われた様々な実験の結果の1つを示すために用いられる棒グラフである。
以下の詳細な説明においては、限定ではなく説明を目的として、特定の詳細を開示する実施形態例が本発明の完全な理解を提供するために述べられる。しかし、本明細書に開示される特定の詳細には依存しない別の実施形態で本発明が実施され得ることが、本開示の恩恵を有する当業者には明らかであろう。さらに、周知のデバイス、方法及び材料の説明は本発明の説明が曖昧にならないように省略されることがある。最後に、本明細書において、適用できる場合は必ず、同様の参照数字は同様の要素を指す。
基本的なガラスパッケージの作製に関して本発明のレーザ援用フリット封着手法が以下で説明されるが、同じかまたは同様のレーザ援用フリット封着手法を(少なくとも一方が約80〜90×10−7−1の範囲の高CTEを有する)2枚のガラスプレートを相互に封着するために用い得ることは当然であり、これは、例えば、固体照明、太陽電池、さらには気密封着OLEDディスプレイのような広汎な用途及びデバイスに用い得る。したがって、本発明のガラスパッケージ及びレーザ援用フリット封着手法は限定された態様で解されるべきではない。
図1A及び1Bを参照すれば、本発明にしたがう封着ガラスパッケージ100の基本コンポーネントを上面図及び側断面図が示している。封着ガラスパッケージ100は、(約80〜90×10−7−1の範囲のCTEを有する)第1のガラスプレート102,1つないしさらに多くのコンポーネント104,(必要に応じて設けられる)電極106,(少なくとも約35×10−7−1のCTEを有する)フリット108及び第2のガラスプレート110を有する。封着ガラスパッケージ100は、(存在するとすれば)第1のガラスプレート102と第2のガラスプレート110の間に配置された1つないしさらに多くのコンポーネント104を保護する、フリット108で形成されたシール112(例えば気密シール112)を有する。(存在するとすれば)電極106はコンポーネント104に接続され、コンポーネント104を外部デバイス(図示せず)に接続できるように、シール112も通過する。シール112は一般に、(存在するとすれば)コンポーネント104が、また(存在するとすれば)電極106の少なくとも一部分がシール112の周内に配置されるように、ガラスパッケージ100の周縁を巡って配置される。フリット108を溶融させることでどのようにシール112が形成されるか、及びフリット108をの加熱及び溶融のために用いられる封着デバイス114(例えばレーザ114)のような補助コンポーネントが、図2及び実験結果の節に関して以下でかなり詳細に説明される。
図2を参照すれば、本発明にしたがう封着ガラスパッケージ100を作製するための例示の封着方法200の工程をフローチャートが示している。工程202及び204に始まり、封着ガラスパッケージ100を作製できるように、第1のガラスプレート102及び第2のガラスプレート110が提供される。一実施形態において、第1のガラスプレート102及び第2のガラスプレート110はソーダ石灰ガラスプレートのようなガラスプレートであり、いずれも約80〜90×10−7−1の範囲のCTEを有する。別の実施形態において、第1のガラスプレート102(または第2のガラスプレート110)はソーダ石灰ガラスプレートのようなガラスプレートであり、約80〜90×10−7−1の範囲のCTEを有するが、第2のガラスプレート110(または第1のガラスプレート102)は、第1のガラスプレート102(または第2のガラスプレート110)のCTEより低い、約30×10−7−1以下の、CTEを有するガラスプレートである。例えば、第1のガラスプレート102(または第2のガラスプレート110)のCTEより低い、約30×10−7−1以下の、CTEを有する第1のガラスプレート102(または第2のガラスプレート110)には、コーニング(Corning Incorporated)社で製造され、製品番号1737またはEagle2000(商標)の商品名で販売されているガラスのような、アルカリ土類アルミノホウケイ酸ガラスプレートを含めることができ、または(例えば)旭硝子(株)、日本電気硝子(株)、NHテクノグラス社及びサムスンコーニング精密ガラス社のような会社で製造されて販売されているようなガラスプレート(例えば旭硝子(株)のOA10ガラス及びOA21ガラス)を含めることができる。
工程206及び208において、CTEが少なくとも約35×10−7−1のフリット108(例えばフリットペースト108)が提供されて、フリット108が第1のガラスプレート102(または第2のガラスプレート110)の表面上に閉ループを形成する態様で第1のガラスプレート102(または第2のガラスプレート110)の縁に沿って布置される。例えば、フリット108は第1のガラスプレート102(または第2のガラスプレート110)の自由端からほぼ1mm離して布置することができる。見てわかるように、フリット108のCTEは、第1のガラスプレート102及び第2のガラスプレート110の少なくとも一方のCTEと整合していない。一実施形態において、フリット108は、(例えば)鉄、銅、バナジウム及びネオジムを含む群から選ばれる1つないしさらに多くの吸収性イオン(例えば遷移金属イオン)を含有する、低温ガラスフリットである。フリット108にはCTEを少なくとも約35×10−7−1まで低めるためにフィラー(例えば、反転フィラー、添加フィラー)を添加することもできる。一例において、フリット108は、Sb(23.5モル%),V(47.5モル%),P(27モル%),TiO(1.0モル%),Al(1.0モル%),Fe(2.5モル%)及び少なくとも10%のβユークリプタイトガラス−セラミックCTE低下フィラー(LiAlSiO)の、組成を有することができるであろう。そのようなフリット108及び本発明に用いることができるであろう別のフリット108の例の組成は、共通に譲渡された、2008年7月28日に出願された米国仮特許出願第61/084007号の明細書及び、共通に譲渡された、名称を「フリットで気密封着されたガラスパッケージ及び作製方法(Glass Package that is Hermetically Sealed with Frit and Method of Fabrication)」とする、米国特許第6998776号の明細書に詳細に論じられている。これらの明細書の内容は本発明に参照として含まれる。
(必要に応じて実施される)工程210において、フリット108は第1のガラスプレート102(または第2のガラスプレート110)に予備焼結させることができるであろう。これを達成するため、フリット108は第1のガラスプレート102(または第2のガラスプレート110)上に布置されたフリット108が、第1のガラスプレート102(または第2のガラスプレート110)に固着するように、加熱されるであろう。例えば、予備焼結工程210は、第1のガラスプレート102及び布置したフリット108を炉に入れて、400℃で1時間加熱し、次いでフリット108及び第1のガラスプレート102のクラック発生を防止するために制御されたレートで冷却することによって、実施することができる。望ましければ、予備焼結フリット108を研削して、厚さ変動を(例えば)5〜10μm未満に抑えることができる。
(必要に応じて実施される)工程212において、第2のガラスプレート110(または第1のガラスプレート102)上にコンポーネント104及び付帯する電極106が布置される。例えば、コンポーネント104及び付帯する電極106は、OLED、固体照明及び太陽電池にともなうことができる。望ましければ、コンポーネント104及び電極106の代わりに、またはこれらに加えて、液体(図示せず)をガラスパッケージ100に入れることができる。
工程214において、フリット108が第1のガラスプレート102と第2のガラスプレート110の間になるように、第2のガラスプレート110上に第1のガラスプレート102が重ねられる。あるいは、フリット108が第1のガラスプレート102と第2のガラスプレート110の間になるように、第1のガラスプレート102上に第2のガラスプレート110を重ねることができる。
工程216において、第1のガラスプレート102を第2のガラスプレート110に結合するシール112(例えば気密シール112)をフリット108が形成するような態様で、封着デバイス114(例えばレーザ114)を用いてフリット108が加熱される(図1Bを見よ)。さらに、シール112は、例えば周囲環境内にある酸素及び水分の封着ガラスパッケージ100への侵入を防止することによって、(もしあれば)コンポーネント104を保護するであろう。一実施形態において、封着デバイス114(レーザ114)は第1のガラスプレート102または第2のガラスプレート110を通してレーザビーム115をフリット108に向け、次いでフリット108が溶融して第1のガラスプレート102を第2のガラスプレート110に結合するシール112を形成するようにフリット108を加熱するために、フリット108に沿って所定の封着速度(例えば20〜50mm/秒)でレーザビーム115を移動させる。レーザビーム115のスポット径は一般にフリット108の幅より大きい。例えばフリット108の幅は少なくとも1mmとすることができ、したがってレーザビームに適するスポット径は、例えば直径が少なくとも約2mm、少なくとも約3mmまたは少なくとも約4mmのビーム径のように、1mmをこえることができる。特に、レーザビーム115はフリット108上にレーザビーム投影面積を形成し、レーザビーム投影面積内のフリット108の与えられた点上の、100ミリ秒以上または200ミリ秒以上の、さらには400ミリ秒以上にもなる、滞留時間を有する(注:スポット径及びレーザビーム投影面積は、例えば、1/e,半値全幅(FWHM)等に依ることができる)。封着プロセス中のフリット108の与えられた点上のレーザビーム115の100ミリ秒以上の滞留時間は、フリット108のクラック発生の防止、また第1のガラスプレート102及び第2のガラスプレート110からのフリットの剥離の防止に役立つから、望ましい。封着工程216及び滞留加熱時間(加熱プロファイル)に関する詳細な議論は以下の実験結果の節で与えられる。
望ましければ、封着デバイス114(例えばレーザ114)は、フリット108の温度を実質的に一定の温度まで高める態様でフリット108を加熱する光115(例えばレーザビーム115)を放射するために用いることができ、光115は、フリット108を溶融させて第1のガラスプレート102を第2のガラスプレート110に結合するシール112を形成しながら、電極106がない領域及び(用いられていれば)電極106で占有されている領域を有するフリット108に沿って(例えば封着線118に沿って)移動する。本発明の定温封着手法を可能にするために用いることができる様々な封着手法及び構成の例は、共通に譲渡された、名称を「有機発光ダイオード(OLED)ディスプレイを封着するためのパラメータの最適化(Optimization of Parameters for Sealing Organic Emitting Light Diode (OLED) Display)」とする、米国特許第7371143号の明細書に詳細に説明されている。この明細書の内容は本明細書に参照として含まれる。
実験結果
上述したレーザフリット封着プロセス200及び封着した、ほとんどはソーダ石灰ガラスの、高CTEガラス102及び110の解析を行った。解析は目視検査及び、様々な封着速度、レーザビームスポット径、等を含む、様々な封着条件の下で作製された、実験ガラスパッケージ100を試験するための新しいオンライン応力試験設備を用いて行った。ディスプレイガラスにともなうレーザ封着条件(レーザ出力33W,封着速度20mm/秒,1mm幅フリットに対するビーム径1.8mm)を用いる高CTEガラスの封着では一般に、封着高CTEガラスパッケージ100の過渡応力及び残留応力による、フリット108の望ましくないクラック発生及び剥離がおこることがわかった。さらに、封着速度の減速及び/またはレーザビーム115のスポット径の拡大により滞留加熱時間(フリット108の加熱、封着及び冷却に必要な時間)を長くすることによって、高CTEガラスパッケージ100の封着歩留がかなり改善され得ることがわかった。このことは、滞留加熱時間を長くして封着したソーダ石灰ガラスプレート102及び110について応力の低減を示す応力解析によって確かめられた。本明細書には、この解析だけでなく、高CTEガラス102及び110に対して最適化された封着条件及び、高CTEガラスプレート102及び110を封着するときの、CTE、アニール点、加熱プロファイル及びフリット組成、等のようなパラメータの重要性を示すために、他のガラスを用いた実験も示される。
封着品質の評価
これらの実験においては、上述した特許文献1及び2に説明される従来の封着プロセスで作製されたシールを評価するために行っている方法と同様の、光学顕微鏡を明視野及び暗視野で用いる目視検査によって、シール品質を評価した。この手法を用いることにより、いかなる、シール112の欠陥、フリット108の生じ得るクラックまたは剥離及び/またはガラスプレート102及び110のクラックも見ることができるであろう。一実験において、2枚のソーダ石灰ガラスプレート102及び110と1mm幅のフリットで、レーザ出力33W,封着速度2mm/秒及び拡大ビームスポット径3.2mmの封着条件を用いて、Caパッチ302を封入したガラスパッケージ100を作製した。カルシウムパッチ302は、例えば、(非気密)パッケージの漏れを検出するために用いることができ、したがって、敏感なパッケージ内容物の代用としてはたらくことができる。例えば、カルシウムパッチ302はOLEDデバイスの1つないしさらに多くの層の代わりになることができ、カルシウムパッチ試験の結果はOLEDデバイスに与えられるシールによる効果を判定するために用いることができる。所定の時間後のカルシウムパッチ302の全てまたは一部の「白色フレーク状痂皮」への転化は、パッケージ内の酸素の存在及びパッケージの潜在的漏れを示すために用いることができる。別の実験において、2枚の低CTEガラスプレート(コーニングのEagle(登録商標)ガラスプレート)及び1mm幅のフリットで、レーザ出力33W,封着速度20mm/秒及び拡大ビームスポット径3.2mmの封着条件を用いて、従来のガラスパッケージを作製した。いずれの場合にも、フリット108の組成は、Sb(23.5モル%),V(47.5モル%),P(27モル%),TiO(1.0モル%),Al(1.0モル%),Fe(2.5モル%)、及び少なくとも10%のβユークリプタイトガラス−セラミックCTE低下フィラー(LiAlSiO)であった。封着ガラスパッケージ100及び従来の封着ガラスパッケージは、85℃/相対湿度85%のチャンバ内に1000時間おかれた、気密性試験に耐え抜くことができた。
発明者等は、レーザ出力、封着速度及びビーム径を変えることにより、様々な封着条件で実験を行った。さらに、発明者等は、βユークリプタイトフィラーを30%有するフリット108を含み、ガラス対βユークリプタイト比の大きさが70/30〜90/10の範囲で変わるフリット108も含む、様々なタイプのフリット108を用いて実験を行った。表#1に示されるように、発明者等は、レーザ出力33W及び拡大ビームスポット径3.2mmを用い、2mm/秒の低速で、1mm幅のフリット108によってソーダ石灰ガラスプレート102及び110が良好に封着されるが、Eagle2000(登録商標)ガラスプレートと1mm幅のフリット108では、同様の封着条件であるが、20mm/秒の封着速度及び1.8mmのビームスポット径を用いて非常に高い封着歩留が得られることを見いだした。実際、ソーダ石灰ガラスプレート102及び110では、レーザ出力33W,封着速度20mm/秒及びビームスポット径1.8mmの封着条件における封着結果は非常に劣っている。しかし、封着速度を〜2mm/秒に落とし、ビームスポット径1.8mmで得られるソーダ石灰ガラスプレート102及び110の封着結果はかなり良好になる。さらに、フリット幅が1.8mmのままでビーム径を〜3.2mmまで大きくすると、封着品質及び封着歩留に関して一層良好な結果が得られる。これらの調節はいずれも、ガラスパッケージ100の個々の位置における実効加熱時間(滞留加熱時間)を長くする傾向にある。実際、発明者等は、滞留加熱時間,τ(実効)をD/vと定義した。ここで、Dは定形レーザビーム115の直径であり、vはフリット108に沿うレーザビーム115の平行移動の線速度である。当然であるように、Dを大きくし、vを小さくすれば、τ(実効)は大きくなる(図2の工程216における滞留加熱時間に関する議論も見よ)。「Eagle2000」タイプのような、CTEが32〜36×10−7−1の、低CTEガラスプレートに対しては、50mm/秒を超える速度及び1.8mmのスポット径で封着を行うことができる。これは、このタイプの低CTEガラスに対する滞留加熱時間が90ミリ秒以下になり得ることを意味する。本発明が解決する課題は、80〜60×10−7−1の高CTEを有するガラスに対する、フリット108のクラック発生及び第1のガラスプレート102及び第2のガラスプレート110からの剥離を防止するための滞留加熱時間を、ディスプレイガラスの場合より長くとも1桁程度に抑えるべきであるということである(以下の議論を見よ)。
Figure 2012509830
表#1に示される様々なガラスはそれぞれが相異なるCTEを有することから試験にかけられ、同様のCTEを有する他のガラスは同じ封着条件に対して同様の封着結果を示すであろう。表#1に示されるソーダ石灰ガラス及びフリットの組成は、
・ソーダ石灰ガラス:73%SiO,14%NaO,9%CaO,0.15%AlO3,0.03%KO,4%MgO,0.02%TiO,0.1%Fe
・フリット108:Sb(23.5モル%),V(47.5モル%),P(27モル%),TiO(1.0モル%),Al(1.0モル%),Fe(2.5モル%)、及び少なくとも10%のβユークリプタイトガラス−セラミックCTE低下フィラー(LiAlSiO);
の通りであり、
・表#1の他のガラスは全てコーニング社の市販ガラスである。「Eagle2000」ガラスはCTEが32×10−7−1のアルカリ土類アルミノホウケイ酸ディスプレイガラスである。ガラスA(コーニング社製品番号7058)及びガラスB(コーニング社製品番号9753)は、CTEがそれぞれ51×10−7−1及び59×10−7−1の、石灰アルミノケイ酸ガラスである。ガラスC(コーニング社製品番号0211)は、顕微鏡カバーガラスとして市販されている、CTEが74×10−7−1の、アルカリ亜鉛ホウケイ酸ガラスである。
図5を参照すれば、グラフは、本発明の実施形態にしたがう、封着速度またはレーザビーム形状変化の関数として複数の高CTEガラスパッケージ100の加熱プロファイルを示す。このグラフにおいて、x軸は時間(秒)であり、y軸はフリット温度(℃)であって、様々な曲線は以下の番号:
1. この実線は自然ガラス冷却レートを示す;
2. この実線は、3.2mmのスポット径を用いて2mm/秒で封着しているときに、0.7mm幅のフリット108の中心で測定した、加熱プロファイルを示す;
2A.この破線は、3.2mmのスポット径を用いて2mm/秒で封着しているときに、0.7mm幅のフリット108の縁で測定した、加熱プロファイルを示す;
3. この実線は、1.8mmのスポット径を用いて2mm/秒で封着しているときに、0.7mm幅のフリット108の中心で測定した、加熱プロファイルを示す;
3A.この破線は、1.8mmのスポット径を用いて2mm/秒で封着しているときに、0.7mm幅のフリット108の縁で測定した、加熱プロファイルを示す;
4. この実線は、1.8mmのスポット径を用いて20mm/秒で封着しているときに、0.7mm幅のフリット108の中心で測定した、加熱プロファイルを示す;
4A.この破線は、1.8mmのスポット径を用いて20mm/秒で封着しているときに、0.7mm幅のフリット108の縁で測定した、加熱プロファイルを示す;
を用いて識別される。
表#1及び図5が示すように、レーザビーム115のスポット径が大きくなるほど、得られる加熱プロファイルはより一様になり、これはソーダ石灰ガラスのような高CTEガラスのレーザフリット封着に重要である。
応力のオンライン評価及び封着プロセス後評価
レーザ封着ガラスパッケージ100の応力を測定するため、発明者等は封着ガラスパッケージ100におけるその場複屈折を測定する計測装置を組み上げた。計測装置は、M.H.L.ターディ(Tardy)による論文、「光学材料における複屈折を測定するための実験的方法(Experimental Method for Measuring the Birefringence in Optical Materials)」,Optics Review,1929年,第8巻,p.59〜69に説明されている、ターディ方式と同様である(この論文の内容は本明細書に参照として含まれる)。しかし、これらの実験において、発明者等は高速ビデオカメラを備える計測装置を用いることで複屈折をモニタした。これにより、発明者等の封着ガラスパッケージ100における過渡応力及び残留応力の計算が可能になった。詳しくは、本計測装置を用いて発明者等が測定するのは遅延であり、遅延は複屈折に変換される必要があり、複屈折は次いで応力に変換される必要がある。2つの試験ガラスパッケージについて複屈折マップを作製した。試験ガラスパッケージのそれぞれは0.63mm厚ソーダ石灰ガラスプレート102及び110で、それらの間に代表的な1mm幅フリット108を置いて、作製し、第1の試験ガラスパッケージ100aは1.8mmのレーザビーム115のスポット径及び20Wのレーザ出力を用い、10mm/秒で封着し、第2の試験ガラスパッケージ100bは1.8mmのレーザビーム115のスポット径及び12Wのレーザ出力を用い、2mm/秒で封着した。10mm/秒で封着した第1のガラスパッケージの応力レベルは2mm/秒で封着した第2のガラスパッケージの応力レベルよりかなり高くなっていた(図6を見よ)。計測装置の較正のため、発明者等は同じ第2の封着ガラスパッケージを用いて、本計測装置で得られた残留複屈折を標準の較正済偏光計で得られた残留複屈折と比較した。
いくつかのソーダ石灰ガラスパッケージ100の代表的フリット108に直交する方向においても複屈折を測定し、ハインズ(Hinds)ポーラロスコープで収集したデータを図7のグラフに示す。このグラフにおいて、x軸はフリットの横断距離(mm)、y軸は複屈折(nm/cm)であって、様々な曲線は以下の番号:
1. このソーダ石灰ガラスパッケージ100は、マスクを用い、175Wのレーザ出力及び4.8mmのレーザビームスポット径により20mm/秒で封着した;
2. このソーダ石灰ガラスパッケージ100は、マスクを用い、370Wのレーザ出力及び6.4mmのレーザビームスポット径により20mm/秒で封着した;
3. このソーダ石灰ガラスパッケージ100は、マスクを用い、18Wのレーザ出力及び1.6mmのレーザビームスポット径により20mm/秒で封着した;
を用いて識別される。
参照のために、33Wのレーザ出力、1.8mmのレーザビームスポット径及び20mm/秒の封着速度で封着した従来の「Eagle2000」ガラスパッケージでは、370Wのレーザ出力、6.4mmのレーザビームスポット径及び20mm/秒の封着速度で封着したソーダ石灰ガラスパッケージ100と同等の応力が生じた。応力が低くなるほどガラスパッケージ100の機械的性能が向上し、寿命が長くなることは当然である。
ハインズポーラロスコープは複屈折の値を提供し、この値からフリット108のピーク応力値及びフリット108の幅に対する応力の幅に関する情報が得られる。図7のグラフに示される、得られた複屈折は、光路に沿う局所応力に関していくつかの仮定を行って、既知の応力光学係数に図8に示されるような応力値に換算することができた。この特定のグラフにおいて、x軸はソーダ石灰ガラスパッケージ100内の距離(mm)、y軸は応力(psi(1psi=6.89×10Pa))であって、様々な曲線は以下の番号:
1.封着速度2mm/秒,レーザ出力12W,レーザビームスポット径1.8mm;
2.封着速度10mm/秒,レーザ出力20W,レーザビームスポット径1.8mm;を用いて識別される封着条件と関連付けられる。与えられるいかなる時点においても封着中に応力をモニタすることが可能であるから、過渡応力及び残量得応力のいずれについてもピーク応力値を得ることができた。このデータが図9にまとめられている。
図9を参照すれば、過渡応力(下段の左下がりハッチング部)及び残留応力(上段の右下がりハッチング部)のいずれをも含む、様々なガラスパッケージ及び封着条件に対するピーク応力がグラフにまとめられている。このグラフにおいて、x軸は複数のガラスパッケージ試料を示し、y軸は最大応力(psi)であって、試料は:
(1)Eagleは代表的フリット108で封着された「Eagle2000」ガラスプレートを表す;
(2)SLNは代表的フリット108で封着されたソーダ石灰ガラスプレート102及び110を表す;
(3)SL90-10は、ガラス対CTE低下フィラー比が90/10の代表的フリット108で封着されたソーダ石灰ガラスプレート102及び110を指す(注:続く数字は2mm/秒または10mm/秒のレーザ封着速度を指す);
のように分別される。本グラフにおいて、封着条件には、(2mm/秒及び10mm/秒に対して、それぞれ)12Wおよび20Wのレーザ出力並びに1.8mmのレーザビームスポット径が含まれる。
図9をみれば、遷移応力の値は「Eagle2000」ガラスよりもソーダ石灰ガラスについて高いが、異なる封着速度に対して応力のピーク値は有意には変化しないことがわかる。同時に、ソーダ石灰ガラスに対しては封着速度を低めると残留応力が低下した。全体として、「Eagle2000」ガラス封着とソーダ石灰ガラス封着の間の差は、図7及び9に見られるように、残留応力値について最も顕著であった。様々な応力パターンの詳細な解析から、10mm/秒以上の高速で、応力パターンはフリット108の中心に関してかなり非対称であることが示された。さらに、図8に示され、本明細書の後の節でさらに論じられるように、上側のソーダ石灰ガラスプレート110には下側のソーダ石灰ガラスプレート102よりかなり大きな応力がかかった。これは低CTEディスプレイガラスの封着にもいえることであるが、ディスプレイガラスに対する応力は高CTEガラスの場合ほど大きくはないから厳密ではない。高CTEガラスに対し、応力の非対称性はレーザ封着失敗の重要な要因にもなり得る。すなわち、「Eagle」ガラス及びソーダ石灰ガラスのいずれの試験結果にも基づけば、ガラスパッケージ100の残留応力の大きさは、従来のガラスパッケージで期待される代表的の応力値の4〜5倍をこえるべきではない。図9に見ることができるように、ガラスパッケージ100内の最大残留応力値は1500psi(1.03×10Pa)未満であることがわかり、したがって従来のガラスパッケージに対して最大残留応力は7000psi(4.82×10Pa)未満とするべきである。言い換えれば、ガラスパッケージ100内の残留応力は約1500psiをこえるべきではなく、従来のガラスパッケージについては7000psiをこえるべきではない。背面ガラスの応力とカバーガラスの応力の差は20〜30%未満とすべきである。
レーザビームスポット径の影響
上に示したように、ソーダ石灰ガラスのレーザ封着において高歩留でシール112を得るには加熱プロファイルの非常に大きな修正が必要である。発明者等は、様々なレーザスポット径及び封着速度に対し、上述した代表的フリット108を用いてソーダ石灰ガラス封着実験を行った。これらに実感は、<1mm/秒のかなり低速であっても、1.8mmのスポット径で得られるシール品質は低いが、〜2mm/秒の速度での封着においても、>3mmのスポット径を用いて得られたガラスパッケージ100のシール112の品質は高い。これは、滞留加熱時間、フリットの加熱、封着及び冷却に必要な時間(図2の工程216も見よ)、及びフリット108の中心及び縁に対する加熱の一様性の内のいつかの差で説明することができるであろう。フリット108の一様加熱により、フリット108の中心及び縁が同様の滞留加熱時間を有することが保証される。例えば、1.8mm幅のビーム(パワー12W)及び速度1mm/秒に対する1mm幅フリット108の中心の滞留加熱時間の差は1.8秒となるであろう。一方、3.25mm幅のビーム(パワー30W)及び速度2mm/秒に対して差はほぼ同じ(〜1.6秒)であるが、3.25mm幅ビームに対しては結果がかなり良かった。1.8mmビームに対するフリット108の縁に対する滞留加熱時間は(3.25mmビームに対するより)かなり短いであろう。レーザビームは、ビーム幅にわたって実質的に一様な強度を有する、階段状の強度プロファイル(ビーム幅にわたる強度分布)を有することができ、あるいはビームはガウス型強度プロファイルを有し得ることは当然である。本明細書に用いられるように、実質的に一様な強度分布は、ビーム幅にわたる強度のある程度小さい変動は許容されることを意味する。例えば、実施において真の階段関数分布は達成が非常に困難であり、分布の「両側」に若干の傾斜が、またはその他の小さな強度変動が、生じ得る。速度2mm/秒で作製したガラスパッケージ100内の(気密試験用)Caパッチ302を保護する代表的シール112は、上で論じられている(Caパッチ302を封止するガラスパッケージ100は、レーザ出力33W,封着速度2mm/秒及び拡大ビームスポット径3.2mmの封着条件を用いて、2枚のソーダ石灰ガラスプレート102及び110と1mm幅フリット108で作製された)。
現在まで、直前に論じたようにして作製した4つの初期試験ガラスパッケージ100の内の3つが85℃/85%RHチャンバ内で1000時間耐え抜いている。耐え抜けなかったガラスパッケージ100が、ディスプレイガラス及びソーダ石灰ガラスのいずれについても最臨界封着点として知られる、レーザ照射開始/停止場所にシール112の欠陥を有していたことは注目すべきである。(20をこえる)多数のガラスパッケージ100による別の実験において、目視欠陥を有していないガラスパッケージ100のほとんどが85℃/85%RHチャンバ内で少なくとも1000時間、ソーダ石灰ガラスプレート102及び110自体はかなり痛んでいるが、フリット108浸出の目に見える兆候は無しに、耐え抜いている。
高速封着
20mm/秒の封着速度を達成するために、レーザビーム115のスポット径を大きくして低速時と同じ加熱プロファイルを維持することができる。400Wのレーザ出力、20mm/秒の封着速度及び9mmのレーザビームスポット径を用いてこれを実証した。作製したこのタイプのガラスパッケージ100の数は限られていたが、これらのガラスパッケージの内の少なくとも2つはCaパッチ302の封止に成功し、実験室環境内で少なくとも2000時間を耐え抜いている。これは、幅広加熱プロファイルを維持することで高CTEガラスの封着が可能になり得ることを示唆している。この手法により、比較的高い20ミリ/秒の封着速度を維持しながら、フリット108の幅にわたる滞留加熱時間を長くすることが可能になる。
フリット改変
ソーダ石灰ガラスプレート102及び110を封着する場合に、代表的フリット108からのCTEの変更はソーダ石灰ガラスプレート102及び110の封着に重要な効果を有していない。実際、フィラー量を少なくした高CTEフリット108では挙動が悪化するが、これらのガラスパッケージ100におけるシール112の作製には成功している。
異質ガラスの封着
歪点の影響
「Eagle2000」ガラスとソーダ石灰ガラスとは特性が異なるガラスとの異質ガラスの封着も調べ、結果を上の表#1にまとめてある。見てわかるように、「Eagle2000」ガラスとガラスAまたはガラスBとの封着は歪点の値の重要性を示す。ガラスの歪点が低くなるほど良好な封着が得られ、これは応力値に着目することで説明することができる。高歪点ガラスに対し、そのようなガラス内の全体的歪は、CTEは同じであるが歪点が低いガラス内の応力より高くなる。これはガラスの歪点より低い温度で応力が発達することによる。封着温度がガラスの歪点より低ければ、応力値はCTEが同じガラスと同じになるであろう。歪点が封着温度より低ければ、低歪点ガラスに対して応力は低くなるであろう。これはガラスA及びガラスBに当てはまり、歪点が472℃のガラスAは「Eagle2000」ガラスに良好に封着され、同様のCTEを有するが歪点が800℃をこえるガラスBは全く封着されず−それどころか、剥離が生じた。一般には、総歪値,CTE・ΔT/Δt(歪点対室温)をある値より低くするべきである。良好な封着を形成するための代表値は〜1500ppmである。しかし、ガラスが自然冷却レートより緩やかに冷却される場合には、上記の値を上回ることができる。すなわち、本発明においては、与えられた滞留加熱時間(例えば>400ミリ秒)において、[ガラスプレート102及びガラスプレート110の歪点]−[封着プロセス前のガラスプレート102及び/またはガラスプレート110の平衡温度]を500℃より小さくすることができる。例えば、滞留加熱時間を(<400ミリ秒に)短くする必要があれば、上式にしたがって、周囲温度を上げることによって歪点と周囲温度の差ΔTを小さくしなければならない。例えば、<100ミリ秒または<200ミリ秒の滞留加熱時間で封着する必要があれば、周囲温度をそれぞれ少なくとも200℃または100℃高くする必要があり得る。特に、本発明においては、[ガラスプレート102及びガラスプレート110の歪点]−[封着プロセス前のガラスプレート102及び/またはガラスプレート110の平衡温度]を約200ミリ秒以上の与えられた滞留加熱時間において約400℃より小さくすることが可能である。また、本発明においては、[ガラスプレート102及びガラスプレート110の歪点]−[封着プロセス前のガラスプレート102及び/またはガラスプレート110の平衡温度]を約100ミリ秒以上の与えられた滞留加熱時間において約300℃より小さくすることが可能である。
ガラス厚の影響
ガラスプレート102及びガラスプレート110の厚さもガラス封着に重要な役割を果たす。150μm厚のガラスCは「Eagle2000」ガラスに封着することができたが、>400μmの厚いガラスCでは、表#1に関して上述した封着条件において、クラックが延展し、剥離が生じた。この場合も、これらの実験は、組成がSb(23.5モル%),V(47.5モル%),P(27モル%),TiO(1.0モル%),Al(1.0モル%),Fe(2.5モル%)、及び少なくとも10%のβユークリプタイトガラス−セラミックCTE低下フィラー(LiAlSiO)の、代表的フリット108を用いて行った。ソーダ石灰ガラスを用いた追加実験でも、2〜3ミリの厚いガラスの封着では0.7mmのガラスに比べて封着歩留が低下した。
上述した実験では特定の諸元及び組成をもつフリット108と特定の組成を有するガラスプレート102及び110を用いたが、別のタイプのフリット108及び別のタイプのガラスプレート102及び110を、本発明を用いて相互に封着できることは当然である。さらに、上記実験は特定の工程及び特定の工程シーケンスの使用を含んでいたが、本発明を用いる封着ガラスパッケージ100の作製には、そのような工程のいずれか及び特定の工程シーケンスを実施してもしなくても差し支えないことは当然である。したがって、レーザ援用フリット封着方法200及び得られる封着ガラスパッケージ100は、特定のタイプのフリット108,特定のタイプのガラスプレート102及び110,特定の工程または特定の工程シーケンスに限定されると解されるべきではない。
本発明の複数の実施形態を添付図面に示し、上記の詳細な説明で説明したが、本発明が開示された実施形態には限定されず、添付される特許請求の範囲に述べられ、定められるような本発明の精神を逸脱せずに、数多くの再構成、改変及び置換を行い得ることは当然である。
100 封着ガラスパッケージ
102 高CTEガラスプレート
104 コンポーネント
106 電極
108 フリット
110 ガラスプレート
112 シール
114 封着デバイス(レーザ)
115 レーザビーム
118 封着線

Claims (8)

  1. ガラスパッケージを作製する方法において、前記方法が、
    80〜90×10−7−1の範囲の熱膨張係数,CTEを有する、第1のガラスプレートを提供する工程、
    第2のガラスプレートを提供する工程、
    少なくとも35×10−7−1のCTEを有する、フリットを提供する工程、
    前記第1のガラスプレート上または前記第2のガラスプレート上に前記フリットを布置する工程、
    前記フリットを前記第1のガラスプレートと前記第2のガラスプレートの間において、前記第1のガラスプレートを前記第2のガラスプレートに重ねる工程、及び
    レーザを用いて前記第1のガラスプレートまたは前記第2のガラスプレートを通して前記フリットにレーザビームを向け、次いで、前記フリットが溶融して前記第1のガラスプレートを前記第2のガラスプレートに結合するシールを形成するように、前記フリットを加熱するために前記フリットに沿って所定の封着速度で前記レーザビームを移動させる工程、
    を含み、
    前記レーザビームが前記フリット上にレーザビーム投影面積を形成し、前記レーザビーム投影面積内の前記フリットの与えられた点上で100ミリ秒以上の滞留時間を有する、
    ことを特徴とする方法。
  2. 前記フリットの前記与えられた点上の前記レーザビームの前記滞留時間が、前記フリットの中心及び縁のいずれにおいても加熱及び冷却が実質的に一様であるような時間であることを特徴とする請求項1に記載の方法。
  3. 前記第2のガラスプレートが、前記第1のガラスプレートの前記CTEより低い、30×10−7−1以下のCTEを有することを特徴とする請求項1または2に記載の方法。
  4. 前記第1のガラスプレートが500℃より低い歪点を有することを特徴とする請求項1から3のいずれか1項に記載の方法。
  5. 400ミリ秒以上の前記滞留加熱時間に対して、[前記第1のガラスプレートの歪点]−[前記封着の前の前記第1のガラスプレートの平衡温度]が500℃未満であることを特徴とする請求項1から4のいずれか1項に記載の方法。
  6. ガラスパッケージにおいて、
    80〜90×10−7−1の範囲の熱膨張係数,CTEを有する第1のガラスプレート、
    第2のガラスプレート、及び
    前記第1のガラスプレートを前記第2のガラスプレートに結合するシールを形成する、少なくとも35×10−7−1のCTEを有するフリット、
    を有することを特徴とするガラスパッケージ。
  7. 前記第2のガラスプレートが、前記第1のガラスプレートの前記CTEより低い、30×10−7−1以下のCTEを有することを特徴とする請求項6に記載のガラスパッケージ。
  8. 前記第1のガラスプレートが500℃より低い歪点を有することを特徴とする請求項6または7に記載のガラスパッケージ。
JP2011537643A 2008-11-24 2009-11-20 高cteガラスのレーザ援用フリット封着及び得られる封着ガラスパッケージ Pending JP2012509830A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/276,631 2008-11-24
US12/276,631 US8245536B2 (en) 2008-11-24 2008-11-24 Laser assisted frit sealing of high CTE glasses and the resulting sealed glass package
PCT/US2009/065271 WO2010059907A1 (en) 2008-11-24 2009-11-20 Laser assisted frit sealing of high cte glasses and the resulting sealed glass package

Publications (1)

Publication Number Publication Date
JP2012509830A true JP2012509830A (ja) 2012-04-26

Family

ID=41664859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011537643A Pending JP2012509830A (ja) 2008-11-24 2009-11-20 高cteガラスのレーザ援用フリット封着及び得られる封着ガラスパッケージ

Country Status (7)

Country Link
US (1) US8245536B2 (ja)
EP (1) EP2370372A1 (ja)
JP (1) JP2012509830A (ja)
KR (1) KR101530753B1 (ja)
CN (1) CN102264662B (ja)
TW (1) TWI388526B (ja)
WO (1) WO2010059907A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513065A (ja) * 2013-02-21 2016-05-12 コーニング インコーポレイテッド 強化焼結ガラス構造体の形成方法
WO2016185776A1 (ja) * 2015-05-18 2016-11-24 株式会社日立製作所 複層ガラス

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006021468D1 (de) * 2005-12-06 2011-06-01 Corning Inc Herstellungsverfahren für eine luftdicht versiegelte Glasverpackung
TWI394732B (zh) * 2008-02-28 2013-05-01 Corning Inc 密封玻璃包封之方法
JP5308718B2 (ja) 2008-05-26 2013-10-09 浜松ホトニクス株式会社 ガラス溶着方法
US10322469B2 (en) * 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass
JP5535653B2 (ja) * 2008-06-23 2014-07-02 浜松ホトニクス株式会社 ガラス溶着方法
CN102498075A (zh) 2009-09-22 2012-06-13 皇家飞利浦电子股份有限公司 用于密封装置的玻璃封装以及包括玻璃封装的系统
JP2013508895A (ja) 2009-10-17 2013-03-07 キユーデイー・ビジヨン・インコーポレーテツド 光学部品、これを含む製品およびこれを作製する方法
JP5481167B2 (ja) 2009-11-12 2014-04-23 浜松ホトニクス株式会社 ガラス溶着方法
JP5567319B2 (ja) 2009-11-25 2014-08-06 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5535589B2 (ja) 2009-11-25 2014-07-02 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5481173B2 (ja) 2009-11-25 2014-04-23 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5466929B2 (ja) 2009-11-25 2014-04-09 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5481172B2 (ja) * 2009-11-25 2014-04-23 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5535588B2 (ja) 2009-11-25 2014-07-02 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5525246B2 (ja) 2009-11-25 2014-06-18 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5535590B2 (ja) * 2009-11-25 2014-07-02 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
KR101202335B1 (ko) 2010-07-27 2012-11-16 삼성에스디아이 주식회사 써모크로믹 스마트 윈도우 및 그 제조 방법
EP2426685B1 (en) 2010-09-03 2015-10-21 Corning Incorporated Process for sealing a glass package and resulting glass package
WO2012090943A1 (ja) * 2010-12-27 2012-07-05 旭硝子株式会社 封着材料層付きガラス部材とそれを用いた電子デバイス及びその製造方法
EP2721238B1 (de) * 2011-06-14 2017-12-06 Saint-Gobain Glass France Isolierverglasung mit elektrischem anschlusselement
US10347782B2 (en) 2011-08-04 2019-07-09 Corning Incorporated Photovoltaic module package
JP2013101923A (ja) * 2011-10-21 2013-05-23 Semiconductor Energy Lab Co Ltd 分散組成物の加熱方法、及びガラスパターンの形成方法
US8907871B2 (en) * 2012-03-15 2014-12-09 Corning Incorporated Touch screen assemblies for electronic devices
KR102015401B1 (ko) * 2012-12-21 2019-08-29 삼성디스플레이 주식회사 광학계 및 기판 밀봉 방법
KR102061795B1 (ko) * 2013-01-31 2020-01-03 삼성디스플레이 주식회사 평판 표시 장치의 실링 방법
TWI479464B (zh) * 2013-05-09 2015-04-01 Au Optronics Corp 顯示面板及其封裝方法
EP3033552B1 (en) 2013-08-16 2023-05-31 Samsung Electronics Co., Ltd. Methods for making optical components and products including same
CN107108343B (zh) * 2014-11-05 2020-10-02 康宁股份有限公司 具有非平面特征和不含碱金属的玻璃元件的玻璃制品
CN106298691A (zh) * 2015-05-29 2017-01-04 鸿富锦精密工业(深圳)有限公司 有机发光显示装置及其制造方法
TWI570909B (zh) * 2016-01-07 2017-02-11 友達光電股份有限公司 有機發光顯示面板
KR102529665B1 (ko) 2016-07-07 2023-05-10 삼성디스플레이 주식회사 투명 표시 장치
GB2570160A (en) * 2018-01-15 2019-07-17 Ortheia Ltd Method of processing glass
GB201806411D0 (en) 2018-04-19 2018-06-06 Johnson Matthey Plc Kit, particle mixture, paste and methods
TWI750055B (zh) * 2021-03-11 2021-12-11 李子介 運用雷射燒成量測陶瓷最適窯燒溫度之方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109521A (ja) * 2001-09-28 2003-04-11 Canon Inc 表示パネルおよびその封着方法ならびにそれを備える画像表示装置
JP2006524419A (ja) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド フリットにより密封されたガラスパッケージおよびその製造方法
JP2008044839A (ja) * 2006-08-18 2008-02-28 Corning Inc 発光素子ディスプレイの気密封止のためのホウケイ酸ガラスフリット
JP2008117767A (ja) * 2006-11-07 2008-05-22 Corning Inc 発光ディスプレイ装置のためのシール、方法、および装置
JP2008517446A (ja) * 2004-10-20 2008-05-22 コーニング インコーポレイテッド 有機発光ダイオード(oled)ディスプレイを封止するためのパラメータの最適化
JP2008524872A (ja) * 2005-12-06 2008-07-10 コーニング インコーポレイテッド ディスプレイ素子を密封する方法
JP2008527656A (ja) * 2005-12-06 2008-07-24 コーニング インコーポレイテッド フリットで密封されたガラスパッケージおよびその製造方法
JP2008532207A (ja) * 2005-12-06 2008-08-14 コーニング インコーポレイテッド ガラス外囲器を製造する方法
JP2008218393A (ja) * 2007-02-28 2008-09-18 Corning Inc 発光ディスプレイ装置のためのシールおよび方法
JP2008226553A (ja) * 2007-03-09 2008-09-25 Electric Power Dev Co Ltd 色素増感型太陽電池の封止部および色素増感型太陽電池
WO2010014161A1 (en) * 2008-07-28 2010-02-04 Corning Incorporated Method for sealing a liquid within a glass package and the resulting glass package
US20100095705A1 (en) * 2008-10-20 2010-04-22 Burkhalter Robert S Method for forming a dry glass-based frit
WO2010055888A1 (ja) * 2008-11-14 2010-05-20 旭硝子株式会社 封着材料層付きガラス部材の製造方法と電子デバイスの製造方法
JP2011505667A (ja) * 2007-11-30 2011-02-24 コーニング インコーポレイテッド 電子部品をパッケージする方法および装置
JP2011513174A (ja) * 2008-02-28 2011-04-28 コーニング インコーポレイテッド ガラスエンベロープの封止法
JP2011523617A (ja) * 2008-05-30 2011-08-18 コーニング インコーポレイテッド フリットをガラス板に焼結する方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754461B2 (ja) * 1994-07-08 1998-05-20 双葉電子工業株式会社 容器の封着方法および封着装置
JPH09199039A (ja) * 1996-01-11 1997-07-31 Hitachi Ltd ガス放電型表示パネル及びその製造方法
US8071183B2 (en) * 2006-06-02 2011-12-06 Hitachi Displays, Ltd. Display apparatus

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109521A (ja) * 2001-09-28 2003-04-11 Canon Inc 表示パネルおよびその封着方法ならびにそれを備える画像表示装置
JP2006524419A (ja) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド フリットにより密封されたガラスパッケージおよびその製造方法
JP2008517446A (ja) * 2004-10-20 2008-05-22 コーニング インコーポレイテッド 有機発光ダイオード(oled)ディスプレイを封止するためのパラメータの最適化
JP2008524872A (ja) * 2005-12-06 2008-07-10 コーニング インコーポレイテッド ディスプレイ素子を密封する方法
JP2008527656A (ja) * 2005-12-06 2008-07-24 コーニング インコーポレイテッド フリットで密封されたガラスパッケージおよびその製造方法
JP2008532207A (ja) * 2005-12-06 2008-08-14 コーニング インコーポレイテッド ガラス外囲器を製造する方法
JP2008044839A (ja) * 2006-08-18 2008-02-28 Corning Inc 発光素子ディスプレイの気密封止のためのホウケイ酸ガラスフリット
JP2008117767A (ja) * 2006-11-07 2008-05-22 Corning Inc 発光ディスプレイ装置のためのシール、方法、および装置
JP2008218393A (ja) * 2007-02-28 2008-09-18 Corning Inc 発光ディスプレイ装置のためのシールおよび方法
JP2008226553A (ja) * 2007-03-09 2008-09-25 Electric Power Dev Co Ltd 色素増感型太陽電池の封止部および色素増感型太陽電池
JP2011505667A (ja) * 2007-11-30 2011-02-24 コーニング インコーポレイテッド 電子部品をパッケージする方法および装置
JP2011513174A (ja) * 2008-02-28 2011-04-28 コーニング インコーポレイテッド ガラスエンベロープの封止法
JP2011523617A (ja) * 2008-05-30 2011-08-18 コーニング インコーポレイテッド フリットをガラス板に焼結する方法
WO2010014161A1 (en) * 2008-07-28 2010-02-04 Corning Incorporated Method for sealing a liquid within a glass package and the resulting glass package
JP2011529624A (ja) * 2008-07-28 2011-12-08 コーニング インコーポレイテッド ガラスパッケージ内に液体を封止する方法および得られるガラスパッケージ
US20100095705A1 (en) * 2008-10-20 2010-04-22 Burkhalter Robert S Method for forming a dry glass-based frit
WO2010055888A1 (ja) * 2008-11-14 2010-05-20 旭硝子株式会社 封着材料層付きガラス部材の製造方法と電子デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三和晋吉: ""液晶ディスプレイ用ガラス基板"", NEW GLASS, vol. 18, no. 2, JPN6015012282, 7 June 2003 (2003-06-07), JP, pages 7 - 11, ISSN: 0003038101 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513065A (ja) * 2013-02-21 2016-05-12 コーニング インコーポレイテッド 強化焼結ガラス構造体の形成方法
WO2016185776A1 (ja) * 2015-05-18 2016-11-24 株式会社日立製作所 複層ガラス
JPWO2016185776A1 (ja) * 2015-05-18 2018-03-29 株式会社日立製作所 複層ガラス
US10566503B2 (en) 2015-05-18 2020-02-18 Hitachi, Ltd. Multilayer glass

Also Published As

Publication number Publication date
TWI388526B (zh) 2013-03-11
CN102264662A (zh) 2011-11-30
TW201033149A (en) 2010-09-16
KR101530753B1 (ko) 2015-06-22
US20100129666A1 (en) 2010-05-27
WO2010059907A1 (en) 2010-05-27
CN102264662B (zh) 2014-06-25
US8245536B2 (en) 2012-08-21
KR20110094091A (ko) 2011-08-19
EP2370372A1 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP2012509830A (ja) 高cteガラスのレーザ援用フリット封着及び得られる封着ガラスパッケージ
JP4999695B2 (ja) 気密封止ガラスパッケージ及び作成方法
TWI394307B (zh) 密閉性密封玻璃封裝及製造方法
JP6014739B2 (ja) ガラスシートに焼結フリットパターンを生成するためのフリット含有ペースト
TWI394732B (zh) 密封玻璃包封之方法
JP4540669B2 (ja) フリットにより密封された有機発光ダイオードディスプレイおよびその製造方法
CN101095247B (zh) 用于封装有机发光二极管(oled)显示器的参数的优化
JP2006524417A (ja) 密封ガラスパッケージおよびその製造方法
KR101866624B1 (ko) 저융점 유리 또는 흡수성 박막을 이용한 레이저 용접 투명 유리 시트
JP2016122671A (ja) ガラスエンベロープを封着するためのマスクおよび方法
TWI402948B (zh) 具有還原未使用區域電子組件之密閉性密封包裝
KR20090122260A (ko) 프릿으로 밀봉된 유리 패키지를 개선하기 위한 방법 및 장치
TW201026621A (en) Method for forming a dry glass-based frit
JP5624143B2 (ja) デバイスを封止するためのガラスパッケージ及びガラスパッケージを含むシステム
Logunov et al. Laser Assisted Frit Sealing for High Thermal Expansion Glasses.
Zhang et al. P‐197L: Late‐News Poster: Impacts of Glass Substrate and Frit Properties on Sealing for OLED Lighting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908