JP2012033649A - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP2012033649A
JP2012033649A JP2010171079A JP2010171079A JP2012033649A JP 2012033649 A JP2012033649 A JP 2012033649A JP 2010171079 A JP2010171079 A JP 2010171079A JP 2010171079 A JP2010171079 A JP 2010171079A JP 2012033649 A JP2012033649 A JP 2012033649A
Authority
JP
Japan
Prior art keywords
electrode
variable resistance
metal oxide
layer
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010171079A
Other languages
English (en)
Other versions
JP5156060B2 (ja
Inventor
Junya Onishi
潤哉 大西
Nobuo Yamazaki
信夫 山崎
Kazuya Ishihara
数也 石原
Yushi Inoue
雄史 井上
Yukio Tamai
幸夫 玉井
Nobuyoshi Awaya
信義 粟屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010171079A priority Critical patent/JP5156060B2/ja
Priority to US13/182,696 priority patent/US8530877B2/en
Priority to CN201110215067.3A priority patent/CN102347445B/zh
Publication of JP2012033649A publication Critical patent/JP2012033649A/ja
Application granted granted Critical
Publication of JP5156060B2 publication Critical patent/JP5156060B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】 フォーミング処理の完了に伴う急峻な電流を抑制することで、特性のばらつきが低減され、安定的にスイッチング動作を行うことが可能な可変抵抗素子、および当該可変抵抗素子を備える不揮発性半導体記憶装置を実現する。
【解決手段】
第1電極12aと第2電極14の間に抵抗変化層13を挟持してなる可変抵抗素子2を情報の記憶に用いる不揮発性半導体記憶装置であり、可変抵抗素子2は、スイッチング界面が形成される第1電極12aと抵抗変化層13の間にバッファ層12bが挿入されてなる。バッファ層12bと抵抗変化層13はともにn型の金属酸化物を含んで構成され、バッファ層12bを構成するn型の金属酸化物の伝導帯の底のエネルギーが抵抗変化層13を構成するn型の金属酸化物のそれよりも低くなるように、バッファ層12aおよび抵抗変化層13の材料が選択される。
【選択図】 図1

Description

本発明は、第1電極、第2電極、及び、当該両電極間に挟持された可変抵抗体によって構成される不揮発性の可変抵抗素子を情報の記憶に用いる不揮発性半導体記憶装置に関する。
近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメモリ(NVRAM:Nonvolatile Random Access Memory)として、FeRAM(Ferroelectric RAM)、MRAM(Magnetic RAM)、PRAM(Phase Change RAM)等の様々なデバイス構造が提案され、高性能化、高信頼性化、低コスト化、及び、プロセス整合性という観点から、激しい開発競争が行われている。
これら既存技術に対して、電圧パルスを印加することによって可逆的に電気抵抗が変化する可変抵抗素子を用いた抵抗性不揮発性メモリRRAM(Resistive Random Access Memory)(登録商標)が提案されている。この構成を図17に示す。
図17に示されるように、従来構成の可変抵抗素子は、下部電極103と可変抵抗体102と上部電極101とが順に積層された構造となっており、上部電極101及び下部電極103間に電圧パルスを印加することにより、抵抗値を可逆的に変化させることができる性質を有する。この可逆的な抵抗変化動作(以下では「スイッチング動作」と称する)によって変化する抵抗値を読み出すことによって、新規な不揮発性半導体記憶装置が実現できる構成である。
この不揮発性半導体記憶装置は、可変抵抗素子を備える複数のメモリセル夫々を行方向及び列方向にマトリクス状に配列してメモリセルアレイを形成するとともに、このメモリセルアレイの各メモリセルに対するデータの書き込み、消去、及び読み出し動作を制御する周辺回路を配置して構成される。そして、このメモリセルとしては、その構成要素の違いから、1つのメモリセルが1つの選択トランジスタTと1つの可変抵抗素子Rとから構成される(「1T1R型」と称される)メモリセルや、1つの可変抵抗素子Rのみから構成される(「1R型」と称される)メモリセル等が存在する。このうち、1T1R型メモリセルの構成例を図18に示す。
図18は1T1R型のメモリセルによるメモリセルアレイの一構成例を示す等価回路図である。各メモリセルの選択トランジスタTのゲートはワード線(WL1〜WLn)に接続されており、各メモリセルの選択トランジスタTのソースはソース線(SL1〜SLn)に接続されている(nは自然数)。また、各メモリセル毎の可変抵抗素子Rの一方の電極は選択トランジスタTのドレインに接続されており、可変抵抗素子Rの他方の電極はビット線(BL1〜BLm)に接続されている(mは自然数)。又、各ワード線WL1〜WLnはそれぞれワード線デコーダ106に接続され、各ソース線SL1〜SLnはそれぞれソース線デコーダ107に接続され、各ビット線BL1〜BLmはそれぞれビット線デコーダ105に接続されている。そして、アドレス入力(図示せず)に応じてメモリセルアレイ104内の特定のメモリセルへの書込み、消去及び読み出し動作のための特定のビット線、ワード線及びソース線が選択される構成である。
図19は、図18におけるメモリセルアレイ104を構成する一メモリセルの断面模式図である。本構成では、選択トランジスタTと可変抵抗素子Rとでひとつのメモリセルを形成している。選択トランジスタTは、ゲート絶縁膜113、ゲート電極114、及びドレイン拡散層領域115とソース拡散層領域116から構成されており、素子分離領域112を形成した半導体基板111の上面に形成される。又、可変抵抗素子Rは、下部電極118と可変抵抗体119と上部電極120とから構成されている。
また、トランジスタTのゲート電極114がワード線を構成しており、ソース線配線124はコンタクトプラグ122を介してトランジスタTのソース拡散層領域116と電気的に接続している。又、ビット線配線123はコンタクトプラグ121を介して可変抵抗素子Rの上部電極120と電気的に接続している一方で、可変抵抗素子Rの下部電極118はコンタクトプラグ117を介してトランジスタTのドレイン拡散層領域115と電気的に接続している。
このように選択トランジスタTと可変抵抗素子Rとが直列に配置される構成により、ワード線の電位変化によって選択されたメモリセルのトランジスタがオン状態となり、更にビット線の電位変化によって選択されたメモリセルの可変抵抗素子Rのみに選択的に書込、或いは消去することができる構成となっている。
図20は、1R型のメモリセルの一構成例を示す等価回路図である。各メモリセルは可変抵抗素子Rのみから構成されており、可変抵抗素子Rの一方の電極はワード線(WL1〜WLn)に、他方の電極はビット線(BL1〜BLm)に接続されている。また、各ワード線WL1〜WLnはそれぞれワード線デコーダ106に接続され、各ビット線BL1〜BLmはそれぞれビット線デコーダ105に接続されている。そして、アドレス入力(図示せず)に応じてメモリセルアレイ131内の特定のメモリセルへの書込み、消去及び読み出し動作のための特定のビット線及びワード線が選択される構成である。
図21は図20におけるメモリセルアレイ131を構成するメモリセルの一例を示す斜視構造模式図である。図21に示されるように、上部電極配線132と下部電極配線133とがそれぞれ交差するように配列されており、これらの一方がビット線を形成し、他方がワード線を形成する。又、各電極の交点(通常、「クロスポイント」と称される)に可変抵抗体134を配した構造となっている。図21の例では便宜上、上部電極132と可変抵抗体134を同じ形状に加工しているが、可変抵抗体134のスイッチング動作に対して電気的に寄与する部分は上部電極132と下部電極133の交差するクロスポイントの領域になる。
尚、上記図19中の可変抵抗体119或いは図21中の可変抵抗体134に利用される可変抵抗体材料としては、米国ヒューストン大のShangquing LiuやAlex Ignatiev等によって、超巨大磁気抵抗効果で知られるペロブスカイト材料に電圧パルスを印加することによって可逆的に電気抵抗を変化させる方法が下記の特許文献1及び非特許文献1に開示されている。この方法は超巨大磁気抵抗効果で知られるペロブスカイト材料を用いながらも、磁場の印加なしに室温においても数桁にわたる抵抗変化が現れる。尚、特許文献1に例示する素子構造では、可変抵抗体の材料としてはペロブスカイト型酸化物であるプラセオジウム・カルシウム・マンガン酸化物Pr1−xCaMnO(PCMO)膜が用いられている。
又、他の可変抵抗体材料としては、チタン酸化(TiO)膜、ニッケル酸化(NiO)膜、酸化亜鉛(ZnO)膜、酸化ニオブ(Nb)膜などの遷移金属元素の酸化物についても、可逆的な抵抗変化を示すことが非特許文献2及び非特許文献3などから知られている。
更に、抵抗変化がおきる可変抵抗素子は、金属酸化物中に酸素欠陥に起因する不純物準位がバンドギャップ中に形成されることで、n型あるいはp型の半導体の伝導を示す。また抵抗変化は電極界面近傍の状態変化であることが確認されている。
このような上記遷移金属酸化物を可変抵抗体として可変抵抗素子の抵抗スイッチングを安定に行うためには、可変抵抗素子の二つの電極界面のうち、いずれか一方のみをスイッチ領域とするのが望ましい。このため両端の電極材料に異なる電極を用い、一方の電極との界面をオーミック接合として非スイッチング界面とし、もう一方の電極との界面を例えばショットキー接合としてスイッチング界面とすることが望ましい。
米国特許第6204139号明細書 特表2002−537627号公報 特開2008−306157号公報 国際公開第2009/154266号
Liu,S.Q.ほか、"Electric−pulse−induced reversible Resistance change effect in magnetoresistive films",Applied Physics Letter, Vol.76,pp.2749−2751,2000年 H.Pagniaほか、"Bistable Switchingin Electroformed Metal−Insulator−MetalDevices",Phys.Stat.Sol.(a),vol.108,pp.11−65,1988年 Baek,I.G.ほか、"Highly Scalable Non−volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses",IEDM 04,pp.587−590,2004年 M.Teraiほか、"Effect of Bottom Electrode of ReRAM with Ta2O5/TiO2 Stack on RTN and Retention",IEDM 09,pp.775−778,2009年
遷移金属酸化物を可変抵抗体として用いた場合、可変抵抗素子の製造直後の初期抵抗は非常に高く、電気的ストレスによって高抵抗状態と低抵抗状態を切り替え可能な状態にするためには、使用前に、通常の書き換え動作に用いる電圧パルスより電圧振幅が大きく、かつパルス幅が長い電圧パルスを初期状態の可変抵抗素子に印加し、抵抗スイッチングがおきる電流パス(以下、適宜「フィラメントパス」と称す)を形成しておく必要がある。上記の可変抵抗体内にフィラメントパスを形成する処理をフォーミング処理と呼んでいる。このフォーミング処理によって形成されるフィラメントパスがその後の素子の電気特性を決定する。
フォーミング処理は一種のソフトブレークダウンであり、ブレークダウン開始時からの電流の制御が、フィラメントパスの形成、つまりは素子の電気特性に大きく影響する。
原理的には、素子に直列につないだトランジスタ等の電流制御素子でフォーミング時の電流を制御してフィラメントパスを形成すればスイッチング素子の動作電流を任意に制御できるはずである。しかしながら、ブレークダウン時の電流増加が非常に急峻なため、例えばトランジスタを用いた場合、図22(A)の等価回路図に示されるように、当該トランジスタの寄生容量Cjの影響を受け、トランジスタで制御できない急峻な電流が流れる。このため、フォーミング完了後の素子に流れる電流変化は図22(B)に示されるようになる。この制御できないスパイク電流と言われる急峻な電流のため、形成されるフィラメントに素子間ばらつきが生じ、一定以下の動作電流の素子を安定に形成することが非常に困難になる。
これに対し、可変抵抗体として利用する金属酸化物と電極の間にバッファ層を設けることで、特性向上を得る方法が報告されている。
特許文献3には、p型の半導体になる金属酸化物である酸化ニッケルや酸化コバルトに対しこれらとショットキー接合を形成するTa、Ti、Al等をスイッチング界面側の電極とすることで、これらの電極金属はニッケルやコバルトよりも卑である(イオン化傾向が高い)ため酸化ニッケルや酸化コバルトから一部の酸素を奪い酸化チタンや酸化タンタルを形成し、当該酸化チタンや酸化タンタルがバッファ層となって寄生容量起因のスパイク電流を抑制し、低電流で動作する可変抵抗素子を形成する方法が開示されている。しかしながら、電極金属の方が可変抵抗体の金属酸化膜の金属よりも卑であるため、素子への熱履歴や、スイッチング動作の継続により電極材料の酸化が設定以上に進むことで、素子特性が変動してしまうという問題がある。
非特許文献4には、n型の金属酸化物である酸化チタンを可変抵抗材料とし、非スイッチング側の電極との間に酸化タンタルを挿入して特性の向上を実現する方法が開示されている。しかし酸化チタンを電極に用いて安定なスイッチング特性を得ようとする場合、スイッチング側の電極に仕事関数が充分に大きいPtやRuを用いる必要があり、既存設備でデバイスを製造することが困難になってしまう。
上記の従来技術における問題を鑑み、本発明は、フォーミング処理後の可変抵抗素子間の特性ばらつきが抑制され、安定したスイッチング動作を行うことのできる可変抵抗素子を備えた不揮発性半導体記憶装置を実現することをその目的とする。
上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、第1電極と第2電極の間に抵抗変化層を挟持してなる可変抵抗素子を情報の記憶に用いる不揮発性半導体記憶装置であって、前記可変抵抗素子は、前記抵抗変化層と前記第1電極の間に抵抗値が固定のバッファ層が挿入されてなり、前記抵抗変化層がn型の第1金属酸化物を含み、前記バッファ層がn型の第2金属酸化物を含み、前記第1金属酸化物の伝導帯の底のエネルギーが、前記第2金属酸化物の伝導帯の底のエネルギーよりも高く、前記第1金属酸化物のバンドギャップが、前記第2金属酸化物のバンドギャップよりも大きく、前記第2電極は、前記抵抗変化層とオーミック接合をし、前記第1電極の仕事関数が、前記第2電極の仕事関数よりも大きいことを第1の特徴とする。
上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、第1電極と第2電極の間に抵抗変化層を挟持してなる可変抵抗素子を情報の記憶に用いる不揮発性半導体記憶装置であって、前記可変抵抗素子は、前記抵抗変化層と前記第1電極の間に抵抗値が固定のバッファ層が挿入されてなり、前記抵抗変化層がn型の第1金属酸化物を含み、前記バッファ層がn型の第2金属酸化物を含み、前記第1金属酸化物の伝導帯の底のエネルギーが、前記第2金属酸化物の伝導帯の底のエネルギーよりも高く、前記第1金属酸化物の生成エネルギーの絶対値が、前記第2金属酸化物の生成エネルギーの絶対値よりも大きく、前記第2電極は、前記抵抗変化層とオーミック接合をし、前記第1電極の仕事関数が、前記第2電極の仕事関数よりも大きいことを第2の特徴とする。
更に、上記第1又は第2の特徴の不揮発性半導体記憶装置において、前記可変抵抗素子は、フォーミング処理を施すことにより、前記第1および第2電極間の抵抗状態が前記フォーミング処理前の初期高抵抗状態から可変抵抗状態に変化し、前記可変抵抗状態の前記可変抵抗素子の前記第1電極と前記第2電極の間に電気的ストレスを与えることにより、前記可変抵抗状態における抵抗状態が二以上の異なる抵抗状態間で遷移し、当該遷移後の一の抵抗状態を情報の記憶に用いるものであり、前記バッファ層は、前記フォーミング処理の完了に伴い前記可変抵抗素子の両電極間に流れる急激な電流の増大を抑制する抵抗として動作することを第3の特徴とする。
本発明では、フォーミング処理の完了に伴い可変抵抗素子の両電極間に流れる急激な電流の増大を抑制するためのバッファ層を、抵抗変化層(可変抵抗体)と第1電極の間に設けることにより、フォーミング処理完了後に可変抵抗素子に流れる急峻なスパイク電流を抑制し、形成されるフィラメントパスの素子ばらつきを低減することができる。
当該バッファ層は、抵抗変化層を構成する材料よりも抵抗が小さな材料を用いる。即ち、抵抗変化層、およびバッファ層を構成する材料として共にn型の金属酸化物を用いる場合、抵抗変化層を構成する金属酸化物(第1金属酸化物)の伝導帯の底のエネルギー位置が、バッファ層を構成する金属酸化物(第2金属酸化物)のそれよりも高いものを用いる。このような構成とすることで、フォーミング処理時には、抵抗変化層に殆どの電圧が印加される。フォーミング処理が完了し、抵抗変化層の抵抗が低抵抗化すると、バッファ層が抵抗として働いてフィラメントパスに流れる電流を制限する。これによりフィラメントパスに急峻な電流が流れることによる素子の破壊や、特性のばらつきを抑制することができる。
更に、バッファ層の金属酸化物が抵抗変化層の金属酸化物と構造が近いと、抵抗スイッチングが双方で生じ特性の制御が困難になるため、バッファ層の金属酸化物は抵抗変化層の金属酸化物よりバンドギャップが小さいものを用いることがより好ましい。
ところで、金属酸化物と電極の界面でスイッチング界面が形成されるためには、電極のフェルミ準位が、当該金属酸化物のフェルミ準位に対して十分に低い必要がある。ここで、n型の金属酸化物のフェルミ準位は伝導帯の底のエネルギーで決定されるため、n型の金属酸化物を抵抗変化層として用いる場合、p型の金属酸化物を用いる場合と比較して、Ptのような仕事関数の大きな貴金属を用いなくて済み、電極材料として仕事関数の小さな材料を用いることができる。特に、HfO,ZrO,Alといったバンドギャップの大きな材料を抵抗変化層に採用することで、TiNやTaNのような既存半導体設備で使用可能な中間的な仕事関数の材料を電極として用いて可変抵抗素子を構成することが可能になる。
また、n型の金属酸化物は、一般にスイッチング電極であるPtやTiNよりも酸素と強く結合するため、熱に対して安定であり、n型の金属酸化物を抵抗変化層に用いることで、耐熱性に優れた可変抵抗素子を実現できる。
図23に金属酸化物のバンドギャップと生成エネルギーの関係を示す。ここで、酸素分子1個が金属と反応して、当該金属の酸化物を生成する際に必要なエネルギーを2で割った値を当該金属酸化物の生成エネルギーとする。一般に金属よりも当該金属の酸化物の方が安定であり、上記生成エネルギーは負の値をとる。また、上記生成エネルギーの絶対値は酸素と当該金属の結合エネルギーに近く、酸化物の生成されやすさを表す量である。図23より、一般にn型の金属酸化物の方がp型の金属酸化物よりも生成エネルギーの絶対値が大きく(即ち、生成エネルギーが小さく)、熱に対して安定であることが分かる。
更に、バッファ層は、スイッチング界面が形成される電極と抵抗変化層の間に挿入する。当初は、非特許文献4のように非スイッチング側の電極、例えばTaとの間にバッファ層を挿入したが特性向上の効果は無かった。しかしながら、本願発明者らは、鋭意研究により、ばらつきやリードディスターブを引き起こす現象がスイッチング側で起こっていると考え、非特許文献4の教示に反して、バッファ層の金属酸化物をスイッチング側の電極との界面に挿入したところ、大きなばらつき低減及びリードディスターブ抑制の効果があることを見出した。
一方で、本発明ではバッファ層を介さず抵抗変化層と接続する第2電極は、抵抗変化層とオーミック接合をしている。即ち、第2電極のフェルミ準位は、抵抗変化層の金属酸化物中に、フィラメントパス形成により形成される酸素欠陥に起因する不純物準位と、エネルギー的に同程度の位置にある。これに対し、第1電極と抵抗変化層との接続はバッファ層を介した整流性接合とするために、第1電極のフェルミ準位は、当該不純物準位より低い位置にある必要がある。このため、第2電極と抵抗変化層との接続がオーミック接合となり、かつ、第1電極のフェルミ準位が第2電極のフェルミ準位よりも低い位置にある材料の中から、第1電極及び第2電極の材料を選択する。言い換えると、第1電極の仕事関数が第2電極の仕事関数よりも大きく、かつ、第2電極と抵抗変化層との接続がオーミック接合となるように、第1電極及び第2電極の材料を選択する。
以下に、本発明の不揮発性半導体装置を構成可能な材料の例を挙げる。まず、抵抗変化層としては、Hf又はZrの何れかの元素の酸化物を含んでなることが好ましい。上述の通り、これらの材料はバンドギャップが大きいため、既存半導体設備で使用可能な中間的な仕事関数の材料を第1電極として用いて可変抵抗素子を構成することが可能になる。また、バッファ層となる金属酸化物の選択が容易になる。尚、当該酸化物の伝導帯の底の真空準位からのエネルギー位置は、夫々、−2.8eV(HfO)、−3.0eV(ZrO)である。
また、バッファ層の材料としては、Ti,Ta,Zn,Nb,Wの何れかの元素の酸化物を含んでなることが好ましい。尚、当該各酸化物の伝導帯の底の真空準位からのエネルギー位置は、夫々、−3.8eV(TiO)、−3.7eV(Ta)、−4eV(ZnO)、−4eV(Nb)、−4.2eV(WO)である。
また、第1電極の材料としては、TiN(4.7eV),TaN(窒素の化学量論的組成に依存して、4.05〜5.4eV),W(4.5eV),Ni(5.2eV),Co(4.45eV)の何れかを含んでなることが好ましい。尚、括弧内に各金属の仕事関数値を示した。
また、第2電極の材料としては、Ti(4.14eV),Ta(4.2eV),Al(4.1eV),Hf(3.9eV),Zr(4.05eV)の何れかを含んでなることが好ましい。尚、括弧内に各金属の仕事関数値を示した。
更に、前記バッファ層がTiまたはTaの酸化物を含み、かつ、前記第1電極がTi窒化物またはTa窒化物を含んでなることがより好ましい。容易な製造プロセスで本発明の不揮発性半導体記憶装置を構成することができる。
本発明に係る不揮発性半導体記憶装置は、更に、前記可変抵抗素子が、前記第1電極上の層間絶縁膜を貫通する開口部と、前記開口部の内側壁面および底面を覆う抵抗変化層と、前記開口部内の前記抵抗変化層を覆う前記第2電極を有し、前記開口部の底部において、前記抵抗変化層が、前記第1電極を構成する金属の酸化物である前記バッファ層と接触し、前記抵抗変化層は、前記バッファ層を介して前記第1電極と接続する構造を有することが好ましい。
本発明に係る不揮発性半導体記憶装置は、更に、前記可変抵抗素子が、下部配線上の層間絶縁膜を貫通する開口部と、前記開口部を充填する第1電極と、前記開口部の上面を覆う前記抵抗変化層と、前記抵抗変化層上に形成された前記第2電極を有し、前記開口部の上部に、前記第1電極を構成する金属の酸化物である前記バッファ層が形成され、前記開口部上面において、前記抵抗変化層は、前記バッファ層を介して前記第1電極と接続する構造を有することが好ましい。
従って、本発明に依れば、フォーミング処理後の可変抵抗素子間の特性ばらつきが抑制され、書き込み電圧パルス印加後と、消去電圧パルス印加後の可変抵抗素子間の抵抗値のばらつきを低減することができる。これにより安定したスイッチング動作を行うことができるため、2値分離を行う上で大容量化した際に有利である。
また、リードディスターブ耐性が高く、書き換え可能回数の多い、信頼性の高い半導体記憶装置を提供できる。
本発明の可変抵抗素子の一例の構造を示す断面模式図。 本発明の可変抵抗素子、および比較例1の素子について、可変抵抗素子の初期抵抗値のばらつきを示す累積頻度分布図。 本発明の可変抵抗素子のフォーミング処理後の抵抗値分布の、フォーミング時に可変抵抗素子に流れる電流を制御するトランジスタのゲート電圧に対する依存性を示す図。 本発明の可変抵抗素子、および、比較例1と2の素子について、フォーミング処理後の抵抗値のばらつきを示す累積頻度分布図。 本発明の可変抵抗素子について、セット後、および、リセット後の抵抗値のばらつきを示す累積頻度分布図。 比較例1の素子について、セット後、および、リセット後の抵抗値のばらつきを示す累積頻度分布図。 比較例2の素子について、セット後、および、リセット後の抵抗値のばらつきを示す累積頻度分布図。 本発明の可変抵抗素子について、100回書き込み後のセット後、および、リセット後の抵抗値のばらつきを示す累積頻度分布図。 比較例1の素子について、100回書き込み後のセット後、および、リセット後の抵抗値のばらつきを示す累積頻度分布図。 比較例2の素子について、100回書き込み後のセット後、および、リセット後の抵抗値のばらつきを示す累積頻度分布図。 本発明の可変抵抗素子の書き換え耐性を示す図。 本発明の可変抵抗素子、および、比較例2の素子について、読み出し電圧として0.5Vを印加して読み出しを行う場合の各素子のリードディスターブ耐性を示す図。 本発明の可変抵抗素子の他の構成例を示す素子構造の断面模式図。 本発明の可変抵抗素子の他の構成例を示す素子構造の断面模式図。 本発明の可変抵抗素子の他の構成例を示す素子構造の断面模式図。 本発明に係る不揮発性半導体記憶装置の回路構成の一例を示す図。 従来構成の可変抵抗素子の素子構造を示す模式図。 1T1R型メモリセルの一構成例を示す等価回路図。 1T1R型メモリセルの断面模式図。 1R型のメモリセルの一構成例を示す等価回路図。 1R型メモリセルの断面模式図。 本発明の効果の検証に用いた可変抵抗素子のフォーミング処理を行う回路の回路構成を示す図。 金属酸化物の当該酸化物の生成エネルギーとバンドギャップとの関係を説明するための図。 本発明の効果の検証に用いた可変抵抗素子と接続するNMOSトランジスタの電圧電流特性を示す図。
〈第1実施形態〉
図1は本発明の一実施形態に係る不揮発性半導体記憶装置(以降、適宜「本発明装置1」と称す)において用いる可変抵抗素子2の素子構造を模式的に示す断面図である。尚、以降に示す図面では、説明の都合上、要部を強調して示すこととし、素子各部の寸法比と実際の寸法比とは必ずしも一致しない場合がある。
本実施形態では、抵抗変化層としてバンドギャップの大きな絶縁物層である酸化ハフニウム(HfO)、バッファ層としてバンドギャップの小さな絶縁物層である酸化チタン(TiO)を選んで用いる。また、絶縁物層と電極の界面の一方にショットキー接合を作るため、酸化チタン層に窒化チタン(TiN)電極を接し、もう一方のオーミック接合をする電極にはタンタル(Ta)を用いている。しかしながら、本発明はこの構成に限定されるものではない。抵抗変化層として酸化ジルコニウム(ZrO)等を用いてもよく、バッファ層として窒化タンタル(TaN)、酸化タンタル(Ta)、酸化亜鉛(ZnO)、酸化ニオビウム(Nb)、酸化タングステン(WO)等を用いてもよい。ただし、バッファ層の膜厚は、抵抗変化層の抵抗を変化させる動作条件では抵抗が変化しない程度の薄い膜厚に設定する。
以下に可変抵抗素子2の製造方法について示す。まず、単結晶シリコン基板10上に、絶縁膜11として厚さ200nmのシリコン酸化膜を熱酸化法により形成する。その後、第1電極材料12として厚さ100nmの窒化チタン膜を、スパッタリング法によりシリコン酸化膜11上に形成する。その後、ラジカル酸化により窒化チタン膜12の一部を酸化し、バッファ層となる厚さが約2nmの酸化チタン膜12bを形成する。このとき、酸化されなかった下部の窒化チタン膜12は、第1電極12aとなって酸化チタン膜12bと分離形成される。
その後、酸化チタン膜12b上に、抵抗変化層13として、例えば、厚さが約3nmの酸化ハフニウム膜を、均一に形成するためALD(Atomic Layer Deposition)法で形成する。次に、抵抗変化層13上に、第2電極材料14として厚さ150nmのタンタル薄膜をスパッタリング法により形成する。最後にフォトレジスト工程によるパターンを形成して、ドライエッチングにより1μm×1μmの素子領域を図1に示すように形成する。これにより、可変抵抗素子2が作製される。
以下に、バッファ層12bを積層した効果を示すための比較例として、第1電極材料12に対してラジカル酸化を行わず、ALD法を用いて厚さが約3nmの酸化ハフニウム膜13を堆積したもの(比較例1)、及び、第1電極材料12に対してラジカル酸化を行わず、ALD法を用いて厚さ約5nmの酸化ハフニウム膜13を堆積したもの(比較例2)を併せて作製し、スイッチング特性の素子間ばらつきについて実験した結果を示す。即ち、比較例1は本発明における可変抵抗素子2からバッファ層12bとしての酸化チタン膜を省いた構成、比較例2は本発明における可変抵抗素子2のバッファ層12bを抵抗変化層となる酸化ハフニウム膜13で置き換えた構成である。尚、酸化ハフニウムを堆積せず、ラジカル酸化により形成した厚さが2nmの酸化チタン膜の単層とした場合、抵抗変化は見られなかった。このことから酸化ハフニウム膜が抵抗変化層として機能しているとことが分かる。
本発明における可変抵抗素子2、及び比較例1について、夫々、50個(50ビット)の各素子につき、両電極間に1.7Vの電圧印加時に流れた電流量から抵抗値を算出し、抵抗値の累積頻度分布に変換した結果を図2に示す。尚、比較例2についても同様の実験を行ったが、比較例2では電流量が測定器の測定限界値以下の値となり測定ができなかった。図2から、抵抗変化層としての酸化ハフニウム膜13が、抵抗変化層単層の場合(比較例1)と、抵抗変化層とバッファ層12bとの積層の場合(本発明)とで、共に同程度に均一に形成されているといえる。
次に、本発明における可変抵抗素子2、及び比較例1と2について、夫々、NMOSトランジスタを直列に接続して各素子に流れる電流を制御しながら、5V、50μsecの電圧パルスを印加してフォーミング処理を行った。当該トランジスタのゲート印加電圧Vgに対するフォーミング処理後の抵抗値の分布ばらつきを表したグラフを、本発明の素子について図3に示す。尚、図3において、エラーバーの範囲は抵抗値の累積頻度分布が10%から90%の間を占める範囲で、中心は中央値(累積頻度分布が50%となる位置)である。図3から、ゲート印加電圧を大きくして素子に流れる電流を大きくするほどフォーミング処理後の素子が低抵抗化し、抵抗値のばらつきが抑えられるといえる。あるゲート電圧Vgにおける各素子の抵抗値の累積頻度分布を図4に示す。本発明における可変抵抗素子2と比較例1の素子が同程度の素子ばらつきであり、比較例2の素子はそれらよりもばらつきが大きい。
次に、フォーミング処理後のこれら3種の素子を、様々な電圧パルス条件でスイッチングさせ、夫々、最もばらつきの少ない条件での255ビットの各素子のセット後の抵抗値の累積頻度分布とリセット後の抵抗値の累積頻度分布を図5〜図7に示す。本発明の素子が抵抗値のばらつきが最も少ないことが分かる。
尚、各素子のセット・リセット時における電圧パルスの電圧印加条件を下記に示す。また、各素子に接続したトランジスタの電圧電流特性を図24に示す。
1.本発明における可変抵抗素子(図5):
セット: 5V、50nsec、Vg=1.8V
リセット:−2.1V、10nsec、Vg=9V
2.比較例1(図6)
セット: 5V、50nsec、Vg=1.6V
リセット:−1.9V、30nsec、Vg=9V
3.比較例2(図7)
セット: 5V、50nsec、Vg=1.6V
リセット:−2.1V、20nsec、Vg=9V
更に、これら3種の素子を、上記の電圧印加条件で100回スイッチングさせた後のセット後の抵抗値の累積頻度分布とリセット後の抵抗値の累積頻度分布を図8〜図10に示す。本発明の素子が抵抗値のばらつきが最も少なく、書き換え可能回数においても向上していることが分かる。
実際に、本発明の可変抵抗素子に対して書き換え可能回数を測定したところ、図11に示されるように10回まで書き換え可能なことが分かる。
次に、本発明の可変抵抗素子に対し、5ビットの各素子にリセット状態でリード時のバイアス条件として0.5Vの電圧を印加したときの電圧印加時間に対するデータ保持特性を図12(A)に示す。同様に、比較例2の素子に対し、5ビットの各素子にリード時のバイアス条件として0.5Vの電圧をしたときの電圧印加時間に対するデータ保持特性を図12(B)に示す。尚、図12(A)および(B)において、5ビットの素子のうちのある一素子のデータ保持特性のグラフは、他の別の素子のグラフと重なっているため、図から判別することはできない。比較例2の素子では、電圧印加時間が10msecを超えるとリードディスターブが発生したのに対し、本発明の可変抵抗素子では電圧印加時間が1secを超えてもリードディスターブは見られなかった。
図12から、本発明の可変抵抗素子は、リードディスターブにおいても向上していることが分かる。
尚、本実施形態では可変抵抗素子2の構成として、図1に示される素子構造のものを例示したが、本発明は当該構造の素子に限られるものではない。例えば、図13に示されるように、可変抵抗素子3が層間絶縁膜を貫通する開口部内に埋め込まれた構造であってもよい。
図13に示される可変抵抗素子3は、第1電極材料12上に、層間絶縁膜15を貫通する開口部16が形成され、開口部16の内側壁面および底面を覆う抵抗変化層13、及び、開口部内の抵抗変化層13を覆う第2電極14が、形成されてなる。抵抗変化層13は、開口部16の底部においてバッファ層12bと接触し、当該バッファ層12bを介して第1電極12aと接続する。バッファ層12bは第1電極を構成する金属の酸化物からなり、第1電極材料12の酸化により形成される。
以下に可変抵抗素子3の製造方法について示す。まず、絶縁膜(シリコン酸化膜)11上に第1電極のパターンの溝を形成し、当該溝の内部を第1電極材料12(例えば、窒化チタン)で埋め込む。その後、第1電極材料12の上部に層間絶縁膜15を堆積し、層間絶縁膜15を貫通する開口部16を形成し、開口部16の底部において第1電極材料12を露出させる。そして、酸素アッシング等の手段で開口部16の底部に露出した第1電極材料(窒化チタン)12を2〜5nm程度酸化させ、バッファ層12bとしての酸化チタンを形成する。その後、ALDにより抵抗変化層13として酸化ハフニウムを2〜5nm程度成膜し、更に第2電極材料14としてタンタルを10nm程度成膜する。その後、第2電極材料14および抵抗変化層13をメモリ回路に合わせてパターニングして加工する。
また、図14に示される可変抵抗素子4は、下層の配線層17上に層間絶縁膜15を貫通する開口部16を形成してなり、当該開口部16内を第1電極材料12(例えば、窒化チタン)で充填して形成される。開口部16の上部には、酸化チタンで構成される膜厚2〜5nm程度のバッファ層12bが、例えば、開口部内の上面に形成された第1電極材料12の一部を酸素アッシング等の手段で酸化することで形成されている。バッファ層12bの上面を覆うように、膜厚が10nm程度の酸化ハフニウムからなる抵抗変化層13が、抵抗変化層13上には、膜厚が10nm程度のタンタル膜からなる第2電極14が、夫々、ALD法により成膜され、メモリ回路に合わせてパターニングされ加工されて形成されている。
尚、図15に示されるように、可変抵抗素子4が選択トランジスタと接続されるように、配線層17をコンタクトプラグ117を介して基板111上に形成された選択トランジスタのドレイン領域115と接続させてもよい。
上述の本発明の可変抵抗素子2〜4を複数、列方向あるいは行方向の少なくとも何れかの方向に配列させることで、メモリセルアレイが構成され、当該メモリセルアレイを搭載することで、可変抵抗素子間の特性ばらつきが低減され、安定してスイッチング動作を行うことのできる信頼性の高い不揮発性半導体記憶装置を実現することができる。
〈第2実施形態〉
可変抵抗素子2〜4を備える不揮発性半導体記憶装置の例を図16に示す。図16は、本発明装置1の回路構成図であり、夫々、メモリセルアレイ21、制御回路22、電圧発生回路23、ワード線デコーダ24、ビット線デコーダ25を備えている。
メモリセルアレイ21は、可変抵抗素子2〜4の何れかを含むメモリセルを行及び列方向に夫々複数マトリクス状に配置し、列方向に延伸するビット線により同一列に属するメモリセルが、行方向に延伸するワード線により同一行に属するメモリセル同士が相互に接続される、公知のクロスポイント型のメモリセルアレイである。ワード線を介して選択ワード線電圧及び非選択ワード線電圧の何れかを、ビット線を介して選択ビット線電圧及び非選択ビット線電圧の何れかを、夫々、各別に印加することにより、書き込み、消去、読み出し、及びフォーミング処理の各動作時において、外部からのアドレス入力で指定される動作対象の一または複数のメモリセルを選択することができる。
また、メモリセルアレイ21は、単位メモリセルに電流制限素子を含まない1R構造のメモリセルアレイ、或いは単位メモリセルに電流制限素子としてダイオードを含む1D1R構造のメモリセルアレイ、或いは単位メモリセルに電流制限素子としてトランジスタを含む1T1R構造のメモリセルアレイの何れかであってもよい。1D1R構造のメモリセルアレイにおいては、ダイオードの一方端と可変抵抗素子の一電極とが直列に接続されてメモリセルを構成し、ダイオードの他方端と可変抵抗素子の他電極の何れか一方が、夫々、ビット線及びワード線の何れか一方と接続している。1T1R構造のメモリセルアレイにおいては、トランジスタのソース或いはドレインの何れか一方と可変抵抗素子の一電極とが直列に接続されてメモリセルを構成し、可変抵抗素子と接続しないトランジスタのソース或いはドレインの他方、及び、トランジスタと接続しない不揮発性可変抵抗素子の他電極との何れか一方が、列方向に延伸するビット線に接続し、もう一方が接地電圧を供給するための共通のソース線に接続し、トランジスタのゲート端子同士が行方向に延伸するワード線に接続している。
制御回路22は、メモリセルアレイ21の書き込み(セット)、消去(リセット)、読み出しの各メモリ動作の制御、及び、フォーミング処理の制御を行う。具体的には、制御回路22はアドレス線から入力されたアドレス信号、データ線から入力されたデータ入力、制御信号線から入力された制御入力信号に基づいて、ワード線デコーダ24、ビット線デコーダ25を制御して、メモリセルの各メモリ動作及びフォーミング処理を制御する。
電圧発生回路23は、書き込み(セット)、消去(リセット)、読み出しの各メモリ動作、及び、メモリセルのフォーミング処理時において、動作対象のメモリセルを選択するために必要な選択ワード線電圧及び非選択ワード線電圧を発生してワード線デコーダ24に供給し、選択ビット線電圧及び非選択ビット線電圧を発生してビット線デコーダ25に供給する。
ワード線デコーダ24は、書き込み(セット)、消去(リセット)、読み出しの各メモリ動作、及び、メモリセルのフォーミング処理時において、動作対象のメモリセルがアドレス線に入力され指定されると、当該アドレス線に入力されたアドレス信号に対応するワード線を選択し、選択されたワード線と非選択のワード線に、夫々選択ワード線電圧と非選択ワード線電圧を各別に印加する。
ビット線デコーダ25は、書き込み(セット)、消去(リセット)、読み出しの各メモリ動作、及び、メモリセルのフォーミング処理時において、動作対象のメモリセルがアドレス線に入力され指定されると、当該アドレス線に入力されたアドレス信号に対応するビット線を選択し、選択されたビット線と非選択のビット線に、夫々選択ビット線電圧と非選択ビット線電圧を各別に印加する。
特に、フォーミング処理時においては、ワード線デコーダ24又はビット線デコーダ25内の、ワード線又はビット線を選択するための切替トランジスタのオン抵抗等を制御することにより、或いは、1T1R構造のメモリセルアレイではトランジスタのオン抵抗を選択ワード線電圧により制御することにより、フォーミング中の可変抵抗素子に流れる電流量が制限される。フォーミング処理が完了すると、上述の通り、当該可変抵抗素子の抵抗値が急激に低下することに伴ってトランジスタで制御できない急峻な電流が流れる虞がある。この結果、メモリセルアレイ内の可変抵抗素子間に特性のばらつきが生じ、信頼性の高い不揮発性記憶装置を実現することが困難になる。
しかしながら、本発明装置1では、バッファ層を備えた可変抵抗素子2〜4を用いてメモリセルアレイを構成することにより、フォーミング処理完了後に可変抵抗素子に流れる急峻なスパイク電流が抑制されるため、メモリセルアレイ内の可変抵抗素子間の特性のばらつきは低減され、信頼性の高い不揮発性記憶装置を実現することが可能になる。
尚、当該メモリセルアレイ21、制御回路22、電圧発生回路23、ワード線デコーダ24、ビット線デコーダ25の詳細な回路構成、デバイス構造、並びに、製造方法については、公知の回路構成を用いて実現可能であり、公知の半導体製造技術を用いて作製可能であるので説明を割愛する。
尚、上記実施形態において、1T1R構造のメモリセルアレイにおいては、ソース線を全メモリセルに共通とし、接地電圧が供給されているとしたが、当該ソース線は列方向に延伸し、同一列に属するメモリセル同士を相互に接続していてもよく、或いは行方向に延伸し、同一行に属するメモリセル同士を相互に接続していてもよい。更に、電圧発生回路23により供給される選択ソース線電圧及び非選択ソース線電圧を各ソース線に各別に印加するソース線デコーダ26(図示せず)を備えることで、書き込み(セット)、消去(リセット)、読み出しの各メモリ動作、及び、メモリセルのフォーミング処理時において、行或いは列毎にメモリセルを指定して動作対象のメモリセルを選択することが可能になる。当該ソース線デコーダ26は、動作対象のメモリセルがアドレス線に入力され指定されると、当該アドレス線に入力されたアドレス信号に対応するソース線を選択し、選択されたソース線と非選択のソース線に、夫々選択ソース線電圧と非選択ソース線電圧を各別に印加する。
また、上記実施形態において、メモリセルアレイが、メモリセルにダイオードを含む1D1R構造のクロスポイント型メモリセルアレイ、或いはメモリセルにトランジスタを含む1T1R構造のクロスポイント型メモリセルアレイである場合を例示したが、本発明はこの構成に限られるものではなく、フォーミング処理を施すことによりメモリ動作が可能になる、任意の不揮発性可変抵抗素子を含むメモリセルを複数マトリクス状に配列して構成されたメモリセルアレイに適用可能である。
尚、上述の実施形態は本発明の好適な実施形態の一例である。本発明の実施形態はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形実施が可能である。
本発明は、不揮発性半導体記憶装置に利用可能であり、特に電圧印加によって抵抗状態が遷移し、当該遷移後の抵抗状態が不揮発的に保持される不揮発性可変抵抗素子を備えてなる不揮発性半導体記憶装置に利用可能である。
1: 本発明に係る不揮発性半導体記憶装置
2〜4: 本発明に係る可変抵抗素子
10: 基板
11: 絶縁膜
12: 第1電極材料
12a: 第1電極
12b: バッファ層
13: 抵抗変化層
14: 第2電極
15: 層間絶縁膜
16: 開口部
17: 下層配線
21,104,131: メモリセルアレイ
22: 制御回路
23: 電圧印加回路
24,106: ワード線デコーダ
25,105: ビット線デコーダ
26,107: ソース線デコーダ
101,120: 上部電極
102,119,134: 可変抵抗体
103,118: 下部電極
111: 基板
112: 素子分離領域
113: ゲート絶縁膜
114: ゲート電極
115: ドレイン拡散層領域
116: ソース拡散層領域
117,121〜123: コンタクトプラグ
123: ビット線配線
124: ソース線配線
132: 上部電極配線
133: 下部電極配線
BL1〜BLm: ビット線
R: 可変抵抗素子
SL1〜SLn: ソース線
T: 選択トランジスタ
WL1〜WLn: ワード線

Claims (10)

  1. 第1電極と第2電極の間に抵抗変化層を挟持してなる可変抵抗素子を情報の記憶に用いる不揮発性半導体記憶装置であって、
    前記可変抵抗素子は、
    前記抵抗変化層と前記第1電極の間に抵抗値が固定のバッファ層が挿入されてなり、
    前記抵抗変化層がn型の第1金属酸化物を含み、
    前記バッファ層がn型の第2金属酸化物を含み、
    前記第1金属酸化物の伝導帯の底のエネルギーが、前記第2金属酸化物の伝導帯の底のエネルギーよりも高く、
    前記第1金属酸化物のバンドギャップが、前記第2金属酸化物のバンドギャップよりも大きく、
    前記第2電極は、前記抵抗変化層とオーミック接合をし、
    前記第1電極の仕事関数が、前記第2電極の仕事関数よりも大きいことを特徴とする不揮発性半導体記憶装置。
  2. 第1電極と第2電極の間に抵抗変化層を挟持してなる可変抵抗素子を情報の記憶に用いる不揮発性半導体記憶装置であって、
    前記可変抵抗素子は、
    前記抵抗変化層と前記第1電極の間に抵抗値が固定のバッファ層が挿入されてなり、
    前記抵抗変化層がn型の第1金属酸化物を含み、
    前記バッファ層がn型の第2金属酸化物を含み、
    前記第1金属酸化物の伝導帯の底のエネルギーが、前記第2金属酸化物の伝導帯の底のエネルギーよりも高く、
    前記第1金属酸化物の生成エネルギーの絶対値が、前記第2金属酸化物の生成エネルギーの絶対値よりも大きく、
    前記第2電極は、前記抵抗変化層とオーミック接合をし、
    前記第1電極の仕事関数が、前記第2電極の仕事関数よりも大きいことを特徴とする不揮発性半導体記憶装置。
  3. 前記可変抵抗素子は、フォーミング処理を施すことにより、前記第1および第2電極間の抵抗状態が前記フォーミング処理前の初期高抵抗状態から可変抵抗状態に変化し、
    前記可変抵抗状態の前記可変抵抗素子の前記第1電極と前記第2電極の間に電気的ストレスを与えることにより、前記可変抵抗状態における抵抗状態が二以上の異なる抵抗状態間で遷移し、当該遷移後の一の抵抗状態を情報の記憶に用いるものであり、
    前記バッファ層は、前記フォーミング処理の完了に伴い前記可変抵抗素子の両電極間に流れる急激な電流の増大を抑制する抵抗として動作することを特徴とする請求項1または2に記載の不揮発性半導体記憶装置。
  4. 前記抵抗変化層が、Hf又はZrの何れかの元素の酸化物を含んでなることを特徴とする請求項1〜3の何れか一項に記載の不揮発性半導体記憶装置。
  5. 前記バッファ層が、Ti,Ta,Zn,Nb,Wの何れかの元素の酸化物を含んでなることを特徴とする請求項1〜4の何れか一項に記載の不揮発性半導体記憶装置。
  6. 前記第1電極が、Ti窒化物、Ta窒化物、又は、W,Ni,Coから選択される金属の何れかを含んでなることを特徴とする請求項1〜5の何れか一項に記載の不揮発性半導体記憶装置。
  7. 前記第2電極が、Ti,Ta,Al,Hf,Zrから選択される金属の何れかを含んでなることを特徴とする請求項1〜6の何れか一項に記載の不揮発性半導体記憶装置。
  8. 前記バッファ層が、TiまたはTaの酸化物を含み、かつ、前記第1電極がTi窒化物またはTa窒化物を含んでなることを特徴とする請求項1〜7の何れか一項に記載の不揮発性半導体記憶装置。
  9. 前記可変抵抗素子が、
    前記第1電極上の層間絶縁膜を貫通する開口部と、
    前記開口部の内側壁面および底面を覆う抵抗変化層と、
    前記開口部内の前記抵抗変化層を覆う前記第2電極を有し、
    前記開口部の底部において、前記抵抗変化層が、前記第1電極を構成する金属の酸化物である前記バッファ層と接触し、
    前記抵抗変化層は、前記バッファ層を介して前記第1電極と接続することを特徴とする請求項1〜8の何れか一項に記載の不揮発性半導体記憶装置。
  10. 前記可変抵抗素子が、
    下部配線上の層間絶縁膜を貫通する開口部と、
    前記開口部を充填する第1電極と、
    前記開口部の上面を覆う前記抵抗変化層と、
    前記抵抗変化層上に形成された前記第2電極を有し、
    前記開口部の上部に、前記第1電極を構成する金属の酸化物である前記バッファ層が形成され、
    前記開口部上面において、前記抵抗変化層は、前記バッファ層を介して前記第1電極と接続することを特徴とする請求項1〜8の何れか一項に記載の不揮発性半導体記憶装置。
JP2010171079A 2010-07-29 2010-07-29 不揮発性半導体記憶装置 Expired - Fee Related JP5156060B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010171079A JP5156060B2 (ja) 2010-07-29 2010-07-29 不揮発性半導体記憶装置
US13/182,696 US8530877B2 (en) 2010-07-29 2011-07-14 Non-volatile semiconductor device
CN201110215067.3A CN102347445B (zh) 2010-07-29 2011-07-29 非易失性半导体存储装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171079A JP5156060B2 (ja) 2010-07-29 2010-07-29 不揮発性半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2012033649A true JP2012033649A (ja) 2012-02-16
JP5156060B2 JP5156060B2 (ja) 2013-03-06

Family

ID=45525794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171079A Expired - Fee Related JP5156060B2 (ja) 2010-07-29 2010-07-29 不揮発性半導体記憶装置

Country Status (3)

Country Link
US (1) US8530877B2 (ja)
JP (1) JP5156060B2 (ja)
CN (1) CN102347445B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116605A (ja) * 2012-12-10 2014-06-26 Huabang Electronic Co Ltd 自己整流型rramセル構造およびそのクロスバーアレイ構造
US9112146B2 (en) 2013-04-26 2015-08-18 Kabushiki Kaisha Toshiba Resistance random access memory device
JP2018147924A (ja) * 2017-03-01 2018-09-20 株式会社東芝 半導体記憶装置
JP2020136681A (ja) * 2019-02-20 2020-08-31 国立大学法人北見工業大学 半導体メモリセル構造、半導体記憶装置及び半導体メモリセル構造の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214235A1 (en) * 2010-10-26 2013-08-22 Industry-University Cooperation Foundation Hanyang University Resistive memory having rectifying characteristics or an ohmic contact layer
JP2012204399A (ja) * 2011-03-23 2012-10-22 Toshiba Corp 抵抗変化メモリ
US8859382B2 (en) * 2011-10-26 2014-10-14 Micron Technology, Inc. Methods of forming metal oxide and memory cells
JP2013197504A (ja) * 2012-03-22 2013-09-30 Sharp Corp 可変抵抗素子、及び、不揮発性半導体記憶装置
TWI500116B (zh) * 2012-09-06 2015-09-11 Univ Nat Chiao Tung 可撓曲非揮發性記憶體及其製造方法
US8921821B2 (en) 2013-01-10 2014-12-30 Micron Technology, Inc. Memory cells
WO2015034494A1 (en) * 2013-09-05 2015-03-12 Hewlett-Packard Development Company, L.P. Memristor structures
US9385316B2 (en) * 2014-01-07 2016-07-05 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM retention by depositing Ti capping layer before HK HfO
JP2015163804A (ja) * 2014-02-28 2015-09-10 幸夫 小西 雄ネジ
JP6386349B2 (ja) * 2014-11-19 2018-09-05 東芝メモリ株式会社 不揮発性記憶装置
CN107887507A (zh) * 2016-09-29 2018-04-06 华邦电子股份有限公司 电阻式随机存取存储器、其制造方法及其操作方法
CN112420923A (zh) * 2020-11-26 2021-02-26 上海华力微电子有限公司 阻变存储器及其制造方法
CN112864318B (zh) * 2021-03-25 2023-02-07 中国科学院微电子研究所 一种阻变存储器及其制作方法
CN113948595B (zh) * 2021-09-09 2023-07-28 广东石油化工学院 一种宽带热电子光探测器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159760A (ja) * 2006-12-22 2008-07-10 Sharp Corp 抵抗変化型不揮発性メモリ素子とその作製方法及び不揮発性半導体記憶装置
JP2009135370A (ja) * 2007-12-03 2009-06-18 Panasonic Corp 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
WO2009101785A1 (ja) * 2008-02-12 2009-08-20 Panasonic Corporation 不揮発性半導体記憶装置及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1247074A (en) * 1985-01-31 1988-12-20 Chung-Zong Wan Three-way catalysts of improved efficiency
US6204139B1 (en) 1998-08-25 2001-03-20 University Of Houston Method for switching the properties of perovskite materials used in thin film resistors
IL143649A0 (en) 1999-02-17 2002-04-21 Ibm Microelectronic device for storing information and method thereof
FR2824846B1 (fr) * 2001-05-16 2004-04-02 Saint Gobain Substrat a revetement photocatalytique
US6912163B2 (en) * 2003-01-14 2005-06-28 Fasl, Llc Memory device having high work function gate and method of erasing same
KR100738116B1 (ko) 2006-07-06 2007-07-12 삼성전자주식회사 가변 저항 물질을 포함하는 비휘발성 메모리 소자
KR100913395B1 (ko) * 2006-12-04 2009-08-21 한국전자통신연구원 메모리 소자 및 그 제조방법
US8144498B2 (en) * 2007-05-09 2012-03-27 Intermolecular, Inc. Resistive-switching nonvolatile memory elements
JP4967176B2 (ja) 2007-05-10 2012-07-04 シャープ株式会社 可変抵抗素子とその製造方法及び不揮発性半導体記憶装置
US8154003B2 (en) * 2007-08-09 2012-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive non-volatile memory device
JP5488463B2 (ja) 2008-06-20 2014-05-14 日本電気株式会社 半導体記憶装置及びその動作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159760A (ja) * 2006-12-22 2008-07-10 Sharp Corp 抵抗変化型不揮発性メモリ素子とその作製方法及び不揮発性半導体記憶装置
JP2009135370A (ja) * 2007-12-03 2009-06-18 Panasonic Corp 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
WO2009101785A1 (ja) * 2008-02-12 2009-08-20 Panasonic Corporation 不揮発性半導体記憶装置及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116605A (ja) * 2012-12-10 2014-06-26 Huabang Electronic Co Ltd 自己整流型rramセル構造およびそのクロスバーアレイ構造
US9112146B2 (en) 2013-04-26 2015-08-18 Kabushiki Kaisha Toshiba Resistance random access memory device
JP2018147924A (ja) * 2017-03-01 2018-09-20 株式会社東芝 半導体記憶装置
JP2020136681A (ja) * 2019-02-20 2020-08-31 国立大学法人北見工業大学 半導体メモリセル構造、半導体記憶装置及び半導体メモリセル構造の製造方法
JP7341484B2 (ja) 2019-02-20 2023-09-11 国立大学法人北海道国立大学機構 半導体メモリセル構造及び半導体記憶装置

Also Published As

Publication number Publication date
JP5156060B2 (ja) 2013-03-06
US8530877B2 (en) 2013-09-10
US20120025163A1 (en) 2012-02-02
CN102347445B (zh) 2014-11-05
CN102347445A (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5156060B2 (ja) 不揮発性半導体記憶装置
US8742507B2 (en) Variable resistive element, method for producing the same, and nonvolatile semiconductor memory device including the variable resistive element
JP4698630B2 (ja) 下部電極上に形成されたバッファ層を備える可変抵抗メモリ素子
JP3889023B2 (ja) 可変抵抗素子とその製造方法並びにそれを備えた記憶装置
JP5154138B2 (ja) n+界面層を備えた可変抵抗ランダムアクセスメモリ素子
JP5016699B2 (ja) 不揮発性半導体記憶装置及びその製造方法
JP2013157469A (ja) 可変抵抗素子、及び、不揮発性半導体記憶装置
JP5270809B2 (ja) 不揮発性記憶素子、及び不揮発性記憶装置
US20140056056A1 (en) Method for reading data from nonvolatile memory element, and nonvolatile memory device
JP5369071B2 (ja) 可変抵抗素子のフォーミング処理方法、及び、不揮発性半導体記憶装置
JP5680927B2 (ja) 可変抵抗素子、及び、不揮発性半導体記憶装置
JP2014033094A (ja) 可変抵抗素子とその製造方法、及び、不揮発性半導体記憶装置
US20130248809A1 (en) Variable resistive element and nonvolatile semiconductor memory device
JP5603721B2 (ja) 不揮発性半導体記憶装置及びその製造方法
JP6092696B2 (ja) 可変抵抗素子を用いたメモリセル
US9390797B2 (en) Driving method of variable resistance element and non-volatile memory device
JP5357532B2 (ja) 可変抵抗素子及びその製造方法
JP5431267B2 (ja) 抵抗変化素子の駆動方法及び不揮発性記憶装置
JP2009043850A (ja) 可変抵抗素子及びその製造方法
JP2009212245A (ja) 可変抵抗素子
JP2009295944A (ja) 可変抵抗素子及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees