JP2012109527A - 基板処理装置および半導体装置の製造方法 - Google Patents

基板処理装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2012109527A
JP2012109527A JP2011140105A JP2011140105A JP2012109527A JP 2012109527 A JP2012109527 A JP 2012109527A JP 2011140105 A JP2011140105 A JP 2011140105A JP 2011140105 A JP2011140105 A JP 2011140105A JP 2012109527 A JP2012109527 A JP 2012109527A
Authority
JP
Japan
Prior art keywords
substrate
microwave
processing chamber
substrate support
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011140105A
Other languages
English (en)
Other versions
JP5466670B2 (ja
Inventor
Norinobu Akao
徳信 赤尾
Unryu Ogawa
雲龍 小川
Masahisa Okuno
正久 奥野
Shinji Yashima
伸二 八島
Ayafumi Umekawa
純史 梅川
Yoshiichiro Minami
嘉一郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2011140105A priority Critical patent/JP5466670B2/ja
Priority to US13/239,902 priority patent/US8486222B2/en
Priority to TW100135202A priority patent/TWI455243B/zh
Priority to CN201110303717.XA priority patent/CN102468159B/zh
Priority to KR1020110099947A priority patent/KR101323093B1/ko
Publication of JP2012109527A publication Critical patent/JP2012109527A/ja
Application granted granted Critical
Publication of JP5466670B2 publication Critical patent/JP5466670B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Abstract

【課題】基板温度の上昇を抑えサーマルバジェットを抑制しつつ、基板を均一に加熱処理することができる基板処理装置を提供する。
【解決手段】基板を処理する処理室と、前記処理室内に設けられ基板を支持する基板支持部と、前記処理室外に設けられるマイクロ波発生部と、前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記基板支持部で支持された基板の表面に対向している導波口と、前記導波口に対する前記基板支持部の水平方向における相対的な位置を変動させる制御部と、から基板処理装置を構成する。
【選択図】図1

Description

本発明は、基板上にIC(Integrated Circuit)等の半導体装置を製造する基板処理技術に係り、特に、マイクロ波を用いて、半導体ウェハ(以下、ウェハという。)等の基板を処理し、半導体装置を製造する半導体製造装置や、基板を処理する基板処理装置、あるいは、半導体装置の製造方法に関する。
半導体製造工程の1つに基板(シリコンウェハやガラスなどをベースとする微細な電気回路のパターンが形成された被処理基板)の表面に所定の成膜処理を行うCVD(Chemical Vapor Deposition)工程がある。これは、気密な反応室に基板を装填し、室内に設けた加熱手段により基板を加熱し、成膜ガスを基板上へ導入しながら化学反応を起こし、基板上に設けた微細な電気回路のパターン上へ薄膜を均一に形成するものである。このようなCVD工程により、例えば、成膜原料に有機化学材料を使って、誘電率の高い絶縁膜であるHigh−k膜として、HfO膜等を形成することができる。
こうして形成されたHfO膜は、有機材料に起因するCH、OHなどの不純物が数%と多量に含まれているため、そのままでは、電気的絶縁性が不十分である。このような薄膜の電気的絶縁性、およびその安定性を確保するため、HfO膜をOやN雰囲気中で650℃〜800℃前後の高速アニール処理を施すことにより、CやH等の不純物を離脱させて緻密化し安定した絶縁体薄膜に改質しようとする試みが行われている。この緻密化は、結晶化まではさせないが、アモルファス状態の平均原子間距離を縮めるために行なわれる。このような高速アニール処理では、HfO膜を改質処理するために、基板全体を所定の温度に加熱することになる。
一方、最近の半導体デバイスにおいては、微細化に伴い浅接合化が進んでおり、サーマルバジェット(熱履歴)を小さくすることが求められている。そのため、上述したHigh−k膜の形成工程で用いられるアニール処理においても、サーマルバジェットを小さくするため、低温で不純物を離脱させて緻密化することが求められている。低温でアニール処理を行う理由は、次のとおりである。デバイスを製造する工程において、後の工程で、前の工程で処理された温度より高い温度で処理すると、既に前工程で構築されていたデバイスが崩れたり、膜の特性が変化することがある。そのため前の工程で処理された温度を超える温度で処理することはできない。よって、デバイス性能向上のための膜質改善処理を低温で行える技術が望まれている。
下記の特許文献には、成膜工程では基板上にハフニウムを含む薄膜を形成し、改質工程ではアルゴンラジカルを基板上に供給して、成膜工程において形成した膜中の不純物元素を除去する技術が開示されている。
特開2004−296820号公報
本発明の目的は、従来よりも基板温度の上昇を抑えサーマルバジェットを抑制しつつ、基板を均一に加熱処理することができる基板処理装置を提供することにある。
本発明では、基板を回転させつつ、基板中心から偏心した位置にマイクロ波を照射して、基板を均一に加熱するものである。本発明に係る基板処理装置の代表的な構成は、次のとおりである。
基板を処理する処理室と、
前記処理室内に設けられ基板を支持する基板支持部と、
前記処理室外に設けられるマイクロ波発生部と、
前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記基板支持部で支持された基板の表面の一部に対向している導波口と、
前記導波口に対する前記基板支持部の水平方向における相対的な位置を変動させる制御部と、
を備える基板処理装置。
また、本発明に係る半導体装置の製造方法の代表的な構成は、次のとおりである。
基板を処理する処理室と、
前記処理室内に設けられ基板を支持する基板支持部と、
前記処理室外に設けられるマイクロ波発生部と、
前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記基板支持部で支持された基板の表面の一部に対向している導波口と、
前記導波口に対して前記基板支持部を相対的に水平回転させる制御部と、
を備える基板処理装置を用いた半導体装置の製造方法であって、
基板を処理室内に搬入する搬入工程と、
前記処理室内に設けられた基板支持部で基板を支持する支持工程と、
前記導波口に対して前記基板支持部で支持した基板を相対的に水平回転させる回転工程と、
前記基板の回転開始後に前記マイクロ波を前記基板表面に照射する照射工程と、
前記処理室内から基板を搬出する搬出工程と、
を備える半導体装置の製造方法。
上記のように基板処理装置や半導体装置の製造方法を構成すると、マイクロ波照射により基板加熱することで、従来よりも基板温度の上昇を抑えサーマルバジェットを抑制し、更に、マイクロ波導波口を基板の中心位置から偏心させる位置とし基板を回転させることで、より均一な基板加熱が可能となる。
本発明の実施形態に係る基板処理装置の垂直断面図である。 マイクロ波パワーと基板温度の相関の一例を示す図である。 本発明の実施形態に係る基板支持台の垂直断面概要図である。 本発明の実施形態に係る基板支持台と基板支持台支持機構を、側面から見た断面図である。 図4の部分拡大図である。
まず、本発明の実施形態に係る基板処理装置の概略構成について、図1を用いて説明する。図1は、本発明の実施形態に係る基板処理装置の垂直断面図である。基板処理装置100は、処理室10と搬送室(不図示)とマイクロ波供給部とを備える。処理室10は、半導体基板としてのウェハ11を処理する。マイクロ波供給部は、マイクロ波発生部20と導波路21と導波口22とを備える。
マイクロ波発生部20は、例えば、固定周波数マイクロ波又は可変周波数マイクロ波を発生する。マイクロ波発生部20としては、例えばマイクロトロン等が用いられる。マイクロ波発生部20で発生したマイクロ波は、導波路21を介して、処理室10に連通する導波口22から処理室10内に導入される。
処理室10を形成する処理容器18は、例えばアルミニウム(Al)やステンレス(SUS)など金属材料により構成されており、処理室10と外部とをマイクロ波的に遮蔽する構造となっている。
処理室10内には、ウェハ11を支持する基板支持ピン13が設けられている。基板支持ピン13は、支持したウェハ11の中心と処理室10の中心とが垂直方向で略一致するように設けられている。基板支持ピン13は、例えば石英又はテフロン(登録商標)等からなる複数(本実施形態においては3本)で構成され、その上端でウェハ11を支持する。
基板支持ピン13の下部であってウェハ11の下方には、導電性の基板支持台12が設けられている。基板支持台12は、例えばアルミニウム(Al)などの導体である金属材料により構成されている。基板支持台12は、上面から見た形がウェハ11の外径よりも大きい円形で、円盤状又は円柱状に形成されている。このように、基板支持台12は、基板支持ピン13で支持されたウェハ11の裏面側に設けられ、該ウェハ11の裏面と平行で、ウェハ11の裏面と対向する対向面を有するものである。
基板支持ピン13と基板支持台12から基板支持部が構成される。
基板支持台12は、ステンレス(SUS)等の金属製の回転軸31で支えられ、回転軸31は、回転駆動部32により、水平方向に回転する。したがって、回転駆動部32により、回転軸31、基板支持台12、ウェハ11を、水平方向に回転することができる。回転駆動部32は、制御部80と電気的に接続されており、制御部80により制御される。
処理容器18の上部であって処理室10の上壁には、例えば窒素(N)等のガスを導入するガス供給管52が設けられている。ガス供給管52には、上流から順に、ガス供給源55、ガス流量を調整する流量制御装置54、ガス流路を開閉するバルブ53が設けられており、このバルブ53を開閉することで、処理室10内にガス供給管52からガスが導入、又は導入停止される。ガス供給管52から導入される導入ガスは、ウェハ11を冷却したり、パージガスとして処理室10内のガスを押し出したりするのに用いられる。
ガス供給源55とガス供給管52と流量制御装置54とバルブ53から、ガス供給部が構成される。流量制御装置54とバルブ53は、制御部80と電気的に接続されており、制御部80により制御される。
図1に示すように、例えば直方体である処理容器18の下部であって処理室10の側壁には、処理室10内のガスを排気するガス排出管62が設けられている。ガス排出管62には、上流から順に、圧力調整バルブ63と、排気装置としての真空ポンプ64が設けられており、この圧力調整バルブ63の開度を調整することで、処理室10内の圧力が所定の値に調整される。
ガス排出管62と圧力調整バルブ63と真空ポンプ64から、ガス排出部が構成される。圧力調整バルブ63と真空ポンプ64は、制御部80と電気的に接続されており、制御部80により圧力調整制御される。
図1に示すように、処理容器18の一側面には、処理室10の内外にウェハ11を搬送するためのウェハ搬送口71が設けられている。ウェハ搬送口71には、ゲートバルブ72が設けられており、ゲートバルブ駆動部73によりゲートバルブ72を開けることにより、処理室10内と搬送室内とが連通するように構成されている。
搬送室内には、ウェハ11を搬送する搬送ロボット(不図示)が設けられている。搬送ロボットには、ウェハ11を搬送する際にウェハ11を支持する搬送アームが備えられている。ゲートバルブ72を開くことによって、搬送ロボットにより処理室10内と搬送室内との間で、ウェハ11を搬送することが可能なように構成されている。
基板処理装置100は、この基板処理装置100の各構成部分の動作を制御する制御部80を備え、制御部80は、マイクロ波発生部20、ゲートバルブ駆動部73、搬送ロボット、流量制御装置54、バルブ53、圧力調整バルブ63、回転駆動部32等の各構成部の動作を制御する。
次に、本実施形態に係る基板処理装置の詳細構成について説明する。
処理室10内に導入されたマイクロ波は、処理室10壁面に対して反射を繰り返す。マイクロ波は処理室10内でいろいろな方向へ反射し、処理室10内はマイクロ波で満たされる。処理室10内のウェハ11に当たったマイクロ波はウェハ11に吸収され、ウェハ11はマイクロ波により誘電加熱される。
導波口22から発射されたマイクロ波は、処理室10の壁面に当たる毎にエネルギが減衰する。
ウェハ11を処理する場合、高いエネルギのマイクロ波をウェハ11に当てることで、急速加熱することができる。我々の研究では、反射波が支配的な状態でウェハを処理した場合と、ウェハに直接マイクロ波を照射した場合とでは、後者の方が基板の改質効果が高いという結果が出ている。
しかし、ウェハ11に直接マイクロ波を照射する場合、ウェハ11の面積に比べ、導波口22の大きさは小さく、またマイクロ波は導波口22から発射された後あまり広がらないため、ウェハ11の表面に照射されるマイクロ波のエネルギを均一にすることは容易でない。
また、ウェハ11にマイクロ波を直接照射するといっても、その全てのエネルギがウェハ11に吸収されるわけではなく、一部がウェハ表面で反射したり、一部がウェハを透過したりする。これが反射波となり処理室10内に定在波が発生する。処理室10内で定在波が発生すると、ウェハ面内においてよく加熱される部分と、あまり加熱されない部分が生じる。これがウェハ11の加熱ムラとなり、膜質のウェハ面内均一性を悪くする一因となる。
そこで、本実施形態においては、導波口22を処理室10の上壁に設け、導波口22と基板支持ピン13で支持されたウェハ11の表面との間の距離を、供給されるマイクロ波の1波長よりも短い距離としている。本例では、使用するマイクロ波の周波数を5.8GHzとし、そのマイクロ波の波長51.7mmよりも短い距離としている。導波口22から1波長よりも短い距離の範囲では、導波口22から発射された直接波が支配的であると考えられる。ここで、支配的とは、直接波の密度が高い状態を言う。上記のようにすると、ウェハ11に照射されるマイクロ波は、導波口22から直接発射された直接波が支配的となり、処理室10内の定在波の影響を相対的に小さくすることができ、導波口22の近辺のウェハ11を急速加熱できる。更には、導波口22に対向する領域以外のウェハ11の領域については、その領域に熱履歴が蓄積されないようにすることができる。
さらに、本実施形態においては、導波口22と基板支持ピン13で支持されたウェハ11の表面との間の距離を、供給されるマイクロ波の1/4波長(λ/4)の奇数倍の距離としている。具体的には、使用するマイクロ波の周波数を5.8GHzとし、そのマイクロ波の波長51.7mmの1/4の距離である12.9mmとしている。このような構成とすることで、導波口22から照射されるマイクロ波のピーク位置(波形の腹の位置)にウェハ11を位置させることができるので、ウェハ11の加熱効率が良い。
しかし、このように、「導波口22と基板支持ピン13で支持されたウェハ11の表面との間の距離を、供給されるマイクロ波の1波長よりも短い距離とする」、あるいは、「供給されるマイクロ波の1/4波長の奇数倍の距離とする」だけでは、導波口22の付近のウェハ11の一部だけが加熱されることになり、ウェハ面内均一性は悪くなる。
そこで、本実施形態においては、導波口22の中心位置は、基板支持ピン13で支持されたウェハ11の中心位置から偏心して固定され、導波口22が基板支持ピン13で支持されたウェハ11の表面の一部に対向している。本例では、ウェハ11の直径は300mm、導波口22の中心位置とウェハ11の中心位置までの距離を90mmとしている。このように、導波口22をウェハ11の中心位置から偏心させ、さらに回転駆動部32により、基板支持台12の回転軸31を中心にして、水平方向にウェハ11を回転させることで、ウェハ面を導波口22が走査するようにする。
言い換えると、回転駆動部32により、導波口22に対する基板支持部の水平方向における相対的な位置を変動させる。つまり、基板支持ピン13で支持されたウェハ11の表面の一部に対して導波口22が間欠的に対向するように、基板支持ピン13で支持されたウェハ11に対する導波口22の水平方向における相対的な位置を変動させる。
このように、導波口22をウェハ11の中心位置から偏心させて回転させることにより、ウェハ11をより均一に加熱することができ、さらに、ウェハ11内の目的とする領域を集中的に急速加熱することができ、それ以外の領域は、熱履歴を少なくすることができる。その理由は次のとおりである。ウェハ11のなかで、マイクロ波を供給する導波口22の直下の領域が最もマイクロ波エネルギーが高いのでよく加熱される。それ以外の領域は、マイクロ波エネルギーが比較的弱く加熱されにくい。従って回転しているウェハ11のあるポイントに注目すると、導波口22の直下にあるときだけ急激に加熱され、そこから外れたら加熱されにくくなる。更には、導波口の直下以外の部分では、後述するように基板支持台によって冷却される。即ち、冷却効率が加熱効率より高い状態となる。結果的にそのポイントの熱履歴は少なくなる。
ウェハ11の温度は、マイクロ波のパワーが小さければ温度が低く、パワーが大きければ温度が高くなる。図2に、シリコンウェハにマイクロ波を照射したときのマイクロ波パワーとウェハ温度の相関データを示す。図2は、マイクロ波パワーと基板温度の相関の一例を示す図である。図2に示すように、マイクロ波のパワーが大きくなるほど、ウェハ温度が上昇している。
なお、ウェハ温度は、処理室の大きさや形状、マイクロ波の導波口の位置、ウェハの位置によって変わるものであり、ここにあげるデータのウェハ温度値は一例である。しかし、マイクロ波パワーを大きくすると、ウェハ温度が高くなるという相関関係は崩れない。
また、上述したように、基板支持ピン13を、石英のような低伝熱性材質とすることで、ウェハ11の熱が基板支持ピン13を介して、基板支持台12へ逃げることを抑制できる。ここで、低伝熱性とは、少なくとも基板支持台12よりも伝熱性が低いことをいう。これにより、ウェハ11を均一に加熱することが可能となる。仮に、基板支持ピン13を金属のような伝熱性の高い材質とした場合は、ウェハ11から基板支持ピン13への熱伝導による熱逃げがより大きくなり、その結果、ウェハ11面内に温度の低い箇所が局所的に現われてしまうので、ウェハ11面内を均一に加熱することが難しくなる。
図3に示すように、本実施形態では、基板支持台12内には、ウェハ11を冷却するための冷媒を流す冷媒流路37が設けられており、基板支持台12は基板冷却台として機能する。図3は、本実施形態に係る基板支持台の垂直断面概要図である。冷媒として例えば水が使用されるが、この冷媒は冷却チラーなど他の冷媒を用いても良い。冷媒流路37は、処理室10の外部において、冷媒流路37へ冷媒を供給する冷媒供給管36と、冷媒流路37から冷媒を排出する冷媒排出管38に接続される。冷媒供給管36には、下流から順に、冷媒供給管36を開閉する開閉バルブ33、冷媒流量を制御する流量制御装置34、冷媒源35が設けられている。開閉バルブ33と流量制御装置34は、制御部80と電気的に接続されており、制御部80により制御される。
続いて、図4および図5を用いて、基板支持台12及びその周辺の構造について詳しく説明する。図4は、本実施形態に係る基板支持台と基板支持台支持機構を、側面から見た断面図である。図5は、図4の部分拡大図である
図4に示すように、基板支持台12には、冷媒流路37が設けられている。冷媒流路37は、基板支持台12全体に張り巡らされており、基板を均一に冷却することができる。冷媒としては、例えば、ガルデン(登録商標)HT200が使用される。
回転軸31を構成するシャフト402は、基板支持台12を支持する支持部である。シャフト402は、冷媒(冷却材)流路を内包しており、この冷媒流路は、基板支持台12の冷媒流路37に供給する冷媒を流し、冷媒流路37から排出される冷媒を流す。シャフト402の材質は、アルミニウムである。シャフト402の水平断面は、円形である。シャフト402に内包される冷媒流路として、冷媒を冷媒供給/排出部417から冷媒流路37へ供給する第1の冷媒供給路408、及び冷媒流路37から排出される冷媒を流す第1の冷媒排出路409が配設されている。第1の冷媒供給路408、第2の冷媒排出路409は、図4に示すように、シャフト402内部に、互いに平行かつ離間するように設けられている。
32は、シャフト402を水平回転させる回転駆動部であり、SUS製(ステンレススチール)である。シャフト402の側面は、中空シャフト423で覆われている。中空シャフト423は、シャフト402を挟持し、シャフト402とともに水平回転するもので、回転時の摩擦等からシャフト402を保護するものである。中空シャフト423の材質は、SUSである。シャフト402と中空シャフト423の間には、Oリング405が設けられる。Oリング405によって、シャフト402のふらつきが防止されると共に、処理室10内からのガス漏れが防止される。回転駆動部32には、中空シャフト423と接する側に、真空シールとしての磁性流体シール420、ベアリング421、モータ422が備えられている。モータ422の回転運動が、中空シャフト423に伝えられ、シャフト402が水平回転する。
回転駆動部32のケーシングに設けられたフランジ32aは、処理容器18の底部と固定されている。Oリング407は、処理室10内からガスが漏れることを防止するものである。
図5に示すように、シャフト402の下部先端は、シャフト受け部411に差し込まれる。シャフト受け部411の上側には、固定リング416が設けられ、固定リング416の上側には、押さえリング410が設けられている。シャフト受け部411、固定リング416、押さえリング410は、シャフト402と冷媒供給/排出部417とを接続する接続部を構成し、シャフト402とともに水平回転する。
図5に示すように、シャフト受け部411の下側には、冷媒供給/排出部417が設けられている。冷媒供給/排出部417は、シャフト402が水平回転するときに、水平回転せず静止状態を保つ。
冷媒供給/排出部417は、SUS製である。冷媒供給/排出部417は、そのケーシング内部にローターが組み込まれており、接続部を介してシャフト402へ、冷媒を漏洩することなく供給し、また、接続部を介してシャフト402から、冷媒を漏洩することなく排出する。冷媒供給/排出部417には、第2の冷媒供給路418と第2の冷媒排出路419とが設けられている。第2の冷媒排出路419は、第2の冷媒供給路418を取り囲むように、第2の冷媒供給路418と同心円上に配置されている。つまり、第2の冷媒供給路418は内軸であり、第2の冷媒排出路419は内軸を囲むように設けた外軸である。このように、第2の冷媒供給路418と第2の冷媒排出路419は、2重の軸を構成している。シャフト受け部411は、この2重の軸を中心に水平回転するので、回転中においても、内軸から冷媒を供給し、外軸から冷媒を排出することが可能となる。
図5に示すように、シャフト402の先端402aをOリング412に当接することにより、冷媒の漏れが防止される。シャフト402の第1の冷媒供給路408と、冷媒供給/排出部417の第2の冷媒供給路418とが、2重の管が重なるように接続され、シャフト402の第1の冷媒排出路409と、冷媒供給/排出部417の第2の冷媒排出路419とが、2重の管が重なるように接続される。
シャフト402の第1の冷媒供給路408と第1の冷媒排出路409は、互いに平行かつ離間するように配置されている。一方、冷媒供給/排出部417においては、第2の冷媒排出路419は、第2の冷媒供給路418を取り囲むように、第2の冷媒供給路418と同心円上に配置されている。このように、シャフト402内の冷媒流路を2重軸構造とせず、互いに平行かつ離間する構造とすることにより、シャフト402の製作が容易となる。
図5に示すように、シャフト受け部411の上面には、固定リング416が設けられる。固定リング416は、上下方向に厚みがあるリング状(ドーナツ状)であり、略左右対称となるよう、上下方向に沿って2分割される構造である。2分割された固定リング416が、側面方向から、シャフト402の先端部側面にはめ込まれる。固定リング416には、凸部であるフランジ416aが設けられている。フランジ416aがシャフト402の先端部側面のくぼみに勘合した状態で、2分割された固定リング416を、水平方向のボルト(図示なし)により結合し固定することで、シャフト402に固定リング416が固定される。また、シャフト受け部411は、固定リング416に、ボルト等(図示なし)により固定される。このような構造とすることで、シャフト受け部411は、シャフト402と共に回転する。
次に、基板支持台と基板との距離について説明する。
基板支持台12は金属製つまり導電性であるため、基板支持台12においてはマイクロ波の電位がゼロとなる。したがって、仮にウェハ11を基板支持台12に直接置いた場合、マイクロ波の電界強度が弱い状態となる。そこで、本実施形態では、基板支持台12の表面からマイクロ波の1/4波長(λ/4)の位置、もしくはλ/4の奇数倍の位置にウェハ11を載置するようにする。ここでいう基板支持台12の表面とは、基板支持台12を構成する面の内、ウエハの裏面と対向する面を言う。λ/4の奇数倍の位置では電界が強いため、ウェハ11を効率よくマイクロ波で加熱することができる。
具体的には、本実施形態では、たとえば5.8GHzに固定したマイクロ波を使用し、マイクロ波の波長が51.7mmであるので、基板支持台12の表面からウェハ11までの高さを12.9mmとなるよう設定している。つまり、基板処理時における基板支持ピン13の上端と基板支持台12の対向面との間の距離が、供給されるマイクロ波の1/4波長の距離となるよう設定している。
このような構成とすることで、マイクロ波のピーク位置(波形の腹の位置)にウェハ11を位置させることができるので、ウェハ11の加熱効率が良い。加熱効率が良いと、ウェハ11の誘電体膜からの熱伝導により他の膜も加熱されてしまうことが考えられるが、ウェハ11のサイズと等しいか若しくはそれより大きい面積を有し、冷却部を内蔵する金属製の基板支持台12をウェハ11の裏面に対向する位置に置くことで、ウェハ11裏面の全面から熱を奪うことができる。その結果、ウェハ11を均一に冷却することができ、ウェハ11上の誘電体膜以外の膜の加熱を抑制することができる。
マイクロ波の周波数が時間とともに変化(可変)する形態も可能である。その場合、基板支持台12の表面からウェハ11までの高さは、変化する周波数帯の代表周波数の波長から求めれば良い。たとえば5.8GHz〜7.0GHzまで変化する場合、代表周波数を変化する周波数帯のセンタ周波数とし、代表周波数6.4GHzの波長46mmより、基板支持台12の表面からウェハ11までの高さを11.5mmとすればよい。
更には、固定周波数の電源を複数設け、それぞれから異なる周波数のマイクロ波を切り替えて供給し、処理するようにしてもよい。
次に、基板処理装置100における本実施形態の基板処理動作について説明する。本実施形態の基板処理は、半導体装置を製造する複数工程の中の一工程を構成するものである。この基板処理動作は、制御部80により制御される。
(基板搬入工程)
ウェハ11を処理室10に搬入する基板搬入工程において、まず、ゲートバルブ72を開き、処理室10と搬送室とを連通させる。次に、処理対象のウェハ11を、搬送ロボットにより、搬送室内から処理室10内へ搬入する。処理室10内に搬入されたウェハ11は、搬送ロボットにより基板支持ピン13の上端に載置され、基板支持ピン13に支持される。次に、搬送ロボットが処理室10内から搬送室内へ戻ると、ゲートバルブ72が閉じられる。
(窒素ガス置換工程)
次に、後述の加熱処理工程でウェハ11に悪影響を及ぼさないよう、処理室10内を不活性ガス雰囲気に置換する。本例では、不活性ガスとして窒素(N)ガスを用いる。ガス排出管62から、真空ポンプ64により処理室10内のガス(雰囲気)を排出するとともに、ガス供給管52から、Nガスを処理室10内に導入する。このとき、圧力調整バルブ63により処理室10内の圧力を所定の値、本実施形態では大気圧に調整する。
(加熱処理工程)
次に、回転駆動部32によりウェハ11を回転させ、所定の回転数に達し、ウェハ11の回転数が一定の状態になった後、マイクロ波発生部20で発生させたマイクロ波を、導波口22から処理室10内に導入し、ウェハ11の表面に所定時間照射する。仮に、ウェハ11の回転前、あるいはウェハ11が所定の回転数に達する前に、マイクロ波を導入すると、ウェハ11の場所によりマイクロ波照射強度のバラツキが生じるので、ウェハ11を均一に加熱するうえで好ましくない。
本例では、このマイクロ波照射により、ウェハ11表面上のHigh−k膜を100〜600℃に加熱し、High−k膜の改質処理、つまり、High−k膜からCやH等の不純物を離脱させて、緻密化し安定した絶縁体薄膜に改質する処理を行う。このように、ウェハ11を回転させることで、ウェハ11をより均一に加熱することができる。
High−k膜等の誘電体は、誘電率に応じてマイクロ波の吸収率が異なる。誘電率が高いほどマイクロ波を吸収しやすい。我々の研究によれば、ハイパワーのマイクロ波をウェハに照射し処理すると、低パワーのマイクロ波で処理するときよりも、ウェハ上の誘電体膜がより改質されることがわかった。また、マイクロ波による加熱の特徴は、誘電率εと誘電正接tanδによる誘電加熱で、この物性値が異なる物質を同時に加熱すると、加熱されやすい物質、すなわち、誘電率が高い方の物質を選択的に加熱できる。
このように、誘電率の高い物質は急速に加熱され、それ以外の物質は加熱されるのに比較的時間がかかることを利用し、ハイパワーのマイクロ波を照射することにより、誘電体に対し所望の加熱をするためのマイクロ波の照射時間を短くすることができるので、それ以外の物質は加熱される前にマイクロ波の照射を終えることにより、誘電率が高い物質を選択的に加熱することができる。
High−k膜のアニールについて説明すると、ウェハの基板材料であるシリコンに比べ、High−k膜は誘電率εが高い。例えば、シリコンの誘電率εは9.6であるが、High−k膜であるHfO膜の誘電率εは25、ZrO膜の誘電率εは35である。よって、High−k膜を成膜したウェハにマイクロ波を照射すると、High−k膜だけ選択的に加熱することができる。
我々の研究によると、ハイパワーのマイクロ波を照射する方が膜の改質効果が大きい。ハイパワーのマイクロ波を照射すると、急速にHigh−k膜の温度を上昇させることができる。
これに対し、比較的低パワーのマイクロ波を長時間照射した場合は、改質プロセス中にウェハ全体の温度が高くなってしまう。時間が経過すると、シリコン自身がマイクロ波により誘電加熱されるのと、マイクロ波が照射されるウェハ表面のHigh−k膜からウェハ裏面側のシリコンへの熱伝導により、シリコンの温度も上昇してしまうからである。
ハイパワーのマイクロ波を照射する場合に膜の改質効果が大きい理由は、ウェハ全体が温度上昇し上限温度に達するまでの時間内に、誘電体を誘電加熱により高い温度まで加熱することができるためと考えられる。
そこで、本実施形態では、High−k膜の形成されたウェハ表面側にエネルギの強い直接波を照射し、誘電体とウェハとの加熱差をより大きくするようにした。また、ウェハ11の温度上昇を抑えるためにウェハ11を回転させることとした。これは、ウェハ面からみると、導波口22付近に滞在する時間帯は、マイクロ波によって急速に加熱されるが、導波口22付近から離れると、加熱されにくくウェハ温度は下がるためである。このようにすることで、ウェハ全体の温度上昇を抑えることができる。さらに好ましくは、マイクロ波を照射中に、ウェハ11を冷却することで、ウェハ11の温度上昇を抑制するのがよい。ウェハ11を冷却するには、例えば、処理室10内を通過するNガス量を増加させる、あるいは、基板支持台12内の冷媒流路37に冷媒を循環させるようにすればよい。
また、加熱処理工程において、制御部80はバルブ53を開いて、処理室10内にガス供給管52からNガスを導入するとともに、圧力調整バルブ63により処理室10内の圧力を所定の値、本実施形態では大気圧に調整しつつ、ガス排出管62から処理室10内のNガスを排出する。このようにして、加熱処理工程において、処理室10内を所定の圧力値に維持する。本例では、周波数5.8GHzのマイクロ波をパワー1600W、処理室10内の圧力を大気圧として1分間、加熱処理を行った。このとき、処理室10内に導入する不活性ガス(例えばNガス)の流量を制御することで、ウェハ11の冷却を制御することもできる。
積極的にNガスの冷却効果を使う場合は、ガス供給管52を基板支持台12に設け、ウェハ11と基板支持台12の間にガスを流すことにより、ガスによる冷却効果向上を図ることもできる。このガスの流量を制御することにより、ウェハ11の温度制御を行うこともできる。
また本実施例ではNガスを使用しているが、プロセス的、安全性に問題がなければ、熱伝達率の高い他のガス、たとえば希釈HeガスなどをNガスに追加し、基板冷却効果を向上することもできる。
以上のようにして、所定時間、マイクロ波を導入して基板加熱処理を行った後、マイクロ波の導入を停止する。マイクロ波の導入を停止した後、ウェハ11の回転を停止する。仮に、マイクロ波の導入を停止する前に、ウェハ11の回転を停止すると、ウェハ11内の領域によりマイクロ波照射強度のバラツキが生じるので、ウェハ11を均一に加熱するうえで好ましくない。
(基板搬出工程)
加熱処理工程が終了すると、上述した基板搬入工程に示した手順とは逆の手順により、加熱処理したウェハ11を処理室10から搬送室内へ搬出する。
上述の実施形態によれば、少なくとも次の(1)〜(7)の効果を奏することができる。
(1)マイクロ波導波口を基板の中心位置から偏心させる位置とし、さらに基板を回転させることで、均一な基板加熱が可能となり、また、基板温度の上昇を抑えることができる。さらに、基板上の目的とする領域を集中的に急速加熱することができ、それ以外の領域は、熱履歴を少なくすることができる。
(2)基板の回転数が所定の一定状態になった後、マイクロ波を基板の表面に照射して加熱処理を行い、加熱処理を行った後は、マイクロ波の導入を停止した後、基板の回転を停止するようにしているので、基板内を均一に加熱することができる。
(3)基板加熱処理時における導波口22と基板の表面との間の距離を、供給されるマイクロ波の1波長以下の距離とし、主に導波口22からの直接波を利用することで、強いエネルギのマイクロ波をウェハに照射できるので、基板を効率よく加熱することができ、また、反射波の影響を相対的に低減できる。
(4)さらに、基板加熱処理時における導波口22と基板の表面との間の距離を、供給されるマイクロ波の1/4波長の奇数倍の距離としているので、導波口22から照射されるマイクロ波のピーク位置に基板を位置させることができ、基板の加熱効率が良い。
(5)基板加熱処理時における基板の裏面(基板支持部の上端)と導電性の台の基板裏面に対向する対向面との間の距離が、供給されるマイクロ波の1/4波長の奇数倍の距離となるようにしているので、導波口22から照射されるマイクロ波のピーク位置に基板を位置させることができ、基板の加熱効率が良い。
(6)基板支持ピンを低伝熱性材質としているので、基板支持ピンから熱が逃げることを抑制でき、基板内を均一に加熱することができる。
(7)誘電率の高い材質を選択的に加熱することができる。
なお、本発明は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であることはいうまでもない。
また、上述の実施形態において、導波口22を固定し基板支持部を水平方向に回転させたが、代わりに、基板支持部を固定するとともに、導波口22の下にアンテナを接続して新たな導波口とし、基板中心位置を回転軸として、該新たな導波口を水平方向に回転させるようにしてもよい。ただし、導波口を回転しようとすると、回転機構が基板上部に設けられるため、機械的な接触などで導波口回転軸やその周辺からゴミが発生し基板に落ちてしまうことが考えられ、その結果、基板が汚染されてしまう可能性がある。したがって、導波口22を固定し基板支持部を水平方向に回転させる方が好ましい。
また、上述の実施形態では、基板を直接支持する部材として基板支持ピン13を用いたが、ピン以外の部材により基板を支持してもよい。
また、上述の実施形態では、ウェハに処理が施される場合について説明したが、処理対象はホトマスクやプリント配線基板、液晶パネル、コンパクトディスクおよび磁気ディスク等であってもよい。
本明細書には、少なくとも次の発明が含まれる。すなわち、第1の発明は、
基板を処理する処理室と、
前記処理室内に設けられ基板を支持する基板支持部と、
前記処理室外に設けられるマイクロ波発生部と、
前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記基板支持部で支持された基板の表面の一部に対向している導波口と、
前記導波口に対する前記基板支持部の水平方向における相対的な位置を変動させる制御部と、
を備える基板処理装置。
このように基板処理装置を構成すると、マイクロ波導波口を基板の中心位置から偏心させる位置とし、導波口に対する基板支持部の相対的な位置を変動させる(例えば基板を回転させる)ことで、基板全体の熱履歴を抑えつつ均一な基板加熱が可能となる。さらに、基板上の目的とする領域を集中的に急速加熱することができ、それ以外の領域は、熱履歴を少なくすることができる。
第2の発明は、前記第1の発明における基板処理装置であって、
前記基板支持部は、該基板支持部の回転軸を中心にして水平方向に回転し、
前記導波口は、前記基板支持部の回転軸から偏心した位置に固定されている基板処理装置。
このように基板処理装置を構成すると、導波口に対する基板支持部の相対的な位置変動を容易に実現でき、また、回転機構を基板下部に設けることができるので、基板に対する汚染を少なくすることができる。
第3の発明は、前記第1の発明又は第2の発明における基板処理装置であって、
前記導波口と前記基板支持部で支持された基板との間の距離は、前記供給されるマイクロ波の波長よりも短い距離である基板処理装置。
このように基板処理装置を構成すると、基板に照射されるマイクロ波は、導波管から直接発射された直接波が支配的となり、より強いエネルギのマイクロ波を使うことで効率的に誘電体を加熱できる。また、導波口の直下近辺以外の領域には直接波が届かないので、その領域には熱履歴が蓄積されないため、より一層、基板上の目的とする場所を集中的に急速加熱することができ、それ以外の場所は、熱履歴を少なくすることができる。
第4の発明は、前記第1の発明ないし前記第3の発明における基板処理装置であって、
前記導波口と前記基板支持部で支持された基板との間の距離は、前記導波口から供給されるマイクロ波の1/4波長の奇数倍である基板処理装置。
このように基板処理装置を構成すると、導波口から供給されるマイクロ波の直接波のピーク(波形の腹の位置)に基板を位置することができ、基板の高さ位置におけるマイクロ波の電界が強くなるため、基板を効率よく加熱することができる。
第5の発明は、前記第1の発明ないし第4の発明における基板処理装置であって、
前記基板支持部は、基板をその上端で支持する基板支持ピンと、前記基板支持ピンの下部に設けられた導電性の台とを備え、
基板加熱処理時における前記基板支持ピン上端と前記導電性の台との間の距離が、前記供給されるマイクロ波の1/4波長の奇数倍の距離である基板処理装置。
このように基板処理装置を構成すると、導波口から供給されるマイクロ波のピーク(波形の腹の位置)に基板を位置することができ、基板の高さ位置におけるマイクロ波の電界が強くなるため、基板を効率よく加熱することができる。
第6の発明は、前記第5の発明における基板処理装置であって、
前記導電性の台は、冷媒流路を内蔵した金属製の台である基板処理装置。
このように基板処理装置を構成すると、基板の高さ位置におけるマイクロ波の電界が強くなるため基板上の例えばHigh‐k膜を効率よく加熱することができ、さらに、基板全体の加熱を抑制することができる。
第7の発明は、前記第1の発明ないし第6の発明における基板処理装置であって、
前記制御部は、前記導波口に対する前記基板支持部の水平方向における相対的な位置変動を開始した後、前記マイクロ波を前記処理室内に供給するよう制御する基板処理装置。
このように基板処理装置を構成すると、導波口に対する基板支持部の相対的な位置変動(例えば基板支持部の回転)が安定した後、マイクロ波を供給するので、より均一な基板加熱が可能となる。
第8の発明は、
基板を処理する処理室と、
前記処理室内に設けられ基板を支持する基板支持部と、
前記処理室外に設けられるマイクロ波発生部と、
前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記支持された基板の表面の一部に対向する導波口と、
前記支持された基板の表面の一部に対して前記導波口が間欠的に対向するように、前記支持された基板に対する前記導波口の水平方向における相対的な位置を変動させる制御部と、
を備える基板処理装置。
このように基板処理装置を構成すると、マイクロ波導波口を基板の中心位置から偏心させる位置とし、基板の一部に対して導波口が間欠的に対向するよう相対的な位置を変動させる(例えば基板を回転させる)ことで、基板全体の熱履歴を抑えつつ均一な基板加熱が可能となる。さらに、基板上の目的とする領域を集中的に急速加熱することができ、それ以外の領域は、熱履歴を少なくすることができる。
第9の発明は、
基板を処理する処理室と、
前記処理室内に設けられ基板を支持する基板支持部と、
前記処理室外に設けられるマイクロ波発生部と、
前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記基板支持部で支持された基板の表面の一部に対向している導波口と、
前記導波口に対して前記基板支持部を相対的に水平回転させる制御部と、
を備える基板処理装置を用いた半導体装置の製造方法であって、
基板を処理室内に搬入する搬入工程と、
前記処理室内に設けられた基板支持部で基板を支持する支持工程と、
前記導波口に対して前記基板支持部で支持した基板を相対的に水平回転させる回転工程と、
前記基板の回転開始後に前記マイクロ波を前記基板表面に照射する照射工程と、
前記処理室内から基板を搬出する搬出工程と、
を備える半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、回転速度が一定になった後、マイクロ波を供給するので、面内均一に基板加熱を行うことができる。
第10の発明は、前記第9の発明における半導体装置の製造方法であって、
前記照射工程を開始後、所定時間経過した後に前記マイクロ波の供給を停止し、前記マイクロ波の供給を停止した後、前記基板支持部で支持した基板の回転動作を停止する工程と、
を備える半導体装置の製造方法。
このように半導体装置の製造方法を構成すると、回転動作中にマイクロ波の供給を停止するので、均一な加熱状態を保ったまま、基板加熱処理を終了することができる。
10…処理室、11…ウェハ、12…基板支持台、13…基板支持ピン、14…温度検出器、18…処理容器、20…マイクロ波発生部、21…導波路、22…導波口、31…回転軸、32…回転駆動部、33…開閉バルブ、34…流量制御装置、35…冷媒源、36…冷媒供給管、37…冷媒流路、38…冷媒排出管、52…ガス供給管、53…開閉バルブ、54…流量制御装置、55…ガス供給源、62…ガス排出管、63…圧力調整バルブ、64…真空ポンプ、71…ウェハ搬送口、72…ゲートバルブ、73…ゲートバルブ駆動部、80…制御部、100…基板処理装置、402…シャフト、405…Oリング、407…Oリング、408…第1の冷媒供給路、409…第1の冷媒排出路、410…押さえリング、411…シャフト受け部、412…Oリング、416…固定リング、417…冷媒供給/排出部、418…第2の冷媒供給路、419…第2の冷媒排出路、420…真空シール、421…ベアリング、422…モータ、423…中空シャフト。

Claims (5)

  1. 基板を処理する処理室と、
    前記処理室内に設けられ基板を支持する基板支持部と、
    前記処理室外に設けられるマイクロ波発生部と、
    前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記基板支持部で支持された基板の表面の一部に対向している導波口と、
    前記導波口に対する前記基板支持部の水平方向における相対的な位置を変動させる制御部と、
    を備える基板処理装置。
  2. 請求項1に記載された基板処理装置であって、
    前記導波口と前記基板支持部で支持された基板との間の距離は、前記供給されるマイクロ波の波長よりも短い距離である基板処理装置。
  3. 請求項1又は請求項2に記載された基板処理装置であって、
    前記基板支持部は、基板をその上端で支持する基板支持ピンと、前記基板支持ピンの下部に設けられた導電性の台とを備え、
    基板処理時における前記基板支持ピン上端と前記導電性の台との間の距離が、前記供給されるマイクロ波の1/4波長の奇数倍の距離である基板処理装置。
  4. 基板を処理する処理室と、
    前記処理室内に設けられ基板を支持する基板支持部と、
    前記処理室外に設けられるマイクロ波発生部と、
    前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記支持された基板の表面の一部に対向する導波口と、
    前記支持された基板の表面の一部に対して前記導波口が間欠的に対向するように、前記支持された基板に対する前記導波口の水平方向における相対的な位置を変動させる制御部と、
    を備える基板処理装置。
  5. 基板を処理する処理室と、
    前記処理室内に設けられ基板を支持する基板支持部と、
    前記処理室外に設けられるマイクロ波発生部と、
    前記マイクロ波発生部で発生させたマイクロ波を前記処理室内に供給する導波口であって、該導波口の中心位置が、前記基板支持部で支持された基板の中心位置から偏心しており、該導波口が前記基板支持部で支持された基板の表面の一部に対向している導波口と、
    前記導波口に対して前記基板支持部を相対的に水平回転させる制御部と、
    を備える基板処理装置を用いた半導体装置の製造方法であって、
    基板を処理室内に搬入する搬入工程と、
    前記処理室内に設けられた基板支持部で基板を支持する支持工程と、
    前記導波口に対して前記基板支持部で支持した基板を相対的に水平回転させる回転工程と、
    前記基板の回転開始後に前記マイクロ波を前記基板表面に照射する照射工程と、
    前記処理室内から基板を搬出する搬出工程と、
    を備える半導体装置の製造方法。
JP2011140105A 2010-10-28 2011-06-24 基板処理装置および半導体装置の製造方法 Active JP5466670B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011140105A JP5466670B2 (ja) 2010-10-28 2011-06-24 基板処理装置および半導体装置の製造方法
US13/239,902 US8486222B2 (en) 2010-10-28 2011-09-22 Substrate processing apparatus and method of manufacturing a semiconductor device
TW100135202A TWI455243B (zh) 2010-10-28 2011-09-29 基板處理設備及製造半導體裝置之方法
CN201110303717.XA CN102468159B (zh) 2010-10-28 2011-09-29 衬底处理设备和制造半导体器件的方法
KR1020110099947A KR101323093B1 (ko) 2010-10-28 2011-09-30 기판 처리 장치 및 반도체 장치의 제조 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010241891 2010-10-28
JP2010241891 2010-10-28
JP2011140105A JP5466670B2 (ja) 2010-10-28 2011-06-24 基板処理装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2012109527A true JP2012109527A (ja) 2012-06-07
JP5466670B2 JP5466670B2 (ja) 2014-04-09

Family

ID=45997235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140105A Active JP5466670B2 (ja) 2010-10-28 2011-06-24 基板処理装置および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US8486222B2 (ja)
JP (1) JP5466670B2 (ja)
KR (1) KR101323093B1 (ja)
CN (1) CN102468159B (ja)
TW (1) TWI455243B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090058A (ja) * 2012-10-30 2014-05-15 Tokyo Electron Ltd マイクロ波加熱処理装置および処理方法
JP2014192372A (ja) * 2013-03-27 2014-10-06 Tokyo Electron Ltd マイクロ波加熱処理装置
JP2014194921A (ja) * 2013-03-01 2014-10-09 Tokyo Electron Ltd マイクロ波処理装置及びマイクロ波処理方法
WO2015105647A1 (en) * 2014-01-07 2015-07-16 Applied Materials, Inc. Pecvd ceramic heater with wide range of operating temperatures
JP2015207452A (ja) * 2014-04-21 2015-11-19 東京エレクトロン株式会社 マイクロ波加熱処理装置及びマイクロ波加熱処理方法
KR20170031144A (ko) * 2014-07-15 2017-03-20 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
JP2018026375A (ja) * 2016-08-08 2018-02-15 東レエンジニアリング株式会社 実装装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI534341B (zh) * 2011-09-26 2016-05-21 Hitachi Int Electric Inc A substrate processing apparatus, a manufacturing method of a semiconductor device, and a recording medium
TWI481059B (zh) * 2012-05-24 2015-04-11 Sunshine Pv Corp 薄膜太陽能電池的退火裝置
JP5977617B2 (ja) * 2012-08-08 2016-08-24 東京エレクトロン株式会社 被処理体のマイクロ波処理方法及びマイクロ波処理装置
US20140363903A1 (en) * 2013-06-10 2014-12-11 Tokyo Ohta Kogyo Co., Ltd. Substrate treating apparatus and method of treating substrate
JP5657059B2 (ja) * 2013-06-18 2015-01-21 東京エレクトロン株式会社 マイクロ波加熱処理装置および処理方法
US10069200B2 (en) 2014-03-19 2018-09-04 Insitu, Inc. Mechanically steered and horizontally polarized antenna for aerial vehicles, and associated systems and methods
KR101634452B1 (ko) * 2014-10-24 2016-06-29 세메스 주식회사 프로브 카드를 이용한 웨이퍼 검사용 척 구조물
KR101770221B1 (ko) * 2016-05-03 2017-08-22 (주)에스티아이 기판지지장치
US11217433B2 (en) * 2018-10-05 2022-01-04 Applied Materials, Inc. Rotary union with mechanical seal assembly
WO2020236845A1 (en) * 2019-05-21 2020-11-26 Oregon State University Apparatus and method for in-situ microwave anneal enhanced atomic layer deposition
US11375584B2 (en) * 2019-08-20 2022-06-28 Applied Materials, Inc. Methods and apparatus for processing a substrate using microwave energy
US20240018646A1 (en) * 2022-07-14 2024-01-18 Applied Materials, Inc. Rotary electrical feedthrough integration for process chamber
CN115020303B (zh) * 2022-08-09 2022-11-04 北京屹唐半导体科技股份有限公司 晶圆的热处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327022A (ja) * 1986-07-21 1988-02-04 Hitachi Ltd マイクロ波プラズマ処理装置
JPH0336274A (ja) * 1989-06-30 1991-02-15 Sony Corp プラズマ装置
JP2002289521A (ja) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd 半導体装置の製造方法
JP2003059919A (ja) * 2001-08-17 2003-02-28 Ulvac Japan Ltd マイクロ波プラズマ処理装置および処理方法
JP2006140386A (ja) * 2004-11-15 2006-06-01 Dainippon Screen Mfg Co Ltd 基板位置補正装置および基板位置補正方法
WO2009122913A1 (ja) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 熱処理装置
JP2010225760A (ja) * 2009-03-23 2010-10-07 Nuflare Technology Inc 半導体製造方法および半導体製造装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128978A (ja) * 1984-11-27 1986-06-17 テルモ株式会社 膜型人工肺
US5342472A (en) * 1991-08-12 1994-08-30 Tokyo Electron Limited Plasma processing apparatus
WO1995033866A1 (en) * 1994-06-03 1995-12-14 Materials Research Corporation Method and apparatus for producing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
KR0153842B1 (ko) * 1994-06-14 1998-12-01 나카무라 다메아키 마이크로파 플라즈마 처리장치
US5874706A (en) * 1996-09-26 1999-02-23 Tokyo Electron Limited Microwave plasma processing apparatus using a hybrid microwave having two different modes of oscillation or branched microwaves forming a concentric electric field
JP3917237B2 (ja) * 1997-05-20 2007-05-23 東京エレクトロン株式会社 レジスト膜形成方法
AU7367400A (en) 1999-09-09 2001-04-10 Allied-Signal Inc. Improved apparatus and methods for integrated circuit planarization
US6589889B2 (en) 1999-09-09 2003-07-08 Alliedsignal Inc. Contact planarization using nanoporous silica materials
JP3478266B2 (ja) * 2000-12-04 2003-12-15 東京エレクトロン株式会社 プラズマ処理装置
JP2004296820A (ja) 2003-03-27 2004-10-21 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
TW201001543A (en) * 2008-02-08 2010-01-01 Tokyo Electron Ltd Method for modifying insulating film with plasma
JP5511536B2 (ja) * 2010-06-17 2014-06-04 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
US8866271B2 (en) * 2010-10-07 2014-10-21 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method, substrate processing apparatus and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327022A (ja) * 1986-07-21 1988-02-04 Hitachi Ltd マイクロ波プラズマ処理装置
JPH0336274A (ja) * 1989-06-30 1991-02-15 Sony Corp プラズマ装置
JP2002289521A (ja) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd 半導体装置の製造方法
JP2003059919A (ja) * 2001-08-17 2003-02-28 Ulvac Japan Ltd マイクロ波プラズマ処理装置および処理方法
JP2006140386A (ja) * 2004-11-15 2006-06-01 Dainippon Screen Mfg Co Ltd 基板位置補正装置および基板位置補正方法
WO2009122913A1 (ja) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 熱処理装置
JP2010225760A (ja) * 2009-03-23 2010-10-07 Nuflare Technology Inc 半導体製造方法および半導体製造装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090058A (ja) * 2012-10-30 2014-05-15 Tokyo Electron Ltd マイクロ波加熱処理装置および処理方法
JP2014194921A (ja) * 2013-03-01 2014-10-09 Tokyo Electron Ltd マイクロ波処理装置及びマイクロ波処理方法
JP2014192372A (ja) * 2013-03-27 2014-10-06 Tokyo Electron Ltd マイクロ波加熱処理装置
WO2015105647A1 (en) * 2014-01-07 2015-07-16 Applied Materials, Inc. Pecvd ceramic heater with wide range of operating temperatures
JP2015207452A (ja) * 2014-04-21 2015-11-19 東京エレクトロン株式会社 マイクロ波加熱処理装置及びマイクロ波加熱処理方法
KR20170031144A (ko) * 2014-07-15 2017-03-20 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
KR102438349B1 (ko) * 2014-07-15 2022-08-30 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
JP2018026375A (ja) * 2016-08-08 2018-02-15 東レエンジニアリング株式会社 実装装置

Also Published As

Publication number Publication date
US8486222B2 (en) 2013-07-16
KR20120044889A (ko) 2012-05-08
TW201220426A (en) 2012-05-16
CN102468159B (zh) 2015-04-22
US20120108080A1 (en) 2012-05-03
JP5466670B2 (ja) 2014-04-09
CN102468159A (zh) 2012-05-23
KR101323093B1 (ko) 2013-10-29
TWI455243B (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5466670B2 (ja) 基板処理装置および半導体装置の製造方法
JP5214774B2 (ja) 基板処理装置及び半導体装置の製造方法
JP5256328B2 (ja) 基板処理装置および半導体装置の製造方法
JP5955394B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP2010245564A (ja) 処理装置
JP2007042951A (ja) プラズマ処理装置
JP2011077065A (ja) 熱処理装置
TWI492324B (zh) A substrate processing apparatus, and a method of manufacturing the semiconductor device
JP2013073947A (ja) 基板処理装置
WO2013146118A1 (ja) 基板処理装置および半導体装置の製造方法
JP2014072224A (ja) 基板処理装置及び半導体装置の製造方法
JP2013033979A (ja) マイクロ波プラズマ処理装置
JP2014132613A (ja) 基板処理装置及び半導体装置の製造方法
JP2013207058A (ja) 基板処理装置、基板処理方法、半導体装置の製造方法および記録媒体。

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140124

R150 Certificate of patent or registration of utility model

Ref document number: 5466670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250