JP2012220472A - 分光測定装置及びプログラム - Google Patents

分光測定装置及びプログラム Download PDF

Info

Publication number
JP2012220472A
JP2012220472A JP2011090155A JP2011090155A JP2012220472A JP 2012220472 A JP2012220472 A JP 2012220472A JP 2011090155 A JP2011090155 A JP 2011090155A JP 2011090155 A JP2011090155 A JP 2011090155A JP 2012220472 A JP2012220472 A JP 2012220472A
Authority
JP
Japan
Prior art keywords
wavelength
fluorescence
sample
light
target component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090155A
Other languages
English (en)
Other versions
JP5516486B2 (ja
JP2012220472A5 (ja
Inventor
Ryutaro Oda
竜太郎 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2011090155A priority Critical patent/JP5516486B2/ja
Priority to US13/445,210 priority patent/US9164028B2/en
Priority to CN201210109429.5A priority patent/CN102818792B/zh
Publication of JP2012220472A publication Critical patent/JP2012220472A/ja
Publication of JP2012220472A5 publication Critical patent/JP2012220472A5/ja
Application granted granted Critical
Publication of JP5516486B2 publication Critical patent/JP5516486B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0216Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using light concentrators or collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/024Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using means for illuminating a slit efficiently (e.g. entrance slit of a spectrometer or entrance face of fiber)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • G01J2003/2869Background correcting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Abstract

【課題】目的成分の検出に最適な波長を決定可能な分光測定装置を提供する。
【解決手段】所定波長の光を励起光として試料に照射し該励起光の照射を受けて試料が発する蛍光のうち所定波長の光を検出する蛍光測定装置において、目的成分を含まない溶媒を前記試料とし、励起波長(又は蛍光波長)を所定の範囲で走査して得られた第1の蛍光スペクトルと、目的成分を含む溶媒を前記試料とし、励起波長(又は蛍光波長)を所定の範囲で走査して得られた第2の蛍光スペクトルとを記憶する記憶手段73と、第1の蛍光スペクトルと第2の蛍光スペクトルに基づいて各波長における目的成分の蛍光強度値を求めると共に、第1の蛍光スペクトルから各波長における溶媒由来のノイズ量の推定値を求め、前記目的成分の蛍光強度値とノイズ量の推定値の比から各波長における推定SN比等の感度指標を求める最適波長決定部77とを設ける。
【選択図】図3

Description

本発明は、分光測定装置及びそのプログラムに関する。
蛍光測定装置や吸光度測定装置等の分光測定装置は、分光法を利用して試料中の目的成分の検出や測定を行う装置である。
一般に蛍光測定装置は、光源が発する光から所定波長の光を分離し、その光を励起光として試料に照射する励起分光系、励起光を受けたときに試料が発する蛍光から所定波長の光を分離する蛍光分光系、及び、蛍光分光系により分離された光を検出してその量に応じた信号を出力する光検出手段を備えている(例えば、特許文献1を参照)。
基底状態の物質を励起状態とするために必要な励起光の波長、及び励起状態の物質が基底状態に戻るときに発する蛍光の波長は物質によって異なるため、上記のような蛍光測定装置を用いた測定では、検出しようとする成分(目的成分)に応じて測定に用いる励起波長及び前記光検出手段で検出する蛍光波長を適切に設定する必要がある。そのため、従来の蛍光測定装置では、測定に際し、予め以下のような手順で目的成分の検出に最適な励起波長及び蛍光波長が決定される。
(1)溶媒のみが試料セル内に存在している状態において、励起波長を固定し蛍光波長を走査することにより、各蛍光波長における蛍光強度を示すスペクトル(以下、これを「蛍光側スペクトル」と呼ぶ)を取得する。
(2)目的成分と溶媒が試料セル内に存在している状態において、上記と同様にして蛍光側スペクトルを取得する。
(3)(2)で得られたスペクトルから(1)で得られたスペクトルを減算することにより、目的成分の蛍光側スペクトルを求め、該スペクトルにおいて最も蛍光強度の高い波長を最適蛍光波長として決定する。
(4)次に、溶媒のみが試料セル内に存在している状態において、蛍光波長を固定し励起波長を走査することにより、各励起波長における蛍光強度を示す蛍光スペクトル(以下、これを「励起側スペクトル」と呼ぶ)を取得する。
(5)目的成分及び溶媒が試料セル内に存在している状態において、上記と同様にして励起側スペクトルを取得する。
(6)(5)で得られたスペクトルから(4)で得られたスペクトルを減算することにより目的成分の励起側スペクトルを求め、該スペクトルにおいて最も蛍光強度の高い波長を最適励起波長として決定する。
なお、ここでは蛍光側スペクトル、励起側スペクトルの順に測定しているが、この逆の順序で測定を行う場合もある。
上記の方法によれば、最も高い蛍光強度が得られる励起波長及び蛍光波長を最適励起波長及び最適蛍光波長として選択することが可能である。
一方、吸光度測定装置は、一般に光源が発する光から所定波長の光を分離し、その光を照射光として試料に照射する照射光学系と、試料を通過した光(透過光)を検出してその量に応じた信号を出力する光検出手段を備えている。
吸収される光の波長は物質によって異なるため、上記のような吸光度測定装置を用いた測定では、測定しようとする成分(目的成分)に応じて測定に用いる照射光の波長を適切に設定する必要がある。そのため、従来の吸光度測定装置では、測定に際し、予め文献等により目的成分の吸収波長を調べたり、以下のような手順で目的成分の測定に最適な波長を調べたりする必要がある。
(1)溶媒のみが試料セル内に存在している状態において、照射光の波長を走査することにより、吸収スペクトルを取得する。
(2)目的成分と溶媒が試料セル内に存在している状態において、上記と同様にして吸収スペクトルを取得する。
(3)(2)で得られたスペクトルから(1)で得られたスペクトルを減算することにより、目的成分の吸収スペクトルを求め、該スペクトルにおいて最も吸光度の高い波長を最適波長として決定する。
特開2001-83093号公報
しかしながら、上記従来の最適波長の決定方法を液体クロマトグラフ用の検出器として用いられる蛍光測定装置又は吸光度測定装置に適用した場合、これらの波長が必ずしも液体クロマトグラフ分析において最もSN比が高くなる(従って、検出限界が小さくなる)波長と一致しない場合がある。これは、上記従来の最適波長決定方法では、液体クロマトグラフ装置におけるベースラインの変動、すなわち移動相送液時のノイズの大小が考慮されていないことに起因する。
そこで、本発明が解決しようとする課題は、SN比が最大となり検出限界が最小となる波長を最適波長として決定することのできる分光測定装置を提供することである。
上記課題を解決するためになされた本発明に係る分光測定装置は、試料に光を照射し、該照射光と前記試料との相互作用により該試料から得られる光を測定する分光測定装置であって、
a) 目的成分を含まない溶媒を前記試料とし、前記照射光の波長若しくは測定する光の波長を所定の範囲で走査、又は前記試料から得られる光を分光して所定の範囲で多波長同時検出することによって得られた第1の測定データと、目的成分を含む溶媒を前記試料とし、前記照射光の波長若しくは測定する光の波長を所定の範囲で走査、又は前記試料から得られる光を分光して所定の範囲で多波長同時検出することによって得られた第2の測定データとを記憶する記憶手段と、
b) 前記第1の測定データと前記第2の測定データに基づいて各波長における前記目的成分と照射光の相互作用の大きさを表す値を求めると共に、前記第1の測定データから各波長における溶媒由来のノイズ量の推定値を求め、前記目的成分と照射光の相互作用の大きさを表す値と前記ノイズ量の推定値との比から各波長における感度指標の推定値を求める感度指標推定手段と、
を有することを特徴としている。
ここで、「前記目的成分と照射光の相互作用の大きさを表す値と前記ノイズ量の推定値との比」とは、「溶媒由来のノイズ量の推定値」に対する「目的成分と照射光の相互作用の大きさを表す値」の比であってもよく、「目的成分と照射光の相互作用の大きさを表す値」に対する「溶媒由来のノイズ量の推定値」の比であってもよい。また、前記各波長における「感度指標」とは、その波長における測定感度の大小を表す指標であって、例えば、前記「目的成分と照射光の相互作用の大きさを表す値」を前記「溶媒由来のノイズ量の推定値」で除算して得られるSN比の推定値などを前記感度指標として用いることができる。この場合、感度指標の数値が大きいほど測定感度が高いことになる。また、これに限らず、例えば、前記「溶媒由来のノイズ量の推定値」を前記「目的成分と照射光の相互作用の大きさを表す値」で除算した値に目的成分の濃度を乗算することで検出限界となる濃度に相当する値を求め、これを前記感度指標としてもよい。この場合、感度指標の数値が小さいほど測定感度が高いこととなる。
また、本発明に係る装置の第1の態様のものは、前記相互作用が試料による蛍光発光であり、前記分光測定装置が、所定波長の光を励起光として試料に照射する励起光学系と、該励起光の照射を受けて試料が発する蛍光を検出する検出光学系とを備えた蛍光測定装置であって、
前記記憶手段が、目的成分を含まない溶媒を前記試料とし、前記励起光の波長を所定の範囲で走査することによって得られた第1の測定データと、目的成分を含む溶媒を前記試料とし、前記励起光の波長を所定の範囲で走査することによって得られた第2の測定データとを記憶するものであり、
且つ、前記感度指標推定手段が、前記第1の測定データと第2の測定データに基づいて各励起波長における前記目的成分の蛍光強度値を求めると共に、前記第1の測定データから各励起波長における溶媒由来のノイズ量の推定値を求め、前記目的成分の蛍光強度値と前記ノイズ量の推定値の比から各励起波長における感度指標の推定値を求めるものであることを特徴としている。
また、本発明に係る装置の第2の態様のものは、前記相互作用が試料による蛍光発光であり、前記分光測定装置が、所定波長の光を励起光として試料に照射する励起光学系と、該励起光の照射を受けて試料が発する蛍光を検出する検出光学系とを備えた蛍光測定装置であって、
前記記憶手段が、目的成分を含まない溶媒を前記試料とし、前記検出光学系で検出する蛍光の波長を所定の範囲で走査、又は前記試料が発する蛍光を分光して所定の範囲で多波長同時検出することにより得られた第1の測定データと、目的成分を含む溶媒を前記試料とし、前記検出光学系で検出する蛍光の波長を所定の波長範囲で走査、又は前記試料が発する蛍光を分光して所定の範囲で多波長同時検出することにより得られた第2の測定データとを記憶するものであり、
且つ、前記感度指標推定手段が、前記第1の測定データと第2の測定データに基づいて各蛍光波長における目的成分の蛍光強度値を求めると共に、前記第1の測定データから各蛍光波長における溶媒由来のノイズ量の推定値を求め、前記目的成分の蛍光強度値と前記ノイズ量の推定値の比から各蛍光波長における感度指標の推定値を求めるものであることを特徴としている。
前記第1の態様及び第2の態様において、前記感度指標推定手段は、例えば、前記第2の測定データより求められる蛍光スペクトルから前記第1の測定データより求められる蛍光スペクトルを減算することにより前記各波長における目的成分の蛍光強度値を求め、且つ前記第1の測定データより求められる蛍光スペクトル上の各波長における蛍光強度値を1/2乗することにより前記各波長における溶媒由来のノイズ量の推定値を求めるものとすることができる。
液体クロマトグラフ装置における検出手段として用いられる蛍光測定装置では微小な光量を扱うため、蛍光信号に含まれるノイズは光電変換に伴うショットノイズが支配的となる。ショットノイズの大きさは測定された蛍光強度値の平方根に比例し、更に、上記第2の測定データより求められる蛍光スペクトルと第1の測定データより求められる蛍光スペクトルの差分は目的成分のみの蛍光スペクトルに相当するため、上記感度指標推定手段により、各励起波長又は各蛍光波長における感度指標の推定値が求められる。従って、例えば上記感度指標の推定値をモニタ等で表示することにより、ユーザは感度が最高となる励起波長又は蛍光波長を知ることができる。
また、前記第1の態様及び第2の態様に係る装置は、前記試料に照射する光を検知する対照光検出器を更に備え、
前記感度指標推定手段が、前記第2の測定データより求められる蛍光スペクトルから前記第1の測定データより求められる蛍光スペクトルを減算することにより前記各波長における目的成分の蛍光強度値を求め、且つ前記第1の測定データから各波長における前記蛍光検出器の出力電流Imと前記対照光検出器の出力電流Ixとを求め、以下の式を用いて前記各波長における溶媒由来のノイズ量の推定値ΔFを求めるものとすることもできる。
Figure 2012220472
ただし、Bmは前記蛍光検出器及びその信号処理における周波数帯域幅、Bxは前記対照光検出器及びその信号処理における周波数帯域幅
なお、本発明に係る分光測定装置は、前記第1の態様と第2の態様の機能を兼ね備えたものとし、ユーザが最適励起波長と最適蛍光波長の両方を知ることのできる構成とするとより望ましい。
また、本発明に係る装置の第3の態様のものは、前記相互作用が試料による吸光であり、前記分光測定装置が、試料に光を照射する照射光学系と、前記試料を通過した光を検出する透過光検出器とを備えた吸光度測定装置であって、
前記記憶手段が、目的成分を含まない溶媒を前記試料とし、前記試料に照射する照射光の波長若しくは測定する光の波長を所定の範囲で走査、又は前記試料を通過した光を分光して所定の範囲で多波長同時検出することによって得られた第1の測定データと、目的成分を含む溶媒を前記試料とし、前記試料に照射する照射光の波長若しくは測定する光の波長を所定の範囲で走査、又は前記試料を通過した光を分光して所定の範囲で多波長同時検出することによって得られた第2の測定データとを記憶するものであり、
前記感度指標推定手段が、前記第1の測定データと第2の測定データに基づいて各波長における目的成分の吸光度を求めると共に、前記第1の測定データから各波長における溶媒由来のノイズ量の推定値を求め、前記目的成分の吸光度値と前記ノイズ量の推定値の比から各波長における感度指標の推定値を求めるものであることを特徴としている。
前記第3の態様において、前記感度指標推定手段は、例えば、前記第1の測定データから各波長における前記透過光検出器の出力電流Isを求め、以下の式を用いて前記溶媒由来のノイズ量の推定値ΔAを求めるものとすることができる。
Figure 2012220472
また、前記第3の態様に係る装置は、更に、前記試料に照射する照射光を検知する対照光検出器を備えるものであって、
前記感度指標推定手段が、前記第2の測定データより求められる吸収スペクトルから前記第1の測定データより求められる吸収スペクトルを減算することにより、前記各波長における目的成分の吸光度を求め、且つ前記第1の測定データから各波長における前記透過光検出器の出力電流Iと前記対照光検出器の出力電流I0とを求め、以下の式を用いて前記各波長における溶媒由来のノイズ量の推定値ΔAを求めるものとすることもできる。
Figure 2012220472
ただし、Bは前記透過光検出器及びその信号処理における周波数帯域幅、B0は前記対照光検出器及びその信号処理における周波数帯域幅
また、上記本発明に係る分光測定装置は、更に、前記感度指標推定手段によって求められた感度指標の推定値が最も高感度となる波長をその後の測定に使用する波長として設定する波長設定手段を備えたものとすることが望ましい。これにより、測定条件の設定に掛かる手間を省力化することができる。
また、本発明は、コンピュータを上記のような記憶手段及び感度指標推定手段として機能させるためのプログラムも提供する。
以上のように本発明に係る分光測定装置及びプログラムによれば、SN比が高く検出限界が小さくなる波長を求めることができるため、目的成分の検出に最適な波長で測定を行うことが可能となる。
本発明の第1の実施例に係る蛍光測定装置を備えた液体クロマトグラフシステムの概略構成を示す模式図。 同実施例に係る蛍光測定装置の光学系の構成を示す平面図。 同実施例に係る蛍光測定装置の制御系の構成を示すブロック図。 同実施例に係る蛍光測定装置における最適波長の決定手順を示すフローチャート。 本発明の第2の実施例に係る蛍光測定装置の光学系の構成を示す平面図。 本発明の第3の実施例に係る吸光度測定装置の光学系の構成を示す平面図。 同実施例に係る吸光度測定装置の制御系の構成を示すブロック図。 同実施例に係る吸光度測定装置における最適波長の決定手順を示すフローチャート。 同実施例に係る吸光度測定装置における試料セル及び検出器の変形例を示す模式図。 本発明の第4の実施例に係る吸光度測定装置の光学系の構成を示す平面図。 同実施例に係る吸光度測定装置における最適波長の決定手順を示すフローチャート。
以下、本発明を実施するための形態について実施例を用いて説明する。
図1は、本実施例に係る蛍光測定装置を備えた液体クロマトグラフ分析システム(以下、LCシステム)の概略構成である。該LCシステムは、溶媒(すなわちクロマトグラフ分析の移動相)を収容した溶媒容器10及び前記溶媒をカラム41に送るためのポンプ20と、試料成分の分離を行うカラム41を内装するカラムオーブン40と、ポンプ20からカラム41に送られる溶媒中に試料液を注入する試料注入装置30を備えており、カラム41から溶出した試料成分を順次検出するための検出器50として本実施例に係る蛍光測定装置を用いるものである。
図2は本実施例に係る蛍光測定装置の光学系の概略的構成を示す図である。光源(例えば、キセノンランプ)51の発する光は集光鏡52によって集光され、励起側入口スリット53を通って励起側回折格子54に入射する。励起側回折格子54に入射した光は該回折光子54により波長方向に分散され、その一部が励起側出口スリット56を通過する。こうして励起側出口スリット56を通過した光が本発明における励起光に相当する。なお、励起側回折格子54には回転軸54aを中心として回折格子54を回転駆動させるための励起側格子駆動機構55が備えられており、該格子駆動機構55で回折格子54の向きを変えることにより、励起光の波長を所定波長範囲内で任意に設定することができる。
励起側出口スリット56を通過した励起光は集光鏡57により試料セル60に向けて反射され、該集光鏡57と試料セル60の間の光路上に配置されたビームスプリッタ58によって2方向に分離される。すなわち、励起光の一部はビームスプリッタ58を通過して試料セル60に到達し、励起光の他の部分はビームスプリッタ58により反射され、対照光検出器(例えばフォトダイオード)59により検出される。なお、対照光検出器59から出力される検出信号は、光源光量の変動が与える蛍光信号の変動を補正するために用いられる。
試料セル60に励起光が到達すると、その中の試料が蛍光を発する。この蛍光の一部は、集光鏡61によって反射され、蛍光側入口スリット62を通過して蛍光側回折格子63に到達する。蛍光側回折格子63に入射した光は該回折格子63によって波長方向に分散され、その一部が蛍光側出口スリット65を通過して蛍光検出器(例えば光電子増倍管)66により検出される。蛍光側回折格子63には回転軸63aを中心として回折格子63を回転駆動するための蛍光側格子駆動機構64が備えられており、蛍光検出器66により検出される光の波長は、前記格子駆動機構64で回折格子63の向きを変えることにより、所定波長範囲内で任意に設定することができる。
図3は、本実施例に係る蛍光測定装置の制御系の概略的構成を示すブロック図である。この制御系の中心は制御演算部70であり、ユーザは操作部71を通じて制御演算部70へ各種命令や設定データを入力することができる。また、モニタ等を備えた表示部72で測定結果等が表示される。ユーザが、励起光を生成する波長(励起波長)や蛍光を検出する波長(蛍光波長)を設定し、測定開始命令を制御演算部70へ入力すると、制御演算部70は、励起側回折格子54及び蛍光側回折格子63が設定された各波長に対応する方向に向くように励起側格子駆動機構55及び蛍光側格子駆動機構64を制御し、光源51を点灯する。また、光源51を点灯した状態で、励起側回折格子54又は蛍光側回折格子63を所定の角度範囲で回動させるよう励起側格子駆動機構55又は蛍光側格子駆動機構64を制御することにより、励起波長又は蛍光波長を設定された波長範囲で走査することもできる(詳細は後述する)。測定の間、蛍光検出器66及び対照光検出器59からの出力電流は、それぞれプリアンプ66a、59aにおいて所定のゲインで電圧変換され、A/D変換部66b、59bでデジタルデータに変換される。制御演算部70は、これらのデジタルデータを順次データ処理部74へ送出する。
データ処理部74は、信号補正部75、スペクトル生成部76、最適波長決定部77、及びクロマトグラム生成部78を備えており、信号補正部75は蛍光検出器66側の出力信号を対照光検出器59側の出力信号で除算することで補正し、該補正後の信号を蛍光信号としてスペクトル生成部76又はクロマトグラム生成部78に送出する。クロマトグラム生成部78は、該蛍光信号に基づき蛍光強度の時間変化を表すクロマトグラムを作成する。一方、スペクトル生成部76は、前記蛍光信号に基づき各励起波長又は蛍光波長における蛍光強度を示す蛍光スペクトルを作成する。生成された蛍光スペクトルは記憶部73に格納され、最適波長決定部77では、記憶部73に格納されたスペクトルに基づいて所定の演算が行われる(詳細は後述する)。なお、この例では記憶部73が本発明における記憶手段に、最適波長決定部77、信号補正部75、及びスペクトル生成部76が本発明における感度指標推定手段として機能する。
なお、上記データ処理部74及び記憶部73等の機能は蛍光測定装置本体に内蔵された専用コンピュータによって具現化してもよいが、典型的には、所定のプログラムをインストールされたパーソナルコンピュータ等によって具現化される。この場合、該パーソナルコンピュータは、上記LCシステムを構成する各装置と相互に接続されたシステムコントローラを介して蛍光測定装置本体に接続されるか、直接、蛍光測定装置本体に接続され、該パーソナルコンピュータによって上記制御系の機能の一部が実現される。
以下、本実施例の蛍光測定装置による最適蛍光波長及び最適励起波長の決定手順について図4のフローチャートを用いて説明する。
(1)走査範囲の設定(ステップS11)
まず、ユーザが操作部71で所定の操作を行うことにより、励起波長及び蛍光波長のそれぞれについて波長走査を行う範囲、励起側の波長走査を行うときの蛍光波長、及び蛍光側の波長走査するときの励起波長を設定する。
(2)溶媒の蛍光側スペクトル測定(ステップS12)
続いて、溶媒(移動相)のみを試料セル60に収容(キュベットセルに収容又はフローセルに封入)し、励起波長をステップS11で設定された波長に固定した状態で蛍光波長を走査してその際の蛍光スペクトルを測定する。具体的には、まず、ユーザが操作部71から光源51を点灯し蛍光波長の走査開始を指示することにより、励起側回折格子54が所定の角度まで回転して停止する。続いて、蛍光側回折格子63が上記ステップS11で設定された波長範囲に対応した角度範囲で回動し、その間に蛍光検出器66側及び対照光検出器59側から出力される信号がデータ処理部74に送られる。データ処理部74では、信号補正部75において蛍光検出器66側の出力信号が対照光検出器59側の出力信号を用いて補正され、得られた蛍光信号に基づいてスペクトル生成部76で各蛍光波長における蛍光強度を表すスペクトル(以下、「蛍光側スペクトル」と呼ぶ)が生成されて、記憶部73に格納される。
また、スペクトル生成部76は、このときのA/D変換部66bの出力信号とプリアンプ66aにおける電流−電圧変換のゲインから蛍光検出器66の出力電流を逆算し、各波長における蛍光検出器91の出力電流値を示すスペクトル(以下、「蛍光検出器の電流スペクトル」と呼ぶ)を生成して記憶部73に格納する。また同様に、A/D変換部59bの出力信号とプリアンプ59aにおける電流−電圧変換のゲインから対照光検出器59の出力電流を逆算し、各波長における対照光検出器59の出力電流値を示すスペクトル(以下、「対照光検出器の電流スペクトル」と呼ぶ)を作成して記憶部73に格納する。なお、以上で取得された溶媒の蛍光側スペクトル、蛍光検出器の電流スペクトル、及び対照光検出器の電流スペクトルが前記本発明の第2の態様のものにおける第1の測定データに相当する。
(3)試料溶液の蛍光側スペクトル測定(ステップS13)
次に、試料セル60内に目的成分を含む溶媒(以下「試料溶液」と呼ぶ)を収容した状態で、上記ステップS12と同様にして試料溶液の蛍光側スペクトルを取得して、記憶部73に格納する。なお、ここで取得された試料溶液の蛍光側スペクトルが前記本発明の第2の態様のものにおける第2の測定データに相当する。
(4)最適蛍光波長の決定(ステップS14)
以上により、蛍光側スペクトルの測定が完了したら、制御演算部70は、ステップS12で取得された溶媒の各種のスペクトルとステップS13で取得された試料溶液の蛍光側スペクトルを記憶部73からデータ処理部74へ読み出す。データ処理部74の最適波長決定部77では、試料溶液の蛍光側スペクトルから溶媒の蛍光側スペクトルを減算することにより、目的成分の蛍光側スペクトルが求められ、更に、ステップS12で取得された前記蛍光検出器の電流スペクトル及び対照光検出器の電流スペクトルから溶媒由来のノイズ量の推定値を算出する。
ここで、溶媒由来のノイズ量の推定値は以下のようにして求められる。各波長における蛍光検出器66の出力電流をIm、対照光検出器59の出力電流をIxとすると、蛍光検出器66におけるショットノイズΔImと、対照光検出器59におけるショットノイズΔIxは、それぞれ、ΔIm=√(2qImBm)、ΔIx=√(2qIxBx)で表される(q:電子の電荷、Bm:蛍光検出器側の周波数帯域幅、Bx:対照光検出器側の周波数帯域幅、通常BmとBxは等しく設定する)。また、蛍光検出器66側のプリアンプ66aのゲインをkm、対照光検出器59側のプリアンプ59aのゲインをkxとすると、蛍光強度F(Im,Ix)は次の式で算出される。
Figure 2012220472
蛍光検出器66におけるショットノイズΔImと、対照光検出器59におけるショットノイズΔIxは電流変動の標準偏差であり、ノイズ量ΔFの分散(ΔF)2は次の式で求められる。
Figure 2012220472
これらから溶媒のノイズ量ΔFは、以下の式で推定される。
Figure 2012220472
この式は、プリアンプのゲインkx、km及び電子の電荷qが定数であることから、ノイズ量ΔFは次式のように表すこともできる。
Figure 2012220472
このとき、各波長のSN比の大小を比較する目的においては次の式で算出されるノイズ量ΔFを代用することができる。
Figure 2012220472
さらに、蛍光検出器側の周波数帯域幅Bmと対照光検出器側の周波数帯域幅長Bxを通常は等しく設定することから、その場合は次の式のノイズ量ΔFを使用することができる。
Figure 2012220472
そして、最適波長決定部77は、以上により求められた溶媒由来の各波長におけるノイズ量の推定値によって前記目的成分の蛍光側スペクトル上の各波長における蛍光強度値を除算することにより、各波長におけるSN比の推定値を求め、この値が最大となる蛍光波長を最適蛍光波長として決定する。
(5)溶媒の励起側スペクトル測定(ステップS15)
続いて、溶媒のみを試料セル60に収容し、蛍光波長を所定の一点に固定した状態で励起波長を走査してその際の蛍光スペクトルを測定する。このときの蛍光波長は、ステップS11で設定された蛍光波長、ステップS14で求められたSN比が最大となる蛍光波長、前記目的成分の蛍光側スペクトルの蛍光強度値が最大となる蛍光波長のいずれかに設定する。具体的には、まず、ユーザが操作部71から励起波長の走査開始を指示することにより、蛍光側回折格子63が所定の角度まで回転して停止する。続いて、励起側回折格子54が上記ステップS11で設定された波長範囲に対応した角度範囲で回動し、その間に蛍光検出器66側及び対照光検出器59側から出力される信号がそれぞれデータ処理部74に送られる。データ処理部74では、信号補正部75において蛍光検出器66側の出力信号が対照光検出器59側の出力信号を用いて補正され、得られた蛍光信号に基づいてスペクトル生成部76で各励起波長における蛍光強度を表すスペクトル(以下、「励起側スペクトル」と呼ぶ)が生成されて、該スペクトルが記憶部73に格納される。
また、スペクトル生成部76は、このときのA/D変換部66bの出力信号とプリアンプ66aにおける電流−電圧変換のゲインから蛍光検出器66の出力電流を逆算し、各波長における蛍光検出器66の出力電流値を示す蛍光検出器の電流スペクトルを生成して記憶部73に格納する。また同様に、A/D変換部59bの出力信号とプリアンプ59aにおける電流−電圧変換のゲインから対照光検出器59の出力電流を逆算し、各波長における対照光検出器59の出力電流値を示す対照光検出器の電流スペクトルを作成して記憶部73に格納する。なお、ここで取得された溶媒の励起側スペクトル、蛍光検出器の電流スペクトル、及び対照光検出器の電流スペクトルが前記本発明の第1の態様のものにおける第1の測定データに相当する。
(6)試料溶液の励起側スペクトル測定(ステップS16)
続いて、試料セル60内に上記試料溶液を収容した状態で、ステップS15と同様にして励起側スペクトルを取得して記憶部73に格納する。なお、ここで取得された試料溶液の励起側スペクトルが前記本発明の第1の態様のものにおける第2の測定データに相当する。
(7)最適励起波長の決定(ステップS17)
以上で取得された励起側スペクトルを用いて、上記ステップS14と同様の方法により最適励起波長の決定を行う。すなわち、制御演算部70は、ステップS15で取得された溶媒の各種のスペクトルとステップS16で取得された試料溶液の励起側スペクトルデータを記憶部73からデータ処理部74へ読み出す。データ処理部74の最適波長決定部77では、前記試料溶液の励起側スペクトルから前記溶媒の励起側スペクトルを減算することにより、目的成分の励起側スペクトルが求められ、更に、ステップS15で取得された前記蛍光検出器の電流スペクトル及び対照光検出器の電流スペクトルから溶媒由来のノイズ量の推定値を算出する。
ここで、溶媒由来のノイズ量の推定値ΔFはステップS14と同様に以下のようにして求められる。
Figure 2012220472
各波長のSN比の大小を比較する目的においては、ノイズ量の推定値ΔFは次式で求められる値が使用できる。
Figure 2012220472
また、蛍光検出器側の周波数帯域幅Bmと対照光検出器側の周波数帯域幅各波長Bxを等しく設定した場合、ノイズ量の推定値ΔFは次式で求められる値が使用できる。
Figure 2012220472
そして、最適波長決定部77は、以上により求められた溶媒由来の各波長におけるノイズ量の推定値によって前記目的成分の励起側スペクトル上の各波長における蛍光強度値を除算することにより、各波長におけるSN比の推定値を求め、この値が最大となる励起波長を最適励起波長として決定する。
(8)結果の表示(ステップS18)
上記一連の行程が完了したら、制御演算部70は上記ステップS14、17で決定された最適蛍光波長及び最適励起波長の値を表示部72に表示させる。なお、最適蛍光波長及び最適励起波長の値を表示する代わりに、各励起波長又は各蛍光波長におけるSN比を示すグラフを表示することで、最適波長を視覚的に分かりやすく表すようにしてもよい。
以上の最適蛍光波長及び最適励起波長の決定手順は対照光検出器を装備した蛍光測定装置について示した例であるが、これを、対照光検出器を持たない蛍光測定装置の場合や、対照光検出器の受光量に対し蛍光検出器の受光量がはるかに小さく、蛍光測定装置のSN比への影響が蛍光検出器側のノイズが大部分で対照光検出器側のノイズがほとんど影響しない場合の最適蛍光波長及び最適励起波長の決定手順に変形した例について、図4のフローチャートを用いて説明する。
(1)走査範囲の設定(ステップS11)
まず、ユーザが操作部71で所定の操作を行うことにより、励起波長及び蛍光波長のそれぞれについて波長走査を行う範囲、励起側の波長走査を行うときの蛍光波長、蛍光側の波長走査するときの励起波長を設定する。
(2)溶媒の蛍光側スペクトル測定(ステップS12)
続いて、溶媒(移動相)のみを試料セル60に収容(キュベットセルに収容又はフローセルに封入)し、励起波長をステップS11で設定された波長に固定した状態で蛍光波長を走査してその際の蛍光スペクトルを測定する。具体的には、まず、ユーザが操作部71から光源51を点灯し蛍光波長の走査開始を指示することにより、励起側回折格子54が所定の角度まで回転して停止する。続いて、蛍光側回折格子63が上記ステップS11で設定された波長範囲に対応した角度範囲で回動し、その間に蛍光検出器66から出力される信号がデータ処理部74に送られる。データ処理部74では、得られた蛍光信号に基づいてスペクトル生成部76で各蛍光波長における蛍光強度を表すスペクトル(以下、「蛍光側スペクトル」と呼ぶ)が生成されて、記憶部73に格納される。
(3)試料溶液の蛍光側スペクトル測定(ステップS13)
次に、試料セル60内に目的成分を含む溶媒(以下「試料溶液」と呼ぶ)を収容した状態で、上記ステップS12と同様にして蛍光側スペクトルを取得して、記憶部73に格納する。
(4)最適蛍光波長の決定(ステップS14)
以上により、蛍光側スペクトルの測定が完了したら、制御演算部70は、ステップS12で取得された溶媒の蛍光側スペクトルとステップS13で取得された試料溶液の蛍光側スペクトルを記憶部73からデータ処理部74へ読み出す。データ処理部74の最適波長決定部77では、試料溶液の蛍光側スペクトルから溶媒の蛍光側スペクトルを減算することにより、目的成分の蛍光側スペクトルが求められ、更に、該目的成分の蛍光側スペクトル上の各波長における蛍光強度値が前記溶媒の蛍光側スペクトル上の対応する波長における蛍光強度値の平方根で除算される。蛍光検出器66におけるノイズの大半はショットノイズであり、該ショットノイズの大きさは測定された蛍光強度の平方根に比例するため、以上の演算で得られる値が最大となる波長がSN比が最大となる蛍光波長(すなわち最適蛍光波長)となる。
(5)溶媒の励起側スペクトル測定(ステップS15)
続いて、溶媒のみを試料セル60に収容し、蛍光波長を所定の一点に固定した状態で励起波長を走査してその際の蛍光スペクトルを測定する。このときの蛍光波長は、ステップS11で設定された蛍光波長、ステップS14で求められたSN比が最大となる蛍光波長、前記目的成分の蛍光側スペクトルの蛍光強度値が最大となる蛍光波長のいずれかに設定する。具体的には、まず、ユーザが操作部71から励起波長の走査開始を指示することにより、蛍光側回折格子63が所定の角度まで回転して停止する。続いて、励起側回折格子54が上記ステップS11で設定された波長範囲に対応した角度範囲で回動し、その間に蛍光検出器66から出力される信号がデータ処理部74に送られる。データ処理部74では、得られた蛍光信号に基づいてスペクトル生成部76で各励起波長における蛍光強度を表すスペクトル(以下、「励起側スペクトル」と呼ぶ)が生成されて、該スペクトルが記憶部73に格納される。
(6)試料溶液の励起側スペクトル測定(ステップS16)
続いて、試料セル60内に上記試料溶液を収容した状態で、ステップS15と同様にして励起側スペクトルを取得して記憶部73に格納する。
(7)最適励起波長の決定(ステップS17)
以上で取得された励起側スペクトルを用いて、上記ステップS14と同様の方法により最適励起波長の決定を行う。すなわち、制御演算部70は、ステップS15で取得された溶媒の励起側スペクトルとステップS16で取得された試料溶液の励起側スペクトルデータを記憶部73からデータ処理部74へ読み出す。データ処理部74の最適波長決定部77では、前記試料溶液の励起側スペクトルから前記溶媒の励起側スペクトルを減算することにより、目的成分の励起側スペクトルが求められ、更に、該目的成分の励起側スペクトル上の各波長における蛍光強度値が、前記溶媒の励起側スペクトル上の対応する波長における蛍光強度値の平方根で除算される。以上の演算によって得られる値が最大となる波長がSN比が最大となる励起波長(すなわち最適励起波長)となる。
(8)結果の表示(ステップS18)
上記一連の行程が完了したら、制御演算部70は上記ステップS14、17で決定された最適蛍光波長及び最適励起波長の値を表示部72に表示させる。なお、最適蛍光波長及び最適励起波長の値を表示する代わりに、各励起波長又は各蛍光波長におけるSN比を示すグラフを表示することで、最適波長を視覚的に分かりやすく表すようにしてもよい。
なお、上記では各波長における目的成分の蛍光強度値を各波長の溶媒由来の推定されたノイズで除算した推定SN比が最大となる波長を最適な波長としているが、これに限定されるものではなく、例えば、前記試料溶液として目的成分を既知濃度で含むものを使用し、各波長における溶媒由来のノイズ量の推定値を同一波長における目的成分の蛍光強度値で除算した値と、前記試料溶液中における目的成分の濃度とに基づいて検出限界に相当する値を求め、その値が最小となる波長を最適な波長としてもよい。また、溶媒の蛍光側スペクトル、試料溶液の蛍光側スペクトル、溶媒の励起側スペクトル、及び試料溶液の励起側スペクトルの順に測定を行ったが、測定順序は上記に限定されるものではない。例えば、蛍光側と励起側のスペクトル測定の順序を逆にしてもよい。あるいは、溶媒の蛍光側スペクトルと励起側スペクトルを続けて測定し、次に試料溶液の蛍光側スペクトルと励起側スペクトルを続けて測定して、溶媒と試料溶液の交換の手間を減らしてもよい。
以上により求められた最適蛍光波長及び最適励起波長を用いて上記LCシステムによるクロマトグラフ分析を行う際には、まず、ユーザが操作部71を用いて光源51を点灯し、上記最適蛍光波長及び最適励起波長を測定に使用する蛍光波長及び励起波長として設定する。すると励起側回折格子54及び蛍光側回折格子63がそれぞれ設定された最適波長に対応した角度まで回転して停止する。その後、ユーザがクロマトグラフ測定の開始を指示すると測定が開始される。これにより、カラムから順次溶出してフローセル60を通過する溶媒及び目的成分が最適励起波長及び最適蛍光波長で測定され、保持時間を横軸、蛍光強度を縦軸としたクロマトグラムがクロマトグラム生成部78で生成される。
以上の通り、本発明に係る蛍光測定装置によれば、SN比が高く検出限界が小さくなる励起波長及び/又は蛍光波長を求めることができ、目的成分の検出に最適な波長で測定を行うことが可能となる。
なお、上記実施例では、最適波長の決定を行う際に、測定試料である溶媒や試料溶液をキュベットセルに収容又はフローセルに封入し、ユーザが手動で測定試料の交換及び蛍光側又は励起側スペクトルの測定開始の指示を行う構成としたが、本発明に係る蛍光測定装置は、前記試料溶液をフローセルに通液させながら、所定のタイミングで自動的に蛍光側スペクトル及び励起側スペクトルの測定を実行する構成とすることもできる。この場合、前記スペクトルの測定タイミングは、例えば、記憶部73等に記憶されたタイムプログラム等によって決定されるものとしてもよく、あるいは蛍光検出器66等から出力される蛍光信号に基づいて目的成分の通過を検出することにより決定されるものとしてもよい。
上記タイムプログラムによる自動測定を行う場合には、試料注入から所定時間後の第1のタイミング及び目的成分の溶出時間に対応した第2のタイミングでそれぞれスペクトル測定を実行するよう定めたタイムプログラムを予めユーザが操作部71を用いて設定して記憶部73に記憶させる。その後、フローセル60内にカラム41から溶出してくる溶媒が通液され、試料注入装置30によって溶媒流路中に試料が注入されると共に、該試料注入のタイミングを示すトリガ信号が発信される。制御演算部70は、試料注入装置30から直接、又はシステムコントローラを介して前記トリガ信号を受信し、前記タイムプログラムに従って各部を制御することにより試料注入直後の溶媒のみがフローセル60内に存在する時点における蛍光側スペクトル(又は励起側スペクトル)と、溶媒及び目的成分がフローセル内に存在する時点における蛍光側スペクトル(又は励起側スペクトル)を取得する。
また、上記目的成分の通過検出による自動測定を行う場合には、カラム41から溶出する溶媒をフローセル60内に通液させ、試料注入装置30によって溶媒流路中に試料が注入された直後にまず溶媒の蛍光側スペクトル(又は励起側スペクトル)の測定を実行し、その後、励起波長及び蛍光波長を各々所定の一点に固定した状態で蛍光信号をモニタし、該蛍光強度の変化から試料成分の通過が検知された時点で自動的に当該成分を含む溶媒の蛍光側スペクトル(又は励起側スペクトル)の測定を行う。
なお、上記のようにフローセル60内を通過する目的成分のスペクトルを測定する際には、より確実な測定が行えるよう、フローセル60内に目的成分が存在しているタイミングで、流路切替バルブ(図示略)等によってカラム41から溶出される溶媒の流路を切り換えることによりフローセル60内への溶媒の流入を一時的に停止させ、フローセル60内に試料成分を留めた状態で波長走査を行うことが望ましい。
次に、本発明の第2の実施例に係る蛍光測定装置について説明する。図5に本実施例に係る蛍光測定装置の光学系の構成の一例を示す。なお、図2と同一の構成については同一の符号を付し、適宜説明を省略する。本実施例の蛍光測定装置は、実施例1の蛍光測定装置における蛍光側格子駆動機構64、蛍光側出口スリット65、及び該スリット65を通過した光を検出する蛍光検出器66の代わりに、CCD等の受光素子を直線状に複数個配置して成るマルチチャンネル型の光検出器67を設けたものである。本実施例では、蛍光側回折格子63によって波長分散された蛍光はマルチチャンネル型光検出器67によって所定の波長範囲に亘って多波長同時検出される。このような構成によれば、蛍光波長の走査が不要なため、最適波長の決定に掛かる時間を短縮できると共に、一度の励起波長の走査により、励起波長、蛍光波長、及び蛍光強度から成る三次元データを得ることができるため、各蛍光波長との組み合わせを考慮したより最適な励起波長を決定することができる。
以上、実施例を用いて本発明を実施するための形態について説明したが、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容されるものである。
例えば、本発明に係る蛍光測定装置は、最適励起波長及び/又は最適蛍光波長をユーザに通知する通知手段に加えて、又は該通知手段の代わりに、最適蛍光波長及び/又は最適励起波長を以降の測定で使用する蛍光波長及び/又は励起波長として自動的に設定する波長設定手段を備えたものとしてもよい。この場合、最適波長決定部77での演算により推定SN比が最大となった励起波長又は蛍光波長が、制御演算部70によって以降の測定に使用する波長として決定され、記憶部73に記憶される。すなわち、この場合、制御演算部70及び記憶部73が本発明における波長設定手段に相当する。
また、本発明に係る蛍光測定装置は、フローセル60内に溶媒及び目的成分を通液させながら、所定の間隔でくり返し蛍光波長又は励起波長の走査を行うことにより、時間−波長−蛍光強度の3軸から成る三次元データを生成する機能を備えたものとしてもよい。この場合、試料注入直後におけるスペクトル(蛍光スペクトル又は励起スペクトル)を上記目的成分を含まない溶媒のスペクトルとし、その後の各時点で取得されたスペクトルを上記目的成分を含む溶媒のスペクトルとして上記同様の演算を行うことにより、試料注入後の各時点における最適蛍光波長又は最適励起波長を決定することができるため、一回の試料注入によって該試料中に含まれる複数の成分についてそれぞれ最適波長を決定することができる。従って、これにより決定された試料注入後の各時点における最適蛍光波長及び/又は最適励起波長を定めたタイムプログラムをユーザが手動で又は制御演算部70によって自動的に設定して記憶部73に記憶させ、該タイムプログラムに従って励起波長及び/又は蛍光波長を時間的に変化させながら上記LCシステムによる分析を実行させることで、カラム41によって時間的に分離されて溶出する各種試料成分をそれぞれ最適な蛍光波長及び/又は励起波長で検出することが可能となる。
また更に、本発明に係る蛍光測定装置は、試料をキュベットセルに収容又はフローセルに封入した状態で、励起波長又は蛍光波長の一方を所定の間隔で段階的に変化させながら、その各段階において他方を所定の波長範囲でくり返し走査することにより、励起波長−蛍光波長−蛍光強度の3軸から成る三次元データを生成するものとしてもよい。これにより、SN比が最大となる蛍光波長及び励起波長の組み合わせを知ることができ、より最適な波長設定を行うことが可能となる。
以下、本発明に係る吸光度測定装置の実施例について説明する。図6は、本実施例に係る吸光度測定装置の光学系の概略的構成を示す。なお、本実施例に係る吸光度測定装置は図1と同様のLCシステムにおいて、カラム40から溶出した試料成分を順次検出するための検出器50として用いられるものである。
光源(例えば、重水素ランプ)81の発する光は集光鏡82によって集光され、入口スリット83を通ってミラー84に入射する。ミラー84で反射された光は回折格子85に入射し、波長方向に分散され、ミラー87に入射する。ミラー87の反射光はビームスプリッタ88に入射し、2方向に分離される。すなわち、ビームスプリッタ88を通過した光はスリット93を通過して試料セル90に入射し、この試料セル90を通過した光(透過光)の光量がフォトダイオード等から成る透過光検出器91で検出される。一方、ビームスプリッタ88で反射された光はスリット92を通過して対照光検出器(例えば、フォトダイオード)89で検出される。なお、回折格子85には、回転軸85aを中心として回折格子85を回転駆動するための格子駆動機構86が設けられており、該格子駆動機構86で回折格子85の向きを変えることにより試料セル90に照射する光(照射光)の波長を所定波長範囲内で任意に設定することができる。
図7は、本実施例に係る吸光度測定装置の制御系の概略的構成を示すブロック図である。この制御系の中心は制御演算部100であり、ユーザは操作部101を通じて制御演算部100へ各種命令や設定データを入力することができる。また、モニタ等を備えた表示部102で測定結果等が表示される。ユーザが操作部101を通じて光源の点灯と照射光の波長を設定し、測定開始命令を制御演算部100に入力すると、制御演算部100は、光源81を点灯し、回折格子85が設定された波長に対応した方向を向くように格子駆動機構86を制御する。また、光源81を点灯した状態で、回折格子85を所定の角度範囲で回転させるように格子駆動機構86を制御することにより、照射光の波長を設定された波長範囲で走査することもできる(詳細は後述する)。測定の間、透過光検出器91及び対照光検出器89からの出力電流は、それぞれプリアンプ91a、89aにおいて所定のゲインで電圧に変換され、A/D変換部91b、89bでデジタルデータに変換される。制御演算部100は、これらのデジタルデータを順次データ処理部104へ送出する。
データ処理部104は、吸光度算出部105、スペクトル生成部106、最適波長決定部107、及びクロマトグラム生成部108を備えている。吸光度算出部105は、前記の透過光検出器91側の出力信号を対照光検出器89側の出力信号で除算し、その対数をとった値に負の符号をつけることで吸光度を算出し(後述の[数13]参照)、得られた吸光度データを順次、スペクトル生成部106又はクロマトグラム生成部108に送出する。クロマトグラム生成部108は、前記吸光度データに基づき吸光度の時間変化を表すクロマトグラムを作成する。一方、スペクトル生成部106は、前記吸光度データに基づき各波長における吸光度を示す吸収スペクトルを作成する。また、詳細は後述するが、スペクトル生成部106は各波長における透過光検出器91及び対照光検出器89の出力電流を示すスペクトルの生成も行う。スペクトル生成部106で生成された各種スペクトルは記憶部103に格納される。最適波長決定部107は、記憶部103に格納されたスペクトルに基づいて所定の演算を行う(詳細は後述する)。なお、この例では記憶部103が本発明における記憶手段に相当し、最適波長決定部107、吸光度算出部105、及びスペクトル生成部106が協同して本発明における感度指標推定手段として機能する。
上記のデータ処理部104及び記憶部103等の機能は、吸光度測定装置の本体に内蔵された専用コンピュータによって具現化してもよく、所定のプログラムをインストールしたパーソナルコンピュータ等によって具現化してもよい。後者の場合、該パーソナルコンピュータは、吸光度測定装置本体に直接、接続されるか、上記LCシステムを構成する各装置と相互に接続されたシステムコントローラを介して吸光度測定装置本体に接続され、該パーソナルコンピュータによって上記制御系の機能の一部が実現されることとなる。
以下、本実施例の吸光度測定装置による最適波長の決定手順について図8のフローチャートを用いて説明する。
(1)走査範囲の設定(ステップS21)
まず、ユーザが操作部101で所定の操作を行うことにより、波長走査を行う範囲を設定する。
(2)溶媒の吸収スペクトル測定(ステップS22)
続いて、溶媒(移動相)のみを試料セル90に収容(キュベットセルに収容又はフローセルに封入)し、照射光の波長を走査してその際の吸収スペクトルを測定する。具体的には、まず、ユーザが操作部101を操作して光源81を点灯させ、波長の走査開始を指示することにより、回折格子85が上記ステップS21で設定された波長範囲に対応した角度範囲で回動し、その間に透過光検出器91側及び対照光検出器89側から出力される信号がデータ処理部104に送られる。データ処理部104では、吸光度算出部105において前記透過光検出器91側及び対照光検出器89側の出力信号に基づいて前記溶媒の吸光度が順次算出され、更に、スペクトル生成部106で各波長における該溶媒の吸光度を示す吸収スペクトル(以下、「溶媒の吸収スペクトル」と呼ぶ)が生成されて記憶部103に格納される。
また、スペクトル生成部106は、このときのA/D変換部91bの出力信号とプリアンプ91aにおける電流−電圧変換のゲインから透過光検出器91の出力電流を逆算し、各波長における透過光検出器91の出力電流値を示すスペクトル(以下、「透過光検出器の電流スペクトル」と呼ぶ)を生成して記憶部103に格納する。また同様に、A/D変換部89bの出力信号とプリアンプ89aにおける電流−電圧変換のゲインから対照光検出器89の出力電流を逆算し、各波長における対照光検出器89の出力電流値を示すスペクトル(以下、「対照光検出器の電流スペクトル」と呼ぶ)を作成して記憶部103に格納する。なお、以上で取得された溶媒の吸収スペクトル、透過光検出器の電流スペクトル、及び対照光検出器の電流スペクトルが前記本発明の第3の態様のものにおける第1の測定データに相当する。
(3)試料溶液の吸収スペクトル測定(ステップS23)
次に、試料セル90内に目的成分を含む溶媒(以下「試料溶液」と呼ぶ)を収容した状態で、上記ステップS22と同様にして各波長における試料溶液の吸光度を示す吸収スペクトル(以下、「試料溶液の吸収スペクトル」と呼ぶ)を取得して、記憶部103に格納する。この試料溶液の吸収スペクトルが前記本発明の第3の態様のものにおける第2の測定データに相当する。
(4)最適波長の決定(ステップS24)
以上により、スペクトル測定が完了したら、制御演算部100は、ステップS22及びステップS23で取得された各種スペクトルを記憶部103からデータ処理部104へ読み出し、最適波長決定部107に最適波長の決定を実行させる。最適波長決定部107は、前記試料溶液の吸収スペクトルから前記溶媒の吸収スペクトルを減算することにより、各波長における目的成分の吸光度を示すスペクトル(以下、「目的成分の吸収スペクトル」と呼ぶ)を求め、更に、前記透過光検出器の電流スペクトル及び対照光検出器の電流スペクトルから溶媒由来の吸光度のノイズ推定値を算出する。
ここで、溶媒由来の吸光度のノイズ推定値は以下のようにして求められる。各波長における透過光検出器91の出力電流をI、対照光検出器89の出力電流をI0とすると、透過光検出器91におけるショットノイズΔIと、対照光検出器89におけるショットノイズΔI0は、それぞれ、ΔI=√(2qIB)、ΔI0=√(2qI0B0)で表される(q:電子の電荷、B:透過光検出器側の周波数帯域幅、B0:対照光検出器側の周波数帯域幅)。また、透過光検出器91側のプリアンプ91aのゲインをk、対照光検出器89側のプリアンプ89aのゲインをk0とすると、吸光度A(I,I0)は次の式で算出される。
Figure 2012220472
ここでlogは常用対数である。
透過光検出器91におけるショットノイズΔIと、対照光検出器89におけるショットノイズΔI0は電流変動の標準偏差であり、ノイズΔAの分散(ΔA)2は次の式で求められる。
Figure 2012220472
これらから溶媒由来の吸光度のノイズΔAは、以下の式で推定される。
Figure 2012220472
ここでlnは自然対数を示す。
この式は、電子の電荷qが定数であることから、ノイズΔAは次式のように表すことができる。
Figure 2012220472
このとき、各波長のSN比の大小を比較する目的においては次の式で算出されるノイズ量ΔAを代用することができる。
Figure 2012220472
さらに、透過光検出器側の周波数帯域幅Bと対照光検出器側の周波数帯域幅B0を通常は等しく設定することから、その場合はノイズΔAは次式のように表すことができる。
Figure 2012220472
そして、最適波長決定部107は、以上により求められた溶媒由来の吸光度のノイズ推定値によって前記目的成分の吸収スペクトル上の各波長における吸光度値を除算することにより、各波長におけるSN比の推定値を求め、この値が最大となる波長を最適波長として決定する。
(5)結果の表示(ステップS25)
上記一連の行程が完了したら、制御演算部100は上記ステップS24で求められた最適波長の値を表示部102に表示させる。なお、最適波長の値を表示する代わりに、各波長におけるSN比を示すグラフを表示することで、最適波長を視覚的に分かりやすく表すようにしてもよい。
以上により求められた最適波長を用いて上記LCシステムによるクロマトグラフ分析を行う際には、まず、ユーザが操作部101を用いて光源81を点灯し、上記最適波長を測定に使用する波長として設定する。すると、回折格子85が設定された最適波長に対応した角度まで回転して停止する。その後、ユーザがクロマトグラフ測定の開始を指示すると、カラムから順次溶出してフローセルを通過する溶媒及び目的成分が最適波長で測定され、保持時間を横軸、吸光度を縦軸としたクロマトグラムがクロマトグラム生成部108で生成される。
以上の通り、本発明に係る吸光度測定装置によれば、SN比が高く検出限界が小さくなる波長を求めることができ、目的成分の検出に最適な波長で測定を行うことが可能となる。また、上記手順ではSN比を求めているが、各波長における溶媒由来のノイズ量の推定値を同一波長における目的成分の吸光度値で除算した値と、前記試料溶液中における目的成分の濃度とに基づいて検出限界に相当する値を求め、その値が最小となる波長を最適な波長としてもよい。
なお、上記実施例では、最適波長の決定を行う際に、測定試料である溶媒や試料溶液をキュベットセルに収容又はフローセルに封入し、ユーザが手動で測定試料の交換及びスペクトル測定開始の指示を行う構成としたが、本発明に係る吸光度測定装置は、前記試料溶液をフローセルに通液させながら、所定のタイミングで自動的に吸収スペクトルの測定を実行する構成とすることもできる。この場合、前記スペクトルの測定タイミングは、例えば、記憶部103等に記憶されたタイムプログラム等によって決定されるものとしてもよく、あるいは透過光検出器91側の出力信号に基づいて目的成分の通過を検出することにより決定されるものとしてもよい。
上記タイムプログラムによる自動測定を行う場合には、試料注入から所定時間後の第1のタイミング及び目的成分の溶出時間に対応した第2のタイミングでそれぞれスペクトル測定を実行するよう定めたタイムプログラムを予めユーザが操作部101を用いて設定して記憶部103に記憶させる。その後、フローセル90内にカラム41から溶出してくる溶媒が通液され、試料注入装置30によって溶媒流路中に試料が注入されると共に、該試料注入のタイミングを示すトリガ信号が発信される。制御演算部100は、試料注入装置30から直接、又はシステムコントローラを介して前記トリガ信号を受信し、前記タイムプログラムに従って各部を制御することにより試料注入直後の溶媒のみがフローセル90内に存在する時点における吸収スペクトルと、溶媒及び目的成分がフローセル内に存在する時点における吸収スペクトルを取得する。
また、上記目的成分の通過検出による自動測定を行う場合には、カラム41から溶出する溶媒をフローセル90内に通液させ、試料注入装置30によって溶媒流路中に試料が注入された直後にまず溶媒の吸収スペクトルの測定を実行し、その後、波長を所定の一点に固定した状態で吸光度信号をモニタし、該吸光度の変化から試料成分の通過が検知された時点で自動的に当該成分を含む溶媒の吸収スペクトルの測定を行う。
なお、上記のようにフローセル90内を通過する目的成分のスペクトルを測定する際には、より確実な測定が行えるよう、フローセル90内に目的成分が存在しているタイミングで、流路切替バルブ(図示略)等によってカラム41から溶出される溶媒の流路を切り換えることによりフローセル90内への溶媒の流入を一時的に停止させ、フローセル90内に試料成分を留めた状態で波長走査を行うことが望ましい。
なお、本実施例では、図6のように、試料セル90の前段にビームスプリッタ88を設け、照射光を該ビームスプリッタ88で分岐させて試料セル90と対照光検出器89に入射させる構成としたが、このような構成の他、図9に示すようなフローセル90を使用する構成としてもよい。図9のフローセル90は、液体を流通させるための流路90aの他に、光を通過させるための貫通孔90bを備えている。所定の手段によって平行化された照射光が該フローセル90に照射されると、該照射光の一部はレンズ90cに入射して流路90aを通過し、レンズ90dを介して後段の透過光検出器91に入射する。一方、前記照射光の別の一部は貫通孔90bを通過して後段に配置された対照光検出器89に入射する。このような構成によれば、ビームスプリッタを省略することができ、より安価に製造することが可能となる。
次に、本発明に係る吸光度測定装置の他の実施例について説明する。図10に本実施例に係る吸光度測定装置の光学系の構成を示す。光源111から出射された光は集光鏡112によって集光されて試料セル113に照射される。試料セル113を通過した光はミラー114によって集光され、スリット115上に照射される。スリット115を通過した光は凹面回折格子116で分光され、フォトダイオードアレイ等の受光素子を直線状に複数個配置して成るマルチチャンネル型の光検出器117上に結像される。このような構成によれば、回折格子116によって波長分散された光をマルチチャンネル型光検出器117によって所定の波長範囲に亘って多波長同時検出することができるため、波長の走査が不要となり、最適波長の決定に掛かる時間を短縮できる。なお、制御系の構成については、格子駆動機構及び対照光検出器等を有しない点以外は、図7に示したものとほぼ同様であるため、図示を省略する。
以下、本実施例の吸光度測定装置による最適波長の決定手順について図11のフローチャートを用いて説明する。
まず、溶媒(移動相)のみを試料セル113に収容した状態で該試料セル113に光源111からの光を照射し、このときマルチチャンネル型光検出器117で検出される各波長の透過光量を記憶部103に格納する(ステップS31)。次に、目的成分を含む溶媒(以下「試料溶液」と呼ぶ)を試料セル113に収容した状態で同様に各波長の透過光量を測定する(ステップS32)。
このとき測定された試料溶液の透過光量と記憶部103に記憶された溶媒の透過光量の比から、吸光度算出部105において、各波長における目的成分の吸光度を示すスペクトル(以下、これを「目的成分の吸収スペクトル」と呼ぶ)が次の式で生成され、記憶部103に格納される(ステップS33)。
Figure 2012220472
ここで、kはマルチチャンネル型検出器117の出力電流を電圧に変換するプリアンプのゲイン、Icは試料溶液の測定時におけるマルチチャンネル型検出器117の出力電流、Isは溶媒の測定時におけるマルチチャンネル型検出器117の出力電流である。
次に、最適波長決定部107が、上記溶媒の測定におけるマルチチャンネル型光検出器117の出力信号(ステップS31で取得され記憶部103に格納される)から該マルチチャンネル型光検出器117を構成する各受光素子の出力電流を逆算し、これに基づいて各波長における溶媒由来の吸光度のノイズ推定値を算出する。ここで、溶媒測定時におけるマルチチャンネル型光検出器117の各受光素子の出力電流をIsとすると、各素子におけるショットノイズΔIsは、ΔIs=√(2qIsB)で表される(q:電子の電荷、B:周波数帯域幅)。また、本実施例では、対照光検出器を装備していないので吸光度のノイズは[数15]の対照光検出器に関する項を除いたものになり、溶媒由来のノイズΔAは、以下の式で推定される。
Figure 2012220472
周波数帯域幅B、電子の電荷qが定数であり、各波長のSN比の大小を比較する目的においては、ノイズ量ΔAは次式のように表すこともできる。
Figure 2012220472
以上により求められた溶媒由来のノイズ推定値によってステップS33で求めた目的成分の吸収スペクトル上の各波長における吸光度値を除算することにより、各波長におけるSN比の推定値が求められる。そして、この値が最大となる波長が最適波長として決定され(ステップS34)、該最適波長の値が表示部102に表示される(ステップS35)。このようにして決定された最適波長は、例えば前記目的成分の定量分析を行う際の波長として利用される。
なお、本発明に係る吸光度測定装置は上記実施例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容されるものである。例えば、SN比の代わりに、各波長の溶媒由来のノイズ推定値を各波長の目的成分の吸光度値で除算した値に前記試料溶液中における目的成分の濃度を乗算することで検出限界となる濃度に相当する値を求めて、その値が最小となる波長を最適波長としてもよい。本発明に係る吸光度測定装置は、最適波長をユーザに通知する通知手段に加えて、又は該通知手段の代わりに、最適波長を以降の測定で使用する波長として自動的に設定する波長設定手段を備えたものとしてもよい。この場合、最適波長決定部107での演算により推定SN比が最大となった波長が、制御演算部100によって以降の測定に使用する波長として決定され、記憶部103に記憶される。すなわち、この場合、制御演算部100及び記憶部103が本発明における波長設定手段に相当する。
また、本実施例のように固定された回折格子116とマルチチャンネル型の光検出器117を設ける代わりに、試料セル113の後段に、回動する回折格子とその回折光が透過するスリット、及びそのスリットを透過する光を検出する検出器を設けた構成とし、回折格子を回動することにより、試料セルを通過して検出器に入射する光の波長を走査して所定の波長範囲のデータを得るようにしてもよい。
また、図10の例では対照光検出器を装備していないが、対照光検出器を装備した場合、その最適波長の決定手順は実施例3と同様となる。この場合の対照光の検出方法の例としては、図10における集光鏡112と試料セル113の間にビームスプリッタを設置し、その反射光を透過光とは別途に設置したミラー、スリット、凹面回折格子、マルチチャンネル型の光検出器により集光、分光、検出を行う方法がある。
また、本発明に係る吸光度測定装置は、フローセル内に溶媒及び目的成分を通液させながら、所定の間隔でくり返し波長の走査を行うことにより、時間−波長−吸光度の3軸から成る三次元データを生成する機能を備えたものとしてもよい。この場合、試料注入直後における吸収スペクトルを上記目的成分を含まない溶媒のスペクトルとし、その後の各時点で取得されたスペクトルを上記目的成分を含む溶媒のスペクトルとして上記同様の演算を行うことにより、試料注入後の各時点における最適波長を決定することができるため、一回の試料注入によって該試料中に含まれる複数の成分についてそれぞれ最適波長を決定することができる。従って、これにより決定された試料注入後の各時点における最適波長を定めたタイムプログラムをユーザが手動で又は制御演算部100によって自動的に設定して記憶部103に記憶させ、該タイムプログラムに従って測定に使用する波長を時間的に変化させながら上記LCシステムによる分析を実行させることで、カラムによって時間的に分離されて溶出する各種試料成分をそれぞれ最適な波長で検出することが可能となる。
51、81、111…光源
54、63、85、116…回折格子
60、90、113…試料セル
59、89…対照光検出器
66…蛍光検出器
91…透過光検出器
67、117…マルチチャンネル型光検出器
70、100…制御演算部
71、101…操作部
72、102…表示部
73、103…記憶部
74、104…データ処理部
75…信号補正部
105…吸光度算出部
76、106…スペクトル生成部
77、107…最適波長決定部
78、108…クロマトグラム生成部

Claims (10)

  1. 試料に光を照射し、該照射光と前記試料との相互作用により該試料から得られる光を測定する分光測定装置であって、
    a) 目的成分を含まない溶媒を前記試料とし、前記照射光の波長若しくは測定する光の波長を所定の範囲で走査、又は前記試料から得られる光を分光して所定の範囲で多波長同時検出することによって得られた第1の測定データと、目的成分を含む溶媒を前記試料とし、前記照射光の波長若しくは測定する光の波長を所定の範囲で走査、又は前記試料から得られる光を分光して所定の範囲で多波長同時検出することによって得られた第2の測定データとを記憶する記憶手段と、
    b) 前記第1の測定データと前記第2の測定データに基づいて各波長における前記目的成分と照射光の相互作用の大きさを表す値を求めると共に、前記第1の測定データから各波長における溶媒由来のノイズ量の推定値を求め、前記目的成分と照射光の相互作用の大きさを表す値と前記ノイズ量の推定値との比から各波長における感度指標の推定値を求める感度指標推定手段と、
    を有することを特徴とする分光測定装置。
  2. 前記相互作用が試料による蛍光発光であり、前記分光測定装置が、所定波長の光を励起光として試料に照射する励起光学系と、該励起光の照射を受けて試料が発する蛍光を検出する検出光学系とを備えた蛍光測定装置であって、
    前記記憶手段が、目的成分を含まない溶媒を前記試料とし、前記励起光の波長を所定の範囲で走査することによって得られた第1の測定データと、目的成分を含む溶媒を前記試料とし、前記励起光の波長を所定の範囲で走査することによって得られた第2の測定データとを記憶するものであり、
    且つ、前記感度指標推定手段が、前記第1の測定データと第2の測定データに基づいて各励起波長における前記目的成分の蛍光強度値を求めると共に、前記第1の測定データから各励起波長における溶媒由来のノイズ量の推定値を求め、前記目的成分の蛍光強度値と前記ノイズ量の推定値の比から各励起波長における感度指標の推定値を求めるものであることを特徴とする請求項1に記載の分光測定装置。
  3. 前記相互作用が試料による蛍光発光であり、前記分光測定装置が、所定波長の光を励起光として試料に照射する励起光学系と、該励起光の照射を受けて試料が発する蛍光を検出する検出光学系とを備えた蛍光測定装置であって、
    前記記憶手段が、目的成分を含まない溶媒を前記試料とし、前記検出光学系で検出する蛍光の波長を所定の範囲で走査、又は前記試料が発する蛍光を分光して所定の範囲で多波長同時検出することにより得られた第1の測定データと、目的成分を含む溶媒を前記試料とし、前記検出光学系で検出する蛍光の波長を所定の波長範囲で走査、又は前記試料が発する蛍光を分光して所定の範囲で多波長同時検出することにより得られた第2の測定データとを記憶するものであり、
    且つ、前記感度指標推定手段が、前記第1の測定データと第2の測定データに基づいて各蛍光波長における目的成分の蛍光強度値を求めると共に、前記第1の測定データから各蛍光波長における溶媒由来のノイズ量の推定値を求め、前記目的成分の蛍光強度値と前記ノイズ量の推定値の比から各蛍光波長における感度指標の推定値を求めるものであることを特徴とする請求項1に記載の分光測定装置。
  4. 前記感度指標推定手段が、前記第2の測定データより求められる蛍光スペクトルから前記第1の測定データより求められる蛍光スペクトルを減算することにより前記各波長における目的成分の蛍光強度値を求めるものであり、且つ前記第1の測定データより求められる蛍光スペクトル上の各波長における蛍光強度値を1/2乗することにより前記各波長における溶媒由来のノイズ量の推定値を求めるものであることを特徴とする請求項2又は3に記載の分光測定装置。
  5. 更に、前記試料に照射する光を検知する対照光検出器を備え、
    前記感度指標推定手段が、前記第2の測定データより求められる蛍光スペクトルから前記第1の測定データより求められる蛍光スペクトルを減算することにより前記各波長における目的成分の蛍光強度値を求めるものであり、且つ前記第1の測定データから各波長における前記蛍光検出器の出力電流Imと前記対照光検出器の出力電流Ixとを求め、以下の式を用いて前記各波長における溶媒由来のノイズ量の推定値ΔFを求めるものであることを特徴とする請求項2又は3に記載の分光測定装置。
    Figure 2012220472
    ただし、Bmは前記蛍光検出器及びその信号処理における周波数帯域幅、Bxは前記対照光検出器及びその信号処理における周波数帯域幅
  6. 前記相互作用が試料による吸光であり、前記分光測定装置が、試料に光を照射する照射光学系と、前記試料を通過した光を検出する透過光検出器とを備えた吸光度測定装置であって、
    前記記憶手段が、目的成分を含まない溶媒を前記試料とし、前記試料に照射する照射光の波長若しくは測定する光の波長を所定の範囲で走査、又は前記試料を通過した光を分光して所定の範囲で多波長同時検出することによって得られた第1の測定データと、目的成分を含む溶媒を前記試料とし、前記試料に照射する照射光の波長若しくは測定する光の波長を所定の範囲で走査、又は前記試料を通過した光を分光して所定の範囲で多波長同時検出することによって得られた第2の測定データとを記憶するものであり、
    前記感度指標推定手段が、前記第1の測定データと第2の測定データに基づいて各波長における目的成分の吸光度を求めると共に、前記第1の測定データから各波長における溶媒由来のノイズ量の推定値を求め、前記目的成分の吸光度値と前記ノイズ量の推定値の比から各波長における感度指標の推定値を求めるものであることを特徴とする請求項1に記載の分光測定装置。
  7. 前記感度指標推定手段が、前記第1の測定データから各波長における前記透過光検出器の出力電流Isを求め、以下の式を用いて前記溶媒由来のノイズ量の推定値ΔAを求めるものであることを特徴とする請求項6に記載の分光測定装置。
    Figure 2012220472
  8. 更に、前記試料に照射する照射光を検知する対照光検出器を備え、
    前記感度指標推定手段が、前記第2の測定データより求められる吸収スペクトルから前記第1の測定データより求められる吸収スペクトルを減算することにより、前記各波長における目的成分の吸光度を求めるものであり、且つ前記第1の測定データから各波長における前記透過光検出器の出力電流Iと前記対照光検出器の出力電流I0とを求め、以下の式を用いて前記各波長における溶媒由来のノイズ量の推定値ΔAを求めるものであることを特徴とする請求項6に記載の分光測定装置。
    Figure 2012220472
    ただし、Bは前記透過光検出器及びその信号処理における周波数帯域幅、B0は前記対照光検出器及びその信号処理における周波数帯域幅
  9. 前記感度指標推定手段によって求められた感度指標の推定値が最も高感度となる波長をその後の測定に使用する波長として設定する波長設定手段を有することを特徴とする請求項1〜8のいずれかに記載の分光測定装置。
  10. コンピュータを請求項1〜9のいずれかにおける記憶手段及び感度指標推定手段として機能させるためのプログラム。
JP2011090155A 2011-04-14 2011-04-14 分光測定装置及びプログラム Active JP5516486B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011090155A JP5516486B2 (ja) 2011-04-14 2011-04-14 分光測定装置及びプログラム
US13/445,210 US9164028B2 (en) 2011-04-14 2012-04-12 Spectrometric measurement device and program
CN201210109429.5A CN102818792B (zh) 2011-04-14 2012-04-13 光谱测量装置与灵敏度指数估算值确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090155A JP5516486B2 (ja) 2011-04-14 2011-04-14 分光測定装置及びプログラム

Publications (3)

Publication Number Publication Date
JP2012220472A true JP2012220472A (ja) 2012-11-12
JP2012220472A5 JP2012220472A5 (ja) 2013-08-29
JP5516486B2 JP5516486B2 (ja) 2014-06-11

Family

ID=47006177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090155A Active JP5516486B2 (ja) 2011-04-14 2011-04-14 分光測定装置及びプログラム

Country Status (3)

Country Link
US (1) US9164028B2 (ja)
JP (1) JP5516486B2 (ja)
CN (1) CN102818792B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115154A (ja) * 2012-12-07 2014-06-26 Shimadzu Corp フォトダイオードアレイ検出器
JP2015180895A (ja) * 2015-06-22 2015-10-15 国立研究開発法人農業・食品産業技術総合研究機構 判別フィルタ設計方法、判別方法、判別フィルタセット、判別装置、および、プログラム
WO2020148842A1 (ja) * 2019-01-16 2020-07-23 株式会社島津製作所 吸光度検出器、クロマトグラフおよび光源交換時期管理方法
JPWO2021044924A1 (ja) * 2019-09-03 2021-09-27 興亜硝子株式会社 無機組成物及び無機組成物の製造方法
JP7328912B2 (ja) 2020-01-31 2023-08-17 ダイハツ工業株式会社 エンジンにおける混合ガスの混合状態解析方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144673A1 (en) * 2012-03-29 2013-10-03 University Of Calcutta Chiral determination using half-frequency spectral signatures
EP2733514B1 (en) * 2012-11-16 2020-09-30 PerkinElmer Cellular Technologies Germany GmbH Microscopy apparatus for structured illumination of a specimen
RU2521249C1 (ru) * 2012-12-19 2014-06-27 Открытое акционерное общество "Красногорский завод им. С.А. Зверева" Зеркальный автоколлимационный спектрометр
US9354114B2 (en) * 2013-11-19 2016-05-31 Shimadzu Corporation Spectrophotometer including photodiode array
US11092552B2 (en) * 2017-07-10 2021-08-17 Shimadzu Corporation Flame atomic absorption spectrophotometer
KR20200034564A (ko) * 2018-09-20 2020-03-31 주식회사 제우스 플로우셀장치
CN112213272B (zh) * 2019-07-10 2024-01-12 中微半导体设备(上海)股份有限公司 一种光谱检测设备、终点检测系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295123A (ja) * 1988-05-20 1989-11-28 Shimadzu Corp 分光測定装置のレスポンス機構
JPH10501333A (ja) * 1994-05-27 1998-02-03 イーストマン ケミカル カンパニー ラマン分光測定装置及び方法
JP2005147811A (ja) * 2003-11-14 2005-06-09 Shimadzu Corp 分光光度計
JP2007155722A (ja) * 2005-12-08 2007-06-21 Carl Zeiss Microimaging Gmbh 試料を検査する方法および装置
JP2008203133A (ja) * 2007-02-21 2008-09-04 Canon Inc センシング方法及びセンシング装置
WO2010004173A1 (fr) * 2008-06-25 2010-01-14 Horiba Abx Sas Dispositif et procede de mesure electro optique destines a la classification et au comptage d'elements microscopiques
JP2010276362A (ja) * 2009-05-26 2010-12-09 Hitachi High-Technologies Corp 分光蛍光光度計および分光分析光度計

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933204B2 (ja) * 1976-01-30 1984-08-14 株式会社日立製作所 二光束分光光度計
US4893259A (en) * 1988-06-02 1990-01-09 The Perkin-Elmer Corporation Standardization of spectral lines
WO1996024832A1 (en) * 1995-02-09 1996-08-15 Foss Electric A/S A method for standardizing a spectrometer
JP3921889B2 (ja) 1999-09-17 2007-05-30 株式会社島津製作所 蛍光分光光度計
US6629041B1 (en) * 2000-04-14 2003-09-30 Ralf Marbach Methods to significantly reduce the calibration cost of multichannel measurement instruments
JP4324719B2 (ja) 2001-03-30 2009-09-02 株式会社島津製作所 蛍光検出装置
JP4141985B2 (ja) * 2004-05-19 2008-08-27 株式会社日立ハイテクノロジーズ 分光蛍光光度計及び試料セル
US7262844B2 (en) * 2005-01-13 2007-08-28 The Curators Of The University Of Missouri Ultrasensitive spectrophotometer
CN101201322B (zh) 2006-12-14 2011-05-18 上海通微分析技术有限公司 高灵敏度荧光检测装置
JP2008256530A (ja) * 2007-04-05 2008-10-23 Shimadzu Corp 蛍光検出器及びその蛍光検出器を備えた液体クロマトグラフ
JP2009145149A (ja) * 2007-12-13 2009-07-02 Shimadzu Corp 分光光度計
JP2011013167A (ja) * 2009-07-06 2011-01-20 Hitachi High-Technologies Corp 分光蛍光光度計及び試料セル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295123A (ja) * 1988-05-20 1989-11-28 Shimadzu Corp 分光測定装置のレスポンス機構
JPH10501333A (ja) * 1994-05-27 1998-02-03 イーストマン ケミカル カンパニー ラマン分光測定装置及び方法
JP2005147811A (ja) * 2003-11-14 2005-06-09 Shimadzu Corp 分光光度計
JP2007155722A (ja) * 2005-12-08 2007-06-21 Carl Zeiss Microimaging Gmbh 試料を検査する方法および装置
JP2008203133A (ja) * 2007-02-21 2008-09-04 Canon Inc センシング方法及びセンシング装置
WO2010004173A1 (fr) * 2008-06-25 2010-01-14 Horiba Abx Sas Dispositif et procede de mesure electro optique destines a la classification et au comptage d'elements microscopiques
JP2010276362A (ja) * 2009-05-26 2010-12-09 Hitachi High-Technologies Corp 分光蛍光光度計および分光分析光度計

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115154A (ja) * 2012-12-07 2014-06-26 Shimadzu Corp フォトダイオードアレイ検出器
JP2015180895A (ja) * 2015-06-22 2015-10-15 国立研究開発法人農業・食品産業技術総合研究機構 判別フィルタ設計方法、判別方法、判別フィルタセット、判別装置、および、プログラム
WO2020148842A1 (ja) * 2019-01-16 2020-07-23 株式会社島津製作所 吸光度検出器、クロマトグラフおよび光源交換時期管理方法
JPWO2021044924A1 (ja) * 2019-09-03 2021-09-27 興亜硝子株式会社 無機組成物及び無機組成物の製造方法
JP7328912B2 (ja) 2020-01-31 2023-08-17 ダイハツ工業株式会社 エンジンにおける混合ガスの混合状態解析方法

Also Published As

Publication number Publication date
JP5516486B2 (ja) 2014-06-11
US9164028B2 (en) 2015-10-20
CN102818792B (zh) 2014-10-29
US20120262711A1 (en) 2012-10-18
CN102818792A (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5516486B2 (ja) 分光測定装置及びプログラム
CN103649726B (zh) 用于荧光和吸收率分析的系统和方法
EP1784625B1 (en) Autonomous calibration for optical analysis system
JP5023507B2 (ja) 波長校正方法及び波長校正装置
US20130222789A1 (en) Spectrophotometer
JP2008256380A (ja) 光計測装置及び光計測装置の調整方法
JP2009180706A (ja) 液体クロマトグラフ用分光蛍光検出装置
WO2011092766A1 (ja) 分光蛍光光度計、および液体クロマトグラフ用蛍光検出器
WO2016129033A1 (ja) マルチチャンネル分光光度計及びマルチチャンネル分光光度計用データ処理方法
JP4529587B2 (ja) 分光装置及びスペクトルレーザ顕微鏡
US8913240B2 (en) Fluorescence spectrophotometer
US9134246B2 (en) Light source adjustment unit, optical measurement device, subject information obtaining system, and wavelength adjustment program
JP2002005835A (ja) ラマン分光測定装置及びそれを用いた生体試料分析方法
JP5445348B2 (ja) 蛍光分光光度計
US8873040B2 (en) Raman apparatus and method for real time calibration thereof
JP2020187076A (ja) 分光分析装置及び分光分析方法
CN110887817B (zh) 一种主被动双模光谱探测方法
CN110887816B (zh) 一种主被动双模光谱仪
JP2012018011A (ja) 分光光度計
WO2023137549A1 (en) Analyzer system and method for real-time synchronous detection of the characteristic near-infrared wavelength features of optically active substances
RU85237U1 (ru) Устройство для определения относительной концентрации молекул орто- и параводы
JPH08285772A (ja) 光分析装置
JP5994593B2 (ja) 分光光度計
JP2012026957A (ja) 分光光度計
JP2002131130A (ja) 分光光度計

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5516486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151