JP2012136581A - タイヤ用ゴム組成物及びスタッドレスタイヤ - Google Patents

タイヤ用ゴム組成物及びスタッドレスタイヤ Download PDF

Info

Publication number
JP2012136581A
JP2012136581A JP2010288501A JP2010288501A JP2012136581A JP 2012136581 A JP2012136581 A JP 2012136581A JP 2010288501 A JP2010288501 A JP 2010288501A JP 2010288501 A JP2010288501 A JP 2010288501A JP 2012136581 A JP2012136581 A JP 2012136581A
Authority
JP
Japan
Prior art keywords
group
rubber
mass
silica
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010288501A
Other languages
English (en)
Other versions
JP5638936B2 (ja
Inventor
Satomi Inoue
里美 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2010288501A priority Critical patent/JP5638936B2/ja
Publication of JP2012136581A publication Critical patent/JP2012136581A/ja
Application granted granted Critical
Publication of JP5638936B2 publication Critical patent/JP5638936B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】低燃費性、耐摩耗性及び氷雪上性能を高い次元でバランスさせることができ、加工性にも優れたタイヤ用ゴム組成物、及びこれを用いたスタッドレスタイヤを提供する。
【解決手段】本発明は、天然ゴム及びブタジエンゴムの合計含有量が80質量%以上であるゴム成分と、シリカとを含有し、上記ゴム成分は、上記ブタジエンゴムとして、下記一般式(1)で表される化合物により変性されたブタジエンゴム、及び/又はリチウム開始剤により重合され、スズ原子の含有量が50〜3000ppm、ビニル結合量が5〜50質量%及び分子量分布(Mw/Mn)が2以下であるスズ変性ポリブタジエンゴムをゴム成分100質量%中10質量%以上含有し、上記シリカは、CTAB比表面積が180m/g以上、BET比表面積が185m/g以上であるタイヤ用ゴム組成物に関する。
[化1]
Figure 2012136581

【選択図】なし

Description

本発明は、タイヤ用ゴム組成物、及びそれを用いたスタッドレスタイヤに関する。
従来、重荷冬用空気入りタイヤ、特に重荷冬用スタッドレスタイヤに用いられるゴム組成物(特にトレッド用ゴム組成物)としては、天然ゴム等の優れた引張り強さ、耐摩耗性を示すゴムに加えて、表面を柔らかくして氷雪上性能を改善するためにブタジエンゴム等のゴムをブレンドし、更には補強性、強度を改善するためにカーボンブラックなどの充填剤を加えたゴム組成物を用いてきた。とくに、重荷用タイヤは耐摩耗性に関する要求が厳しく、加工性を改善するための可塑剤や、粘着性を付与するための粘着付与剤も、配合することを躊躇する場合がある。
しかしながら、可塑剤や粘着付与剤を配合しないと、成形時の加工性が不充分で、工程での不具合が起こる場合が多い。とくにブタジエンゴムは一般に加工性が悪い上に粘着性も低いため、これらの特性を改善する必要がある。ミネラルオイルなどの低極性の可塑剤を添加すると、通常、加工性が改善されるとともに粘着性も多少向上するが、低燃費性及び耐摩耗性が低下する。粘着性付与のために、石油系レジンやフェノールレジンなどの粘着付与剤を用いることも可能であるが、これも耐摩耗性の低下が避けられない。アロマオイルを用いる方法もあるが、この場合、低燃費性及び耐摩耗性はミネラルオイル及び粘着付与剤と比較すると良好であるが、やはり幾分かは低下し、また、氷雪上性能も低下する。
もともと、重荷用タイヤは耐摩耗性に関する要求が厳しい上に、近年、地球温暖化の影響、あるいは夏用タイヤへの履き替えが面倒であることが理由で、氷雪路以外を冬用タイヤで走る場合も多く、重荷冬用空気入りタイヤ、特に重荷冬用スタッドレスタイヤのトレッド部分の耐摩耗性改善は、非常に強く求められるようになってきている。
なお、特許文献1には、シリカを配合することにより、耐摩耗性を悪化させることなくウェットグリップ性能を向上できるタイヤ用ゴム組成物が開示されている。この方法によれば、低燃費性及び氷雪上性能についてもある程度改善することができるものの、その効果は充分ではなく、また、耐摩耗性が向上できないという点でも改善の余地があった。
特開2008−31244号公報
本発明は、前記課題を解決し、低燃費性、耐摩耗性及び氷雪上性能を高い次元でバランスさせることができ、加工性にも優れたタイヤ用ゴム組成物、及びこれを用いたスタッドレスタイヤを提供することを目的とする。
本発明は、天然ゴム及びブタジエンゴムの合計含有量が80質量%以上であるゴム成分と、シリカとを含有し、上記ゴム成分は、上記ブタジエンゴムとして、下記一般式(1)で表される化合物により変性されたブタジエンゴム、及び/又はリチウム開始剤により重合され、スズ原子の含有量が50〜3000ppm、ビニル結合量が5〜50質量%及び分子量分布(Mw/Mn)が2以下であるスズ変性ポリブタジエンゴムをゴム成分100質量%中10質量%以上含有し、上記シリカは、CTAB比表面積が180m/g以上、BET比表面積が185m/g以上であるタイヤ用ゴム組成物に関する。
Figure 2012136581
(式中、R、R及びRは、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R及びRは、同一若しくは異なって、水素原子又はアルキル基を表す。nは整数を表す。)
上記ゴム組成物は、メルカプト基を有するシランカップリング剤を含有することが好ましい。
上記シランカップリング剤は、下記一般式(2)で示される結合単位Aと下記一般式(3)で示される結合単位Bとの合計量に対して、結合単位Bを1〜70モル%の割合で共重合したものであることが好ましい。
Figure 2012136581
Figure 2012136581
(式中、x、yはそれぞれ1以上の整数である。Rは水素、ハロゲン、分岐若しくは非分岐の炭素数1〜30のアルキル基若しくはアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニル基若しくはアルケニレン基、分岐若しくは非分岐の炭素数2〜30のアルキニル基若しくはアルキニレン基、又は該アルキル基若しくは該アルケニル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。Rは水素、分岐若しくは非分岐の炭素数1〜30のアルキレン基若しくはアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基若しくはアルケニル基、又は分岐若しくは非分岐の炭素数2〜30のアルキニレン基若しくはアルキニル基を示す。RとRとで環構造を形成してもよい。)
上記ゴム組成物は、トレッドに使用されることが好ましい。
本発明はまた、上記ゴム組成物を用いたスタッドレスタイヤに関する。
上記スタッドレスタイヤは、トラック・バス用タイヤであることが好ましい。
本発明によれば、天然ゴム及びブタジエンゴムの合計含有量が80質量%以上であるゴム成分と、特定値以上のCTAB比表面積及びBET比表面積を有するシリカとを含有するとともに、上記ゴム成分中のブタジエンゴムとして、上記式(1)で表される化合物により変性されたブタジエンゴム、及び/又はリチウム開始剤により重合され、スズ原子の含有量が50〜3000ppm、ビニル結合量が5〜50質量%及び分子量分布(Mw/Mn)が2以下であるスズ変性ポリブタジエンゴムを所定量配合したゴム組成物であるので、良好なシリカの分散性を得ることができ、優れた低燃費性、耐摩耗性及び氷雪上性能を有するスタッドレスタイヤを製造することができる。また、タイヤ製造時の加工性にも優れている。
細孔分布曲線を示す図である。
本発明は、天然ゴム及びブタジエンゴムの合計含有量が80質量%以上であるゴム成分と、特定値以上のCTAB比表面積及びBET比表面積を有するシリカとを含有する。また、上記ゴム成分中のブタジエンゴムとして、上記式(1)で表される化合物により変性されたブタジエンゴム、及び/又はリチウム開始剤により重合され、スズ原子の含有量が50〜3000ppm、ビニル結合量が5〜50質量%及び分子量分布(Mw/Mn)が2以下であるスズ変性ポリブタジエンゴムを所定量配合している。
上記ゴム成分として、天然ゴム(NR)を含有することにより、耐摩耗性を改善することができる。NRとしては、特に限定されず、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。
上記ゴム成分として、ブタジエンゴム(BR)を含有することにより、氷雪上性能を改善することができる。BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B等の高シス含有量のBR、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するBR、変性BR等を使用できる。
上記ゴム成分は、BRとして、上記式(1)で表される化合物により変性された変性BR(S変性BR)、及び/又はリチウム開始剤により重合され、スズ原子の含有量が50〜3000ppm、ビニル結合量が5〜50質量%及び分子量分布(Mw/Mn)が2以下であるスズ変性ポリブタジエンゴム(スズ変性BR)を含有する。これにより、ゴム成分とシリカとの結合力が強化され、良好なシリカの分散性を得ることができ、低燃費性、耐摩耗性及び氷雪上性能を改善させることができる。
上記式(1)で表される化合物において、R、R及びRは、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基(−COOH)、メルカプト基(−SH)又はこれらの誘導体を表す。上記アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基等の炭素数1〜4のアルキル基等が挙げられる。上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基等の炭素数1〜8のアルコキシ基(好ましくは炭素数1〜6、より好ましくは炭素数1〜4)等が挙げられる。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等の炭素数5〜8のシクロアルコキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等の炭素数6〜8のアリールオキシ基等)も含まれる。
上記シリルオキシ基としては、例えば、炭素数1〜20の脂肪族基、芳香族基が置換したシリルオキシ基(トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、ジエチルイソプロピルシリルオキシ基、t−ブチルジメチルシリルオキシ基、t−ブチルジフェニルシリルオキシ基、トリベンジルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基等)等が挙げられる。
上記アセタール基としては、例えば、−C(RR′)−OR″、−O−C(RR′)−OR″で表される基を挙げることができる。前者としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、イソプロポキシメチル基、t−ブトキシメチル基、ネオペンチルオキシメチル基等が挙げられ、後者としては、メトキシメトキシ基、エトキシメトキシ基、プロポキシメトキシ基、i−プロポキシメトキシ基、n−ブトキシメトキシ基、t−ブトキシメトキシ基、n−ペンチルオキシメトキシ基、n−ヘキシルオキシメトキシ基、シクロペンチルオキシメトキシ基、シクロヘキシルオキシメトキシ基等を挙げることができる。R、R及びRとしては、低燃費性、雪氷上性能及び耐摩耗性をより改善できる点から、アルコキシ基が好ましく、メトキシ基、エトキシ基が特に好ましい。
及びRのアルキル基としては、例えば、上記アルキル基と同様の基を挙げることができる。R及びRとしては、低燃費性、氷雪上性能、耐摩耗性をより改善できる点から、アルキル基が好ましく、メチル基、エチル基が好ましい。
n(整数)としては、1〜5が好ましい。これにより、優れた低燃費性、氷雪上性能及び耐摩耗性が得られる。更には、nは2〜4がより好ましく、3が最も好ましい。nが0であるとケイ素原子と窒素原子との結合が困難であり、nが6以上であると変性剤としての効果が薄れる。
上記式(1)で表される化合物の具体例としては、3−アミノプロピルジメチルメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルエチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルジメチルブトキシシラン、3−アミノプロピルメチルジブトキシシラン、ジメチルアミノメチルトリメトキシシラン、2−ジメチルアミノエチルトリメトキシシラン、3−ジメチルアミノプロピルトリメトキシシラン、4−ジメチルアミノブチルトリメトキシシラン、ジメチルアミノメチルジメトキシメチルシラン、2−ジメチルアミノエチルジメトキシメチルシラン、3−ジメチルアミノプロピルジメトキシメチルシラン、4−ジメチルアミノブチルジメトキシメチルシラン、ジメチルアミノメチルトリエトキシシラン、2−ジメチルアミノエチルトリエトキシシラン、3−ジメチルアミノプロピルトリエトキシシラン、4−ジメチルアミノブチルトリエトキシシラン、ジメチルアミノメチルジエトキシメチルシラン、2−ジメチルアミノエチルジエトキシメチルシラン、3−ジメチルアミノプロピルジエトキシメチルシラン、4−ジメチルアミノブチルジエトキシメチルシラン、ジエチルアミノメチルトリメトキシシラン、2−ジエチルアミノエチルトリメトキシシラン、3−ジエチルアミノプロピルトリメトキシシラン、4−ジエチルアミノブチルトリメトキシシラン、ジエチルアミノメチルジメトキシメチルシラン、2−ジエチルアミノエチルジメトキシメチルシラン、3−ジエチルアミノプロピルジメトキシメチルシラン、4−ジエチルアミノブチルジメトキシメチルシラン、ジエチルアミノメチルトリエトキシシラン、2−ジエチルアミノエチルトリエトキシシラン、3−ジエチルアミノプロピルトリエトキシシラン、4−ジエチルアミノブチルトリエトキシシラン、ジエチルアミノメチルジエトキシメチルシラン、2−ジエチルアミノエチルジエトキシメチルシラン、3−ジエチルアミノプロピルジエトキシメチルシラン、4−ジエチルアミノブチルジエトキシメチルシラン等が挙げられる。なかでも、低燃費性、雪氷上性能及び耐摩耗性をより改善できる点から、3−ジエチルアミノプロピルトリメトキシシランが特に好適に用いられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記式(1)で表される化合物(変性剤)によるブタジエンゴムの変性方法としては、特公平6−53768号公報、特公平6−57767号公報等に記載されている方法等、従来公知の手法を用いることができる。例えば、ブタジエンゴムと変性剤とを接触させればよく、ブタジエンゴムを重合し、該重合体ゴム溶液中に変性剤を所定量添加する方法、ブタジエン溶液中に変性剤を添加して反応させる方法等が挙げられる。
変性されるBRとしては特に限定されず、例えば、上記で列挙したBR等を使用できる。
S変性BRのビニル含量(1,2−結合ブタジエン単位量)は、好ましくは35質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。ビニル含量が35質量%を超えると、ゴムの加工性が悪化する傾向がある。ビニル含量の下限は特に限定されない。
なお、ビニル含量は、赤外吸収スペクトル分析法によって測定できる。
スズ変性BRは、リチウム開始剤により1,3−ブタジエンの重合を行った後、スズ化合物を添加することにより得られ、更に該スズ変性BR分子の末端はスズ−炭素結合で結合されていることが好ましい。該スズ変性BRを使用することにより、ポリマーのTg(ガラス転移温度)を低下させることができ、またカーボンブラックとポリマーとの結合を強固にすることもできる。
リチウム開始剤としては、アルキルリチウム、アリールリチウム、アリルリチウム、ビニルリチウム、有機スズリチウム、有機窒素リチウム化合物などのリチウム系化合物が挙げられる。リチウム系化合物を開始剤とすることで、高ビニル、低シス含量のスズ変性BRを作製できる。
スズ化合物としては、四塩化スズ、ブチルスズトリクロライド、ジブチルスズジクロライド、ジオクチルスズジクロライド、トリブチルスズクロライド、トリフェニルスズクロライド、ジフェニルジブチルスズ、トリフェニルスズエトキシド、ジフェニルジメチルスズ、ジトリルスズクロライド、ジフェニルスズジオクタノエート、ジビニルジエチルスズ、テトラベンジルスズ、ジブチルスズジステアレート、テトラアリルスズ、p−トリブチルスズスチレンなどが挙げられ、これらは、単独で用いてもよく、2種以上を併用してもよい。
スズ変性BRのスズ原子の含有量は50ppm以上、好ましくは60ppm以上である。含有量が50ppm未満では、スズ変性BR中のカーボンブラックの分散を促進する効果が小さく、tanδが増大する。また、スズ原子の含有量は3000ppm以下、好ましくは2500ppm以下、更に好ましくは250ppm以下である。含有量が3000ppmを超えると、混練り物のまとまりが悪く、エッジが整わないため、混練り物の押出し性が悪化する。
スズ変性BRの分子量分布(Mw/Mn)は2以下、好ましくは1.5以下である。Mw/Mnが2を超えると、カーボンブラックの分散性が悪化し、tanδが増大するため好ましくない。
なお、本発明において、数平均分子量(Mn)、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)を用い、標準ポリスチレンより換算した値である。
スズ変性BRのビニル結合量は5質量%以上、好ましくは7質量%以上である。ビニル結合量が5質量%未満では、スズ変性BRを重合(製造)することが困難である。また、ビニル結合量は50質量%以下、好ましくは20質量%以下である。ビニル結合量が50質量%を超えると、カーボンブラックの分散性が悪く、また、引張強さが弱くなる傾向がある。
上記ゴム成分100質量%中におけるNRの含有量は、好ましくは20質量%以上、より好ましくは35質量%以上、更に好ましくは40質量%以上である。該含有量が20質量%未満の場合、必要な機械的強度の向上やウェットグリップ性能を得ることが難しくなる傾向がある。上記ゴム成分100質量%中におけるNRの含有量は、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下である。NRの含有量が80質量%を超えると、相対的にBR等の配合比率が少なくなり、必要な耐摩耗性や耐クラック性を得ることが難しくなる傾向がある。
上記ゴム成分100質量%中において、S変性BR及び/又はスズ変性BRの含有量は、10質量%以上、好ましくは15質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、特に好ましくは35質量%以上、最も好ましくは40質量%以上である。10質量%未満であると、低燃費性の向上効果が得られない場合がある。また、上記変性BRの含有量の上限は特に制限されないが、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、特に好ましくは65質量%以下、最も好ましくは60質量%以下である。90質量%を超えると、ゴムの強度が低下し、耐摩耗性が悪化する傾向がある。
上記ゴム成分100質量%中におけるBRの合計含有量(S変性BR、スズ変性BR及び非変性BRの合計含有量)は、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは35質量%以上、最も好ましくは40質量%以上である。該含有量が20質量%未満の場合、氷雪上性能が悪化する傾向がある。上記ゴム成分100質量%中におけるBRの合計含有量は、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは65質量%以下、最も好ましくは60質量%以下である。該含有量が80質量%を超えると、氷雪上性能は良好となるが、耐摩耗性、粘着性が悪化する傾向がある。
上記ゴム成分100質量%中におけるNR及びBRの合計含有量は、80質量%以上、好ましくは85質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは100質量%である。上記合計含有量が80質量%未満であると、耐摩耗性が低下する傾向がある。
NR、BR以外で使用できるゴム成分としては、例えば、エポキシ化天然ゴム(ENR)、スチレン−ブタジエンゴム(SBR)、イソプレンゴム(IR)、エチレン−プロピレン−ジエンゴム(EPDM)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、クロロプレンゴム(CR)、アクリルニトリル(NBR)、イソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物等を使用できる。
本発明では、CTAB比表面積が180m/g以上、BET比表面積が185m/g以上のシリカ(以下、「微粒子シリカ」ともいう)が使用される。このような微粒子シリカをゴム中に良好に分散させることによって、優れた低燃費性、耐摩耗性及び氷雪上性能が得られる。
微粒子シリカのCTAB(セチルトリメチルアンモニウムブロミド)比表面積は、好ましくは190m/g以上、より好ましくは195m/g以上、更に好ましくは197m/g以上、最も好ましくは225m/g以上である。CTAB比表面積が180m/g未満であると、機械的強度及び耐摩耗性の十分な向上が得られにくくなる傾向がある。該CTAB比表面積は、好ましくは500m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下である。CTAB比表面積が500m/gを超えると、シリカが凝集することで分散性が悪化し、機械的強度が低下する傾向がある。
なお、CTAB比表面積は、ASTM D3765−92に準拠して測定される。
微粒子シリカのBET比表面積は、好ましくは190m/g以上、より好ましくは195m/g以上、更に好ましくは210m/g以上である。BET比表面積が185m/g未満であると、機械的強度及び耐摩耗性の十分な向上が得られにくくなる傾向がある。該BET比表面積は、好ましくは500m/g以下、より好ましくは300m/g以下、更に好ましくは260m/g以下である。BET比表面積が500m/gを超えると、シリカの分散性が劣る傾向がある。
なお、シリカのBET比表面積は、ASTM D3037−81に準じて測定される。
微粒子シリカのアグリゲートサイズは、30nm以上、好ましくは35nm以上、より好ましくは40nm以上、更に好ましくは45nm以上、特に好ましくは50nm以上、最も好ましくは55nm以上、より最も好ましくは60nm以上である。また、該アグリゲートサイズは、好ましくは100nm以下、より好ましくは80nm以下、更に好ましくは70nm以下、特に好ましくは65nm以下である。このようなアグリゲートサイズを有することにより、良好な分散性を有しながら、優れた補強性、耐摩耗性を与えることができる。
アグリゲートサイズは、凝集体径又は最大頻度ストークス相当径とも呼ばれているものであり、複数の一次粒子が連なって構成されるシリカの凝集体を一つの粒子と見なした場合の粒子径に相当するものである。アグリゲートサイズは、例えば、BI−XDC(Brookhaven Instruments Corporation製)等のディスク遠心沈降式粒度分布測定装置を用いて測定できる。
具体的には、BI−XDCを用いて以下の方法にて測定できる。
3.2gのシリカ及び40mLの脱イオン水を50mLのトールビーカーに添加し、シリカ懸濁液を含有するビーカーを氷充填晶析装置内に置く。ビーカーを超音波プローブ(1500ワットの1.9cmVIBRACELL超音波プローブ(バイオブロック社製、最大出力の60%で使用))を使用して懸濁液を8分間砕解し、サンプルを調製する。サンプル15mLをディスクに導入し、撹拌するとともに、固定モード、分析時間120分、密度2.1の条件下で測定する。
装置の記録器において、16質量%、50質量%(又は中央値)及び84質量%の通過直径の値、及びモードの値を記録する(累積粒度曲線の導関数は、分布曲線にモードと呼ばれるその最大の横座標を与える)。
このディスク遠心沈降式粒度分析法を使用して、シリカを水中に超音波砕解によって分散させた後に、Dとして表される粒子(凝集体)の重量平均径(アグリゲートサイズ)を測定できる。分析(120分間の沈降)後に、粒度の重量分布を粒度分布測定装置によって算出する。Dとして表される粒度の重量平均径は、以下の式によって算出される。
Figure 2012136581
(式中、mは、Dのクラスにおける粒子の全質量である)
微粒子シリカの平均一次粒子径は、好ましくは25nm以下、より好ましくは22nm以下、更に好ましくは17nm以下、特に好ましくは14nm以下である。該平均一次粒子径の下限は特に限定されないが、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは7nm以上である。このような小さい平均一次粒子径を有しているものの、上記のアグリゲートサイズを有するカーボンブラックのような構造により、シリカの分散性をより改善でき、補強性、耐摩耗性を更に改善できる。
なお、微粒子シリカの平均一次粒子径は、透過型又は走査型電子顕微鏡により観察し、視野内に観察されたシリカの一次粒子を400個以上測定し、その平均により求めることができる。
微粒子シリカのD50は、好ましくは7.0μm以下、より好ましくは5.5μm以下、更に好ましくは4.5μm以下である。7.0μmを超えると、シリカの分散性が悪化していることを示す。該微粒子シリカのD50は、好ましくは2.0μm以上、より好ましくは2.5μm以上、更に好ましくは3.0μm以上である。2.0μm未満であると、アグリゲートサイズも小さくなり、十分な分散性を得られにくい。
ここで、D50は、微粒子シリカの中央直径であって粒子の50質量%がその中央直径よりも小さい。
また、微粒子シリカは、粒子径が18μmより大きいものの割合が6質量%以下が好ましく、4質量%以下がより好ましく、1.5質量%以下が更に好ましい。これにより、シリカの良好な分散性が得られ、所望の性能が得られる。
なお、微粒子シリカのD50、所定の粒子径を有するシリカの割合は、以下の方法により測定される。
凝集体の凝集を予め超音波砕解されたシリカの懸濁液について、粒度測定(レーザー回折を使用)を実施することによって評価する。この方法では、シリカの砕解性(0.1〜数10ミクロンのシリカの砕解)が測定される。超音波砕解を、19mmの直径のプローブを装備したバイオブロック社製VIBRACELL音波発生器(600W)(最大出力の80%で使用)を使用して行う。粒度測定は、モールバーンマスターサイザー2000粒度分析器でのレーザー回折によって行う。
具体的には、以下の方法により測定される。
1グラムのシリカをピルボックス(高さ6cm及び直径4cm)中で秤量し、脱イオン水を添加して質量を50グラムにし、2%のシリカを含有する水性懸濁液(これは2分間の磁気撹拌によって均質化される)を調製する。次いで、超音波砕解を420秒間実施し、更に、均質化された懸濁液の全てが粒度分析器の容器に導入された後に、粒度測定を行う。
微粒子シリカの細孔容積の細孔分布幅Wは、好ましくは0.3以上、より好ましくは0.7以上、更に好ましくは1.0以上、特に好ましくは1.3以上、最も好ましくは1.5以上である。また、該細孔分布幅Wは、好ましくは5.0以下、より好ましくは4.0以下、更に好ましくは3.0以下、特に好ましくは2.0以下である。このようなブロードなポーラスの分布により、シリカの分散性を改善でき、所望の性能が得られる。
なお、シリカの細孔容積の細孔分布幅Wは、以下の方法により測定できる。
微粒子シリカの細孔容積は、水銀ポロシメトリーによって測定される。シリカのサンプルをオーブン中で200℃で2時間予備乾燥させ、次いでオーブンから取り出した後、5分以内に試験容器内に置き、真空にする。細孔直径(AUTOPORE III 9420 粉体工学用ポロシメーター)は、ウォッシュバーンの式によって140°の接触角及び484ダイン/cm(又はN/m)の表面張力γで算出される。
細孔分布幅Wは、細孔直径(nm)及び細孔容量(mL/g)の関数で示される図1のような細孔分布曲線によって求めることができる。即ち、細孔容量のピーク値Ys(mL/g)を与える直径Xs(nm)の値を記録し、次いで、Y=Ys/2の直線をプロットし、この直線が細孔分布曲線と交差する点a及びbを求める。そして、点a及びbの横座標(nm)をそれぞれXa及びXbとしたとき(Xa>Xb)、細孔分布幅Wは、(Xa−Xb)/Xsに相当する。
微粒子シリカの細孔分布曲線中の細孔容量のピーク値Ysを与える直径Xs(nm)は、好ましくは10nm以上、より好ましくは15nm以上、更に好ましくは18nm以上、特に好ましくは20nm以上であり、また、好ましくは60nm以下、より好ましくは35nm以下、更に好ましくは28nm以下、特に好ましくは25nm以下である。上記範囲内であれば、分散性と補強性に優れた微粒子シリカを得ることができる。
上記微粒子シリカの配合量は、ゴム成分100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上、更に好ましくは7質量部以上、特に好ましくは10質量部以上である。3質量部未満であると、低燃費性能及び氷雪上性能を十分に向上できない傾向がある。該微粒子シリカの配合量は、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは25質量部以下である。50質量部を超えると、良好な低燃費性能、氷雪上性能を得ることができるが、加工性が悪化する傾向がある。
本発明では、メルカプト基を有するシランカップリング剤を使用することが好ましい。微粒子シリカとメルカプト基を有する特定のシランカップリング剤を併用することにより、良好なシリカの分散性と耐スコーチ性を両立できる。
メルカプト基を有するシランカップリング剤としては特に限定されず、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシランなどが挙げられる。また、メルカプト基を有するシランカップリング剤の商品名としては、例えば、デグッサ社製のSi363、Momentive社製のNXT−Z45、NXT−Z60などが挙げられる。
メルカプト基を有するシランカップリング剤としては、下記一般式(2)で示される結合単位Aと下記一般式(3)で示される結合単位Bとの合計量に対して、結合単位Bを1〜70モル%の割合で共重合したシランカップリング剤が好適に使用され、該合計量に対して、結合単位Bを1〜55モル%の割合で共重合したシランカップリング剤がより好適に使用される。
Figure 2012136581
Figure 2012136581
(式中、x、yはそれぞれ1以上の整数である。Rは水素、ハロゲン、分岐若しくは非分岐の炭素数1〜30のアルキル基若しくはアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニル基若しくはアルケニレン基、分岐若しくは非分岐の炭素数2〜30のアルキニル基若しくはアルキニレン基、又は該アルキル基若しくは該アルケニル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。Rは水素、分岐若しくは非分岐の炭素数1〜30のアルキレン基若しくはアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基若しくはアルケニル基、又は分岐若しくは非分岐の炭素数2〜30のアルキニレン基若しくはアルキニル基を示す。RとRとで環構造を形成してもよい。)
メルカプト基を有するシランカップリング剤は、反応性が高く、シリカ分散性の向上性能が高いが、欠点としてスコーチタイムが短くなり、仕上げ練りや押し出しで、非常にゴム焼けが起こりやすくなる。
これに対し、上記構造のシランカップリング剤では、結合単位Aと結合単位Bのモル比が上記条件を満たすため、ビス−(3−トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィドシランに比べ、加工中の粘度上昇が抑制される。これは結合単位Aのスルフィド部分がC−S−C結合であるため、テトラスルフィドやジスルフィドに比べ熱的に安定であることから、ムーニー粘度の上昇が少ないためと考えられる。
また、結合単位Aと結合単位Bのモル比が前記条件を満たす場合、3−メルカプトプロピルトリメトキシシランなどのメルカプトシランに比べ、スコーチ時間の短縮が抑制される。これは結合単位Bはメルカプトシランの構造を持っているが、結合単位Aの−C15部分が結合単位Bの−SH基を覆うため、ポリマーと反応しにくく、スコーチタイムが短くなりにくいためと考えられる。
更に、上記微粒子シリカは、加硫を遅くする作用を有するので、上記構造を有するシランカップリング剤と併用することにより、工業的に使用しうる耐スコーチ性を確保出来るようになった。以上の作用により、微粒子シリカの良好な分散性と、耐スコーチ性などの加工性を両立できると推察される。
のハロゲンとしては、塩素、臭素、フッ素などが挙げられる。
、Rの分岐若しくは非分岐の炭素数1〜30のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基、デシル基等が挙げられる。該アルキル基の炭素数は、好ましくは1〜12である。
、Rの分岐若しくは非分岐の炭素数1〜30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基等が挙げられる。該アルキレン基の炭素数は、好ましくは1〜12である。
、Rの分岐若しくは非分岐の炭素数2〜30のアルケニル基としては、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基等が挙げられる。該アルケニル基の炭素数は、好ましくは2〜12である。
、Rの分岐若しくは非分岐の炭素数2〜30のアルケニレン基としては、ビニレン基、1−プロペニレン基、2−プロペニレン基、1−ブテニレン基、2−ブテニレン基、1−ペンテニレン基、2−ペンテニレン基、1−ヘキセニレン基、2−ヘキセニレン基、1−オクテニレン基等が挙げられる。該アルケニレン基の炭素数は、好ましくは2〜12である。
、Rの分岐若しくは非分岐の炭素数2〜30のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、へプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基等が挙げられる。該アルキニル基の炭素数は、好ましくは2〜12である。
、Rの分岐若しくは非分岐の炭素数2〜30のアルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基等が挙げられる。該アルキニレン基の炭素数は、好ましくは2〜12である。
上記構造のシランカップリング剤において、結合単位Aの繰り返し数(x)と結合単位Bの繰り返し数(y)の合計の繰り返し数(x+y)は、3〜300の範囲が好ましい。この範囲内であると、結合単位Bのメルカプトシランを、結合単位Aの−C15が覆うため、スコーチタイムが短くなることを抑制できるとともに、シリカやゴム成分との良好な反応性を確保することができる。
上記構造のシランカップリング剤としては、例えば、Momentive社製のNXT−Z30、NXT−Z45、NXT−Z60等を使用することができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記シランカップリング剤の配合量は、シリカ100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、更に好ましくは3質量部以上である。1質量部未満であると、シリカとポリマーが十分に反応しない傾向がある。また、該配合量は、好ましくは15質量部以下、より好ましくは12質量部以下、更に好ましくは10質量部以下である。15質量部を超えると、余分なシランカップリング剤が残り、加工性が悪化する傾向がある。
本発明のゴム組成物は、カーボンブラックを含有することが好ましい。使用できるカーボンブラックとしては、GPF、FEF、HAF、ISAF、SAFなどが挙げられるが、特に限定されない。カーボンブラックを配合することにより、補強性を高めることができるとともに、耐摩耗性及び加工性を改善できる。
カーボンブラックのチッ素吸着比表面積(NSA)は15m/g以上が好ましく、30m/g以上がより好ましい。15m/g未満では、十分な補強性が得られない傾向がある。また、カーボンブラックのチッ素吸着比表面積は80m/g以下が好ましく、60m/g以下がより好ましい。80m/gを超えると、未加硫時の粘度が高くなり、ゴムの加工性が悪化する傾向がある。
なお、カーボンブラックのチッ素吸着比表面積は、JIS K6217のA法によって求められる。
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上である。5質量部未満では、十分な補強性が得られない傾向がある。また、該カーボンブラックの含有量は、好ましくは60質量部以下、より好ましくは50質量部以下である。60質量部を超えると、低燃費性が悪化する傾向がある。
軟化剤(可塑剤)及び粘着付与剤の合計含有量は、ゴム成分100質量部に対して、好ましくは5質量部以下、より好ましくは2.5質量部以下であり、軟化剤及び粘着付与剤を含まないことが最も好ましい。軟化剤としては、例えば、ミネラルオイル、アロマオイルなどの鉱物油系軟化剤、植物系軟化剤、フタル酸誘導体などが挙げられ、粘着付与剤としては、例えば、クロマン樹脂、フェノール樹脂、テルペン樹脂、石油系炭化水素樹脂、ロジン誘導体などが挙げられる。従来のスタッドレスタイヤにおいては、通常、加工性及び粘着性の改善を目的に軟化剤又は粘着付与剤が配合されるため、耐摩耗性が悪化する傾向があった。これに対し、本発明によれば、軟化剤及び粘着付与剤を用いることなく加工性及び粘着性を改善することができるため、軟化剤及び粘着付与剤の合計含有量を低減することができ、これにより、耐摩耗性を改善することができる。
上記ゴム組成物には、前記成分の他に、従来ゴム工業で使用される配合剤、例えば、クレー等の充填剤、酸化防止剤、老化防止剤、酸化亜鉛、ステアリン酸、硫黄、含硫黄化合物等の加硫剤、加硫促進剤等を含有してもよい。
本発明のゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで前記各成分を混練りし、その後加硫する方法等により製造できる。該ゴム組成物は、タイヤの各部材に使用でき、なかでも、トレッド(ベーストレッド、キャップトレッド)に好適に使用できる。
本発明のスタッドレスタイヤは、上記ゴム組成物を用いて通常の方法で製造される。
すなわち、前記成分を配合したゴム組成物を、未加硫の段階でトレッドなどの各タイヤ部材の形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりスタッドレスタイヤを得る。
本発明のスタッドレスタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ等として好適に用いられ、特にトラック・バス用タイヤとして好適に用いられる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
BR:日本ゼオン(株)製のNipol BR1220(シス含量97質量%)
変性BR1:日本ゼオン(株)製のBR1250H(開始剤としてリチウムを用いて重合、ビニル結合量:10〜13質量%、Mw/Mn:1.5、スズ原子の含有量:250ppm)
変性BR2:住友化学(株)製の変性BR(ビニル含量15質量%、上記一般式(1)において、R、R及びR=−OCH、R及びR=−CHCH、n=3の化合物により変性)
NR:RSS#3
シリカ1:Rhodia社製のZeosil 1115MP(CTAB比表面積:105m/g、BET比表面積:115m/g、平均一次粒子径:25nm、アグリゲートサイズ:92nm、細孔分布幅W:0.63、細孔分布曲線中の細孔容量ピーク値を与える直径Xs:60.3nm)
シリカ2:Rhodia社製のZeosil Premium 200MP(CTAB比表面積:200m/g、BET比表面積:220m/g、平均一次粒子径:10nm、アグリゲートサイズ:65nm、D50:4.2μm、18μmを超える粒子の割合:1.0質量%、細孔分布幅W:1.57、細孔分布曲線中の細孔容量ピーク値を与える直径Xs:21.9nm)
シリカ3:Rhodia社製のZeosil HRS 1200MP(CTAB比表面積:195m/g、BET比表面積:200m/g、平均一次粒子径:15nm、アグリゲートサイズ:40nm、D50:6.5μm、18μmを超える粒子の割合:5.0質量%、細孔分布幅W:0.40、細孔分布曲線中の細孔容量ピーク値を与える直径Xs:18.8nm)
カーボンブラック:キャボットジャパン(株)製のショウブラックN220(ISAF)(NSA:50m/g)
シランカップリング剤1:Degussa社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
シランカップリング剤2:Momentive社製のNXT−Z45(結合単位Aと結合単位Bとの共重合体(結合単位A:55モル%、結合単位B:45モル%))
シランカップリング剤3:Momentive社製のNXT−Z60(結合単位Aと結合単位Bとの共重合体(結合単位A:40モル%、結合単位B:60モル%))
シランカップリング剤4:Degussa社製のSi363(下記式で表される化合物)
Figure 2012136581
ステアリン酸:日油(株)製の桐
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
ワックス:大内新興化学工業(株)製のサンノックワックス
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤TBBS:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
実施例及び比較例
バンバリーミキサーを用いて、表1の工程1に示す配合量の薬品を投入して、約150℃で5分間混練りした。その後、工程1により得られた混合物に対して、工程2に示す配合量の硫黄及び加硫促進剤を加え、オープンロールを用いて、約80℃の条件下で3分間混練りして、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を170℃で15分間プレス加硫し、加硫ゴムシートを得た。
また、得られた未加硫ゴム組成物をトレッド形状に成形して、他のタイヤ部材とはりあわせ、150℃及び25kgfの条件にて、35分間加硫することにより、試験用タイヤ(トラック・バス用スタッドレスタイヤ(タイヤサイズ:11R22.5))を作製した。
得られた加硫ゴムシート、試験用タイヤを使用して、下記の評価を行った。それぞれの試験結果を表1に示す。
(耐摩耗性)
上記試験用タイヤを4トン車に装着し、30000km走行した後の溝深さの減少量を測定し、溝深さが1mm減少するときの走行距離を算出した。更に、比較例1の耐摩耗性指数を100とし、下記計算式により、各配合の溝深さの減少量を指数表示した。なお、耐摩耗性指数が大きいほど、耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各配合で1mm溝深さが減るときの走行距離)/(比較例1のタイヤの溝が1mm減るときの走行距離)×100
(氷雪上コーナーリング性能)
上記試験用タイヤを4トン車に装着し、全長数百mの八の字周回路(氷上コース及び雪上コース)の周回時間を測定することにより、氷上、雪上での実車性能を評価した。比較例1における氷上コース及び雪上コースの周回時間の合計を100とし、下記計算式により、各配合における氷上コース及び雪上コースの周回時間の合計を指数表示した。指数が大きいほど、氷雪上コーナーリング性能が良好であることを示す。なお、試験場所は、住友ゴム工業株式会社の北海道旭川テストコースとした。氷上気温は−1〜−6℃、雪上気温は−2〜−10℃であった。
(氷雪上コーナーリング性能指数)=(比較例1における氷上コース及び雪上コースの周回時間の合計)/(各配合における氷上コース及び雪上コースの周回時間の合計)×100
(シリカ分散性)
2mm×130mm×130mmの加硫ゴムシートを作製し、そこから測定用試験片を切り出し、JIS K 6812「ポリオレフィン管、継手及びコンパウンドの顔料分散又はカーボン分散の評価方法」に準じて、各試験片中のシリカの凝集塊をカウントして、分散率(%)をそれぞれ算出して、比較例1の分散率を100として、下記計算式により、シリカの分散率を指数表示した。シリカ分散指数が大きいほど、シリカが分散しており、シリカの分散性に優れることを示す。
(シリカ分散性指数)=(各配合のシリカ分散率/比較例1のシリカ分散率)×100
(スコーチタイム)
得られた未加硫ゴム組成物について、JIS K6300に従い、未加硫ゴム物理試験方法のムーニースコーチ試験を行い、130.0±0.5℃でのt10[分]を測定し、それを、比較例1を100とした指数で示した。スコーチタイムが短くなるとゴム焼けの問題が起こる傾向がある。今回の評価では、指数が70以下になると、仕上げ練りや押し出し工程等でゴム焼けの問題が起こる可能性がある。
(低燃費性)
上記試験用タイヤのトレッドを切り出し、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み2%の条件下で各配合のtanδを測定し、比較例1のtanδを100として、下記計算式により指数表示した。指数が小さいほど、転がり抵抗が低く、低燃費性に優れることを示す。
(低燃費性指数)=(各配合のtanδ)/(比較例1のtanδ)×100
Figure 2012136581
表1より、NRと、変性BR(S変性BR及びスズ変性BR)と、特定値以上のCTAB比表面積及びBET比表面積を有するシリカ(シリカ2及びシリカ3)とを併用した実施例では、スコーチタイムがそれほど短くならずに、低燃費性、耐摩耗性及び氷雪上コーナーリング性能が高い次元でバランスよく得られた。
他方、変性BR及び特定値以上のCTAB比表面積及びBET比表面積を有するシリカ(シリカ2及びシリカ3)の少なくとも一方を使用していない比較例は、低燃費性、耐摩耗性及び氷雪上コーナーリング性能をバランス良く向上することができなかった。

Claims (6)

  1. 天然ゴム及びブタジエンゴムの合計含有量が80質量%以上であるゴム成分と、シリカとを含有し、
    前記ゴム成分は、前記ブタジエンゴムとして、下記一般式(1)で表される化合物により変性されたブタジエンゴム、及び/又はリチウム開始剤により重合され、スズ原子の含有量が50〜3000ppm、ビニル結合量が5〜50質量%及び分子量分布(Mw/Mn)が2以下であるスズ変性ポリブタジエンゴムをゴム成分100質量%中10質量%以上含有し、
    前記シリカは、CTAB比表面積が180m/g以上、BET比表面積が185m/g以上であるタイヤ用ゴム組成物。
    Figure 2012136581
    (式中、R、R及びRは、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R及びRは、同一若しくは異なって、水素原子又はアルキル基を表す。nは整数を表す。)
  2. メルカプト基を有するシランカップリング剤を含有する請求項1記載のタイヤ用ゴム組成物。
  3. シランカップリング剤は、下記一般式(2)で示される結合単位Aと下記一般式(3)で示される結合単位Bとの合計量に対して、結合単位Bを1〜70モル%の割合で共重合したものである請求項2記載のタイヤ用ゴム組成物。
    Figure 2012136581
    Figure 2012136581
    (式中、x、yはそれぞれ1以上の整数である。Rは水素、ハロゲン、分岐若しくは非分岐の炭素数1〜30のアルキル基若しくはアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニル基若しくはアルケニレン基、分岐若しくは非分岐の炭素数2〜30のアルキニル基若しくはアルキニレン基、又は該アルキル基若しくは該アルケニル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。Rは水素、分岐若しくは非分岐の炭素数1〜30のアルキレン基若しくはアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基若しくはアルケニル基、又は分岐若しくは非分岐の炭素数2〜30のアルキニレン基若しくはアルキニル基を示す。RとRとで環構造を形成してもよい。)
  4. トレッドに使用される請求項1〜3のいずれかに記載のタイヤ用ゴム組成物。
  5. 請求項1〜4のいずれかに記載のゴム組成物を用いたスタッドレスタイヤ。
  6. トラック・バス用タイヤである請求項5記載のスタッドレスタイヤ。
JP2010288501A 2010-12-24 2010-12-24 タイヤ用ゴム組成物及びスタッドレスタイヤ Active JP5638936B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288501A JP5638936B2 (ja) 2010-12-24 2010-12-24 タイヤ用ゴム組成物及びスタッドレスタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288501A JP5638936B2 (ja) 2010-12-24 2010-12-24 タイヤ用ゴム組成物及びスタッドレスタイヤ

Publications (2)

Publication Number Publication Date
JP2012136581A true JP2012136581A (ja) 2012-07-19
JP5638936B2 JP5638936B2 (ja) 2014-12-10

Family

ID=46674271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288501A Active JP5638936B2 (ja) 2010-12-24 2010-12-24 タイヤ用ゴム組成物及びスタッドレスタイヤ

Country Status (1)

Country Link
JP (1) JP5638936B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021002A1 (ja) * 2012-08-03 2014-02-06 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
WO2015125538A1 (ja) * 2014-02-21 2015-08-27 住友ゴム工業株式会社 タイヤ用ゴム組成物、及び空気入りタイヤ
WO2017001616A1 (fr) * 2015-07-02 2017-01-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une silice de tres haute surface specifique et une resine hydrocarbonee de faible temperature de transition vitreuse
EP3225656A1 (de) * 2016-03-31 2017-10-04 Continental Reifen Deutschland GmbH Kautschukmischung und nutzfahrzeugreifen
JP2019056068A (ja) * 2017-09-21 2019-04-11 横浜ゴム株式会社 重荷重タイヤ用ゴム組成物およびその製造方法
JP2019194282A (ja) * 2018-05-01 2019-11-07 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
US10611899B2 (en) 2016-01-19 2020-04-07 Bridgestone Corporation Rubber composition and tire
US10711121B2 (en) 2016-01-19 2020-07-14 Bridgestone Corporation Rubber composition and tire
US10781299B2 (en) 2015-07-02 2020-09-22 Compagnie Generale Des Etablissements Michelin Rubber composition including a hydrocarbon resin having a low glass transition temperature, a specific coupling agent and a primary amine
CN113015629A (zh) * 2018-11-16 2021-06-22 株式会社普利司通 橡胶组合物、硫化橡胶以及轮胎
CN113388119A (zh) * 2021-06-04 2021-09-14 诚展(清远)鞋业有限公司 一种多羟基硅烷改性丁二烯橡胶的制备方法和抗臭氧老化橡胶
EP4015239A1 (en) * 2020-12-18 2022-06-22 Sumitomo Rubber Industries, Ltd. Tire
EP4079532A4 (en) * 2019-12-19 2023-06-07 Bridgestone Corporation RUBBER COMPOSITION AND TIRES
EP4079536A4 (en) * 2019-12-19 2023-06-07 Bridgestone Corporation RUBBER COMPOSITION AND TIRES

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121381A (ja) * 1997-07-04 1999-01-26 Bridgestone Corp ゴム組成物、加硫ゴム及びタイヤ
JP2001294711A (ja) * 2000-04-11 2001-10-23 Yokohama Rubber Co Ltd:The ゴム組成物
WO2003031511A1 (fr) * 2001-10-09 2003-04-17 The Yokohama Rubber Co., Ltd. Composition de caoutchouc
JP2005068357A (ja) * 2003-08-27 2005-03-17 Sumitomo Rubber Ind Ltd タイヤゴム組成物およびそれをタイヤトレッドゴムに用いた空気入りタイヤ
JP2007039503A (ja) * 2005-08-01 2007-02-15 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2007051169A (ja) * 2005-08-12 2007-03-01 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2010090291A (ja) * 2008-10-08 2010-04-22 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2010090282A (ja) * 2008-10-08 2010-04-22 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
JP2010111753A (ja) * 2008-11-05 2010-05-20 Sumitomo Rubber Ind Ltd ゴム組成物及びタイヤ
JP2010128249A (ja) * 2008-11-28 2010-06-10 Murata Machinery Ltd トナーカートリッジ
JP2010138249A (ja) * 2008-12-10 2010-06-24 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用トレッドゴム組成物及びスタッドレスタイヤ
JP2010159392A (ja) * 2008-12-10 2010-07-22 Sumitomo Rubber Ind Ltd サイドウォール用ゴム組成物およびそれを用いた空気入りタイヤ
JP2010159391A (ja) * 2008-12-10 2010-07-22 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いた空気入りタイヤ
JP2010248456A (ja) * 2008-04-25 2010-11-04 Bridgestone Corp ゴム組成物及びそれを用いた冬用タイヤ
JP2010280811A (ja) * 2009-06-04 2010-12-16 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物およびそれを用いた空気入りタイヤ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121381A (ja) * 1997-07-04 1999-01-26 Bridgestone Corp ゴム組成物、加硫ゴム及びタイヤ
JP2001294711A (ja) * 2000-04-11 2001-10-23 Yokohama Rubber Co Ltd:The ゴム組成物
WO2003031511A1 (fr) * 2001-10-09 2003-04-17 The Yokohama Rubber Co., Ltd. Composition de caoutchouc
JP2005068357A (ja) * 2003-08-27 2005-03-17 Sumitomo Rubber Ind Ltd タイヤゴム組成物およびそれをタイヤトレッドゴムに用いた空気入りタイヤ
JP2007039503A (ja) * 2005-08-01 2007-02-15 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2007051169A (ja) * 2005-08-12 2007-03-01 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2010248456A (ja) * 2008-04-25 2010-11-04 Bridgestone Corp ゴム組成物及びそれを用いた冬用タイヤ
JP2010090291A (ja) * 2008-10-08 2010-04-22 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2010090282A (ja) * 2008-10-08 2010-04-22 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
JP2010111753A (ja) * 2008-11-05 2010-05-20 Sumitomo Rubber Ind Ltd ゴム組成物及びタイヤ
JP2010128249A (ja) * 2008-11-28 2010-06-10 Murata Machinery Ltd トナーカートリッジ
JP2010138249A (ja) * 2008-12-10 2010-06-24 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用トレッドゴム組成物及びスタッドレスタイヤ
JP2010159392A (ja) * 2008-12-10 2010-07-22 Sumitomo Rubber Ind Ltd サイドウォール用ゴム組成物およびそれを用いた空気入りタイヤ
JP2010159391A (ja) * 2008-12-10 2010-07-22 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いた空気入りタイヤ
JP2010280811A (ja) * 2009-06-04 2010-12-16 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物およびそれを用いた空気入りタイヤ

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104487506A (zh) * 2012-08-03 2015-04-01 住友橡胶工业株式会社 胎面用橡胶组合物及充气轮胎
WO2014021002A1 (ja) * 2012-08-03 2014-02-06 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
WO2015125538A1 (ja) * 2014-02-21 2015-08-27 住友ゴム工業株式会社 タイヤ用ゴム組成物、及び空気入りタイヤ
JP2015157878A (ja) * 2014-02-21 2015-09-03 住友ゴム工業株式会社 タイヤ用ゴム組成物、及び空気入りタイヤ
US9890269B2 (en) 2014-02-21 2018-02-13 Sumitomo Rubber Industries, Ltd. Tire rubber composition and pneumatic tire
WO2017001616A1 (fr) * 2015-07-02 2017-01-05 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une silice de tres haute surface specifique et une resine hydrocarbonee de faible temperature de transition vitreuse
FR3038320A1 (fr) * 2015-07-02 2017-01-06 Michelin & Cie Composition de caoutchouc comprenant une silice de tres haute surface specifique et une resine hydrocarbonee de faible temperature de transition vitreuse
US10836886B2 (en) 2015-07-02 2020-11-17 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a very high specific surface area silica and a low glass transition temperature hydrocarbon resin
US10781299B2 (en) 2015-07-02 2020-09-22 Compagnie Generale Des Etablissements Michelin Rubber composition including a hydrocarbon resin having a low glass transition temperature, a specific coupling agent and a primary amine
US10711121B2 (en) 2016-01-19 2020-07-14 Bridgestone Corporation Rubber composition and tire
US10611899B2 (en) 2016-01-19 2020-04-07 Bridgestone Corporation Rubber composition and tire
EP3225656A1 (de) * 2016-03-31 2017-10-04 Continental Reifen Deutschland GmbH Kautschukmischung und nutzfahrzeugreifen
JP2019056068A (ja) * 2017-09-21 2019-04-11 横浜ゴム株式会社 重荷重タイヤ用ゴム組成物およびその製造方法
JP7009869B2 (ja) 2017-09-21 2022-01-26 横浜ゴム株式会社 重荷重タイヤ用ゴム組成物およびその製造方法
JP2019194282A (ja) * 2018-05-01 2019-11-07 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP7355985B2 (ja) 2018-05-01 2023-10-04 横浜ゴム株式会社 空気入りタイヤ
CN113015629A (zh) * 2018-11-16 2021-06-22 株式会社普利司通 橡胶组合物、硫化橡胶以及轮胎
CN113015629B (zh) * 2018-11-16 2023-03-28 株式会社普利司通 橡胶组合物、硫化橡胶以及轮胎
CN113015629B8 (zh) * 2018-11-16 2023-09-08 株式会社普利司通 橡胶组合物、硫化橡胶以及轮胎
EP4079532A4 (en) * 2019-12-19 2023-06-07 Bridgestone Corporation RUBBER COMPOSITION AND TIRES
EP4079536A4 (en) * 2019-12-19 2023-06-07 Bridgestone Corporation RUBBER COMPOSITION AND TIRES
EP4015239A1 (en) * 2020-12-18 2022-06-22 Sumitomo Rubber Industries, Ltd. Tire
CN113388119A (zh) * 2021-06-04 2021-09-14 诚展(清远)鞋业有限公司 一种多羟基硅烷改性丁二烯橡胶的制备方法和抗臭氧老化橡胶
CN113388119B (zh) * 2021-06-04 2022-03-22 诚展(清远)鞋业有限公司 一种多羟基硅烷改性丁二烯橡胶的制备方法和抗臭氧老化橡胶

Also Published As

Publication number Publication date
JP5638936B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5638936B2 (ja) タイヤ用ゴム組成物及びスタッドレスタイヤ
JP4875757B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5457165B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5485711B2 (ja) タイヤ用ゴム組成物及びスタッドレスタイヤ
JP4810567B2 (ja) スタッドレスタイヤ用トレッドゴム組成物及びスタッドレスタイヤ
JP5409188B2 (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP2011219541A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5536539B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2008214608A (ja) ゴム組成物
JP5872125B1 (ja) ゴム組成物およびタイヤ
JP2011236368A (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP6267420B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5670712B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5468891B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6267419B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6208422B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5646964B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5457164B2 (ja) ベーストレッド用ゴム組成物及び空気入りタイヤ
JP5363538B2 (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP2021101022A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5702070B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP2012224864A (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP6208428B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6332903B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2011184521A (ja) クリンチ用ゴム組成物及び空気入りタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R150 Certificate of patent or registration of utility model

Ref document number: 5638936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250