JP2012084540A - プラズマジェット点火プラグおよびその点火装置 - Google Patents

プラズマジェット点火プラグおよびその点火装置 Download PDF

Info

Publication number
JP2012084540A
JP2012084540A JP2011283381A JP2011283381A JP2012084540A JP 2012084540 A JP2012084540 A JP 2012084540A JP 2011283381 A JP2011283381 A JP 2011283381A JP 2011283381 A JP2011283381 A JP 2011283381A JP 2012084540 A JP2012084540 A JP 2012084540A
Authority
JP
Japan
Prior art keywords
plasma
inner diameter
plasma jet
ignition plug
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011283381A
Other languages
English (en)
Inventor
Toru Nakamura
通 中村
Tomoaki Kato
友聡 加藤
Yuichi Yamada
裕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011283381A priority Critical patent/JP2012084540A/ja
Publication of JP2012084540A publication Critical patent/JP2012084540A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

【課題】混合気に、より点火しやすくすることができるプラズマジェット点火プラグおよびその点火装置を提供すること。
【解決手段】
プラズマジェット点火プラグ600のキャビティ660を、絞り部63と拡径部665とから構成する。拡径部665は絞り部63から中心電極20の先端面26に向けて径が徐々に拡径されている。従って、拡径部665の内周面はテーパ状に形成され、絞り部63の内径は拡径部665の内径よりも小さくなる。これにより、プラズマの噴出時の勢いを強め、混合気への着火性をより向上することができる。
【選択図】 図8

Description

本発明は、プラズマを形成して混合気への点火を行う内燃機関用のプラズマジェット点火プラグおよびその点火装置に関するものである。
従来、例えば自動車用の内燃機関であるエンジンの点火プラグには、火花放電(単に「放電」ともいう。)により混合気への点火を行うスパークプラグが使用されている。近年、内燃機関の高出力化や低燃費化が求められている。例えば、燃焼の広がりが速く、従来よりも空燃比の高い希薄混合気に対しても確実に点火できる点火プラグとして、プラズマジェット点火プラグが知られている。
プラズマジェット点火プラグは、中心電極と接地電極(外部電極)との間の火花放電間隙の周囲を、セラミックス等の絶縁碍子(ハウジング)で包囲した、キャビティ(チャンバー)と称する小さな容積の放電空間を有している。このようなプラズマジェット点火プラグを用い、混合気への点火が行われる際には、まず、中心電極と接地電極との間に高電圧が印加され、火花放電が行われる。このときに生じた絶縁破壊によって、中心電極と接地電極との間には、比較的低い電圧で電流を流すことができるようになる。中心電極と接地電極との間にさらにエネルギーが供給されると、放電状態が遷移して、キャビティ内でプラズマが形成される。そして、キャビティ内で形成されたプラズマが、接地電極の連通孔(外部電極孔)を通じて噴出され、混合気への点火が行われる(例えば特許文献1参照)。
ところで、プラズマの幾何学的な形状のひとつとして、キャビティから噴出される際に、例えば火柱状の形態をなすものがある(以下、このようなプラズマの形態を「フレーム状」という。)。フレーム状のプラズマは噴出方向に伸びるため、混合気との接触面積が大きく着火性が高いという特徴を持つ。混合気への着火性をさらに向上させるには、噴出するプラズマの噴出長さをより長くするとよいことが知られている。特許文献1においてもキャビティの容積やその形状を種々変更することにより、プラズマの噴出長さを長くする試みがなされている。
特開2006−294257号公報
しかしながら、内燃機関の燃費効率の向上への要望から、より希薄な混合気に対しても十分な着火性を得られる点火プラグが求められている。特許文献1のようにプラズマの噴出長さをただ長くするだけでなく、より勢いよくキャビティからプラズマを噴出でき、混合気に対し、より点火しやすい点火プラグが求められていた。
本発明は、上記課題を解決するためになされたものであり、混合気に、より点火しやすくすることができるプラズマジェット点火プラグおよびその点火装置を提供することを目的とする。
本発明の第1態様によれば、中心電極と、軸線方向に延びる軸孔を有し、当該軸孔内に、前記中心電極の先端面を収容しつつ前記中心電極を保持すると共に、前記軸孔の先端側に、前記軸孔の内周面と前記中心電極の先端面とを壁面とし、容積が15mm未満のキャビティとしての凹部が形成された絶縁碍子と、前記絶縁碍子の径方向周囲を取り囲んで保持する主体金具と、前記主体金具と電気的に接続され、前記絶縁碍子よりも先端側に設けられた接地電極とを備え、前記中心電極と前記接地電極との間で行う放電に伴い前記凹部内にてプラズマを生ずるプラズマジェット点火プラグにおいて、前記絶縁碍子の前記凹部は、少なくとも前記軸線方向に同径で延びる部位を有し、前記絶縁碍子の先端側の開口に連続する絞り部と、前記絞り部に連続し、前記絞り部よりも拡径されるとともに、前記中心電極の先端面が自身の内部に露出された拡径部とから構成され、前記軸線方向において、前記拡径部の長さをX、前記絞り部の長さをYとしたときに、X≦Yを満たす、プラズマジェット点火プラグが提供される。
第1態様のプラズマジェット点火プラグでは、キャビティ内で生じたプラズマが、噴出に至る前に、キャビティ内で膨張することとなる。このとき、キャビティの外部に通ずる絞り部の内径が拡径部より小さく構成されているため、拡径部内で膨張するプラズマの圧力の損失が抑えられる。従って、キャビティ内でのプラズマの圧力をより高めることができる。また、絞り部は、内径が同径のままで軸線方向に延びる区間を有する。このため、噴出時にプラズマが絞り部を通過すると、プラズマは軸線付近に集められる。さらにプラズマは、その噴出方向が軸線方向に揃えられる。これにより、プラズマの噴出時の圧力がより高められるので、プラズマの勢いを強めることができる。さらに、プラズマの噴出方向が揃えられることにより、噴出後にプラズマが広がってしまい、プラズマのエネルギーが低下してしまうことを抑制することができる。従ってプラズマの噴出長さをより長くすることができ、混合気への着火性をより向上することができる。
そして、拡径部よりも径の細い絞り部は、その長さが、軸線方向において拡径部と同じ長さか、それよりも長くなるように、形成されるとよい。すなわちX≦Yが満たされるとよい。このようにすれば、プラズマが絞り部を通過した際にその形状を整え、軸線方向に伸びる火柱状(フレーム状)となるようにすることができる。また、このときプラズマは、噴出方向が軸線方向に揃えられるので、噴出時の勢いが増加する。これによりプラズマは、高いエネルギーを保ったままでプラズマ自身の噴出長さを長くできる。従ってプラズマは、燃焼室内の混合気に対し高い着火性を得ることができる。
さらに、本発明の第2態様のプラズマジェット点火プラグによれば、上記第1態様のプラズマジェット点火プラグの前記凹部は、前記拡径部における内径で最も大きな部位の内径をAとしたときに、A≦φ4.0(mm)を満たすとともに、前記絞り部における内径で最も小さな部位の内径をBとしたときに、φ0.5≦B≦φ1.5(mm)を満たすとよい。
このように、拡径部の内径Aをφ4.0(mm)以下とすれば、拡径部内での噴出方向以外へのプラズマの広がりによる圧力の損失を低減することができる。そして、絞り部の内径Bをφ1.5(mm)以下とすることで、拡径部の内径Aに対して十分な径差を設けることができる。これにより、拡径部におけるプラズマの膨張過程で絞り部を介した圧力の損失を低減することができる。また、絞り部の内径Bが大きすぎると、拡径部において十分に圧力が高められたとしても、絞り部を介して噴出される際のプラズマの断面あたりの圧力が低下する虞がある。すると、プラズマは、十分な噴出長さを得られなくなる虞がある。このことからも、絞り部の内径Bをφ1.5(mm)以下とすることが好ましい。一方で、絞り部の内径Bが小さすぎると、プラズマの噴出時のエネルギー損失が大きく、噴出時のプラズマの外径が細くなって着火性の低下を招く虞がある。従って、絞り部の内径Bはφ0.5(mm)以上とすることが好ましい。このように、キャビティの拡径部の内径Aと、絞り部の内径Bとの大きさをそれぞれ規定することによって、キャビティから噴出するプラズマが、十分な噴出量を有することができる。さらに、プラズマの噴出長さも長くすることができ、混合気への着火性をより向上することができる。
さらに、本発明の第3態様のプラズマジェット点火プラグは、上記第1または第2態様のプラズマジェット点火プラグの、前記接地電極は、板状の電極で、前記凹部と外気とを連通する連通孔を有し、前記軸線方向において、前記接地電極の厚みをZとしたときに、Z<X+Y≦3.0(mm)を満たすとよい。
このように、キャビティ全体の軸線方向の長さ(深さ)、すなわち、軸線方向における拡径部の長さXと絞り部の長さYとの和を3.0(mm)以下とすれば、プラズマの噴出時に、プラズマがキャビティ内で軸線方向に広がってしまうことを抑制できる。これにより、プラズマ噴出時の圧力の損失を抑制することができる。従って、プラズマの勢いが低下することを防止することができる。
また、プラズマは、絶縁碍子の開口から外部に向けて噴出する際に、接地電極の連通孔を通るため、実際には接地電極よりも外方にて混合気への点火が行われることとなる。従ってプラズマは、軸線方向において接地電極の先端面よりも先端側に達したときに、高いエネルギーを維持していることが望ましい。そのためにはZ<X+Y(mm)が満たされるとよい。
さらに、本発明の第4態様のプラズマジェット点火プラグは、上記第2態様のプラズマジェット点火プラグが、X≦Aを満たすとよい。
このように、拡径部の長さXを内径A以下の大きさとすれば、拡径部の形状を、軸線方向よりも径方向に長く延びる小部屋形状とすることができる。するとプラズマは、膨張する際に径方向へ広がりやすくなるので、絞り部側へ膨張することによるプラズマの圧力損失を抑えることができる。従って、プラズマの噴出時に、プラズマの圧力が低下することを抑制することができる。
さらに、本発明の第5態様のプラズマジェット点火プラグは、上記第2または第4態様のプラズマジェット点火プラグの前記接地電極の前記連通孔の内径をCとしたときに、B≦Cを満たすとよい。
このように、接地電極の連通孔の内径Cを絞り部の内径B以上の大きさとすれば、絞り部によって噴出時に軸線方向に揃えられるプラズマが、連通孔を通過する際に、接地電極とは接触し難くすることができる。従って、接地電極によってプラズマの熱が奪われ難くなり、着火性の低下を抑制することができる。
さらに、本発明の第6態様のプラズマジェット点火プラグは、上記第2、第4または第5態様のプラズマジェット点火プラグの前記中心電極の先端部の外径をDとしたときに、0≦D−B≦2(mm)を満たすとよい。
プラズマの発生時には中心電極と接地電極との間で火花放電が行われるが、このように、D−Bを2mm以下とすれば、絞り部が、火花放電の経路上に大きく張り出す形態となってチャンネリングにより削られてしまうことを抑制することができる。また、D−Bを0mm以上とすれば、キャビティ内で生成されたプラズマが噴出する際に、噴出方向とは反対側にプラズマの圧力が逃げてエネルギーを損失してしまうことを抑制することができる。
さらに、本発明の第7態様のプラズマジェット点火プラグは、上記第1乃至第6態様のプラズマジェット点火プラグの前記絞り部の前記軸線方向と直交する断面積をS(mm)、前記凹部の容積をV(mm)としたときに、0.01<S/V≦0.4を満たすとよい。
このように、S/Vが0.01より大きければ、プラズマが、絞り部を介して外部に噴出する際に、発生したプラズマの総量に対する時間あたりの流量が絞られ過ぎることがなく、プラズマの噴出を効率よく行うことができる。また、S/Vが0.4以下であれば、キャビティ内で発生したプラズマが膨張する際に、絞り部を介してプラズマの圧力が抜けてしまうことがなく、プラズマの噴出時の勢いを高め、着火性を向上することができる。
また、本発明の第8態様によれば、上記第7態様のプラズマジェット点火プラグと、前記プラズマジェット点火プラグに点火のためのエネルギーを供給する電源とを備え、前記電源から供給される供給エネルギーの量をE(mJ)としたときに、3≦E/V≦200を満たす、プラズマジェット点火プラグの点火装置が提供される。
このように、E/Vが3以上であれば、キャビティ内で発生するプラズマが、そのキャビティの容積に見合う量のエネルギーを得ることができる。このためプラズマは、キャビティ内で十分に圧力を高めることができ、噴出時の勢いを高めて着火性を向上することができる。また、E/Vを200以下にすれば、供給エネルギー量が飽和状態とはならず、発生するプラズマのエネルギーの増加に応じた着火性を得られる。そして、着火性の向上のために必要且つ十分なエネルギーの供給を受けるため、電極消耗を十分に抑制することができる。
プラズマジェット点火プラグ100の部分断面図である。 プラズマジェット点火プラグ100の先端部分を拡大した断面図である。 プラズマジェット点火プラグ100に接続された点火装置120の電気的な構成を概略的に示す図である。 変形例としてのプラズマジェット点火プラグ200の部分断面図である。 変形例としてのプラズマジェット点火プラグ300の部分断面図である。 変形例としてのプラズマジェット点火プラグ400の部分断面図である。 変形例としてのプラズマジェット点火プラグ500の部分断面図である。 変形例としてのプラズマジェット点火プラグ600の部分断面図である。 変形例としてのプラズマジェット点火プラグ700の部分断面図である。 変形例としてのプラズマジェット点火プラグ800の部分断面図である。 E/Vと空燃比向上率との関係を示す片対数グラフである。
以下、本発明を具体化したプラズマジェット点火プラグおよびその点火装置の一実施の形態について、図面を参照して説明する。まず、図1,図2を参照して、一例としてのプラズマジェット点火プラグ100の構造について説明する。なお、図1において、プラズマジェット点火プラグ100の軸線O方向を図面における上下方向とする。そして、図1の紙面において、下側をプラズマジェット点火プラグ100の先端側、上側を後端側として説明する。
図1に示すように、プラズマジェット点火プラグ100は、概略、絶縁碍子10と、絶縁碍子10を保持する主体金具50と、絶縁碍子10内に軸線O方向に保持された中心電極20と、主体金具50の先端部59に溶接された接地電極30と、絶縁碍子10の後端部に設けられた端子金具40とから構成されている。
絶縁碍子10は、周知のようにアルミナ等を焼成して形成された絶縁部材であり、軸線O方向に軸孔12を有する筒状をなす。軸線O方向の略中央には外径の最も大きな鍔部19が形成されており、これより後端側には後端側胴部18が形成されている。また、鍔部19より先端側には後端側胴部18より外径の小さな先端側胴部17と、先端側胴部17よりも先端側で先端側胴部17よりも更に外径の小さな脚長部13とが形成されている。脚長部13と先端側胴部17との間は段状に形成されている。
図2に示すように、軸孔12のうち脚長部13の内周にあたる部分は、電極収容部15として形成されている。電極収容部15は、軸孔12のうち、先端側胴部17、鍔部19および後端側胴部18の内周にあたる部分よりも、縮径されている。電極収容部15の内部には中心電極20が保持される。また、軸孔12は、電極収容部15の先端側において内周が更に縮径されており、先端小径部61として形成されている。そして、先端小径部61の内周は絶縁碍子10の先端面16に連続し、軸孔12の開口14を形成している。
次に、中心電極20は、インコネル(商標名)600または601等のNi系合金等で形成された円柱状の電極棒である。中心電極20は、内部に熱伝導性に優れる銅等からなる金属芯23を有している。中心電極20の先端部21は、先端側に向けて縮径されている。そして中心電極20の先端部21には、貴金属やWを主成分とする合金からなる円盤状の電極チップ25が、中心電極20と一体となるように溶接されている。なお、本実施の形態では、中心電極20と一体になった電極チップ25も含め「中心電極」と称する。
中心電極20の後端側は鍔状に拡径されている。この鍔状の部分が、軸孔12内において電極収容部15の起点となる段状の部位に当接されている。これにより、電極収容部15内で中心電極20が位置決めされている。また、中心電極20の先端面26(より具体的には中心電極20の先端部21にて中心電極20と一体に接合された電極チップ25の先端面26)が、電極収容部15と先端小径部61との間の段部よりも軸線O方向の後端側に配置されている。
この構成により、プラズマジェット点火プラグ100には、軸孔12の先端小径部61の内周面によって囲まれ、軸線O方向先端側が絶縁碍子10の先端面16の開口14に連続し、軸線O方向後端側が電極収容部15に通ずる筒穴状の第1の小部屋(以下、「絞り部」63とよぶ。)が形成されている。さらに、プラズマジェット点火プラグ100には、電極収容部15の内周面と、中心電極20の先端面26とで包囲され、軸線O方向先端側が絞り部63に通ずる第2の小部屋(以下、「拡径部」65とよぶ。)が形成されている。つまり、絶縁碍子10の軸孔12は、電極収容部15の先端側で、中心電極20により塞がれた凹部状をなす。すなわち軸孔12には、絞り部63と拡径部65とから構成され、先端面16の開口14を外部との連通口とする小部屋(以下、「キャビティ」60とよぶ。)が設けられている。
次に、図1に示すように、中心電極20は、軸孔12の内部に設けられた金属とガラスの混合物からなる導電性のシール体4を経由して、後端側の端子金具40に電気的に接続されている。シール体4により、中心電極20および端子金具40は、軸孔12内で固定されると共に導通される。そして端子金具40にはプラグキャップ(図示外)を介して高圧ケーブル(図示外)が接続され、中心電極20と接地電極30との間で火花放電を行うための高電圧が印加されるようになっている。
次に、主体金具50は、図示外の内燃機関のエンジンヘッドにプラズマジェット点火プラグ100を固定するための円筒状の金具である。主体金具50は、絶縁碍子10を取り囲むようにして自身の内部に保持している。主体金具50は鉄系の材料より形成され、図示外のプラズマジェット点火プラグレンチが嵌合する工具係合部51と、図示外の内燃機関上部に設けられたエンジンヘッドに螺合するねじ部52とを備えている。
また、主体金具50の工具係合部51より後端側には加締部53が設けられている。工具係合部51から加締部53にかけての主体金具50と、絶縁碍子10の後端側胴部18との間には円環状のリング部材6,7が介在されている。更に両リング部材6,7の間には、タルク(滑石)9の粉末が充填されている。加締部53を加締めることにより、リング部材6,7およびタルク9を介し、絶縁碍子10が主体金具50内で先端側に向け押圧されている。また、図2に示すように、脚長部13と先端側胴部17との間の段状の部位が、主体金具50の内周面に段状に形成された係止部56に環状のパッキン80を介して支持されている。このようにして、主体金具50と絶縁碍子10とが一体となっている。そしてパッキン80によって、主体金具50と絶縁碍子10との間の気密が保持され、両者間を介した燃焼ガスの流出が防止される。また、図1に示すように、工具係合部51とねじ部52との間には鍔部54が形成されている。ねじ部52の後端側近傍、すなわち鍔部54の座面55にはガスケット5が嵌挿されている。
次に、主体金具50の先端部59には接地電極30が設けられている。接地電極30は耐火花消耗性に優れた金属から構成されており、一例としてインコネル(商標名)600または601等のNi系合金が用いられる。図2に示すように、接地電極30は中央に連通孔31を有する円盤状に形成されている。接地電極30は、自身の厚み方向を軸線O方向に揃え、絶縁碍子10の先端面16に当接した状態で、主体金具50の先端部59の内周面に形成された係合部58に係合されている。そして先端面32を主体金具50の先端面57に揃えた状態で、外周縁が一周にわたって係合部58とレーザ溶接されている。これにより、接地電極30と主体金具50とが一体となっている。キャビティ60の内部は、接地電極30の連通孔31を介し、外気と連通されている。
このような構造を有するプラズマジェット点火プラグ100は、図3に一例を示す、点火装置120に接続され、点火装置120から電力の供給を受けることにより、混合気への点火を行う。以下、点火装置120の構成について説明する。
図3に示す点火装置120は、ECUからの指示に従ってプラズマジェット点火プラグ100に電力を供給し、プラズマジェット点火プラグ100からプラズマを噴出させて、混合気への点火を行う装置である。点火装置120には、火花放電回路部140、プラズマ放電回路部160、制御回路部130,150、および逆流防止用の2つのダイオード145,165が設けられている。
火花放電回路部140は、火花放電間隙に高電圧を印加することで絶縁破壊させて火花放電を生じさせる、いわゆるトリガー放電を行うための電源回路部であり、例えばCDI型の電源回路から構成される。火花放電回路部140は、自動車のECU(電子制御回路)に接続された制御回路部130によって制御される。火花放電回路部140は、ダイオード145を介し、電力供給先となるプラズマジェット点火プラグ100の中心電極20に電気的に接続されている。火花放電回路部140における電位の向きやダイオード145の向きは、トリガー放電の際に、接地電極30側から中心電極20側に電流が流れる向きに設定されている。
また、プラズマ放電回路部160は、火花放電回路部140によって行われるトリガー放電により絶縁破壊が生じた火花放電間隙に高エネルギーを供給して、プラズマを形成させるための電源回路部である。プラズマ放電回路部160は、上記同様、自動車のECU(電子制御回路)に接続された制御回路部150によって制御される。プラズマ放電回路部160も同様に、逆流防止用のダイオード165を介し、プラズマジェット点火プラグ100の中心電極20に接続されている。
プラズマ放電回路部160には、エネルギーとしての電荷を蓄えておくコンデンサ162と、コンデンサ162を充電するための高電圧発生回路161とが設けられている。コンデンサ162は、一端が接地され、他端が、高電圧発生回路161と、上記ダイオード165を介して中心電極20とに接続されている。ここで、1回のプラズマ噴出を行うため、火花放電間隙に供給されるエネルギー量E(mJ)は、トリガー放電による火花放電間隙へのエネルギー供給量と、コンデンサ162からのエネルギー供給量との和である。コンデンサ162の静電容量は、エネルギー量E(mJ)が、後述する規定量となるように調整されている。また、コンデンサ162から火花放電間隙にプラズマ発生用のエネルギーが供給される際に、上記同様、接地電極30側から中心電極20側に電流が流れるように、高電圧発生回路161の電位の向きやダイオード165の向きが設定されている。なお、点火装置120に接続されたプラズマジェット点火プラグ100の接地電極30は、主体金具(図1参照)を介し、接地されている。
このように構成された点火装置120では、ECUからの点火指示(点火時期を示す制御信号の受信)に基づき、プラズマジェット点火プラグ100へ電力の供給が行われる。プラズマジェット点火プラグ100では電力の供給を受けプラズマが噴出されて、混合気への点火が行われる。以下、混合気への点火を行う際のプラズマジェット点火プラグ100および点火装置120の動作について説明する。
内燃機関の稼働に伴い本実施の形態のプラズマジェット点火プラグ100による混合気への点火が行われる際には、図3に示す、ECUから点火装置120の制御回路部130に点火時期を示す情報が送信される。その点火時期より前の時期には、プラズマ放電回路部160において、ダイオード165により逆流が防止されたコンデンサ162と、高電圧発生回路161とで閉回路が形成されており、制御回路部150の制御に基づきコンデンサ162が充電される。そして、点火時期の情報に基づいて制御回路部130により火花放電回路部140が制御されると、接地電極30および中心電極20からなる火花放電間隙に高電圧が印加される。これにより、接地電極30と中心電極20との間の絶縁が破壊され、トリガー放電が生ずる。
トリガー放電によって火花放電間隙の絶縁が破壊されると、比較的低電圧で火花放電間隙に電流を流すことができるようになる。するとコンデンサ162に蓄えられたエネルギーが放出され、火花放電間隙に供給される。これにより、図2に示す、周囲を壁面に囲まれた小空間からなるキャビティ60内で、高エネルギーのプラズマが形成される。プラズマは、後述する各条件をキャビティ60や接地電極30の各部が満たすことによって、火柱のような形状、いわゆるフレーム状となり、絶縁碍子10の開口14から外方、すなわち燃焼室内に向けて噴出される。そして燃焼室内の混合気に点火し、形成された火炎核が成長して燃焼が行われる。
一方、コンデンサ162に蓄えられたエネルギーが放出された後は、火花放電間隙へのエネルギーの供給が終了するため火花放電間隙が絶縁される。そして、再度、コンデンサ162と高電圧発生回路161とで閉回路が形成されて、コンデンサ162が充電される。制御回路部130が次の点火時期の情報を受信すると、火花放電間隙に再びトリガー放電を生じさせ、フレーム状のプラズマが噴出される。
このように、本実施の形態のプラズマジェット点火プラグ100では、中心電極20と接地電極30との間に高電圧が印加されて火花放電が行われる。そして、中心電極20と接地電極30との間にさらにエネルギーが供給されることにより、放電状態が遷移すると、キャビティ60内でプラズマが形成される。キャビティ60内でプラズマが膨張し、圧力が高まると、開口14より火柱のような形状、いわゆるフレーム状となってプラズマが噴出される。
本実施の形態では、図2に示すように、キャビティ60から噴出するプラズマの勢いをより強くするため、前述したように、キャビティ60を、絞り部63と拡径部65とからなる二室構造としている。上記したようにキャビティ60は、絶縁碍子10の軸孔12を中心電極20で塞ぐことにより、絶縁碍子10の先端面16の開口14を外部との連通口とする小部屋として構成されている。キャビティ60において、絞り部63は、拡径部65と外部とを連通する配置となっている。そして絞り部63は、軸線O方向に同径で延びる部位(軸線Oに沿って真っ直ぐ延びる孔部分)を有し、拡径部65よりも縮径されていることにより、いわゆる砲身としての機能を果たす。また、拡径部65は、外部に通ずる経路が絞り部63によって小さく絞られた袋小路状の小部屋となっている。これにより、内部で発生したプラズマが膨張する過程における圧力の損失が低減される。
この構造により、キャビティ60内で発生したプラズマは、膨張する際に、特に拡径部65において圧力が高められる。さらに外部へ向けて噴出する際に、径の細い絞り部63を通過することによって、噴出時の勢いが増す。そしてこのプラズマは、軸線O方向に延びる絞り部63の形状に導かれ、開口14から燃焼室内に向けて軸線O方向に伸びる火柱状(フレーム状)となって噴出される。上記のように、絞り部63は軸線O方向に同径で延びる部位を有する。このためにプラズマは、噴出方向が軸線Oに揃えられ、噴出時の勢いが増加される。従ってプラズマは、高いエネルギーを保ったまま噴出長さが長くなり、燃焼室内の混合気に対し高い着火性を得ることができるのである。なお、プラズマが高いエネルギーを持ったまま噴出されるため、噴出時には開口14が高温高圧に曝される。プラズマによる開口14の欠けを防止するため、開口14のエッジ部分に面取り加工を施してもよい。こうした場合においても絞り部63が、いわゆる砲身としての機能を果たすためには、真っ直ぐ延びる孔部分が、少なくとも絞り部63の軸線O方向における長さの80%以上の長さを有することが好ましい。
このように、高い着火性を得ることができるフレーム状のプラズマを噴出できるように、本実施の形態では、後述する評価試験の結果に基づいて、キャビティ60の各部の大きさ等に、以下に示す規定を設けている。ここで、図2に示すように、軸線O方向において、拡径部65の長さをX、絞り部63の長さをY、接地電極30の連通孔31の長さ(すなわち接地電極30の厚み)をZとする。また、拡径部65の内径をA、絞り部63の内径をB、連通孔31の内径をC、中心電極20の先端部21の外径(すなわち先端面26の直径)をDとする。さらに、絞り部63の軸線O方向と直交する断面積をS、キャビティ60の容積をVとする。なお、キャビティ60の容積Vは、中心電極20の先端面26よりも軸線O方向先端側における絞り部63および拡径部65の合計の容積を指すものとする。本実施の形態では、キャビティ60の容積Vが15mm未満であり、B<Aを満たすこと、ならびにX≦Yを満たすことを規定している。また、A≦φ4.0(mm)を満たすこと、φ0.5≦B≦φ1.5(mm)を満たすことを規定している。さらに、Z<X+Y≦3.0(mm)を満たすこと、X≦Aを満たすこと、B≦Cを満たすことを規定している。また、0≦D−B≦2(mm)を満たすこと、0.01<S/V≦0.4を満たすことを規定している。
まず、B<Aを満たすこと、つまりキャビティ60の拡径部65の内径Aよりも絞り部63の内径Bが小さいことが望ましい。このようにすれば、上記したように、キャビティ60内で発生したプラズマが膨張する過程において、特に拡径部65における圧力の損失が低減される。このため、プラズマが絞り部63を介して外部に噴出する際に、勢いよく噴出するのに十分な圧力を得ることができる。
また、キャビティ60の容積Vは15mm未満であることが望ましい。キャビティ60に供給するエネルギー量を一定としたままキャビティ60の容積Vを大きくすると、キャビティ60内におけるプラズマの密度が低下する。従ってキャビティ60の容積Vを大きくした場合、キャビティ60内でプラズマが膨張して圧力を十分に高めるためには、より高いエネルギーの供給を行う必要が生ずる。
次に、軸線O方向における絞り部63の長さYは、拡径部65の長さX以上となることが好ましい。拡径部65よりも径の細い絞り部63が、軸線O方向に拡径部65よりも長く形成されることによって、噴出時のプラズマが軸線O方向に伸びる火柱状(フレーム状)となるように、プラズマの形状を導くことができる。また、プラズマの噴出方向が軸線Oに揃えられて噴出時の勢いが増加するため、高いエネルギーを保ったままでプラズマの噴出長さを長くでき、燃焼室内の混合気に対し高い着火性を得ることができる。
次に、キャビティ60の拡径部65の内径Aは、φ4.0(mm)以下となることが好ましい。拡径部65の内径Aが大きくなると、発生したプラズマは、拡径部65内で径方向に広がってしまい、圧力を損失する。このため、プラズマは、絞り部63を介して外部に勢いよく噴出し難くなる。
また、絞り部63の内径Bは、φ0.5(mm)以上、φ1.5(mm)以下となることが好ましい。絞り部63の内径Bがφ0.5(mm)より小さいと、絞り部63を介してプラズマが外部に噴出する際に、プラズマにかかる負荷が大きく、エネルギーの損失が大きくなる。また、プラズマの噴出時の外径が細くなって、着火性の低下を招く虞がある。一方、絞り部63の内径Bがφ1.5(mm)より大きいと、拡径部65において十分にプラズマの圧力が高められたとしても、噴出時に、絞り部63にてプラズマの断面あたりの圧力を高め難くなる。するとプラズマは、十分な噴出長さを得られなくなり、着火性の低下を招く虞がある。
また、軸線O方向における拡径部65と絞り部63の合計の長さX+Y、すなわちキャビティ60の深さは、3.0mm以下であることが好ましい。キャビティ60の深さが深くなるほど、キャビティ60内で発生したプラズマが、キャビティ60内で軸線O方向に広がってしまい、圧力を損失しやすい。すると、開口14から外部に噴出するプラズマの勢いが低下する虞がある。
また、プラズマは、開口14から外部に向けて噴出する際に接地電極30の連通孔31を通るため、実際には接地電極30よりも外方にて混合気への点火が行われることとなる。従ってプラズマは、開口14から噴出後、接地電極30の先端面32よりも軸線O方向先端側において、高いエネルギーを維持できることが望ましい。具体的にはZ<X+Y(mm)が満たされれば、混合気に対する高い着火性を得ることができ、好ましい。
次に、拡径部65の形状について、拡径部65の軸線O方向の長さXは、拡径部65の内径A以下の大きさであることが好ましい。X>Aであると、拡径部65が径方向よりも軸線O方向に長く延びる小部屋形状となる。するとプラズマが膨張する際に、絞り部63側に向けて(軸線O方向に)プラズマの圧力が広がりやすくなる。このためプラズマは、噴出時の勢いが低下する虞がある。
また、接地電極30の連通孔31の内径Cは、絞り部63の内径B以上の大きさであることが好ましい。プラズマの噴出方向は絞り部63によって軸線O方向に揃えられるため、連通孔31の内径Cが絞り部63の内径Bと同じか、それより大きければ、噴出時にプラズマが接地電極30と接触し難くなる。従って、接地電極30によってプラズマの熱が奪われ難くなり、着火性の低下を抑制することができる。
また、中心電極20の先端部21の外径Dと絞り部63の内径Bとの差、D−Bが、0≦D−B≦2(mm)であることが望ましい。プラズマの発生時には中心電極20と接地電極30との間で火花放電が行われるが、D−Bが大きくなるほど、絞り部63において、火花放電の経路上に絶縁碍子10が、より大きく張り出す形態となる。D−Bが2mmより大きくなると、火花放電によって、絞り部63の内周面が削られる、いわゆるチャンネリングが発生しやすくなり、放電の安定性の低下や絶縁碍子10の耐熱性の低下を招く虞がある。一方、D−Bが0mm未満となると、プラズマ噴出時の圧力が、軸線O方向後端側(つまり噴出方向の反対側)へ逃げて損失しやすくなる。するとプラズマは、十分な噴出長さを得られなくなり、着火性の低下を招く虞がある。
また、キャビティ60の容積Vに対する絞り部63の断面積Sの割合(S/V)が、0.01より大きく、0.4以下となることが望ましい。絞り部63の断面積Sが小さくなるのに対してキャビティ60の容積Vが大きくなれば、プラズマが、絞り部63を介して外部に噴出する際に、発生したプラズマの総量に対する時間あたりの流量が絞られ過ぎてしまうこととなる。これにより、エネルギーの損失が大きくなる。具体的に、S/Vが0.01以下となると、プラズマの噴出が効率よく行われず、着火性の低下を招く虞がある。一方、キャビティ60の容積Vが小さくなるのに対して絞り部63の断面積Sが大きくなれば、キャビティ60内で発生するプラズマが膨張する際に、プラズマの圧力が絞り部63を介して抜けてしまう。具体的に、S/Vが0.4より大きくなると、プラズマの噴出時の勢いが低下し、着火性の低下を招く虞がある。
さらに、キャビティ60の容積Vに対する電源からの供給エネルギー量Eの割合(E/V)は、3以上200以下となることが望ましい。供給エネルギー量Eが少なくなるのに対してキャビティ60の容積Vが大きくなれば、キャビティ60内で発生するプラズマが高い圧力を得るのにあたって、キャビティ60の容積Vに見合う量のエネルギーを得られない。具体的にE/Vが3未満では、キャビティ60内でプラズマが十分に圧力を高められず、噴出時の勢いが低下し、着火性の低下を招く虞がある。一方、キャビティ60の容積Vに対して供給エネルギー量Eを増やしていけば、発生するプラズマのエネルギーも増加し、着火性が向上していくが、E/Vが200を超えると飽和状態となる。電極消耗を抑制するためにも、E/Vは200以下とすることが望ましい。
このように、キャビティ60を構成する絞り部63および拡径部65、さらに接地電極30のそれぞれの軸線O方向の長さや内径に規定を設けることで、プラズマを開口14より勢いよく噴出させ、混合気への着火性を向上できることについて確認するため、評価試験を行った。
[実施例1]
まず、絞り部63の内径Bと拡径部65の内径Aとの大小関係による着火性の良否について確認するための評価試験を行った。この評価試験を行うにあたり、キャビティの拡径部の内径Aをφ2.0mm、絞り部の内径Bをφ1.0mmとした絶縁碍子を用い、プラズマジェット点火プラグのサンプル1−2を作製した。同様に、拡径部の内径Aをφ1.0mm、絞り部の内径Bをφ2.0mmとした絶縁碍子を用いてプラズマジェット点火プラグのサンプル1−3を作製した。また、比較例として、径差を同一とした(拡径部の内径Aおよび絞り部の内径Bをそれぞれφ1.0mmとした)絶縁碍子を用いてプラズマジェット点火プラグのサンプル1−1を作製した。なお、いずれのサンプルも、軸線O方向における拡径部の長さXおよび絞り部の長さYを、それぞれ1.0mmとした。また、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。
そして各サンプルを個別に試験用の6気筒エンジンに取り付け、150mJのエネルギー量を供給可能な点火装置を接続した。そして、空気と燃料の混合比(空燃比)が、まず、例えば19となるように制御した混合気をエンジンに供給し、2000rpmで運転を行う。このとき、燃焼圧をモニタリングし、その波形から、1000回の点火のうち失火した回数が10回未満(1%未満)であれば、次に、空燃比を19.5となるように制御した混合気をエンジンに供給し、同様に点火状況の確認を行う。以後、供給する混合気の空燃比を0.5刻みで高めていき、1000回の点火のうち失火した回数が10回以上(1%以上)であったときの空燃比を、着火限界空燃比とする。このような手順によって各サンプルの着火限界空燃比について確認した結果を表1に示す。
Figure 2012084540
表1に示すように、絞り部の内径Bと拡径部の内径Aとを同一(B=A)としたサンプル1−1の着火限界空燃比は、20.0であった。また、拡径部の内径Aよりも絞り部の内径Bを小さく(B<A)したサンプル1−2の着火限界空燃比は24.5となり、サンプル1−1の着火限界空燃比に対して22.5%向上した。一方、拡径部の内径Aよりも絞り部の内径Bを大きく(B>A)したサンプル1−3の着火限界空燃比は19.5となり、サンプル1−1の着火限界空燃比に対して2.5%低下した。従って、キャビティの絞り部の内径Bを拡径部の内径Aよりも小さくすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例2]
次に、キャビティの容積Vによる着火性の良否について確認するための評価試験を行った。この評価試験を行うにあたり、絞り部の内径B、拡径部の長さXおよび絞り部の長さYをそれぞれ同一とし、拡径部の内径Aのみを異ならせることにより、キャビティの容積Vの異なる3つの絶縁碍子を用意し、プラズマジェット点火プラグのサンプル2−1〜2−3を作製した。具体的に、サンプル2−1〜2−3は、拡径部の内径Aをそれぞれφ3.5,φ3.75,φ4.0(mm)とした。また、絞り部の内径B,拡径部の長さX,絞り部の長さYは、各サンプルとも共通に、それぞれφ0.5,1.5,1.5(mm)とした。また、各サンプルとも、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。各サンプルに対し、実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表2に示す。
Figure 2012084540
表2に示すように、キャビティの容積Vが14.72mmとなったサンプル2−1では、着火限界空燃比が24.0となり、サンプル1−1(表1参照)の着火限界空燃比に対して20.0%の向上が見られた。しかし、キャビティの容積Vが16.85,19.13(mm)となったサンプル2−2,2−3の着火限界空燃比は、それぞれ21.0,20.5であり、サンプル1−1の着火限界空燃比に対する向上率は、それぞれ5.0,2.5(%)であった。従って、キャビティの容積Vを大きくするほど着火限界空燃比が低くなることがわかった。この試験の結果より、プラズマジェット点火プラグの着火性を向上するには、キャビティの容積Vを15mm未満とすればよいことがわかった。
[実施例3]
次に、拡径部の長さXと、絞り部の長さYとの大小関係による着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径Aおよび絞り部の内径Bをそれぞれφ2.0,φ1.0(mm)とし、拡径部の長さXおよび絞り部の長さYをそれぞれ異ならせた3つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル3−1〜3−3を作製した。具体的に、サンプル3−1は、拡径部の長さXおよび絞り部の長さYを、共に1.5mmとした。また、サンプル3−2では、Xを2.0mm、Yを1.0mmとし、サンプル3−3では、Xを1.0mm、Yを2.0mmとした。そして、各サンプルとも共通に、接地電極には、厚みZが1.5mmで連通孔の内径Cがφ2.0mmのものを用いた。なお、各サンプルとも、キャビティの容積Vは15mm未満である。これらの各サンプルに対し、実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表3に示す。
Figure 2012084540
表3に示すように、サンプル3−1〜3−3は、拡径部の長さXと絞り部の長さYとの和(X+Y)を3.0mmとしつつ、両者の比を異ならせたものである。拡径部の長さXと絞り部の長さYとを同一(X=Y)としたサンプル3−1では、着火限界空燃比が24.0となり、サンプル1−1(表1参照)の着火限界空燃比に対し20.0%向上した。また、拡径部の長さXを絞り部の長さYよりも小さく(X<Y)したサンプル3−3も同様に、着火限界空燃比が24.0となった。しかし、拡径部の長さXを絞り部の長さYよりも大きく(X>Y)したサンプル3−2では、着火限界空燃比が21.0に低下し、サンプル1−1の着火限界空燃比に対し、5.0%向上しただけであった。従って、拡径部の長さXを絞り部の長さY以下とすれば、プラズマジェット点火プラグの着火性が、より向上することがわかった。
[実施例4]
次に、拡径部の内径Aの大きさによる着火性の良否について確認するための評価試験を行った。この評価試験においても、絞り部の内径B、拡径部の長さXおよび絞り部の長さYをそれぞれ同一とし、拡径部の内径Aのみを異ならせた2つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル4−1,4−2を作製した。具体的に、サンプル4−1,4−2は、拡径部の内径Aをそれぞれφ4.0,φ4.5(mm)とした。また、絞り部の内径B,拡径部の長さX,絞り部の長さYを、サンプル4−1,4−2とも共通に、φ0.5,0.5,2.5(mm)とした。なお、両サンプルともキャビティの容積Vは15mm未満である。また、両サンプルとも、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。両サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表4に示す。
Figure 2012084540
表4に示すように、拡径部の内径Aをφ4.0mmとしたサンプル4−1では、着火限界空燃比が24.5となり、サンプル1−1(表1参照)の着火限界空燃比に対して22.5%向上した。しかし、サンプル4−2のように拡径部の内径Aをφ4.5mmとすると、着火限界空燃比が20.0となり、サンプル1−1の着火限界空燃比と変わらなかった。従って、プラズマジェット点火プラグの着火性を向上するには、拡径部の内径Aの大きさをφ4.0mm以下とすればよいことがわかった。
[実施例5]
次に、絞り部の内径Bの大きさによる着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径A、拡径部の長さXおよび絞り部の長さYをそれぞれ同一とし、絞り部の内径Bのみを異ならせた4つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル5−1〜5−4を作製した。具体的に、サンプル5−1〜5−4は、絞り部の内径Bをそれぞれφ0.3,φ0.5,φ1.5,φ1.8(mm)とした。また、拡径部の内径A,拡径部の長さX,絞り部の長さYを、サンプル5−1〜5−4とも共通に、φ2.0,1.0,1.0(mm)とした。なお、各サンプルともキャビティの容積Vは15mm未満である。また、各サンプルとも、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表5に示す。
Figure 2012084540
表5に示すように、絞り部の内径Bをφ0.5mmとしたサンプル5−2やφ1.5としたサンプル5−3の着火限界空燃比は、それぞれ24.5,24.0となり、サンプル1−1(表1参照)の着火限界空燃比に対してそれぞれ22.5,20.0(%)向上した。しかし、絞り部の内径Bをφ0.5mmよりも小さくし、φ0.3mmとしたサンプル5−1では、着火限界空燃比が20.5に低下し、サンプル1−1の着火限界空燃比に対し2.5%向上しただけであった。また、絞り部の内径Bをφ1.5mmよりも大きくし、φ1.8mmとしたサンプル5−4でも、着火限界空燃比が21.0に低下し、サンプル1−1の着火限界空燃比に対し5.0%向上しただけであった。従って、プラズマジェット点火プラグの着火性を向上するには、絞り部の内径Bを、φ0.5mm以上φ1.5mm以下とすればよいことがわかった。
[実施例6]
次に、拡径部の長さXと絞り部の長さYの和の大きさによる着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径Aおよび絞り部の内径Bをそれぞれφ2.0,φ1.0(mm)とし、拡径部の長さXおよび絞り部の長さYをそれぞれ異ならせた5つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル6−1〜6−5を作製した。具体的に、サンプル6−1〜6−5は、拡径部の長さXと絞り部の長さYとをそれぞれ以下のように組み合わせた。サンプル6−1ではXを1.5mm、Yを2.0mmとし、サンプル6−2ではX、Y共に2.0mmとした。また、サンプル6−3ではX、Y共に1.0mmとした。そして、サンプル6−4,6−5ではX、Y共に0.5mmとした。さらに、サンプル6−1〜6−3では、接地電極として厚みZが1.5mmで連通孔の内径Cがφ2.0mmのものを用い、サンプル6−4,6−5では、その接地電極の厚みZをそれぞれ1.0mm,0.8mmとしたものを用いた。なお、各サンプルとも、キャビティの容積Vは15mm未満である。各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表6に示す。なお、比較例として、表6には、サンプル3−1,3−3(表3参照)およびサンプル1−2(表1参照)を掲載した。
Figure 2012084540
表6に示すように、サンプル6−1〜6−3は、X≦Yを満たしたまま、X+Yを異ならせたものである。X=Yを満たし、X+Yを2.0mmとしたサンプル6−3では、着火限界空燃比が23.5となり、サンプル1−1(表1参照)の着火限界空燃比に対し17.5%向上した。一方、X+Yを4.0mmとしたサンプル6−2では、着火限界空燃比が20.0となり、サンプル1−1の着火限界空燃比に対する向上は見られなかった。これらサンプル6−2,6−3と、サンプル3−1(X+Y=3.0(mm))とを比較すれば、X+Yを大きくしすぎると着火限界空燃比が低下することがわかる。さらに、X<Yである場合について、X+Yを3.5mmとしたサンプル6−1では着火限界空燃比が21.0となり、サンプル1−1の着火限界空燃比に対し5.0%向上しただけであった。サンプル6−1をサンプル3−3と比較した場合も同様に、X+Yを大きくしすぎると着火限界空燃比が低下することがわかる。このことからX+Yを3.0mm以下とすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
なお、サンプル6−3とサンプル1−2(表1参照)とは、拡径部と絞り部の大きさが同じながら接地電極の厚みZのみが異なる。具体的に、サンプル6−3ではZが1.5mmであり、サンプル1−2ではZが1.0mmとなっている。両サンプルの着火性を比較すると、サンプル6−3はサンプル1−2に対し着火限界空燃比が若干低下したものの、共に良好な結果が得られている。そして、両サンプルともZ<X+Yを満たすが、X+Yに対しZが大きくなると着火性が低下する傾向がみられる。さらにX+Yを1.0mm、Zを1.0mm(Z=X+Y)としたサンプル6−4は、着火限界空燃比が20.5となり、サンプル1−1の着火限界空燃比に対して2.5%向上しただけであった。しかし、サンプル6−4に対し、拡径部と絞り部の大きさを同じとしたままZを小さくし、0.8mm(Z<X+Y)としたサンプル6−5では、着火限界空燃比が23.0となり、サンプル1−1の着火限界空燃比に対して15.0%向上した。このことからZ<X+Yとすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例7]
次に、拡径部の長さXと内径Aとの大きさの関係による着火性の良否について確認するための評価試験を行った。この評価試験では、X+Yが3.0mmとなるように拡径部の長さXと絞り部の長さYとを異ならせつつも、拡径部の内径Aおよび絞り部の内径Bを一定とした3つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル7−1〜7−3を作製した。具体的に、サンプル7−1〜7−3では、拡径部の内径A,絞り部の内径Bを、各サンプルとも共通に、φ1.0,φ0.5(mm)とした。そしてサンプル7−1では、Xを0.5mm、Yを2.5mmとし、サンプル7−2では、Xを1.0mm、Yを2.0mmとした。また、サンプル6−3では、Xを1.25mm、Yを1.75mmとした。なお、各サンプルとも、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表7に示す。
Figure 2012084540
表7に示すように、X<Aを満たすサンプル7−1,X=Aを満たすサンプル7−2は、着火限界空燃比がそれぞれ24.5,24.0となり、サンプル1−1(表1参照)の着火限界空燃比に対し、それぞれ22.5,20.0(%)向上した。しかし、X>Aとなるサンプル7−3は着火限界空燃比が21.5となり、サンプル1−1の着火限界空燃比に対して7.5%向上しただけであった。このことからX≦Aとすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例8]
次に、接地電極の連通孔の内径Cの大きさの違いによる着火性の良否について確認するための評価試験を行った。この評価試験では、キャビティが同一(サンプル3−3(表3参照)と同一のキャビティで、拡径部の内径Aがφ2.0mm、長さXが1.0mm、絞り部の内径Bがφ1.0mm、長さYが2.0mmであるもの。)で、接地電極の連通孔の内径Cのみが異なる3つのプラズマジェット点火プラグのサンプル8−1〜8−3を用意した。そして、サンプル8−1,8−2,8−3では、接地電極の連通孔の内径Cを、それぞれφ0.5mm,φ1.0mm,φ1.5mmとした。なお、各サンプルとも接地電極の厚みZは1.0mmである。各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表8に示す。
Figure 2012084540
表8に示すように、B>Cであるサンプル8−1では着火限界空燃比が20.5となり、サンプル1−1(表1参照)の着火限界空燃比に対して2.5%向上しただけであった。しかし、B=Cであるサンプル8−2や、B<Cであるサンプル8−3では、着火限界空燃比がそれぞれ24.0,25.0となり、サンプル1−1の着火限界空燃比に対してそれぞれ20.0,25.0(%)の向上がみられた。このことからB≦Cが満たされることによって、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例9]
次に、中心電極の先端部の外径と絞り部の内径との径差の違いによる着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径Aがφ2.0mm、長さXが1.0mm、絞り部の内径Bがφ1.0mm、長さYが1.0mmの絶縁碍子を用い、中心電極の先端部の外径Dを0.6〜1.2(mm)の範囲で異ならせた4種類のプラズマジェット点火プラグのサンプル9−1〜9−4を用意した。さらに、拡径部の内径Aがφ3.0mm、長さXが1.0mm、絞り部の内径Bがφ0.5mm、長さYが1.0mmの絶縁碍子を用い、中心電極の先端部の外径Dを2.2〜2.6(mm)の範囲で異ならせた3種類のプラズマジェット点火プラグのサンプル9−5〜9−7を用意した。なお、各サンプルとも接地電極の連通孔の内径Cはφ1.0mmで、厚みZは1.0mmである。
各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。さらに、各サンプルに対し、0.6MPaに加圧したチャンバー内で、1秒間に60回の火花を発生させる点火試験を30時間行った。そして、点火試験後に各サンプルを解体し、チャンネリングの発生により絶縁碍子に生じた溝の深さを三次元レーザ測定器で測定した。チャンネリングによる溝の深さが0.2mm未満のサンプルは、良好と判断して「◎」と評価した。また、チャンネリングによる溝の深さが0.2〜0.4mmのサンプルは、チャンネリングが発生したものの軽度であり、使用する上で問題はないと判断して「○」と評価した。一方、チャンネリングによる溝の深さが0.4mm以上のサンプルは、使用する上で問題があると判断して「×」と評価した。この試験の結果を表9に示す。
Figure 2012084540
表9に示すように、D−Bが0以上のサンプル9−3〜9−7では、着火限界空燃比が24以上となり、サンプル1−1(表1参照)の着火限界空燃比に対して20.0%以上向上した。しかし、D−Bが0未満のサンプル9−1,9−2では、着火限界空燃比22.5以下であり、空燃比は10.0〜12.5%向上しただけであった。一方、D−Bが大きくなるに従い、チャンネリングによる溝の深さが深くなっていく傾向が見られた。特に、D−Bが2.0より大きなサンプル9−7では、チャンネリングによる評価が×となり、プラズマジェット点火プラグの耐久性の面で好ましくないことが分かった。このことから0≦D−B≦2(mm)とすれば、プラズマジェット点火プラグの着火性が向上し、また耐久性の面でも良好であることがわかった。
[実施例10]
次に、キャビティの容積に対する絞り部の断面積の割合の違いによる着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径Aがφ4.0mm、長さXが2.0mm、絞り部の内径Bがφ0.5mm、長さYが1.0mmの絶縁碍子を用い、連通孔の内径Cがφ1.0mm、厚みZが1.5mmの接地電極を組み付けたプラズマジェット点火プラグのサンプル10−1を用意した。サンプル10−1のS/Vは0.008となった。また、他の評価試験で作製したプラズマジェット点火プラグのサンプルのデータからS/Vを求め、その値が0.010〜0.448の範囲で異なるサンプルを選び、着火性についてサンプル10−1と比較した。この試験の結果を表10に示す。
Figure 2012084540
表10に示すように、S/Vが0.01以下のサンプル10−1,2−3では、着火限界空燃比が20.5となり、空燃比は2.5%向上しただけであった。また、S/Vが0.4より大きなサンプル5−4でも、着火限界空燃比は21.0となり、空燃比が5.0%向上しただけであった。しかし、S/Vが0.01より大きく0.4以下であるサンプル2−1,6−3,4−1,6−5は、着火限界空燃比が、おおむね23.0以上であり、15.0%以上の空燃比向上率を得られた。このことから0.01<S/V≦0.4とすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例11]
次に、キャビティの容積に対する電源からの供給エネルギー量の割合の違いによる着火性の良否について確認するための評価試験を行った。この評価試験では、他の評価試験に用いたサンプル6−1,6−2,2−1を、それぞれ個別に試験用の6気筒エンジンに取り付け、点火装置に接続した。点火装置は、プラズマ放電回路部のコンデンサを適宜取り替えることで、1回の点火において30〜300mJの範囲で6段階のエネルギー量を供給できるようにした。そして、各サンプルに対し、実施例1と同様の評価試験を行って、各エネルギー量ごとに、着火限界空燃比を確認した。この試験の結果を表11に示す。また、E/Vと空燃比向上率との関係を図11の片対数グラフに示す。
Figure 2012084540
表11に示すように、各サンプル6−1,6−2,2−1は、それぞれキャビティの容積Vが異なる。各サンプルとも、供給されるエネルギー量Eが増加するに従って、着火限界空燃比が増加した。図11に示すように、サンプル6−1,6−2では、E/Vが100前後で空燃比向上率が20%に達した。そして図11の片対数グラフから、E/Vが200を超えると、空燃比向上率の増加具合はほぼ横ばい状態となり、飽和状態となることがわかった。電極消耗を抑制するためにも、E/Vは200以下とすることが望ましい。また、図11に示すように、サンプル2−1によると、E/Vが3より大きければ、空燃比向上率は10%よりは向上することがわかる。このことから、3<E/V≦200とすれば、プラズマジェット点火プラグの着火性が向上し、また耐久性の面でも良好であることがわかった。
なお、本発明は各種の変形が可能なことはいうまでもない。例えば、図4に示すプラズマジェット点火プラグ200のように、接地電極230の連通孔231の内径Cが、キャビティ60の絞り部63の内径Bと同一であってもよい。また、キャビティ60の拡径部65の内径Aを拡径あるいは縮径する場合、軸孔12の電極収容部15の内径や先端小径部61の内径(すなわち絞り部63の内径B)をそのままとしてもよい。例えば図5に示すプラズマジェット点火プラグ300のように、キャビティ360の拡径部365の内径Aを、電極収容部15の内径、すなわち中心電極20の外径よりも大きくしてもよい。あるいは図6に示すプラズマジェット点火プラグ400のように、キャビティ460の拡径部465の内径Aを、電極収容部15の内径、すなわち中心電極20の外径よりも小さくしてもよい。この場合においてB<Aは満たされるようにする。
また、図7に示すプラズマジェット点火プラグ500のように、キャビティ560の拡径部565を、内径の小さな第1拡径部566と、それより内径の大きな第2拡径部567とからなる2段構成としてもよい。もちろん、3段以上としてもよいし、あるいは図8に示すプラズマジェット点火プラグ600のキャビティ660の拡径部665のように、内周面をテーパ状に形成してもよい。こうした場合において、拡径部の内径Aは、拡径部を構成する部位のうち最も内径が大きい部位における内径をもって規定すればよい。例えば図7のプラズマジェット点火プラグ500であれば、第2拡径部567の内径を拡径部の内径Aとして規定すればよい。同様に図8のプラズマジェット点火プラグ600であれば、テーパ状をなす内周面の最も拡径された部位(図8の場合は電極収容部15との接続部位)における内径を、拡径部の内径として規定すればよい。
また、図9に示すプラズマジェット点火プラグ700のように、主体金具750の先端部759に取り付けられる接地電極30と、絶縁碍子10の先端面16とは必ずしも密着していなくともよく、両者の間に間隙が設けられてもよい。キャビティ60内で形成されるプラズマは噴出時の方向が絞り部63によって軸線O方向に揃えられるため、こうした間隙があっても着火性への影響は生じにくい。
また、図10に示すプラズマジェット点火プラグ800のように、接地電極830の連通孔831の内壁を、貴金属やWを主成分とする合金からなる電極チップ835で形成してもよい。プラズマジェット点火プラグには接地電極と中心電極との間に高いエネルギーが供給されるため、こうした電極チップを接地電極や中心電極に設ければ耐火花消耗性を高めることができ、プラズマジェット点火プラグの寿命を延ばすことができる。
また、キャビティ60を構成する軸孔12の先端小径部61は、必ずしも電極収容部15より小径に形成される必要はない。拡径部65や絞り部63の長さX,Yや内径A,Bが、上記の条件を満たせば、電極収容部15と同径に形成してもよいし、あるいは電極収容部15よりも大きな内径に形成してもよい。
また、点火装置120は、本実施の形態のようにトリガー放電にコンデンサからのエネルギーを重畳する方式のものに限らず、CDI式、フルトランジスター式、ポイント(接点)式など、その他のいかなる点火方式のものとしてもよい。
10 絶縁碍子
20 中心電極
25 電極チップ
26 先端面
30 接地電極
31 連通孔
60 キャビティ
61 先端小径部
63 絞り部
100 プラズマジェット点火プラグ
200 プラズマジェット点火プラグ
230 接地電極
231 連通孔
300 プラズマジェット点火プラグ
360 キャビティ
365 拡径部
400 プラズマジェット点火プラグ
460 キャビティ
465 拡径部
500 プラズマジェット点火プラグ
560 キャビティ
565 拡径部
566 第1拡径部
567 第2拡径部
600 プラズマジェット点火プラグ
660 キャビティ
665 拡径部
700 プラズマジェット点火プラグ
800 プラズマジェット点火プラグ
830 接地電極
831 連通孔
本発明は、プラズマを形成して混合気への点火を行う内燃機関用のプラズマジェット点火プラグおよびその点火装置に関するものである。
従来、例えば自動車用の内燃機関であるエンジンの点火プラグには、火花放電(単に「放電」ともいう。)により混合気への点火を行うスパークプラグが使用されている。近年、内燃機関の高出力化や低燃費化が求められている。例えば、燃焼の広がりが速く、従来よりも空燃比の高い希薄混合気に対しても確実に点火できる点火プラグとして、プラズマジェット点火プラグが知られている。
プラズマジェット点火プラグは、中心電極と接地電極(外部電極)との間の火花放電間隙の周囲を、セラミックス等の絶縁碍子(ハウジング)で包囲した、キャビティ(チャンバー)と称する小さな容積の放電空間を有している。このようなプラズマジェット点火プラグを用い、混合気への点火が行われる際には、まず、中心電極と接地電極との間に高電圧が印加され、火花放電が行われる。このときに生じた絶縁破壊によって、中心電極と接地電極との間には、比較的低い電圧で電流を流すことができるようになる。中心電極と接地電極との間にさらにエネルギーが供給されると、放電状態が遷移して、キャビティ内でプラズマが形成される。そして、キャビティ内で形成されたプラズマが、接地電極の連通孔(外部電極孔)を通じて噴出され、混合気への点火が行われる(例えば特許文献1参照)。
ところで、プラズマの幾何学的な形状のひとつとして、キャビティから噴出される際に、例えば火柱状の形態をなすものがある(以下、このようなプラズマの形態を「フレーム状」という。)。フレーム状のプラズマは噴出方向に伸びるため、混合気との接触面積が大きく着火性が高いという特徴を持つ。混合気への着火性をさらに向上させるには、噴出するプラズマの噴出長さをより長くするとよいことが知られている。特許文献1においてもキャビティの容積やその形状を種々変更することにより、プラズマの噴出長さを長くする試みがなされている。
特開2006−294257号公報
しかしながら、内燃機関の燃費効率の向上への要望から、より希薄な混合気に対しても十分な着火性を得られる点火プラグが求められている。特許文献1のようにプラズマの噴出長さをただ長くするだけでなく、より勢いよくキャビティからプラズマを噴出でき、混合気に対し、より点火しやすい点火プラグが求められていた。
本発明は、上記課題を解決するためになされたものであり、混合気に、より点火しやすくすることができるプラズマジェット点火プラグおよびその点火装置を提供することを目的とする。
本発明の第1態様によれば、中心電極と、軸線方向に延びる軸孔を有し、当該軸孔内に、前記中心電極の先端面を収容しつつ前記中心電極を保持すると共に、前記軸孔の先端側に、前記軸孔の内周面と前記中心電極の先端面とを壁面とし、キャビティとしての凹部が形成された絶縁碍子と、前記絶縁碍子の径方向周囲を取り囲んで保持する主体金具と、前記主体金具と電気的に接続され、前記絶縁碍子よりも先端側に設けられた接地電極とを備え、前記中心電極と前記接地電極との間で行う放電に伴い前記凹部内にてプラズマを生ずるプラズマジェット点火プラグにおいて、前記絶縁碍子の前記凹部は、少なくとも前記軸線方向に同径で延びる部位を有し、前記絶縁碍子の先端側の開口に連続する絞り部と、前記絞り部に連続し、前記絞り部から前記中心電極の先端面に向けて径が徐々に拡径され拡径部とから構成されプラズマジェット点火プラグが提供される。
第1態様のプラズマジェット点火プラグでは、キャビティ内で生じたプラズマが、噴出に至る前に、キャビティ内で膨張することとなる。このとき、キャビティの外部に通ずる絞り部の内径が拡径部より小さく構成され、更に、絞り部から中心電極の先端面に向けて拡径部の径が徐々に拡径されている。従って、拡径部の径は絞り部に向けて徐々に小さくなる形状であるため、拡径部内で膨張するプラズマの圧力の損失が抑えられ
プラズマの絞り部へ向けての噴出時の勢いを強め、混合気への着火性をより向上することができる。また、絞り部は、内径が同径のままで軸線方向に延びる区間を有する。このため、噴出時にプラズマが絞り部を通過すると、プラズマは軸線付近に集められる。さらにプラズマは、その噴出方向が軸線方向に揃えられる。これにより、プラズマの噴出時の圧力がより高められるので、プラズマの勢いを強めることができる。さらに、プラズマの噴出方向が揃えられることにより、噴出後にプラズマが広がってしまい、プラズマのエネルギーが低下してしまうことを抑制することができる。従ってプラズマの噴出長さをより長くすることができ、混合気への着火性をより向上することができる。
また、本発明の第2態様のプラズマジェット点火プラグによれば、拡径部よりも径の細い絞り部は、その長さが、軸線方向において拡径部と同じ長さか、それよりも長くなるように、形成されるとよい。すなわちX≦Yが満たされるとよい。このようにすれば、プラズマが絞り部を通過した際にその形状を整え、軸線方向に伸びる火柱状(フレーム状)となるようにすることができる。また、このときプラズマは、噴出方向が軸線方向に揃えられるので、噴出時の勢いが増加する。これによりプラズマは、高いエネルギーを保ったままでプラズマ自身の噴出長さを長くできる。従ってプラズマは、燃焼室内の混合気に対し高い着火性を得ることができる。
さらに、本発明の第態様のプラズマジェット点火プラグによれば、上記第1又は第2態様のプラズマジェット点火プラグの前記凹部は、前記拡径部における内径で最も大きな部位の内径をAとしたときに、A≦φ4.0(mm)を満たすとともに、前記絞り部における内径で最も小さな部位の内径をBとしたときに、φ0.5≦B≦φ1.5(mm)を満たすとよい。
このように、拡径部の内径Aをφ4.0(mm)以下とすれば、拡径部内での噴出方向以外へのプラズマの広がりによる圧力の損失を低減することができる。そして、絞り部の内径Bをφ1.5(mm)以下とすることで、拡径部の内径Aに対して十分な径差を設けることができる。これにより、拡径部におけるプラズマの膨張過程で絞り部を介した圧力の損失を低減することができる。また、絞り部の内径Bが大きすぎると、拡径部において十分に圧力が高められたとしても、絞り部を介して噴出される際のプラズマの断面あたりの圧力が低下する虞がある。すると、プラズマは、十分な噴出長さを得られなくなる虞がある。このことからも、絞り部の内径Bをφ1.5(mm)以下とすることが好ましい。一方で、絞り部の内径Bが小さすぎると、プラズマの噴出時のエネルギー損失が大きく、噴出時のプラズマの外径が細くなって着火性の低下を招く虞がある。従って、絞り部の内径Bはφ0.5(mm)以上とすることが好ましい。このように、キャビティの拡径部の内径Aと、絞り部の内径Bとの大きさをそれぞれ規定することによって、キャビティから噴出するプラズマが、十分な噴出量を有することができる。さらに、プラズマの噴出長さも長くすることができ、混合気への着火性をより向上することができる。
さらに、本発明の第態様のプラズマジェット点火プラグは、上記第2態様のプラズマジェット点火プラグの、前記接地電極は、板状の電極で、前記凹部と外気とを連通する連通孔を有し、前記軸線方向において、前記接地電極の厚みをZとしたときに、Z<X+Y≦3.0(mm)を満たすとよい。
このように、キャビティ全体の軸線方向の長さ(深さ)、すなわち、軸線方向における拡径部の長さXと絞り部の長さYとの和を3.0(mm)以下とすれば、プラズマの噴出時に、プラズマがキャビティ内で軸線方向に広がってしまうことを抑制できる。これにより、プラズマ噴出時の圧力の損失を抑制することができる。従って、プラズマの勢いが低下することを防止することができる。
また、プラズマは、絶縁碍子の開口から外部に向けて噴出する際に、接地電極の連通孔を通るため、実際には接地電極よりも外方にて混合気への点火が行われることとなる。従ってプラズマは、軸線方向において接地電極の先端面よりも先端側に達したときに、高いエネルギーを維持していることが望ましい。そのためにはZ<X+Y(mm)が満たされるとよい。
さらに、本発明の第態様のプラズマジェット点火プラグは、上記第2又は第4態様のプラズマジェット点火プラグが、X≦Aを満たすとよい。
このように、拡径部の長さXを内径A以下の大きさとすれば、拡径部の形状を、軸線方向よりも径方向に長く延びる小部屋形状とすることができる。するとプラズマは、膨張する際に径方向へ広がりやすくなるので、絞り部側へ膨張することによるプラズマの圧力損失を抑えることができる。従って、プラズマの噴出時に、プラズマの圧力が低下することを抑制することができる。
さらに、本発明の第態様のプラズマジェット点火プラグは、上記第態様のプラズマジェット点火プラグの前記接地電極の前記連通孔の内径をCとしたときに、B≦Cを満たすとよい。
このように、接地電極の連通孔の内径Cを絞り部の内径B以上の大きさとすれば、絞り部によって噴出時に軸線方向に揃えられるプラズマが、連通孔を通過する際に、接地電極とは接触し難くすることができる。従って、接地電極によってプラズマの熱が奪われ難くなり、着火性の低下を抑制することができる。
さらに、本発明の第態様のプラズマジェット点火プラグは、上記第3又は第態様のプラズマジェット点火プラグの前記中心電極の先端部の外径をDとしたときに、0≦D−B≦2(mm)を満たすとよい。
プラズマの発生時には中心電極と接地電極との間で火花放電が行われるが、このように、D−Bを2mm以下とすれば、絞り部が、火花放電の経路上に大きく張り出す形態となってチャンネリングにより削られてしまうことを抑制することができる。また、D−Bを0mm以上とすれば、キャビティ内で生成されたプラズマが噴出する際に、噴出方向とは反対側にプラズマの圧力が逃げてエネルギーを損失してしまうことを抑制することができる。
さらに、本発明の第態様のプラズマジェット点火プラグは、上記第1乃至第態様のプラズマジェット点火プラグの前記絞り部の前記軸線方向と直交する断面積をS(mm)、前記凹部の容積をV(mm)としたときに、0.01<S/V≦0.4を満たすとよい。
このように、S/Vが0.01より大きければ、プラズマが、絞り部を介して外部に噴出する際に、発生したプラズマの総量に対する時間あたりの流量が絞られ過ぎることがなく、プラズマの噴出を効率よく行うことができる。また、S/Vが0.4以下であれば、キャビティ内で発生したプラズマが膨張する際に、絞り部を介してプラズマの圧力が抜けてしまうことがなく、プラズマの噴出時の勢いを高め、着火性を向上することができる。
また、本発明の第態様によれば、上記第態様のプラズマジェット点火プラグと、前記プラズマジェット点火プラグに点火のためのエネルギーを供給する電源とを備え、前記電源から供給される供給エネルギーの量をE(mJ)としたときに、3≦E/V≦200を満たす、プラズマジェット点火プラグの点火装置が提供される。
このように、E/Vが3以上であれば、キャビティ内で発生するプラズマが、そのキャビティの容積に見合う量のエネルギーを得ることができる。このためプラズマは、キャビティ内で十分に圧力を高めることができ、噴出時の勢いを高めて着火性を向上することができる。また、E/Vを200以下にすれば、供給エネルギー量が飽和状態とはならず、発生するプラズマのエネルギーの増加に応じた着火性を得られる。そして、着火性の向上のために必要且つ十分なエネルギーの供給を受けるため、電極消耗を十分に抑制することができる。
プラズマジェット点火プラグ100の部分断面図である。 プラズマジェット点火プラグ100の先端部分を拡大した断面図である。 プラズマジェット点火プラグ100に接続された点火装置120の電気的な構成を概略的に示す図である。 変形例としてのプラズマジェット点火プラグ200の部分断面図である。 変形例としてのプラズマジェット点火プラグ300の部分断面図である。 変形例としてのプラズマジェット点火プラグ400の部分断面図である。 変形例としてのプラズマジェット点火プラグ500の部分断面図である。 変形例としてのプラズマジェット点火プラグ600の部分断面図である。 変形例としてのプラズマジェット点火プラグ700の部分断面図である。 変形例としてのプラズマジェット点火プラグ800の部分断面図である。 E/Vと空燃比向上率との関係を示す片対数グラフである。
以下、本発明を具体化したプラズマジェット点火プラグおよびその点火装置の一実施の形態について、図面を参照して説明する。まず、図1,図2を参照して、一例としてのプラズマジェット点火プラグ100の構造について説明する。なお、図1において、プラズマジェット点火プラグ100の軸線O方向を図面における上下方向とする。そして、図1の紙面において、下側をプラズマジェット点火プラグ100の先端側、上側を後端側として説明する。
図1に示すように、プラズマジェット点火プラグ100は、概略、絶縁碍子10と、絶縁碍子10を保持する主体金具50と、絶縁碍子10内に軸線O方向に保持された中心電極20と、主体金具50の先端部59に溶接された接地電極30と、絶縁碍子10の後端部に設けられた端子金具40とから構成されている。
絶縁碍子10は、周知のようにアルミナ等を焼成して形成された絶縁部材であり、軸線O方向に軸孔12を有する筒状をなす。軸線O方向の略中央には外径の最も大きな鍔部19が形成されており、これより後端側には後端側胴部18が形成されている。また、鍔部19より先端側には後端側胴部18より外径の小さな先端側胴部17と、先端側胴部17よりも先端側で先端側胴部17よりも更に外径の小さな脚長部13とが形成されている。脚長部13と先端側胴部17との間は段状に形成されている。
図2に示すように、軸孔12のうち脚長部13の内周にあたる部分は、電極収容部15として形成されている。電極収容部15は、軸孔12のうち、先端側胴部17、鍔部19および後端側胴部18の内周にあたる部分よりも、縮径されている。電極収容部15の内部には中心電極20が保持される。また、軸孔12は、電極収容部15の先端側において内周が更に縮径されており、先端小径部61として形成されている。そして、先端小径部61の内周は絶縁碍子10の先端面16に連続し、軸孔12の開口14を形成している。
次に、中心電極20は、インコネル(商標名)600または601等のNi系合金等で形成された円柱状の電極棒である。中心電極20は、内部に熱伝導性に優れる銅等からなる金属芯23を有している。中心電極20の先端部21は、先端側に向けて縮径されている。そして中心電極20の先端部21には、貴金属やWを主成分とする合金からなる円盤状の電極チップ25が、中心電極20と一体となるように溶接されている。なお、本実施の形態では、中心電極20と一体になった電極チップ25も含め「中心電極」と称する。
中心電極20の後端側は鍔状に拡径されている。この鍔状の部分が、軸孔12内において電極収容部15の起点となる段状の部位に当接されている。これにより、電極収容部15内で中心電極20が位置決めされている。また、中心電極20の先端面26(より具体的には中心電極20の先端部21にて中心電極20と一体に接合された電極チップ25の先端面26)が、電極収容部15と先端小径部61との間の段部よりも軸線O方向の後端側に配置されている。
この構成により、プラズマジェット点火プラグ100には、軸孔12の先端小径部61の内周面によって囲まれ、軸線O方向先端側が絶縁碍子10の先端面16の開口14に連続し、軸線O方向後端側が電極収容部15に通ずる筒穴状の第1の小部屋(以下、「絞り部」63とよぶ。)が形成されている。さらに、プラズマジェット点火プラグ100には、電極収容部15の内周面と、中心電極20の先端面26とで包囲され、軸線O方向先端側が絞り部63に通ずる第2の小部屋(以下、「拡径部」65とよぶ。)が形成されている。つまり、絶縁碍子10の軸孔12は、電極収容部15の先端側で、中心電極20により塞がれた凹部状をなす。すなわち軸孔12には、絞り部63と拡径部65とから構成され、先端面16の開口14を外部との連通口とする小部屋(以下、「キャビティ」60とよぶ。)が設けられている。
次に、図1に示すように、中心電極20は、軸孔12の内部に設けられた金属とガラスの混合物からなる導電性のシール体4を経由して、後端側の端子金具40に電気的に接続されている。シール体4により、中心電極20および端子金具40は、軸孔12内で固定されると共に導通される。そして端子金具40にはプラグキャップ(図示外)を介して高圧ケーブル(図示外)が接続され、中心電極20と接地電極30との間で火花放電を行うための高電圧が印加されるようになっている。
次に、主体金具50は、図示外の内燃機関のエンジンヘッドにプラズマジェット点火プラグ100を固定するための円筒状の金具である。主体金具50は、絶縁碍子10を取り囲むようにして自身の内部に保持している。主体金具50は鉄系の材料より形成され、図示外のプラズマジェット点火プラグレンチが嵌合する工具係合部51と、図示外の内燃機関上部に設けられたエンジンヘッドに螺合するねじ部52とを備えている。
また、主体金具50の工具係合部51より後端側には加締部53が設けられている。工具係合部51から加締部53にかけての主体金具50と、絶縁碍子10の後端側胴部18との間には円環状のリング部材6,7が介在されている。更に両リング部材6,7の間には、タルク(滑石)9の粉末が充填されている。加締部53を加締めることにより、リング部材6,7およびタルク9を介し、絶縁碍子10が主体金具50内で先端側に向け押圧されている。また、図2に示すように、脚長部13と先端側胴部17との間の段状の部位が、主体金具50の内周面に段状に形成された係止部56に環状のパッキン80を介して支持されている。このようにして、主体金具50と絶縁碍子10とが一体となっている。そしてパッキン80によって、主体金具50と絶縁碍子10との間の気密が保持され、両者間を介した燃焼ガスの流出が防止される。また、図1に示すように、工具係合部51とねじ部52との間には鍔部54が形成されている。ねじ部52の後端側近傍、すなわち鍔部54の座面55にはガスケット5が嵌挿されている。
次に、主体金具50の先端部59には接地電極30が設けられている。接地電極30は耐火花消耗性に優れた金属から構成されており、一例としてインコネル(商標名)600または601等のNi系合金が用いられる。図2に示すように、接地電極30は中央に連通孔31を有する円盤状に形成されている。接地電極30は、自身の厚み方向を軸線O方向に揃え、絶縁碍子10の先端面16に当接した状態で、主体金具50の先端部59の内周面に形成された係合部58に係合されている。そして先端面32を主体金具50の先端面57に揃えた状態で、外周縁が一周にわたって係合部58とレーザ溶接されている。これにより、接地電極30と主体金具50とが一体となっている。キャビティ60の内部は、接地電極30の連通孔31を介し、外気と連通されている。
このような構造を有するプラズマジェット点火プラグ100は、図3に一例を示す、点火装置120に接続され、点火装置120から電力の供給を受けることにより、混合気への点火を行う。以下、点火装置120の構成について説明する。
図3に示す点火装置120は、ECUからの指示に従ってプラズマジェット点火プラグ100に電力を供給し、プラズマジェット点火プラグ100からプラズマを噴出させて、混合気への点火を行う装置である。点火装置120には、火花放電回路部140、プラズマ放電回路部160、制御回路部130,150、および逆流防止用の2つのダイオード145,165が設けられている。
火花放電回路部140は、火花放電間隙に高電圧を印加することで絶縁破壊させて火花放電を生じさせる、いわゆるトリガー放電を行うための電源回路部であり、例えばCDI型の電源回路から構成される。火花放電回路部140は、自動車のECU(電子制御回路)に接続された制御回路部130によって制御される。火花放電回路部140は、ダイオード145を介し、電力供給先となるプラズマジェット点火プラグ100の中心電極20に電気的に接続されている。火花放電回路部140における電位の向きやダイオード145の向きは、トリガー放電の際に、接地電極30側から中心電極20側に電流が流れる向きに設定されている。
また、プラズマ放電回路部160は、火花放電回路部140によって行われるトリガー放電により絶縁破壊が生じた火花放電間隙に高エネルギーを供給して、プラズマを形成させるための電源回路部である。プラズマ放電回路部160は、上記同様、自動車のECU(電子制御回路)に接続された制御回路部150によって制御される。プラズマ放電回路部160も同様に、逆流防止用のダイオード165を介し、プラズマジェット点火プラグ100の中心電極20に接続されている。
プラズマ放電回路部160には、エネルギーとしての電荷を蓄えておくコンデンサ162と、コンデンサ162を充電するための高電圧発生回路161とが設けられている。コンデンサ162は、一端が接地され、他端が、高電圧発生回路161と、上記ダイオード165を介して中心電極20とに接続されている。ここで、1回のプラズマ噴出を行うため、火花放電間隙に供給されるエネルギー量E(mJ)は、トリガー放電による火花放電間隙へのエネルギー供給量と、コンデンサ162からのエネルギー供給量との和である。コンデンサ162の静電容量は、エネルギー量E(mJ)が、後述する規定量となるように調整されている。また、コンデンサ162から火花放電間隙にプラズマ発生用のエネルギーが供給される際に、上記同様、接地電極30側から中心電極20側に電流が流れるように、高電圧発生回路161の電位の向きやダイオード165の向きが設定されている。なお、点火装置120に接続されたプラズマジェット点火プラグ100の接地電極30は、主体金具(図1参照)を介し、接地されている。
このように構成された点火装置120では、ECUからの点火指示(点火時期を示す制御信号の受信)に基づき、プラズマジェット点火プラグ100へ電力の供給が行われる。プラズマジェット点火プラグ100では電力の供給を受けプラズマが噴出されて、混合気への点火が行われる。以下、混合気への点火を行う際のプラズマジェット点火プラグ100および点火装置120の動作について説明する。
内燃機関の稼働に伴い本実施の形態のプラズマジェット点火プラグ100による混合気への点火が行われる際には、図3に示す、ECUから点火装置120の制御回路部130に点火時期を示す情報が送信される。その点火時期より前の時期には、プラズマ放電回路部160において、ダイオード165により逆流が防止されたコンデンサ162と、高電圧発生回路161とで閉回路が形成されており、制御回路部150の制御に基づきコンデンサ162が充電される。そして、点火時期の情報に基づいて制御回路部130により火花放電回路部140が制御されると、接地電極30および中心電極20からなる火花放電間隙に高電圧が印加される。これにより、接地電極30と中心電極20との間の絶縁が破壊され、トリガー放電が生ずる。
トリガー放電によって火花放電間隙の絶縁が破壊されると、比較的低電圧で火花放電間隙に電流を流すことができるようになる。するとコンデンサ162に蓄えられたエネルギーが放出され、火花放電間隙に供給される。これにより、図2に示す、周囲を壁面に囲まれた小空間からなるキャビティ60内で、高エネルギーのプラズマが形成される。プラズマは、後述する各条件をキャビティ60や接地電極30の各部が満たすことによって、火柱のような形状、いわゆるフレーム状となり、絶縁碍子10の開口14から外方、すなわち燃焼室内に向けて噴出される。そして燃焼室内の混合気に点火し、形成された火炎核が成長して燃焼が行われる。
一方、コンデンサ162に蓄えられたエネルギーが放出された後は、火花放電間隙へのエネルギーの供給が終了するため火花放電間隙が絶縁される。そして、再度、コンデンサ162と高電圧発生回路161とで閉回路が形成されて、コンデンサ162が充電される。制御回路部130が次の点火時期の情報を受信すると、火花放電間隙に再びトリガー放電を生じさせ、フレーム状のプラズマが噴出される。
このように、本実施の形態のプラズマジェット点火プラグ100では、中心電極20と接地電極30との間に高電圧が印加されて火花放電が行われる。そして、中心電極20と接地電極30との間にさらにエネルギーが供給されることにより、放電状態が遷移すると、キャビティ60内でプラズマが形成される。キャビティ60内でプラズマが膨張し、圧力が高まると、開口14より火柱のような形状、いわゆるフレーム状となってプラズマが噴出される。
本実施の形態では、図2に示すように、キャビティ60から噴出するプラズマの勢いをより強くするため、前述したように、キャビティ60を、絞り部63と拡径部65とからなる二室構造としている。上記したようにキャビティ60は、絶縁碍子10の軸孔12を中心電極20で塞ぐことにより、絶縁碍子10の先端面16の開口14を外部との連通口とする小部屋として構成されている。キャビティ60において、絞り部63は、拡径部65と外部とを連通する配置となっている。そして絞り部63は、軸線O方向に同径で延びる部位(軸線Oに沿って真っ直ぐ延びる孔部分)を有し、拡径部65よりも縮径されていることにより、いわゆる砲身としての機能を果たす。また、拡径部65は、外部に通ずる経路が絞り部63によって小さく絞られた袋小路状の小部屋となっている。これにより、内部で発生したプラズマが膨張する過程における圧力の損失が低減される。
この構造により、キャビティ60内で発生したプラズマは、膨張する際に、特に拡径部65において圧力が高められる。さらに外部へ向けて噴出する際に、径の細い絞り部63を通過することによって、噴出時の勢いが増す。そしてこのプラズマは、軸線O方向に延びる絞り部63の形状に導かれ、開口14から燃焼室内に向けて軸線O方向に伸びる火柱状(フレーム状)となって噴出される。上記のように、絞り部63は軸線O方向に同径で延びる部位を有する。このためにプラズマは、噴出方向が軸線Oに揃えられ、噴出時の勢いが増加される。従ってプラズマは、高いエネルギーを保ったまま噴出長さが長くなり、燃焼室内の混合気に対し高い着火性を得ることができるのである。なお、プラズマが高いエネルギーを持ったまま噴出されるため、噴出時には開口14が高温高圧に曝される。プラズマによる開口14の欠けを防止するため、開口14のエッジ部分に面取り加工を施してもよい。こうした場合においても絞り部63が、いわゆる砲身としての機能を果たすためには、真っ直ぐ延びる孔部分が、少なくとも絞り部63の軸線O方向における長さの80%以上の長さを有することが好ましい。
このように、高い着火性を得ることができるフレーム状のプラズマを噴出できるように、本実施の形態では、後述する評価試験の結果に基づいて、キャビティ60の各部の大きさ等に、以下に示す規定を設けている。ここで、図2に示すように、軸線O方向において、拡径部65の長さをX、絞り部63の長さをY、接地電極30の連通孔31の長さ(すなわち接地電極30の厚み)をZとする。また、拡径部65の内径をA、絞り部63の内径をB、連通孔31の内径をC、中心電極20の先端部21の外径(すなわち先端面26の直径)をDとする。さらに、絞り部63の軸線O方向と直交する断面積をS、キャビティ60の容積をVとする。なお、キャビティ60の容積Vは、中心電極20の先端面26よりも軸線O方向先端側における絞り部63および拡径部65の合計の容積を指すものとする。本実施の形態では、キャビティ60の容積Vが15mm未満であり、B<Aを満たすこと、ならびにX≦Yを満たすことを規定している。また、A≦φ4.0(mm)を満たすこと、φ0.5≦B≦φ1.5(mm)を満たすことを規定している。さらに、Z<X+Y≦3.0(mm)を満たすこと、X≦Aを満たすこと、B≦Cを満たすことを規定している。また、0≦D−B≦2(mm)を満たすこと、0.01<S/V≦0.4を満たすことを規定している。
まず、B<Aを満たすこと、つまりキャビティ60の拡径部65の内径Aよりも絞り部63の内径Bが小さいことが望ましい。このようにすれば、上記したように、キャビティ60内で発生したプラズマが膨張する過程において、特に拡径部65における圧力の損失が低減される。このため、プラズマが絞り部63を介して外部に噴出する際に、勢いよく噴出するのに十分な圧力を得ることができる。
また、キャビティ60の容積Vは15mm未満であることが望ましい。キャビティ60に供給するエネルギー量を一定としたままキャビティ60の容積Vを大きくすると、キャビティ60内におけるプラズマの密度が低下する。従ってキャビティ60の容積Vを大きくした場合、キャビティ60内でプラズマが膨張して圧力を十分に高めるためには、より高いエネルギーの供給を行う必要が生ずる。
次に、軸線O方向における絞り部63の長さYは、拡径部65の長さX以上となることが好ましい。拡径部65よりも径の細い絞り部63が、軸線O方向に拡径部65よりも長く形成されることによって、噴出時のプラズマが軸線O方向に伸びる火柱状(フレーム状)となるように、プラズマの形状を導くことができる。また、プラズマの噴出方向が軸線Oに揃えられて噴出時の勢いが増加するため、高いエネルギーを保ったままでプラズマの噴出長さを長くでき、燃焼室内の混合気に対し高い着火性を得ることができる。
次に、キャビティ60の拡径部65の内径Aは、φ4.0(mm)以下となることが好ましい。拡径部65の内径Aが大きくなると、発生したプラズマは、拡径部65内で径方向に広がってしまい、圧力を損失する。このため、プラズマは、絞り部63を介して外部に勢いよく噴出し難くなる。
また、絞り部63の内径Bは、φ0.5(mm)以上、φ1.5(mm)以下となることが好ましい。絞り部63の内径Bがφ0.5(mm)より小さいと、絞り部63を介してプラズマが外部に噴出する際に、プラズマにかかる負荷が大きく、エネルギーの損失が大きくなる。また、プラズマの噴出時の外径が細くなって、着火性の低下を招く虞がある。一方、絞り部63の内径Bがφ1.5(mm)より大きいと、拡径部65において十分にプラズマの圧力が高められたとしても、噴出時に、絞り部63にてプラズマの断面あたりの圧力を高め難くなる。するとプラズマは、十分な噴出長さを得られなくなり、着火性の低下を招く虞がある。
また、軸線O方向における拡径部65と絞り部63の合計の長さX+Y、すなわちキャビティ60の深さは、3.0mm以下であることが好ましい。キャビティ60の深さが深くなるほど、キャビティ60内で発生したプラズマが、キャビティ60内で軸線O方向に広がってしまい、圧力を損失しやすい。すると、開口14から外部に噴出するプラズマの勢いが低下する虞がある。
また、プラズマは、開口14から外部に向けて噴出する際に接地電極30の連通孔31を通るため、実際には接地電極30よりも外方にて混合気への点火が行われることとなる。従ってプラズマは、開口14から噴出後、接地電極30の先端面32よりも軸線O方向先端側において、高いエネルギーを維持できることが望ましい。具体的にはZ<X+Y(mm)が満たされれば、混合気に対する高い着火性を得ることができ、好ましい。
次に、拡径部65の形状について、拡径部65の軸線O方向の長さXは、拡径部65の内径A以下の大きさであることが好ましい。X>Aであると、拡径部65が径方向よりも軸線O方向に長く延びる小部屋形状となる。するとプラズマが膨張する際に、絞り部63側に向けて(軸線O方向に)プラズマの圧力が広がりやすくなる。このためプラズマは、噴出時の勢いが低下する虞がある。
また、接地電極30の連通孔31の内径Cは、絞り部63の内径B以上の大きさであることが好ましい。プラズマの噴出方向は絞り部63によって軸線O方向に揃えられるため、連通孔31の内径Cが絞り部63の内径Bと同じか、それより大きければ、噴出時にプラズマが接地電極30と接触し難くなる。従って、接地電極30によってプラズマの熱が奪われ難くなり、着火性の低下を抑制することができる。
また、中心電極20の先端部21の外径Dと絞り部63の内径Bとの差、D−Bが、0≦D−B≦2(mm)であることが望ましい。プラズマの発生時には中心電極20と接地電極30との間で火花放電が行われるが、D−Bが大きくなるほど、絞り部63において、火花放電の経路上に絶縁碍子10が、より大きく張り出す形態となる。D−Bが2mmより大きくなると、火花放電によって、絞り部63の内周面が削られる、いわゆるチャンネリングが発生しやすくなり、放電の安定性の低下や絶縁碍子10の耐熱性の低下を招く虞がある。一方、D−Bが0mm未満となると、プラズマ噴出時の圧力が、軸線O方向後端側(つまり噴出方向の反対側)へ逃げて損失しやすくなる。するとプラズマは、十分な噴出長さを得られなくなり、着火性の低下を招く虞がある。
また、キャビティ60の容積Vに対する絞り部63の断面積Sの割合(S/V)が、0.01より大きく、0.4以下となることが望ましい。絞り部63の断面積Sが小さくなるのに対してキャビティ60の容積Vが大きくなれば、プラズマが、絞り部63を介して外部に噴出する際に、発生したプラズマの総量に対する時間あたりの流量が絞られ過ぎてしまうこととなる。これにより、エネルギーの損失が大きくなる。具体的に、S/Vが0.01以下となると、プラズマの噴出が効率よく行われず、着火性の低下を招く虞がある。一方、キャビティ60の容積Vが小さくなるのに対して絞り部63の断面積Sが大きくなれば、キャビティ60内で発生するプラズマが膨張する際に、プラズマの圧力が絞り部63を介して抜けてしまう。具体的に、S/Vが0.4より大きくなると、プラズマの噴出時の勢いが低下し、着火性の低下を招く虞がある。
さらに、キャビティ60の容積Vに対する電源からの供給エネルギー量Eの割合(E/V)は、3以上200以下となることが望ましい。供給エネルギー量Eが少なくなるのに対してキャビティ60の容積Vが大きくなれば、キャビティ60内で発生するプラズマが高い圧力を得るのにあたって、キャビティ60の容積Vに見合う量のエネルギーを得られない。具体的にE/Vが3未満では、キャビティ60内でプラズマが十分に圧力を高められず、噴出時の勢いが低下し、着火性の低下を招く虞がある。一方、キャビティ60の容積Vに対して供給エネルギー量Eを増やしていけば、発生するプラズマのエネルギーも増加し、着火性が向上していくが、E/Vが200を超えると飽和状態となる。電極消耗を抑制するためにも、E/Vは200以下とすることが望ましい。
このように、キャビティ60を構成する絞り部63および拡径部65、さらに接地電極30のそれぞれの軸線O方向の長さや内径に規定を設けることで、プラズマを開口14より勢いよく噴出させ、混合気への着火性を向上できることについて確認するため、評価試験を行った。
[実施例1]
まず、絞り部63の内径Bと拡径部65の内径Aとの大小関係による着火性の良否について確認するための評価試験を行った。この評価試験を行うにあたり、キャビティの拡径部の内径Aをφ2.0mm、絞り部の内径Bをφ1.0mmとした絶縁碍子を用い、プラズマジェット点火プラグのサンプル1−2を作製した。同様に、拡径部の内径Aをφ1.0mm、絞り部の内径Bをφ2.0mmとした絶縁碍子を用いてプラズマジェット点火プラグのサンプル1−3を作製した。また、比較例として、径差を同一とした(拡径部の内径Aおよび絞り部の内径Bをそれぞれφ1.0mmとした)絶縁碍子を用いてプラズマジェット点火プラグのサンプル1−1を作製した。なお、いずれのサンプルも、軸線O方向における拡径部の長さXおよび絞り部の長さYを、それぞれ1.0mmとした。また、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。
そして各サンプルを個別に試験用の6気筒エンジンに取り付け、150mJのエネルギー量を供給可能な点火装置を接続した。そして、空気と燃料の混合比(空燃比)が、まず、例えば19となるように制御した混合気をエンジンに供給し、2000rpmで運転を行う。このとき、燃焼圧をモニタリングし、その波形から、1000回の点火のうち失火した回数が10回未満(1%未満)であれば、次に、空燃比を19.5となるように制御した混合気をエンジンに供給し、同様に点火状況の確認を行う。以後、供給する混合気の空燃比を0.5刻みで高めていき、1000回の点火のうち失火した回数が10回以上(1%以上)であったときの空燃比を、着火限界空燃比とする。このような手順によって各サンプルの着火限界空燃比について確認した結果を表1に示す。
Figure 2012084540
表1に示すように、絞り部の内径Bと拡径部の内径Aとを同一(B=A)としたサンプル1−1の着火限界空燃比は、20.0であった。また、拡径部の内径Aよりも絞り部の内径Bを小さく(B<A)したサンプル1−2の着火限界空燃比は24.5となり、サンプル1−1の着火限界空燃比に対して22.5%向上した。一方、拡径部の内径Aよりも絞り部の内径Bを大きく(B>A)したサンプル1−3の着火限界空燃比は19.5となり、サンプル1−1の着火限界空燃比に対して2.5%低下した。従って、キャビティの絞り部の内径Bを拡径部の内径Aよりも小さくすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例2]
次に、キャビティの容積Vによる着火性の良否について確認するための評価試験を行った。この評価試験を行うにあたり、絞り部の内径B、拡径部の長さXおよび絞り部の長さYをそれぞれ同一とし、拡径部の内径Aのみを異ならせることにより、キャビティの容積Vの異なる3つの絶縁碍子を用意し、プラズマジェット点火プラグのサンプル2−1〜2−3を作製した。具体的に、サンプル2−1〜2−3は、拡径部の内径Aをそれぞれφ3.5,φ3.75,φ4.0(mm)とした。また、絞り部の内径B,拡径部の長さX,絞り部の長さYは、各サンプルとも共通に、それぞれφ0.5,1.5,1.5(mm)とした。また、各サンプルとも、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。各サンプルに対し、実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表2に示す。
Figure 2012084540
表2に示すように、キャビティの容積Vが14.72mmとなったサンプル2−1では、着火限界空燃比が24.0となり、サンプル1−1(表1参照)の着火限界空燃比に対して20.0%の向上が見られた。しかし、キャビティの容積Vが16.85,19.13(mm)となったサンプル2−2,2−3の着火限界空燃比は、それぞれ21.0,20.5であり、サンプル1−1の着火限界空燃比に対する向上率は、それぞれ5.0,2.5(%)であった。従って、キャビティの容積Vを大きくするほど着火限界空燃比が低くなることがわかった。この試験の結果より、プラズマジェット点火プラグの着火性を向上するには、キャビティの容積Vを15mm未満とすればよいことがわかった。
[実施例3]
次に、拡径部の長さXと、絞り部の長さYとの大小関係による着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径Aおよび絞り部の内径Bをそれぞれφ2.0,φ1.0(mm)とし、拡径部の長さXおよび絞り部の長さYをそれぞれ異ならせた3つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル3−1〜3−3を作製した。具体的に、サンプル3−1は、拡径部の長さXおよび絞り部の長さYを、共に1.5mmとした。また、サンプル3−2では、Xを2.0mm、Yを1.0mmとし、サンプル3−3では、Xを1.0mm、Yを2.0mmとした。そして、各サンプルとも共通に、接地電極には、厚みZが1.5mmで連通孔の内径Cがφ2.0mmのものを用いた。なお、各サンプルとも、キャビティの容積Vは15mm未満である。これらの各サンプルに対し、実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表3に示す。
Figure 2012084540
表3に示すように、サンプル3−1〜3−3は、拡径部の長さXと絞り部の長さYとの和(X+Y)を3.0mmとしつつ、両者の比を異ならせたものである。拡径部の長さXと絞り部の長さYとを同一(X=Y)としたサンプル3−1では、着火限界空燃比が24.0となり、サンプル1−1(表1参照)の着火限界空燃比に対し20.0%向上した。また、拡径部の長さXを絞り部の長さYよりも小さく(X<Y)したサンプル3−3も同様に、着火限界空燃比が24.0となった。しかし、拡径部の長さXを絞り部の長さYよりも大きく(X>Y)したサンプル3−2では、着火限界空燃比が21.0に低下し、サンプル1−1の着火限界空燃比に対し、5.0%向上しただけであった。従って、拡径部の長さXを絞り部の長さY以下とすれば、プラズマジェット点火プラグの着火性が、より向上することがわかった。
[実施例4]
次に、拡径部の内径Aの大きさによる着火性の良否について確認するための評価試験を行った。この評価試験においても、絞り部の内径B、拡径部の長さXおよび絞り部の長さYをそれぞれ同一とし、拡径部の内径Aのみを異ならせた2つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル4−1,4−2を作製した。具体的に、サンプル4−1,4−2は、拡径部の内径Aをそれぞれφ4.0,φ4.5(mm)とした。また、絞り部の内径B,拡径部の長さX,絞り部の長さYを、サンプル4−1,4−2とも共通に、φ0.5,0.5,2.5(mm)とした。なお、両サンプルともキャビティの容積Vは15mm未満である。また、両サンプルとも、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。両サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表4に示す。
Figure 2012084540
表4に示すように、拡径部の内径Aをφ4.0mmとしたサンプル4−1では、着火限界空燃比が24.5となり、サンプル1−1(表1参照)の着火限界空燃比に対して22.5%向上した。しかし、サンプル4−2のように拡径部の内径Aをφ4.5mmとすると、着火限界空燃比が20.0となり、サンプル1−1の着火限界空燃比と変わらなかった。従って、プラズマジェット点火プラグの着火性を向上するには、拡径部の内径Aの大きさをφ4.0mm以下とすればよいことがわかった。
[実施例5]
次に、絞り部の内径Bの大きさによる着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径A、拡径部の長さXおよび絞り部の長さYをそれぞれ同一とし、絞り部の内径Bのみを異ならせた4つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル5−1〜5−4を作製した。具体的に、サンプル5−1〜5−4は、絞り部の内径Bをそれぞれφ0.3,φ0.5,φ1.5,φ1.8(mm)とした。また、拡径部の内径A,拡径部の長さX,絞り部の長さYを、サンプル5−1〜5−4とも共通に、φ2.0,1.0,1.0(mm)とした。なお、各サンプルともキャビティの容積Vは15mm未満である。また、各サンプルとも、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表5に示す。
Figure 2012084540
表5に示すように、絞り部の内径Bをφ0.5mmとしたサンプル5−2やφ1.5としたサンプル5−3の着火限界空燃比は、それぞれ24.5,24.0となり、サンプル1−1(表1参照)の着火限界空燃比に対してそれぞれ22.5,20.0(%)向上した。しかし、絞り部の内径Bをφ0.5mmよりも小さくし、φ0.3mmとしたサンプル5−1では、着火限界空燃比が20.5に低下し、サンプル1−1の着火限界空燃比に対し2.5%向上しただけであった。また、絞り部の内径Bをφ1.5mmよりも大きくし、φ1.8mmとしたサンプル5−4でも、着火限界空燃比が21.0に低下し、サンプル1−1の着火限界空燃比に対し5.0%向上しただけであった。従って、プラズマジェット点火プラグの着火性を向上するには、絞り部の内径Bを、φ0.5mm以上φ1.5mm以下とすればよいことがわかった。
[実施例6]
次に、拡径部の長さXと絞り部の長さYの和の大きさによる着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径Aおよび絞り部の内径Bをそれぞれφ2.0,φ1.0(mm)とし、拡径部の長さXおよび絞り部の長さYをそれぞれ異ならせた5つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル6−1〜6−5を作製した。具体的に、サンプル6−1〜6−5は、拡径部の長さXと絞り部の長さYとをそれぞれ以下のように組み合わせた。サンプル6−1ではXを1.5mm、Yを2.0mmとし、サンプル6−2ではX、Y共に2.0mmとした。また、サンプル6−3ではX、Y共に1.0mmとした。そして、サンプル6−4,6−5ではX、Y共に0.5mmとした。さらに、サンプル6−1〜6−3では、接地電極として厚みZが1.5mmで連通孔の内径Cがφ2.0mmのものを用い、サンプル6−4,6−5では、その接地電極の厚みZをそれぞれ1.0mm,0.8mmとしたものを用いた。なお、各サンプルとも、キャビティの容積Vは15mm未満である。各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表6に示す。なお、比較例として、表6には、サンプル3−1,3−3(表3参照)およびサンプル1−2(表1参照)を掲載した。
Figure 2012084540
表6に示すように、サンプル6−1〜6−3は、X≦Yを満たしたまま、X+Yを異ならせたものである。X=Yを満たし、X+Yを2.0mmとしたサンプル6−3では、着火限界空燃比が23.5となり、サンプル1−1(表1参照)の着火限界空燃比に対し17.5%向上した。一方、X+Yを4.0mmとしたサンプル6−2では、着火限界空燃比が20.0となり、サンプル1−1の着火限界空燃比に対する向上は見られなかった。これらサンプル6−2,6−3と、サンプル3−1(X+Y=3.0(mm))とを比較すれば、X+Yを大きくしすぎると着火限界空燃比が低下することがわかる。さらに、X<Yである場合について、X+Yを3.5mmとしたサンプル6−1では着火限界空燃比が21.0となり、サンプル1−1の着火限界空燃比に対し5.0%向上しただけであった。サンプル6−1をサンプル3−3と比較した場合も同様に、X+Yを大きくしすぎると着火限界空燃比が低下することがわかる。このことからX+Yを3.0mm以下とすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
なお、サンプル6−3とサンプル1−2(表1参照)とは、拡径部と絞り部の大きさが同じながら接地電極の厚みZのみが異なる。具体的に、サンプル6−3ではZが1.5mmであり、サンプル1−2ではZが1.0mmとなっている。両サンプルの着火性を比較すると、サンプル6−3はサンプル1−2に対し着火限界空燃比が若干低下したものの、共に良好な結果が得られている。そして、両サンプルともZ<X+Yを満たすが、X+Yに対しZが大きくなると着火性が低下する傾向がみられる。さらにX+Yを1.0mm、Zを1.0mm(Z=X+Y)としたサンプル6−4は、着火限界空燃比が20.5となり、サンプル1−1の着火限界空燃比に対して2.5%向上しただけであった。しかし、サンプル6−4に対し、拡径部と絞り部の大きさを同じとしたままZを小さくし、0.8mm(Z<X+Y)としたサンプル6−5では、着火限界空燃比が23.0となり、サンプル1−1の着火限界空燃比に対して15.0%向上した。このことからZ<X+Yとすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例7]
次に、拡径部の長さXと内径Aとの大きさの関係による着火性の良否について確認するための評価試験を行った。この評価試験では、X+Yが3.0mmとなるように拡径部の長さXと絞り部の長さYとを異ならせつつも、拡径部の内径Aおよび絞り部の内径Bを一定とした3つの絶縁碍子を用いてプラズマジェット点火プラグのサンプル7−1〜7−3を作製した。具体的に、サンプル7−1〜7−3では、拡径部の内径A,絞り部の内径Bを、各サンプルとも共通に、φ1.0,φ0.5(mm)とした。そしてサンプル7−1では、Xを0.5mm、Yを2.5mmとし、サンプル7−2では、Xを1.0mm、Yを2.0mmとした。また、サンプル6−3では、Xを1.25mm、Yを1.75mmとした。なお、各サンプルとも、接地電極には、厚みZが1.0mmで連通孔の内径Cがφ2.0mmのものを用いた。各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表7に示す。
Figure 2012084540
表7に示すように、X<Aを満たすサンプル7−1,X=Aを満たすサンプル7−2は、着火限界空燃比がそれぞれ24.5,24.0となり、サンプル1−1(表1参照)の着火限界空燃比に対し、それぞれ22.5,20.0(%)向上した。しかし、X>Aとなるサンプル7−3は着火限界空燃比が21.5となり、サンプル1−1の着火限界空燃比に対して7.5%向上しただけであった。このことからX≦Aとすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例8]
次に、接地電極の連通孔の内径Cの大きさの違いによる着火性の良否について確認するための評価試験を行った。この評価試験では、キャビティが同一(サンプル3−3(表3参照)と同一のキャビティで、拡径部の内径Aがφ2.0mm、長さXが1.0mm、絞り部の内径Bがφ1.0mm、長さYが2.0mmであるもの。)で、接地電極の連通孔の内径Cのみが異なる3つのプラズマジェット点火プラグのサンプル8−1〜8−3を用意した。そして、サンプル8−1,8−2,8−3では、接地電極の連通孔の内径Cを、それぞれφ0.5mm,φ1.0mm,φ1.5mmとした。なお、各サンプルとも接地電極の厚みZは1.0mmである。各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。この試験の結果を表8に示す。
Figure 2012084540
表8に示すように、B>Cであるサンプル8−1では着火限界空燃比が20.5となり、サンプル1−1(表1参照)の着火限界空燃比に対して2.5%向上しただけであった。しかし、B=Cであるサンプル8−2や、B<Cであるサンプル8−3では、着火限界空燃比がそれぞれ24.0,25.0となり、サンプル1−1の着火限界空燃比に対してそれぞれ20.0,25.0(%)の向上がみられた。このことからB≦Cが満たされることによって、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例9]
次に、中心電極の先端部の外径と絞り部の内径との径差の違いによる着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径Aがφ2.0mm、長さXが1.0mm、絞り部の内径Bがφ1.0mm、長さYが1.0mmの絶縁碍子を用い、中心電極の先端部の外径Dを0.6〜1.2(mm)の範囲で異ならせた4種類のプラズマジェット点火プラグのサンプル9−1〜9−4を用意した。さらに、拡径部の内径Aがφ3.0mm、長さXが1.0mm、絞り部の内径Bがφ0.5mm、長さYが1.0mmの絶縁碍子を用い、中心電極の先端部の外径Dを2.2〜2.6(mm)の範囲で異ならせた3種類のプラズマジェット点火プラグのサンプル9−5〜9−7を用意した。なお、各サンプルとも接地電極の連通孔の内径Cはφ1.0mmで、厚みZは1.0mmである。
各サンプルに対し実施例1と同様の評価試験を行って、それぞれの着火限界空燃比を確認した。さらに、各サンプルに対し、0.6MPaに加圧したチャンバー内で、1秒間に60回の火花を発生させる点火試験を30時間行った。そして、点火試験後に各サンプルを解体し、チャンネリングの発生により絶縁碍子に生じた溝の深さを三次元レーザ測定器で測定した。チャンネリングによる溝の深さが0.2mm未満のサンプルは、良好と判断して「◎」と評価した。また、チャンネリングによる溝の深さが0.2〜0.4mmのサンプルは、チャンネリングが発生したものの軽度であり、使用する上で問題はないと判断して「○」と評価した。一方、チャンネリングによる溝の深さが0.4mm以上のサンプルは、使用する上で問題があると判断して「×」と評価した。この試験の結果を表9に示す。
Figure 2012084540
表9に示すように、D−Bが0以上のサンプル9−3〜9−7では、着火限界空燃比が24以上となり、サンプル1−1(表1参照)の着火限界空燃比に対して20.0%以上向上した。しかし、D−Bが0未満のサンプル9−1,9−2では、着火限界空燃比22.5以下であり、空燃比は10.0〜12.5%向上しただけであった。一方、D−Bが大きくなるに従い、チャンネリングによる溝の深さが深くなっていく傾向が見られた。特に、D−Bが2.0より大きなサンプル9−7では、チャンネリングによる評価が×となり、プラズマジェット点火プラグの耐久性の面で好ましくないことが分かった。このことから0≦D−B≦2(mm)とすれば、プラズマジェット点火プラグの着火性が向上し、また耐久性の面でも良好であることがわかった。
[実施例10]
次に、キャビティの容積に対する絞り部の断面積の割合の違いによる着火性の良否について確認するための評価試験を行った。この評価試験では、拡径部の内径Aがφ4.0mm、長さXが2.0mm、絞り部の内径Bがφ0.5mm、長さYが1.0mmの絶縁碍子を用い、連通孔の内径Cがφ1.0mm、厚みZが1.5mmの接地電極を組み付けたプラズマジェット点火プラグのサンプル10−1を用意した。サンプル10−1のS/Vは0.008となった。また、他の評価試験で作製したプラズマジェット点火プラグのサンプルのデータからS/Vを求め、その値が0.010〜0.448の範囲で異なるサンプルを選び、着火性についてサンプル10−1と比較した。この試験の結果を表10に示す。
Figure 2012084540
表10に示すように、S/Vが0.01以下のサンプル10−1,2−3では、着火限界空燃比が20.5となり、空燃比は2.5%向上しただけであった。また、S/Vが0.4より大きなサンプル5−4でも、着火限界空燃比は21.0となり、空燃比が5.0%向上しただけであった。しかし、S/Vが0.01より大きく0.4以下であるサンプル2−1,6−3,4−1,6−5は、着火限界空燃比が、おおむね23.0以上であり、15.0%以上の空燃比向上率を得られた。このことから0.01<S/V≦0.4とすれば、プラズマジェット点火プラグの着火性が向上することがわかった。
[実施例11]
次に、キャビティの容積に対する電源からの供給エネルギー量の割合の違いによる着火性の良否について確認するための評価試験を行った。この評価試験では、他の評価試験に用いたサンプル6−1,6−2,2−1を、それぞれ個別に試験用の6気筒エンジンに取り付け、点火装置に接続した。点火装置は、プラズマ放電回路部のコンデンサを適宜取り替えることで、1回の点火において30〜300mJの範囲で6段階のエネルギー量を供給できるようにした。そして、各サンプルに対し、実施例1と同様の評価試験を行って、各エネルギー量ごとに、着火限界空燃比を確認した。この試験の結果を表11に示す。また、E/Vと空燃比向上率との関係を図11の片対数グラフに示す。
Figure 2012084540
表11に示すように、各サンプル6−1,6−2,2−1は、それぞれキャビティの容積Vが異なる。各サンプルとも、供給されるエネルギー量Eが増加するに従って、着火限界空燃比が増加した。図11に示すように、サンプル6−1,6−2では、E/Vが100前後で空燃比向上率が20%に達した。そして図11の片対数グラフから、E/Vが200を超えると、空燃比向上率の増加具合はほぼ横ばい状態となり、飽和状態となることがわかった。電極消耗を抑制するためにも、E/Vは200以下とすることが望ましい。また、図11に示すように、サンプル2−1によると、E/Vが3より大きければ、空燃比向上率は10%よりは向上することがわかる。このことから、3<E/V≦200とすれば、プラズマジェット点火プラグの着火性が向上し、また耐久性の面でも良好であることがわかった。
なお、本発明は各種の変形が可能なことはいうまでもない。例えば、図4に示すプラズマジェット点火プラグ200のように、接地電極230の連通孔231の内径Cが、キャビティ60の絞り部63の内径Bと同一であってもよい。また、キャビティ60の拡径部65の内径Aを拡径あるいは縮径する場合、軸孔12の電極収容部15の内径や先端小径部61の内径(すなわち絞り部63の内径B)をそのままとしてもよい。例えば図5に示すプラズマジェット点火プラグ300のように、キャビティ360の拡径部365の内径Aを、電極収容部15の内径、すなわち中心電極20の外径よりも大きくしてもよい。あるいは図6に示すプラズマジェット点火プラグ400のように、キャビティ460の拡径部465の内径Aを、電極収容部15の内径、すなわち中心電極20の外径よりも小さくしてもよい。この場合においてB<Aは満たされるようにする。
また、図7に示すプラズマジェット点火プラグ500のように、キャビティ560の拡径部565を、内径の小さな第1拡径部566と、それより内径の大きな第2拡径部567とからなる2段構成としてもよい。もちろん、3段以上としてもよいし、あるいは図8に示すプラズマジェット点火プラグ600のキャビティ660の拡径部665のように、内周面をテーパ状に形成してもよい。こうした場合において、拡径部の内径Aは、拡径部を構成する部位のうち最も内径が大きい部位における内径をもって規定すればよい。例えば図7のプラズマジェット点火プラグ500であれば、第2拡径部567の内径を拡径部の内径Aとして規定すればよい。同様に図8のプラズマジェット点火プラグ600であれば、テーパ状をなす内周面の最も拡径された部位(図8の場合は電極収容部15との接続部位)における内径を、拡径部の内径として規定すればよい。
また、図9に示すプラズマジェット点火プラグ700のように、主体金具750の先端部759に取り付けられる接地電極30と、絶縁碍子10の先端面16とは必ずしも密着していなくともよく、両者の間に間隙が設けられてもよい。キャビティ60内で形成されるプラズマは噴出時の方向が絞り部63によって軸線O方向に揃えられるため、こうした間隙があっても着火性への影響は生じにくい。
また、図10に示すプラズマジェット点火プラグ800のように、接地電極830の連通孔831の内壁を、貴金属やWを主成分とする合金からなる電極チップ835で形成してもよい。プラズマジェット点火プラグには接地電極と中心電極との間に高いエネルギーが供給されるため、こうした電極チップを接地電極や中心電極に設ければ耐火花消耗性を高めることができ、プラズマジェット点火プラグの寿命を延ばすことができる。
また、キャビティ60を構成する軸孔12の先端小径部61は、必ずしも電極収容部15より小径に形成される必要はない。拡径部65や絞り部63の長さX,Yや内径A,Bが、上記の条件を満たせば、電極収容部15と同径に形成してもよいし、あるいは電極収容部15よりも大きな内径に形成してもよい。
また、点火装置120は、本実施の形態のようにトリガー放電にコンデンサからのエネルギーを重畳する方式のものに限らず、CDI式、フルトランジスター式、ポイント(接点)式など、その他のいかなる点火方式のものとしてもよい。
10 絶縁碍子
20 中心電極
25 電極チップ
26 先端面
30 接地電極
31 連通孔
60 キャビティ
61 先端小径部
63 絞り部
100 プラズマジェット点火プラグ
200 プラズマジェット点火プラグ
230 接地電極
231 連通孔
300 プラズマジェット点火プラグ
360 キャビティ
365 拡径部
400 プラズマジェット点火プラグ
460 キャビティ
465 拡径部
500 プラズマジェット点火プラグ
560 キャビティ
565 拡径部
566 第1拡径部
567 第2拡径部
600 プラズマジェット点火プラグ
660 キャビティ
665 拡径部
700 プラズマジェット点火プラグ
800 プラズマジェット点火プラグ
830 接地電極
831 連通孔

Claims (8)

  1. 中心電極と、
    軸線方向に延びる軸孔を有し、当該軸孔内に、前記中心電極の先端面を収容しつつ前記中心電極を保持すると共に、前記軸孔の先端側に、前記軸孔の内周面と前記中心電極の先端面とを壁面とし、容積が15mm未満のキャビティとしての凹部が形成された絶縁碍子と、
    前記絶縁碍子の径方向周囲を取り囲んで保持する主体金具と、
    前記主体金具と電気的に接続され、前記絶縁碍子よりも先端側に設けられた接地電極と
    を備え、
    前記中心電極と前記接地電極との間で行う放電に伴い前記凹部内にてプラズマを生ずるプラズマジェット点火プラグにおいて、
    前記絶縁碍子の前記凹部は、
    少なくとも前記軸線方向に同径で延びる部位を有し、前記絶縁碍子の先端側の開口に連続する絞り部と、
    前記絞り部に連続し、前記絞り部よりも拡径されるとともに、前記中心電極の先端面が自身の内部に露出された拡径部と
    から構成され、
    前記軸線方向において、前記拡径部の長さをX、前記絞り部の長さをYとしたときに、
    X≦Yを満たすことを特徴とするプラズマジェット点火プラグ。
  2. 前記凹部は、
    前記拡径部における内径で最も大きな部位の内径をAとしたときに、A≦φ4.0(mm)を満たすとともに、
    前記絞り部における内径で最も小さな部位の内径をBとしたときに、φ0.5≦B≦φ1.5(mm)を満たすこと
    を特徴とする請求項1に記載のプラズマジェット点火プラグ。
  3. 前記接地電極は、板状の電極で、前記凹部と外気とを連通する連通孔を有し、
    前記軸線方向において、前記接地電極の厚みをZとしたときに、
    Z<X+Y≦3.0(mm)を満たすことを特徴とする請求項1または2に記載のプラズマジェット点火プラグ。
  4. X≦Aを満たすことを特徴とする請求項2に記載のプラズマジェット点火プラグ。
  5. 前記接地電極の前記連通孔の内径をCとしたときに、
    B≦Cを満たすことを特徴とする請求項2または4に記載のプラズマジェット点火プラグ。
  6. 前記中心電極の先端部の外径をDとしたときに、
    0≦D−B≦2(mm)を満たすことを特徴とする請求項2、4または5のいずれかに記載のプラズマジェット点火プラグ。
  7. 前記絞り部の前記軸線方向と直交する断面積をS(mm)、前記凹部の容積をV(mm)としたときに、
    0.01<S/V≦0.4を満たすことを特徴とする請求項1乃至6のいずれかに記載のプラズマジェット点火プラグ。
  8. 請求項7に記載のプラズマジェット点火プラグと、
    前記プラズマジェット点火プラグに点火のためのエネルギーを供給する電源と
    を備え、
    前記電源から供給される供給エネルギーをE(mJ)としたときに、
    3≦E/V≦200を満たすことを特徴とするプラズマジェット点火プラグの点火装置。
JP2011283381A 2007-06-19 2011-12-26 プラズマジェット点火プラグおよびその点火装置 Pending JP2012084540A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011283381A JP2012084540A (ja) 2007-06-19 2011-12-26 プラズマジェット点火プラグおよびその点火装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007161356 2007-06-19
JP2007161356 2007-06-19
JP2011283381A JP2012084540A (ja) 2007-06-19 2011-12-26 プラズマジェット点火プラグおよびその点火装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009501645A Division JPWO2008156035A1 (ja) 2007-06-19 2008-06-13 プラズマジェット点火プラグおよびその点火装置

Publications (1)

Publication Number Publication Date
JP2012084540A true JP2012084540A (ja) 2012-04-26

Family

ID=40156193

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009501645A Pending JPWO2008156035A1 (ja) 2007-06-19 2008-06-13 プラズマジェット点火プラグおよびその点火装置
JP2011283381A Pending JP2012084540A (ja) 2007-06-19 2011-12-26 プラズマジェット点火プラグおよびその点火装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009501645A Pending JPWO2008156035A1 (ja) 2007-06-19 2008-06-13 プラズマジェット点火プラグおよびその点火装置

Country Status (4)

Country Link
US (1) US8082897B2 (ja)
EP (1) EP2166628A4 (ja)
JP (2) JPWO2008156035A1 (ja)
WO (1) WO2008156035A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230839A (ja) * 2014-06-05 2015-12-21 日本特殊陶業株式会社 プラズマジェットプラグ

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045286B2 (ja) * 2007-07-24 2012-10-10 トヨタ自動車株式会社 内燃機関の点火装置
JP4948515B2 (ja) * 2008-12-26 2012-06-06 日本特殊陶業株式会社 プラズマジェット点火プラグ
EP2400607A4 (en) * 2009-02-18 2018-03-28 Ngk Spark Plug Co., Ltd. Ignition device for plasma jet ignition plug
DE102009059649B4 (de) * 2009-12-19 2011-11-24 Borgwarner Beru Systems Gmbh HF-Zündeinrichtung
JP5033203B2 (ja) 2010-03-05 2012-09-26 日本特殊陶業株式会社 プラズマジェット点火プラグ
US8853924B2 (en) 2010-03-31 2014-10-07 Federal-Mogul Ignition Company Spark ignition device for an internal combustion engine, metal shell therefor and methods of construction thereof
US8896194B2 (en) 2010-03-31 2014-11-25 Federal-Mogul Ignition Company Spark ignition device and ground electrode therefor and methods of construction thereof
DE102011051114B4 (de) * 2010-06-18 2015-09-24 Ngk Spark Plug Co., Ltd. Plasmastrahl-Zündkerze
WO2011158830A1 (ja) 2010-06-18 2011-12-22 日本特殊陶業株式会社 プラズマジェット点火プラグ
WO2012093461A1 (ja) * 2011-01-04 2012-07-12 日本特殊陶業株式会社 点火装置及び点火システム
JP5961871B2 (ja) * 2011-01-28 2016-08-02 イマジニアリング株式会社 内燃機関の制御装置
JP5671446B2 (ja) * 2011-03-01 2015-02-18 日本特殊陶業株式会社 プラズマジェット点火プラグ
EP2745362B2 (en) * 2011-08-19 2019-11-06 Federal-Mogul Ignition LLC Corona igniter including temperature control features
JP5658647B2 (ja) * 2011-11-08 2015-01-28 日本特殊陶業株式会社 点火システム
DE202012004602U1 (de) * 2012-05-08 2013-08-12 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Hochfrequenz-Plasmazündvorrichtung
JP6006658B2 (ja) * 2013-02-21 2016-10-12 日本特殊陶業株式会社 プラズマジェット点火プラグ及び点火システム
US9048635B2 (en) 2013-03-13 2015-06-02 Federal-Mogul Ignition Company Spark plug with laser keyhole weld attaching ground electrode to shell
US8937427B2 (en) 2013-03-14 2015-01-20 Federal-Mogul Ignition Company Spark plug and method of manufacturing the same
JP6055399B2 (ja) * 2013-12-12 2016-12-27 日本特殊陶業株式会社 プラズマジェットプラグ
JP6261481B2 (ja) * 2014-09-19 2018-01-17 日本特殊陶業株式会社 点火プラグ
JP2017048701A (ja) * 2015-08-31 2017-03-09 株式会社日本自動車部品総合研究所 点火装置
JP7413746B2 (ja) 2019-03-21 2024-01-16 株式会社デンソー 内燃機関用のスパークプラグ及びこれを備えた内燃機関

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388549A (en) * 1980-11-03 1983-06-14 Champion Spark Plug Company Plasma plug
JP2000331771A (ja) * 1998-12-16 2000-11-30 Denso Corp 点火プラグ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224554A (en) * 1978-05-20 1980-09-23 Ngk Spark Plug Co., Ltd. Spark plug having a low noise level
JPH0272577A (ja) * 1988-09-06 1990-03-12 Honda Motor Co Ltd 内燃機関の点火プラグ
US5371436A (en) * 1989-09-28 1994-12-06 Hensley Plasma Plug Partnership Combustion ignitor
GB2255590B (en) * 1991-05-14 1994-08-03 Ngk Spark Plug Co An igniter plug
JP4300663B2 (ja) * 1999-12-24 2009-07-22 株式会社デンソー 燃焼圧センサ構造体
DE10331418A1 (de) 2003-07-10 2005-01-27 Bayerische Motoren Werke Ag Plasmastrahl-Zündkerze
JP4483660B2 (ja) 2005-04-05 2010-06-16 株式会社デンソー 内燃機関用点火装置
JP4674193B2 (ja) * 2005-11-22 2011-04-20 日本特殊陶業株式会社 プラズマジェット点火プラグの点火制御方法およびその方法を用いた点火装置
JP4685608B2 (ja) * 2005-11-22 2011-05-18 日本特殊陶業株式会社 プラズマジェット点火プラグ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388549A (en) * 1980-11-03 1983-06-14 Champion Spark Plug Company Plasma plug
JP2000331771A (ja) * 1998-12-16 2000-11-30 Denso Corp 点火プラグ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230839A (ja) * 2014-06-05 2015-12-21 日本特殊陶業株式会社 プラズマジェットプラグ

Also Published As

Publication number Publication date
EP2166628A4 (en) 2013-11-20
JPWO2008156035A1 (ja) 2010-08-26
EP2166628A1 (en) 2010-03-24
WO2008156035A1 (ja) 2008-12-24
US20100102728A1 (en) 2010-04-29
US8082897B2 (en) 2011-12-27

Similar Documents

Publication Publication Date Title
JP2012084540A (ja) プラズマジェット点火プラグおよびその点火装置
JP4669486B2 (ja) プラズマジェット点火プラグおよびその点火システム
JP4674219B2 (ja) プラズマジェット点火プラグの点火システム
US7714488B2 (en) Plasma jet spark plug and ignition system for the same
US8196557B2 (en) Plasma-jet spark plug and ignition system
JP5072947B2 (ja) 点火プラグおよび点火システム
JP6548610B2 (ja) プラズマジェットプラグ
JP5161995B2 (ja) プラズマジェット点火プラグの点火装置
JP6034199B2 (ja) プラズマジェット点火プラグ
JP5227466B2 (ja) プラズマジェット点火プラグ
US7262547B2 (en) Spark plug element having defined dimensional parameters for its insulator component
US8558442B2 (en) Plasma jet ignition plug
JP2012186146A (ja) プラズマジェット点火プラグ及び点火システム
US9133812B2 (en) Ignition apparatus and ignition system
JP5537495B2 (ja) 点火装置及び点火システム
JP5140134B2 (ja) 点火システム及び点火方法
JP5658647B2 (ja) 点火システム
JP2012225204A (ja) 点火装置及び点火システム
JP5671446B2 (ja) プラズマジェット点火プラグ
JP5971806B2 (ja) プラズマジェット点火プラグ及びその製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709