JP2012100409A - 回転角度検出装置 - Google Patents

回転角度検出装置 Download PDF

Info

Publication number
JP2012100409A
JP2012100409A JP2010245118A JP2010245118A JP2012100409A JP 2012100409 A JP2012100409 A JP 2012100409A JP 2010245118 A JP2010245118 A JP 2010245118A JP 2010245118 A JP2010245118 A JP 2010245118A JP 2012100409 A JP2012100409 A JP 2012100409A
Authority
JP
Japan
Prior art keywords
correction
rotation
angle
rotational speed
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010245118A
Other languages
English (en)
Other versions
JP5545174B2 (ja
Inventor
Yu Imamoto
雄 今本
Koichi Nishihata
幸一 西端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010245118A priority Critical patent/JP5545174B2/ja
Publication of JP2012100409A publication Critical patent/JP2012100409A/ja
Application granted granted Critical
Publication of JP5545174B2 publication Critical patent/JP5545174B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】回転数が低い場合でも回転数の変動を抑制できるようにする。
【解決手段】制御装置60(回転角度検出装置)は、回転電機40(回転部材)の回転に伴って信号を出力するレゾルバ41と、レゾルバ41から出力される信号に基づいて検出される回転角度を示す検出角度θdの誤差を誤差補正手段65aによって補正する補正実行手段64と、補正された検出角度θdに基づいて検出回転数Nsを算出する回転数算出手段63と、検出回転数Nsが指令された指令回転数Nとなるようにフィードバック制御を行う回転数フィードバック制御手段61と、検出回転数Nsおよび指令回転数Nのうちで一方または双方の回転数に基づいて補正実行手段64による補正を行うか否かを判断する補正実行判断手段62とを備える。補正実行手段64は、補正実行手段64による補正を行うと判断された場合にのみ検出角度θdの誤差を補正する。
【選択図】図2

Description

本発明は、回転センサから出力される信号に基づいて検出される回転角度の誤差を補正する回転角度検出装置に関する。
対象物の回転角度(電気角)を検出する回転センサには、耐久性や信頼性等を重視する観点から、レゾルバが用いられる傾向にある。レゾルバは、ステータ(固定子)や、ロータ(回転子)、励磁コイルおよび検出コイルを備える。レゾルバを用いた従来の回転角度検出装置としては、区間ごとに回転角度の誤差を補正する技術の一例が開示されている(例えば特許文献1を参照)。
上記特許文献1の技術では、ロータの1回転期間を等間隔に分割した角度区間ごとに、誤差補正手段が検出角度の誤差を補正する。より具体的には、n個の角度区間ごとに検出角度と誤差との対応を示す誤差マップを作成し、補正量算出部が各角度区間に対応する誤差マップを用いて誤差(すなわち補正量)を算出し、補正角度算出部が検出角度の誤差を補正する。
特開2010−096708号公報
しかし、ロータの回転角度に基づいて回転数(「回転速度」とも呼ぶ。以下同じである。)を算出し、算出した回転数が指令された回転数になるように制御する回転数フィードバック制御では、回転数が低い場合に当該回転数が変動するということが判明した。
回転数が低い場合とは、例えばモータ等がほぼ回転停止(静止)している状態や、低速回転している状態などが該当する。前者の状態では、何らかの要因(例えば外来ノイズ等)によって不用意にモータ等の回転軸が回転することがあり、この回転に伴ってロータの回転角度の変化が検出されると誤差補正手段の作用で増大されてしまう。後者の状態では、低速回転に伴ってモータ等の回転軸がふらついて回転することがあり、このふらつきに伴ってロータの回転角度の変化が検出されると誤差補正手段の作用で増大されてしまう。いずれも誤差補正手段が誤差マップを用いて誤差を補正するため、却って大きな回転角度の変化になってしまう。補正された回転角度に基づいて算出された回転数がフィードバック制御されると、モータ等に不要なトルクを発生させて回転数が変動するようになる。
本発明はこのような点に鑑みてなしたものであり、回転数が低い場合において、当該回転数の変動を抑制することができる回転角度検出装置を提供することを目的とする。
上記課題を解決するためになされた請求項1に記載の発明は、回転部材の回転に伴って信号を出力する回転センサと、前記回転センサから出力される信号に基づいて検出される回転角度の誤差を誤差補正手段によって補正する補正実行手段と、前記補正実行手段によって補正された回転角度に基づいて、検出回転数を算出する回転数算出手段と、前記検出回転数が指令された指令回転数となるようにフィードバック制御を行う回転数フィードバック制御手段と、前記検出回転数および前記指令回転数のうちで一方または双方の回転数に基づいて、前記補正実行手段による補正を行うか否かを判断する補正実行判断手段とを有し、前記補正実行手段は、前記補正実行判断手段によって補正を行うと判断された場合にのみ回転角度の誤差を補正することを特徴とする。
この構成によれば、補正実行手段は補正実行判断手段によって補正を行うと判断された場合にのみ回転角度の誤差を補正するので、回転数が低い(回転数が0を含む)場合には当該回転数の変動を抑制することができる。
なお「回転センサ」は、回転部材の回転を検出し、電気信号に変換して出力可能なセンサであれば任意である。例えば、レゾルバ,ロータリーエンコーダ,ジャイロスコープ,GMR(Giant Magnetoresistance Revolution;巨大磁気抵抗効果)回転センサなどが該当する。「回転部材」は、回転制御を行う対象となる部材であれば任意であり、機器の一部であるか否かを問わない。例えば、軸(回転機の主軸を含む),シャフト,ギア(ギア機構を含む)などが該当する。レゾルバのロータを「回転部材」とする場合は、軸倍角n(nは2以上の整数)のロータを含む。「誤差補正手段」は、検出角度の補正を行う手段であれば任意である。例えば、後述する理想角度に対する補正量を記憶するマップ(データテーブルを含む)や、当該補正量の変化に近似させた関数式などが該当する。「検出回転数」および「指令回転数」の値は正負を問わない。例えば、正値を正回転と定義するとき、負値は逆回転を意味する。
請求項2に記載の発明は、前記誤差補正手段は、時間の変化に伴って理想的に変化する回転角度を示す理想角度に対する補正量を記憶するマップであり、前記補正実行手段は、前記マップの補正量を用いて、回転角度の誤差を補正することを特徴とする。この構成によれば、マップの補正量を用いて回転角度の誤差を補正するので、簡単な構成で発明を実現できる。なお、「マップ」は少なくとも記録媒体に記録されている必要がある。「理想角度」は、時間の変化に伴って理想的に変化するロータの回転角度を意味する。
請求項3に記載の発明は、前記補正実行判断手段は、前記検出回転数が0を含む第1回転数範囲内である場合は前記補正実行手段による補正を行わないと判断し、前記第1回転数範囲外である場合は前記補正実行手段による補正を行うと判断することを特徴とする。この構成によれば、検出回転数が0を含む第1回転数範囲内である場合には、補正実行手段は回転角度の誤差を補正しない。低速回転状態やほぼ回転停止状態では、補正実行手段によって回転数を誤って増加させることを防止できるので、低回転数時の回転数を安定化させることができる。「第1回転数範囲」は、範囲内に0を含むことが条件となる点を除いて、任意に設定することができ、補正実行手段による補正の影響により回転数が変動するような回転数の範囲を含む。
請求項4に記載の発明は、前記補正実行判断手段は、前記指令回転数が0を含む第2回転数範囲内である場合は前記補正実行手段による補正を行わないと判断し、前記第2回転数範囲外である場合は前記補正実行手段による補正を行うと判断することを特徴とする。指令回転数がある程度大きい値である場合は、補正実行手段によって回転数が増加することによる影響は小さいため、補正量の加算を制限する必要は無い。この構成によれば、指令回転数が0を含む第2回転数範囲内である場合には、補正実行手段は回転角度の誤差を補正しない。低速回転状態やほぼ回転停止状態では、補正実行手段によって回転数を誤って増加させることを防止できるので、低回転数時の回転数を安定化させることができる。「第2回転数範囲」は、上述した第1回転数範囲と同様に、範囲内に0を含むことが条件となる点を除いて、任意に設定することができる。なお、第1回転数範囲と第2回転数範囲とは同一範囲であってもよく、異なる範囲であってもよい。
請求項5に記載の発明は、前記補正実行手段は、前記検出回転数および前記指令回転数のうちで一方または双方の回転数が0を含む第3回転数範囲内である場合は、前記第3回転数範囲内に規定する補正特性線に従って回転角度の誤差を補正することを特徴とする。この構成によれば、回転数が0を含む第3回転数範囲内である場合には、補正実行手段が補正特性線に従って回転角度の誤差を補正する。よって、回転数が低い(回転数が0を含む)場合には当該回転数の変動を抑制することができる。補正特性線の設定によっては、極めてゆっくりとした回転が必要な場合でも適正に補正されるので、回転数の変動を抑制した回転制御を行うことができる。「第3回転数範囲」は、上述した第1回転数範囲や第2回転数範囲と同様に、範囲内に0を含むことが条件となる点を除いて、任意に設定することができる。また、第1回転数範囲や第2回転数範囲と同一範囲であってもよく、異なる範囲であってもよい。
回転電機を制御する電力変換システムの構成例を模式的に示す図である。 制御装置の構成例を模式的に示す図である。 マップの補正量を求める過程を説明する図である。 補正量と検出角度との関係を示すグラフ図である。 回転角度補正処理の手続き例を示すフローチャートである。 回転角度補正処理の手続き例を示すフローチャートである。 回転角度補正処理の手続き例を示すフローチャートである。 回転数と特性線との関係を示すグラフ図である。 補正量と検出角度との関係を示すグラフ図である。
以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的な接続を意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示してはいない。上下左右等の方向を言う場合には、図面の記載を基準とする。以下に示す各実施の形態は簡単のために、輸送機器(特に自動車の車両)に備えられる回転電機の回転軸(例えば主軸等)にかかる回転(回転角度や回転数等)を検出する回転角度検出装置を前提として説明する。
〔実施の形態1〕
実施の形態1は、検出回転数に基づいて補正を行うか否かを判断する例であって、図1〜図5を参照しながら説明する。図1には回転電機を制御する電力変換システムの構成例を模式的に示す。図2には制御装置の構成例を模式的に示す。図3には理想角度と検出角度とに基づいてマップの補正量を求める過程を示す。図4には補正量と検出角度との関係をグラフ図で示す。図5には回転角度補正処理の手続き例をフローチャートで示す。
図1に示す電力変換システムは、コンバータ回路10,インバータ回路20,制御電源回路50,制御装置60などを有する。コンバータ回路10は、必要に応じて備えられ、第1直流電源E1(例えばバッテリ等)から平滑用のコンデンサC1を介して供給される直流電圧(電圧値V1;例えば300[V]等)を、インバータ回路20で必要とする直流電圧(電圧値Vdc)に変換して出力する機能を担う。なお、コンバータ回路10の構成や作動等は周知であるので図示および説明を省略する。
インバータ回路20は、供給される直流電圧(電圧値Vdc;例えば660[V]等)を変換して回転電機40に出力する機能を担う。第1直流電源E1とインバータ回路20との間には、コンバータ回路10を介在させている。コンバータ回路10とインバータ回路20との間には、平滑用のコンデンサC2が接続される。コンデンサC2は、コンバータ回路10の出力電圧値(電圧値Vdc)の電位変動を低減する機能を担う。
インバータ回路20は、スイッチング素子Q1〜Q6やダイオードD1〜D6などを有する。スイッチング素子Q1〜Q6には例えばIGBTが用いられ、制御装置60から個別に伝達される制御信号Spに従ってオン/オフが駆動される。ダイオードD1〜D6は、それぞれ対応するスイッチング素子Q1〜Q6のコレクタ端子とエミッタ端子との間に並列接続される。これらのダイオードD1〜D6は、いずれもフリーホイールダイオードとして機能する。スイッチング素子Q1〜Q3やダイオードD1〜D3などは上アーム側に配置され、スイッチング素子Q4〜Q6やダイオードD4〜D6などは下アーム側に配置される。共通電位G1はインバータ回路20内で共通する電位(同電位グランド)であり、接地されるグランドG2と接続された場合には0[V]になる。共通電位G1とグランドG2とは必ずしも同電位でない場合があるので、両者は異なる図記号を用いる。
インバータ回路20内の回路素子は、一点鎖線で囲って示すように三相(本例ではU相,V相,W相)に分けられ、制御装置60によって相ごとに作動が制御される。U相は、スイッチング素子Q1,Q4やダイオードD1,D4などで構成される。V相は、スイッチング素子Q2,Q5やダイオードD2,D5などで構成される。W相は、スイッチング素子Q3,Q6やダイオードD3,D6などで構成される。U相のスイッチング素子Q1,Q4は、直列接続されてハーフブリッジを構成する。V相のスイッチング素子Q2,Q5と、W相のスイッチング素子Q3,Q6とについても同様に、直列接続されてハーフブリッジを構成する。ハーフブリッジの各接続点と回転電機40の三相端子とは、線路Ku,Kv,Kwによって相ごとに接続されている。線路KuにはU相電流Iuが流れ、線路KvにはV相電流Ivが流れ、線路KwにはW相電流Iuが流れる。
制御電源回路50は、第2直流電源E2(例えばバッテリ等)から供給される直流電圧V2(例えば12[V]等)を、コンバータ回路10やインバータ回路20等で必要とする電圧や電流に変換して出力する機能を担う。この制御電源回路50の構成や作動等は周知であるので図示および説明を省略する。これらの制御電源回路50および第2直流電源E2は、ともにグランドG2に接続されて接地されている。
制御装置60は「回転角度検出装置」に相当し、コンバータ回路10やインバータ回路20等の動作を司る。本発明を実現するための制御装置60の構成例については後述する(図2を参照)。制御装置60が入力する信号は、外部装置に相当するECU70から伝達される指令回転数Nやトルク指令値T、電流センサ30から伝達される電流I(Iu,Iv,Iw)、レゾルバ41から出力される信号などがある。制御装置60が出力する信号は、スイッチング素子Q1〜Q6の制御端子P1〜P6に伝達する制御信号Spや、コンバータ回路10に備える駆動回路に伝達する制御信号などがある。
回転電機40は、例えば発電機能と電動機能とを兼ね備える発電電動機(図1には「MG」と記載する)を適用する。電流センサ30は、回転電機40を流れる各相の電流(Iu,Iv,Iw)を検出可能なセンサを用いる。例えば、磁気比例型センサ,電磁誘導型センサ,ファラデー効果型センサ,変流器型センサなどが該当する。レゾルバ41は「回転センサ」に相当し、回転電機40に備える回転部材(例えば回転軸やロータ等)の電気角に基づく信号(SIN検出信号SsやCOS検出信号Sc等)を出力する。
上述した電力変換システムは、回転電機40の駆動によって移動を実現できる輸送機器に備えるのが望ましい。輸送機器としては、例えば自動車,航空機,船舶,鉄道車両などが該当する。
次に、制御装置60の構成例について、図2を参照しながら説明する。制御装置60はコンバータ回路10やインバータ回路20等を制御するための様々な機能を有するが、図2には本発明を実現するため構成例(すなわち部分的な構成例)を示す。
図2に示す制御装置60は、回転数フィードバック制御手段61,補正実行判断手段62,回転数算出手段63,補正実行手段64,記録手段65などを有する。補正実行手段64は、レゾルバ41から出力される信号に基づいて検出される回転角度を示す検出角度θdの誤差を誤差補正手段65aによって補正する。ただし、後述する補正実行判断手段62から出力(伝達)される判断情報Jが「補正を行わない」とする内容である場合には、検出角度θdの誤差を補正せずにそのまま出力する。
記録手段65に記録される誤差補正手段65aの数は、一つでもよく、複数でもよい。誤差補正手段65aは検出角度θdの誤差を補正する補正量のデータ群であり、例えばマップやデータテーブル等が該当する。複数の記録手段65を記録する場合には、レゾルバ41のロータ形状や回転数等に応じて補正量が異なる。記録手段65には誤差補正手段65aを記録可能な任意の記録媒体が用いられ、例えばROM,EEPROM,光磁気ディスク等のような不揮発性メモリが望ましい。
回転数算出手段63は、補正実行手段64によって補正された検出角度θdに基づいて検出回転数Nsを算出する。補正実行判断手段62は、検出回転数Nsおよび指令回転数Nのうちで一方または双方の回転数に基づいて、補正実行手段64による補正を行うか否かを判断して判断情報Jを出力する。
回転数フィードバック制御手段61は、検出回転数Nsが指令回転数Nとなるようにフィードバック制御を行う。一点鎖線で囲んでいるように、回転数フィードバック制御手段61は加合部61a,トルク指令演算部61b,モータトルク制御部61cなどを有する。加合部61aは、入力信号(すなわち指令回転数Nと検出回転数Nsにかかる信号)の加え合わせを行う。図2の例では負帰還ループを形成するため、指令回転数Nから検出回転数Nsを差し引いた偏差を差分回転数Neとして出力する。トルク指令演算部61bは、差分回転数Neに基づいて回転電機40の回転に必要なトルクを演算してトルク指令Tとして出力する。モータトルク制御部61cは、トルク指令Tに基づいてインバータ回路20を駆動するために必要な制御信号Spを出力する。制御信号Spには、例えばパルス幅変調(PWM)信号等が用いられる。
次に、記録手段65に記録される誤差補正手段65aについて、図3を参照しながら説明する。図3の左側に示すように、理想角度θは、横軸で示す時間の変化に伴って、縦軸で示す回転角度が理想的(すなわち直線的,比例的)に変化する角度である。一方で、実際に検出される検出角度θは、横軸で示す時間の変化に対して、縦軸で示す回転角度が比例しない非直線的な変化をする角度である。検出角度θを理想角度θに近づけるため、理想角度θから検出角度θを差し引いた誤差が補正量Aとなる。この補正量Aの特性線(補正線)を図3の右側に示す。図3の右側では、横軸で示す時間の変化に伴って、縦軸で示す補正量が変化する。よって、補正量Aは図示するような特性線(補正線)として示すことができるデータ群である。なお括弧内に示す「誤差値」は、補正量と正負が逆であり、絶対値でみれば同値である。
記録手段65に記録する誤差補正手段65aの補正量Aは、一つであってもよく、複数であってもよい。複数の誤差補正手段65aとして補正量A(例えば補正量Am1,Am2,Am3,…)を記録するのは、例えばレゾルバ41が軸倍角n(nは2以上の整数)で形成されたロータを備える場合や、ロータの回転数に応じて誤差特性が変化する場合などが該当する。前者の例は、軸倍角で区切られるnの区間ごとに対応する補正量Aを記録する。後者の例は、ロータの回転数に応じて段階的(例えば1000[rpm]や2000[rpm]ごと)に対応する補正量Aを記録する。
実際に記録する補正量Aの一例を図4に示す。図4には、横軸に検出角度の変化を示し、縦軸に補正量の変化を示す。時間は一の回転区間に対応する。「回転区間」は、通常は1回転区間(言い換えれば実際に360度回転する区間)を意味する。ただし、上述した軸倍角nで形成されたロータの場合は、1/n回転区間を意味する。実線で示す特性線の補正量A(Am1)は、一の誤差補正手段65aに対応する。一点鎖線で示す特性線の補正量A(Am1)や二点鎖線で示す特性線の補正量A(Am3)などは、実線で示す特性線の補正量A(Am1)とともに複数の誤差補正手段65aに対応する。
上述のように構成された制御装置60において、本発明を実現する回転角度補正処理の手続き例について図5を参照しながら説明する。この回転角度補正処理は、制御装置60が作動している間に繰り返し実行される。なお図5において、ステップS10,S13は補正実行手段64に相当し、ステップS11,S14は回転数算出手段63に相当し、ステップS12は補正実行判断手段62に相当し、ステップS15は回転数フィードバック制御手段61に相当する。
図5に示す回転角度補正処理において、まずレゾルバ41から出力される信号(SIN検出信号SsやCOS検出信号Sc等)に基づいて回転電機40の検出角度θdを求める〔ステップS10〕。当該検出角度θdの単位時間当たりの変化量に基づいて、回転電機40の検出回転数Nsを求める〔ステップS11〕。今回(あるいは前回以前)のステップS11で求めた検出回転数Nsが第1回転数範囲内か否かに従って判断情報Jを決定する〔ステップS12〕。すなわち、検出回転数Nsが第1回転数範囲内であれば「補正を行わない」と判断し、検出回転数Nsが第1回転数範囲外であれば「補正を行う」と判断する。第1回転数範囲は任意に設定することができ、例えば−50[rpm]から50[rpm]までの範囲などが該当する。ステップS12の判別対象となる検出回転数Nsを、今回のステップS11で求めた検出回転数Nsとするか、前回以前のステップS11で求めた検出回転数Nsとするかは、回転電機40の種類や制御目的等に応じて適切に設定する。
もし、検出回転数Nsが第1回転数範囲内であれば(YES)、何らかの要因(例えば外来ノイズや負荷の変動等)によって検知した角度θdを補正によって誤って増加させてしまった場合、それに基づいて算出した回転数は実際よりも大きな値となり、回転数フィードバック制御に与える影響が相対的に大きくなってしまう。よって「補正を行わない」と判断して誤差補正手段65aによる補正を行わず、ステップS11で求めた検出回転数Nsが指令回転数Nとなるようにフィードバック制御を行い〔ステップS15〕、回転角度補正処理をリターンする。
一方、ステップS12で検出回転数Nsが第1回転数範囲外であれば(NO)、回転電機40の回転軸の検出角度θdが誤って増大されても回転数フィードバック制御に与える影響は少ない。よって「補正を行う」と判断して、記録手段65も記録された誤差補正手段65aを用いて、ステップS10で求めた検出角度θdを補正し〔ステップS13〕、補正した検出角度θdの単位時間当たりの変化量に基づいて回転電機40の検出回転数Nsを求め〔ステップS14〕、この検出回転数Nsが指令回転数Nとなるようにフィードバック制御を行い〔ステップS15〕、回転角度補正処理をリターンする。
上述した実施の形態1によれば、以下に示す各効果を得ることができる。まず請求項1に対応し、回転電機40の回転部材(具体的には回転軸やロータ等)の回転に伴って信号を出力するレゾルバ41と、レゾルバ41から出力される信号に基づいて検出される検出角度θd(回転角度)の誤差を誤差補正手段65aによって補正する補正実行手段64と、補正実行手段64によって補正された検出角度θdに基づいて、検出回転数Nsを算出する回転数算出手段63と、検出回転数Nsが指令された指令回転数Nとなるようにフィードバック制御を行う回転数フィードバック制御手段61と、検出回転数Nsおよび指令回転数Nのうちで一方または双方の回転数に基づいて、補正実行手段64による補正を行うか否かを判断する補正実行判断手段62とを有する構成とした(図2を参照)。補正実行手段64は、補正実行判断手段62によって補正を行うと判断された場合にのみ検出角度θdの誤差を補正する構成とした(図5のステップS12,S13を参照)。この構成によれば、補正実行手段64は補正実行判断手段62によって補正を行うと判断された場合にのみ検出角度θdの誤差を補正する。逆に回転数が低い場合は、検出角度θdの誤差を補正しないので、当該回転数の変動を抑制することができる。
請求項2に対応し、誤差補正手段65aは、時間の変化に伴って理想的に変化する回転角度を示す理想角度に対する補正量Aを記憶するマップとした(図2,図3を参照)。補正実行手段64は、マップの補正量Aを用いて、検出角度θd(回転角度)の誤差を補正する構成とした(図5のステップS13を参照)。この構成によれば、マップの補正量Aを用いて検出角度θdの誤差を補正するので、簡単な構成で発明を実現できる。
請求項3に対応し、補正実行判断手段62は、検出回転数Nsが0を含む第1回転数範囲内である場合は補正実行手段64による補正を行わないと判断し(図5のステップS13でYES)、第1回転数範囲外である場合は補正実行手段64による補正を行うと判断する構成とした(図5のステップS13でNO)。この構成によれば、低速回転状態やほぼ回転停止状態では、補正実行手段64によって回転数を誤って増加させることを防止できるので、低回転数時の回転数を安定化させることができる。「第1回転数範囲」は、範囲内に0を含むことが条件となる点を除いて、任意に設定することができ、補正実行手段64による補正の影響により回転数が変動するような回転数の範囲を含む。
〔実施の形態2〕
実施の形態2は、検出回転数だけでなく指令回転数にも基づいて補正を行うか否かを判断する例であって、図6を参照しながら説明する。図6には、図5に代わる回転角度補正処理の手続き例をフローチャートで示す。なお、電力変換システムの構成等は実施の形態1と同様であり、図示および説明を簡単にするために実施の形態2では実施の形態1と異なる点について説明する。よって実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。
図6に示す回転角度補正処理は、図5に示す回転角度補正処理と比べて、ステップS16を加えた点で相違する。このステップS16は、ステップS12とともに補正実行判断手段62に相当する。
ステップS16は、ステップS11で求めた検出回転数Nsが第1回転数範囲内であるときに実行され(YES)、指令回転数Nが第2回転数範囲内か否かに従って判断情報Jを決定する。すなわち、指令回転数Nが第2回転数範囲内であれば「補正を行わない」と判断し、検出回転数Nsが第1回転数範囲外であれば「補正を行う」と判断する。第2回転数範囲は任意に設定することができ、例えば−50[rpm]から50[rpm]までの範囲などが該当する。本例では第2回転数範囲は第1回転数範囲と同一範囲に設定したが、回転電機40の種類やレゾルバ41のロータの種類等に応じて異なる範囲に設定してもよい。
上述したステップS16によって図6に示す回転角度補正処理は、検出回転数Nsが第1回転数範囲内であり、かつ、指令回転数Nが第2回転数範囲内である場合に限って、「補正を行わない」と判断する判断情報Jを決定する。
上述した実施の形態2によれば、以下に示す効果を得ることができる。なお、請求項1〜3に対応する効果については実施の形態1と同様である。
請求項4に対応し、補正実行判断手段62は、指令回転数Nが0を含む第2回転数範囲内である場合は補正実行手段64による補正を行わないと判断し(図5のステップS16でYES)、第2回転数範囲外である場合は補正実行手段64による補正を行うと判断する構成とした(図5のステップS16でNO)。この構成によれば、指令回転数Nが0を含む第2回転数範囲内である場合には、補正実行手段64は検出角度θd(回転角度)の誤差を補正しない。低速回転状態やほぼ回転停止状態では、補正実行手段64によって回転数を誤って増加させることを防止できるので、低回転数時の回転数を安定化させることができる。
〔実施の形態3〕
実施の形態3は、回転数(検出回転数や指令回転数)が低い場合には補正量を抑制する例であって、図7〜図9を参照しながら説明する。図7には、図5,図6に代わる回転角度補正処理の手続き例をフローチャートで示す。図8には、回転数と特性線との関係をグラフ図で示す。図9には補正量と検出角度との関係をグラフ図で示す。なお、電力変換システムの構成等は実施の形態1,2と同様であり、図示および説明を簡単にするために実施の形態3では実施の形態1,2と異なる点について説明する。よって実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。
図7に示す回転角度補正処理は、図5および図6に示す回転角度補正処理と比べて、次の二点で相違する。第1に、ステップS17を加えた点である。このステップS17は、ステップS12とともに補正実行手段64に相当する。第2に、ステップS12で検出回転数Nsが第1回転数範囲内であるか(YES)、さらには二点鎖線で示すステップS16で指令回転数Nが第2回転数範囲内であるときは(YES)、ステップS17を実行した後にステップS14,S15を実行する点である。
ステップS17は、検出回転数Nsが第3回転数範囲内では補正特性線に従って誤差補正手段65aを変更し、ステップS10で求めた検出角度θdを補正する。第3回転数範囲は、ステップS12の第1回転数範囲内またはステップS16の第2回転数範囲と同一範囲を設定してもよく、これらとは異なる範囲を設定してもよい。補正特性線に従って誤差補正手段65aを変更する方法について、図8および図9を参照しながら説明する。
図8には、縦軸を補正量の変更比率Rとし、横軸を検出回転数Nsとする補正特性線L1,L2の一例を示す。この例では、変更比率Rは0から1までの範囲であり、第3回転数範囲は0からN3(例えば100[rpm])までの範囲である。実線で示す補正特性線L1は、検出回転数NsがNaからN3までの範囲で直線的(比例的)に変更比率Rが変化する。ただし、検出回転数Nsが0からNaまでの範囲は変更比率Rが0となる特性である。一点鎖線で示す補正特性線L2は、検出回転数Nsが0のときに変更比率Rが0であり、曲線状に変更比率Rが変化する。なお、図8に示す補正特性線L1,L2は一例に過ぎず、特性線としての変化をどのように設定してもよい。また第3回転数範囲(N3)の設定も任意である。
上述した補正特性線L1,L2について、検出回転数Nsが回転数Nbであるときの補正量Aの変更法について説明する。図8では、補正特性線L1の場合は変更比率Raになり、補正特性線L2の場合は変更比率Rb(Rb>Ra)になることが分かる。図4に実線で示す補正量Aを変更すると、図9のようになる。図9では比較し易くするため、図4に示す補正量Aを二点鎖線で示し、変更比率Raに従って変更した補正量Amaを実線で示し、変更比率Rbに従って変更した補正量Ambを一点鎖線で示す。元の補正量Aと比較して明らかなように、補正量Ama,Ambは全体的な変化は元の補正量Aと同じであるが、補正すべき量が縮小されている。何らかの要因(例えば外来ノイズや負荷の変動等)によって検知角度θdを補正によって誤って増大しても、補正量自体が縮小されるので、補正後における検出角度θdの変化が抑制される。
上述した図8および図9では、検出回転数Nsとの関係で補正量Aを変更する例を示した。この形態に代えて、横軸を指令回転数Nとして、指令回転数Nとの関係で補正量Aを変更する構成としてもよい。あるいは三次元マップのように、検出回転数Nsおよび指令回転数Nとの関係で補正量Aを変更する構成としてもよい。いずれの構成にせよ、補正量自体が縮小されるので、補正後における検出角度θdの変化が抑制される。
上述した実施の形態3によれば、以下に示す効果を得ることができる。なお、請求項1,2に対応する効果については実施の形態1と同様である。
請求項5に対応し、補正実行手段64は、検出回転数Nsおよび指令回転数Nのうちで一方または双方の回転数が0を含む第3回転数範囲内である場合は、第3回転数範囲内に規定する補正特性線に従って検出角度θd(回転角度)の誤差を補正する構成とした(図7のステップS17,図8,図9を参照)。この構成によれば、回転数が0を含む第3回転数範囲内である場合には、補正実行手段64が補正特性線に従って検出角度θdの誤差を補正する。よって、回転数が低い場合には当該回転数の変動を抑制することができる。補正特性線の設定によっては、極めてゆっくりとした回転が必要な場合でも適正に補正されるので、回転数の変動を抑制した回転制御を行うことができる。
〔他の実施の形態〕
以上では本発明を実施するための形態について実施の形態1〜3に従って説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
上述した実施の形態1〜3では、回転部材として、回転電機40の回転軸やロータ等を適用した(図1,図2を参照)。この形態に代えて(あるいは加えて)、他の回転部材を適用してもよい。他の回転部材としては、例えば発電電動機以外の回転電機の回転軸やロータ等、車両等に用いられるシャフト(例えばクランクシャフトやドライブシャフト等)、ギア(ギア機構を含む)、ステアリングロッド(あるいはトーションバー)、操舵軸等のように、回転可能な他の部材が該当する。他の回転部材であっても、レゾルバ41を取り付けることができれば、実施の形態1〜3と同様の作用効果が得られる。
上述した実施の形態1〜3では、回転センサとして、レゾルバ41を適用した(図1,図2を参照)。この形態に代えて、他の回転センサを適用してもよい。他の回転センサとしては、例えばロータリーエンコーダ,ジャイロスコープ,GMR回転センサなどが該当する。他の回転センサであっても、0を含む低速回転時において補正を行わないか、補正特性線に基づいて補正するので、実施の形態1〜3と同様の作用効果が得られる。
上述した実施の形態1〜3では、誤差補正手段65aとして、マップを適用した(図3,図4を参照)。この形態に代えて、検出角度θdを補正することが可能な他の補正手段を適用してもよい。他の補正手段としては、例えばデータテーブルや、図4や図9に示す補正特性線を数式で定義した関数などが該当する。他の補正手段であっても検出角度θdを補正することができるので、実施の形態1〜3と同様の作用効果が得られる。
10 コンバータ回路
20 インバータ回路
30 電流センサ
40 回転電機
41 レゾルバ(回転センサ)
50 制御電源回路
60 制御装置(回転角度検出装置)
61 回転数フィードバック制御手段
61a 加合部
61b トルク指令演算部
61c モータトルク制御部
62 補正実行判断手段
63 回転数算出手段
64 補正実行手段
65 記録手段
65a 誤差補正手段
70 ECU(外部装置)

Claims (5)

  1. 回転部材の回転に伴って信号を出力する回転センサと、
    前記回転センサから出力される信号に基づいて検出される回転角度を示す検出角度の誤差を誤差補正手段によって補正する補正実行手段と、
    前記補正実行手段によって補正された検出角度に基づいて、検出回転数を算出する回転数算出手段と、
    前記検出回転数が指令された指令回転数となるようにフィードバック制御を行う回転数フィードバック制御手段と、
    前記検出回転数および前記指令回転数のうちで一方または双方の回転数に基づいて、前記補正実行手段による補正を行うか否かを判断する補正実行判断手段と、を有し、
    前記補正実行手段は、前記補正実行手段による補正を行うと判断された場合にのみ検出角度の誤差を補正することを特徴とする回転角度検出装置。
  2. 前記誤差補正手段は、時間の変化に伴って理想的に変化する回転角度を示す理想角度に対する補正量を記憶するマップであり、
    前記補正実行手段は、前記マップの補正量を用いて、検出角度の誤差を補正することを特徴とする請求項1に記載の回転角度検出装置。
  3. 前記補正実行判断手段は、前記検出回転数が0を含む第1回転数範囲内である場合は前記補正実行手段による補正を行わないと判断し、前記第1回転数範囲外である場合は前記補正実行手段による補正を行うと判断することを特徴とする請求項1または2に記載の回転角度検出装置。
  4. 前記補正実行判断手段は、前記指令回転数が0を含む第2回転数範囲内である場合は前記補正実行手段による補正を行わないと判断し、前記第2回転数範囲外である場合は前記補正実行手段による補正を行うと判断することを特徴とする請求項3に記載の回転角度検出装置。
  5. 前記補正実行手段は、前記検出回転数および前記指令回転数のうちで一方または双方の回転数が0を含む第3回転数範囲内である場合は、前記第3回転数範囲内に規定する補正特性線に従って検出角度の誤差を補正することを特徴とする請求項1から4のいずれか一項に記載の回転角度検出装置。
JP2010245118A 2010-11-01 2010-11-01 回転角度検出装置 Active JP5545174B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245118A JP5545174B2 (ja) 2010-11-01 2010-11-01 回転角度検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245118A JP5545174B2 (ja) 2010-11-01 2010-11-01 回転角度検出装置

Publications (2)

Publication Number Publication Date
JP2012100409A true JP2012100409A (ja) 2012-05-24
JP5545174B2 JP5545174B2 (ja) 2014-07-09

Family

ID=46391691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245118A Active JP5545174B2 (ja) 2010-11-01 2010-11-01 回転角度検出装置

Country Status (1)

Country Link
JP (1) JP5545174B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171322A (ja) * 2013-03-04 2014-09-18 Denso Corp 回転機の回転位置検出装置及び回転機の回転位置検出方法
JP2018192816A (ja) * 2017-05-12 2018-12-06 国立大学法人東京海洋大学 気泡発生検出装置および気泡発生検出方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956199A (ja) * 1995-08-10 1997-02-25 Nissan Motor Co Ltd 同期モータの制御装置
JP2001186789A (ja) * 1999-12-24 2001-07-06 Aisin Aw Co Ltd モータ制御装置及びモータ制御方法
JP2006166700A (ja) * 2006-01-17 2006-06-22 Toshiba Kyaria Kk 冷凍サイクル駆動装置用電動機の制御装置及びこの制御装置を用いた空気調和機
JP2010096708A (ja) * 2008-10-20 2010-04-30 Denso Corp モータの回転角検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956199A (ja) * 1995-08-10 1997-02-25 Nissan Motor Co Ltd 同期モータの制御装置
JP2001186789A (ja) * 1999-12-24 2001-07-06 Aisin Aw Co Ltd モータ制御装置及びモータ制御方法
JP2006166700A (ja) * 2006-01-17 2006-06-22 Toshiba Kyaria Kk 冷凍サイクル駆動装置用電動機の制御装置及びこの制御装置を用いた空気調和機
JP2010096708A (ja) * 2008-10-20 2010-04-30 Denso Corp モータの回転角検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171322A (ja) * 2013-03-04 2014-09-18 Denso Corp 回転機の回転位置検出装置及び回転機の回転位置検出方法
JP2018192816A (ja) * 2017-05-12 2018-12-06 国立大学法人東京海洋大学 気泡発生検出装置および気泡発生検出方法

Also Published As

Publication number Publication date
JP5545174B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP4770639B2 (ja) 電気モータ駆動制御方法および装置
JP4434184B2 (ja) 電気モータのフィードバック制御方法および装置
JP5556845B2 (ja) 3相回転機の制御装置
JP5672278B2 (ja) 3相回転機の制御装置
JP5652434B2 (ja) モータ制御装置、及び、これを用いた電動パワーステアリング装置
JP5751455B2 (ja) 回転電機制御装置
JP3979289B2 (ja) 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP3674919B2 (ja) 電動パワーステアリング装置とその制御方法
JP2009261066A (ja) モータ制御装置および電動パワーステアリング装置
JP2009247181A (ja) モータ制御装置および電動パワーステアリング装置
JP2005073307A (ja) 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP5092760B2 (ja) モータ制御装置および電動パワーステアリング装置
JP2007274779A (ja) 電動駆動制御装置及び電動駆動制御方法
WO2019017231A1 (ja) モータ制御装置
JP5673009B2 (ja) インバータ制御装置および電力変換システム
JP6485330B2 (ja) モータ制御装置
JP5545174B2 (ja) 回転角度検出装置
JP5136839B2 (ja) モータ制御装置
JP2020043643A (ja) 3相回転機の制御装置
JP4896562B2 (ja) 電動駆動制御装置及び電動駆動制御方法
JP4839119B2 (ja) 電動駆動制御装置及び電動駆動制御方法
JP5259936B2 (ja) 電動車両のモータ診断装置
US11502632B2 (en) Motor control device and electric vehicle
JP6269328B2 (ja) 同期モータの制御装置、及び、これを備える車両制御システム
JP2008155683A (ja) 電気式動力舵取装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5545174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250