JP2011517832A - 外部回路を用いたプラズマ均一性の電気的制御 - Google Patents

外部回路を用いたプラズマ均一性の電気的制御 Download PDF

Info

Publication number
JP2011517832A
JP2011517832A JP2010550728A JP2010550728A JP2011517832A JP 2011517832 A JP2011517832 A JP 2011517832A JP 2010550728 A JP2010550728 A JP 2010550728A JP 2010550728 A JP2010550728 A JP 2010550728A JP 2011517832 A JP2011517832 A JP 2011517832A
Authority
JP
Japan
Prior art keywords
capacitor
inductor
plasma
showerhead
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010550728A
Other languages
English (en)
Inventor
キャロル べラ
シャヒド ラウフ
アジト バラクリシュナ
ケネス エス コリンズ
カーティク ラマスワミ
広二 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2011517832A publication Critical patent/JP2011517832A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32045Circuits specially adapted for controlling the glow discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

プラズマ均一性を制御するための方法及び装置を開示する。基板をエッチングする場合、不均一プラズマが基板の不均一なエッチングを引き起こす可能性がある。インピーダンス回路がプラズマの不均一性を軽減して、より均一なエッチングを可能にするかもしれない。チャンバ側壁と接地の間、シャワーヘッドと接地の間、及び陰極缶と接地の間に、インピーダンス回路を配設してもよい。インピーダンス回路は1つ以上の誘導子及びコンデンサを含んでいてもよい。プラズマが均一であることを確保するために、誘導子のインダクタンスとコンデンサの静電容量とをあらかじめ定めてもよい。更に、処理中に、又は処理ステップと処理ステップの間に、特定のプロセスの要求に合うようにインダクタンスと静電容量とを調節してもよい。

Description

背景
(分野)
本発明の実施形態は、一般に、プラズマ均一性を制御するための方法及び装置に関する。
(関連技術の説明)
プラズマ環境内で基板を処理するとき、プラズマの均一性が処理の均一性に影響を与えることになる。例えば、プラズマ蒸着プロセスでは、基板の中心部に対応するチャンバの領域内でプラズマがより強くなっているときには、基板の縁端部と比較して基板の中心部でより多くの蒸着が行われる可能性が高いであろう。同様に、基板の縁端部に対応するチャンバの領域内でプラズマがより強くなっているときには、中心部と比較して基板の縁端部上でより多くの蒸着が行われる可能性が高いであろう。
エッチングプロセスでは、基板の中心部に対応するチャンバの領域内でプラズマがより強くなっているときには、基板の縁端部と比較して基板の中心部にある基板からより多くの材料が除去されたり、又はエッチングされたりする可能性が高いであろう。同様に、基板の縁端部に対応するチャンバの領域内でプラズマがより強くなっているときには、基板の中心部と比較して基板の縁端部にある基板からより多くの材料が除去されたり、又はエッチングされたりする可能性がある。
プラズマプロセスにおいて不均一性が生じると、蒸着層又はエッチングされた部分が基板全体で均一にならないため、デバイス性能を著しく低下させて、浪費につながる可能性がある。プラズマを均一にすることができれば、均一な蒸着又はエッチングが行われる可能性がより高くなる。したがって、プラズマプロセスにおいてプラズマ均一性を制御するための方法及び装置に対する技術的な必要性が存在する。
概要
本発明の実施形態は、プラズマの均一性を制御するための方法及び装置を一般に含んでいる。一実施形態では、プラズマ処理装置が、チャンバ本体と、チャンバ本体の中に配設された基板支持部と、チャンバ本体の中に配設されており基板支持部に向かい合っているシャワーヘッドと、を含んでいる。電源が基板支持部に接続されている。コンデンサと、誘導子と、それらの組み合わせからなる群から選択された少なくとも1つの品目が、チャンバ本体、シャワーヘッド、及び基板支持部のうちの少なくとも2つに接続されている。
他の実施形態では、プラズマ処理装置が、チャンバ本体と、チャンバ本体の中に配設された基板支持部と、チャンバ本体の中に配設されており基板支持部に向かい合っているシャワーヘッドと、を含んでいる。電源がシャワーヘッドに接続されている。陰極缶がチャンバ本体の中に配設されている。コンデンサと、誘導子と、それらの組み合わせからなる群から選択された少なくとも1つの品目が、チャンバ本体、基板支持部、シャワーヘッド、及び陰極缶のうちの少なくとも2つに接続されている。陰極缶は基板支持部を実質的に取り囲んでいる。
他の実施形態では、エッチング装置が、チャンバ本体と、チャンバ本体の中に配設された基板支持部と、チャンバ本体の中に配設されており基板支持部に向かい合っているシャワーヘッドと、を含んでいる。電源が基板支持部に接続されている。第1のコンデンサがシャワーヘッドに接続されており、第1の誘導子がシャワーヘッドに接続されている。第2のコンデンサがチャンバ本体に接続されており、第2の誘導子がチャンバ本体に接続されている。
他の実施形態では、プラズマ分布制御方法が、処理チャンバの中に配設されており基板支持部上にある基板に電流を加えるステップを含んでいる。処理チャンバは、チャンバ本体と、チャンバ本体の中に配設されており基板に向かい合っているシャワーヘッドと、を有している。方法は、シャワーヘッド、チャンバ本体、及び基板支持部のうちの少なくとも2つを、誘導子と、コンデンサと、それらの組み合わせからなる群から選択された品目に接続して、プラズマ分布を調節するステップを更に含んでいる。
本発明の上記構成を詳細に理解できるように、簡潔に上述した本発明について、実施形態を参照することにより、更に詳しく説明する。これらの実施形態のいくつかについて添付図面で示している。しかしながら、添付図面はあくまで本発明の典型的な実施形態を示しているに過ぎず、したがって、これらの添付図面は本発明の範囲を制限するものと解釈されず、本発明は他の同様に効果的な実施形態を含み得ることに留意すべきである。
プラズマ処理装置の模式的断面図である。 本発明の一実施形態のエッチング装置の模式的断面図である。 本発明の他の実施形態のエッチング装置の模式的断面図である。 本発明の一実施形態のプラズマ均一性分布を示す図である。 本発明の他の実施形態のプラズマ均一性分布を示す図である。 本発明の他の実施形態のプラズマ均一性分布を示す図である。 本発明の他の実施形態のプラズマ均一性分布を示す図である。 本発明の他の実施形態のプラズマ均一性分布を示す図である。 本発明の他の実施形態のプラズマ均一性分布を示す図である。 本発明の他の実施形態のプラズマ均一性分示す図である。 利用することができる付加的なインピーダンス回路を示す図である。
理解を容易にするために、図面に共通する同一の要素は、可能であれば同一の参照番号を使用して示してある。さらなる説明なしに一実施形態の要素及び機能を他の実施形態に有利に組み込んでもよいということが想定される。
詳細な説明
本発明の実施形態は、プラズマ均一性を制御するための方法及び装置を一般に含んでいる。以下ではエッチング装置及び方法に関する実施形態について説明するが、実施形態は他のプラズマ処理チャンバ及びプロセスにも等しく応用できることを理解すべきである。本発明を実施してもよい1つの例示的装置は、カリフォルニア州サンタクララにあるアプライドマテリアルズ社から入手できるイネーブラ(商標名)エッチングチャンバである。他の製造業者が販売しているチャンバを含む他のチャンバで本発明の実施形態を実施してもよいことを理解すべきである。
図1はプラズマ処理装置100の模式的断面図である。装置100はチャンバ102を含んでおり、チャンバ102の中に配設されておりサセプタ106上にある基板104を有している。サセプタ106は、下降位置と上昇位置の間で可動であってもよい。基板104とサセプタ106とは、チャンバ102の中に配設されておりシャワーヘッド108に向かい合っていてもよい。チャンバ102は、チャンバ102の下端112に連結された真空ポンプ110を用いて排気してもよい。
処理ガスを、ガス源114からシャワーヘッド108を介してチャンバ102に導入してもよい。ガスを、バッキング・プレート118とシャワーヘッド108の間に配設されたプレナム116に導入してもよい。その後、ガスはシャワーヘッド108を通り抜けて、電源120を用いてシャワーヘッド108に加えられる電流によって点火されてプラズマ122を生成してもよい。一実施形態では、電源120はRF電源を含んでいてもよい。
図2は本発明の一実施形態のエッチング装置200の模式的断面図である。装置200は処理チャンバ202を含んでおり、処理チャンバ202の中に配設された基板204を有している。基板204は、上昇位置と下降位置の間で可動であるサセプタ206上に配設してもよい。基板204とサセプタ206とは、処理チャンバ202の中でシャワーヘッド208に向かい合って位置していてもよい。真空ポンプ210は、処理チャンバ202の中を真空引きしてもよい。真空ポンプ210は、サセプタ206の下部に配設してもよい。
処理ガスを、ガス源212から処理チャンバ202のシャワーヘッド208上方のプレナム214に提供してもよい。処理ガスは、ガス流路216を介して処理領域218に流れ込んでもよい。電源230からの電流を用いてシャワーヘッド208にバイアスをかけてもよい。スイッチ228がオンのときにはいつも、電流はシャワーヘッド208に流れてもよい。一実施形態では、電源230はRF電源を含んでいてもよい。他の実施形態では、シャワーヘッド208は開路になっているか又は浮遊電位であってもよい。
基板206にバイアスをかけているときには、基板206に加えられるRF電流は、シャワーヘッド208から、及び、チャンバ側壁220、若しくはそのいずれかを介して、接地に流れることになる。接地までの経路が簡単であればあるほど、より多くのRF電流がその経路を流れることになる。したがって、シャワーヘッド208とチャンバ側壁220の両方が接地されているとき、チャンバ側壁220がRF電流源に近接していることにより、チャンバ側壁220の近くにプラズマを引き寄せる可能性がある。プラズマがチャンバ側壁220に引き寄せられることにより、基板206の縁端部でのエッチングがより促進される可能性がある。チャンバ202の中のプラズマが均一であるとき、チャンバ202の中のエッチングは均一になるであろう。
処理チャンバ202の中のプラズマを制御するために、インピーダンス回路222をチャンバ側壁220及びシャワーヘッド208、若しくはそのいずれかに接続してもよい。コンデンサ224がインピーダンス回路の一部であるときには、コンデンサ224はコンデンサ224を接続してある位置からプラズマを押しのける可能性がある。コンデンサ224は品目を接地から切り離す。コンデンサ224は電流が接地に流れるのを妨げる。それに対して、誘導子226はコンデンサ224とは反対の働きをする。誘導子は誘導子226に接続された対象物の近くにプラズマを引き寄せる。誘導子の両端間の電圧降下はバイアスされた対象物(すなわち、シャワーヘッド208又は基板206)と位相がずれているため、誘導子の両端間の電圧降下は接地に対して増加している。その結果、直接接地に流れる電流よりも、誘導子226を介して接地に流れる電流の方が多い。誘導子226とコンデンサ224の両方が存在しているときには、使用者の特定の要求を満たすために静電容量及びインダクタンス、若しくはそのいずれかを調整してもよい。複数のRF応用では、直列回路要素及び並列回路要素の様々な組み合わせ及び伝送線路、若しくはそのいずれかを使用して、所望のインピーダンスを実現してもよい。図11A〜図11Eは、利用してもよいいくつかのインピーダンス回路を示している。他のインピーダンス回路もまた利用してもよいことが理解されるべきである。
処理チャンバ202はチャンバ側壁220を有していてもよい。チャンバ側壁220は接地に直接接続されたり、又は接地に接続されたインピーダンス回路222に接続されていてもよい。インピーダンス回路222は、コンデンサ224及び誘導子226、若しくはそのいずれかを含んでいてもよい。コンデンサ224はコンデンサをチャンバ側壁220に接続するスイッチ228と、コンデンサ224を接地に接続するスイッチ228と、を有していてもよい。同様に、誘導子226は誘導子226をチャンバ側壁220に接続するスイッチと、誘導子226を接地に接続するスイッチ228と、を有している。一実施形態では、コンデンサ224は誘導子226のない状態で存在していてもよい。他の実施形態では、誘導子226はコンデンサ224のない状態で存在していてもよい。他の実施形態では、コンデンサ224と誘導子226の両方が存在していてもよい。他の実施形態では、側壁220はコンデンサ224及び誘導子226、若しくはそのいずれかに接続することなく接地に直接接続されていてもよい。
また、シャワーヘッド208は、インピーダンス回路222を介して接地に接続されたり、接地に直接接続されたり、電源230に接続されたり、又は浮遊電位で開路になっていてもよい。インピーダンス回路222は、コンデンサ224及び誘導子226、若しくはそのいずれかを含んでいてもよい。コンデンサ224はコンデンサをシャワーヘッド208に接続するスイッチ228と、コンデンサ224を接地に接続するスイッチ228と、を有していてもよい。同様に、誘導子226は誘導子226をシャワーヘッド208に接続するスイッチ228と、誘導子226を接地に接続するスイッチ228と、を有している。一実施形態では、コンデンサ224は誘導子226のない状態で存在していてもよい。他の実施形態では、誘導子226はコンデンサ224のない状態で存在していてもよい。他の実施形態では、コンデンサ224と誘導子226の両方が存在していてもよい。他の実施形態では、シャワーヘッド208はコンデンサ224及び誘導子226、若しくはそのいずれかに接続することなく接地に直接接続されていてもよい。他の実施形態では、シャワーヘッド208は浮遊電位で開路になっていてもよい。他の実施形態では、シャワーヘッド208は電源230に接続されていてもよい。シャワーヘッド208はスペーサ232を用いてチャンバ側壁220から電気的に絶縁されていてもよい。一実施形態では、スペーサ232は誘電体を含んでいてもよい。
サセプタ206は接地に接続されたり、電源238に接続されたり、又は浮遊電位で開路になっていたりしていてもよい。一実施形態では、電源238はRF電源を含んでいてもよい。スイッチ228を使用してサセプタ206を電源238又は接地に接続してもよい。
一実施形態では、陰極缶236はサセプタ206を少なくとも部分的に取り囲んでいてもよい。陰極缶236はプラズマ均一性の付加的な制御を提供してもよい。陰極缶236はスペーサ234を用いてサセプタ206から電気的に絶縁されていてもよい。一実施形態では、スペーサ234は誘電体を含んでいてもよい。陰極缶236を使用して処理チャンバ202の中のプラズマを制御してもよい。陰極缶236は接地に直接接続されたり、又は接地に接続されたインピーダンス回路222に接続されてもよい。インピーダンス回路222は、コンデンサ224及び誘導子226、若しくはそのいずれかを含んでいてもよい。コンデンサ224はコンデンサ224を陰極缶236に接続するスイッチ228と、コンデンサ224を接地に接続するスイッチ228と、を有していてもよい。同様に、誘導子226は誘導子226を陰極缶236に接続するスイッチ228と、誘導子226を接地に接続するスイッチ228と、を有している。一実施形態では、コンデンサ224は誘導子226のない状態で存在していてもよい。他の実施形態では、誘導子226はコンデンサ224のない状態で存在していてもよい。他の実施形態では、コンデンサ224と誘導子226の両方が存在していてもよい。他の実施形態では、陰極缶236はコンデンサ224及び誘導子226、若しくはそのいずれかに接続することなく接地に直接接続されていてもよい。
上述の様々な実施形態は任意の組み合わせで利用してもよいことを理解すべきである。例えば、陰極缶236は存在していても存在していなくてもよい。陰極缶236が存在しているときに、インピーダンス回路222は存在していても存在していなくてもよい。同様に、インピーダンス回路222をチャンバ側壁220に接続していても接続していなくてもよい。同様に、インピーダンス回路をシャワーヘッド208に接続していても接続していなくてもよい。インピーダンス回路222が存在しているときに、コンデンサ224は存在していても存在していなくてもよく、誘導子226は存在していても存在していなくてもよい。シャワーヘッド208は接地に直接接続されたり、インピーダンス回路222に接続されたり、又は浮遊電位で開路のままであってもよい。サセプタ206は接地に直接接続されたり、又は浮遊電位で開路のままであってもよい。更に、側壁220は浮遊電位で開路のままであってもよい。
装置200は可動陰極(図示せず)を含んでいてもよく、切れ目なく処理領域を含んでいてもよい。切れ目なく、処理領域の下方の位置に配設されたスリット・バルブ開口部を含んでいてもよい。更に、複数のRF源を装置200に接続していてもよい。直列回路要素及び並列回路要素の様々な組み合わせ及び伝送線路、若しくはそのいずれかを使用して、所望のインピーダンスを実現してもよい。図11A〜図11Eは、利用してもよいいくつかのインピーダンス回路を示している。他のインピーダンス回路もまた利用してもよいことが理解されるべきである。
図3は本発明の他の実施形態のエッチング装置300の模式的断面図である。装置300は処理チャンバ302を含んでおり、処理チャンバ302の中に配設された基板304を有している。基板304はサセプタ306上に配設されておりシャワーヘッド308に向かい合っていてもよい。サセプタ306は、上昇位置と下降位置の間で可動であってもよい。真空ポンプ310は、処理チャンバ302を所望圧力に排気してもよい。
図2に示した実施形態と同様に、インピーダンス回路312を使用してプラズマ均一性を制御してもよい。インピーダンス回路312は誘導子314及びコンデンサ316、若しくはそのいずれかを有していてもよい。インピーダンス回路312は、コンデンサ316及び誘導子314、若しくはそのいずれかを、接地及び対象物、若しくはそのいずれかに接続してもよい1つ以上のスイッチ318を有していてもよい。インピーダンス回路312はチャンバ側壁320に接続されたり、シャワーヘッド308に接続されたり、陰極缶322が存在するときには陰極缶322に接続されてもよい。陰極缶322が存在するときには、スペーサ324を用いてサセプタ306から陰極缶322を離間させてもよい。一実施形態では、スペーサ324は誘電体を含んでいてもよい。同様に、シャワーヘッド308はスペーサ326を用いてチャンバ側壁320から電気的に絶縁されていてもよい。一実施形態では、スペーサ326は誘電体を含んでいてもよい。
サセプタ306は接地に直接接続されたり、電源328に接続されたり、又は浮遊電位で開路のままであってもよい。シャワーヘッド308は2つ以上の分離領域を有していてもよい。シャワーヘッド308は第1の領域330と第2の領域332とを含んでいてもよい。一実施形態では、第2の領域332は第1の領域330を取り囲んでいてもよい。第1の領域330と第2の領域332の両方はそれぞれ、接地に直接接続されたり、インピーダンス回路312に接続されたり、又は電源334、336に接続されてもよい。第1の領域330はスペーサ338を用いて第2の領域332から電気的に絶縁されていてもよい。一実施形態では、スペーサ338は誘電体を含んでいてもよい。
上述の様々な実施形態は任意の組み合わせで利用してもよいことを理解すべきである。例えば、陰極缶322は存在していても存在していなくてもよい。陰極缶322が存在しているときに、インピーダンス回路312は存在していても存在していなくてもよい。同様に、インピーダンス回路312をチャンバ側壁320に接続していても接続していなくてもよい。同様に、インピーダンス回路312をシャワーヘッド308の第1の領域330に接続していても接続していなくてもよい。インピーダンス回路312をシャワーヘッド308の第2の領域332に接続していても接続していなくてもよい。インピーダンス回路312が存在しているときに、コンデンサ316は存在していても存在していなくてもよく、誘導子314は存在していても存在していなくてもよい。シャワーヘッド308の第1及び第2の領域330、332は、接地に直接接続されたり、インピーダンス回路312に接続されたり、又は浮遊電位で開路のままであってもよい。サセプタ306は接地に直接接続されたり、又は浮遊電位で開路のままであってもよい。更に、側壁320は浮遊電位で開路のままであってもよい。
装置300は可動陰極(図示せず)を含んでいてもよく、切れ目なく処理領域を含んでいてもよい。切れ目なく、処理領域の下方の位置に配設されたスリット・バルブ開口部を含んでいてもよい。更に、複数のRF源を装置300に接続していてもよい。直列回路要素及び並列回路要素のさまざまな組み合わせ及び伝送線路、若しくはそのいずれかを使用して、所望のインピーダンスを実現してもよい。図11A〜図11Eは、利用してもよいいくつかのインピーダンス回路を示している。他のインピーダンス回路もまた利用してもよいことを理解すべきである。
以下に示す実施例では、プラズマ処理チャンバに接続されたインピーダンス回路の様々な配置について、及びそれらのインピーダンス回路がプラズマ均一性にどのように影響を与えるかについて説明するであろう。一般に、作動圧力範囲は数mTorr〜数千mTorrであってもよい。
(比較例1)
図4は、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは接地に直接接続されており、チャンバ側壁は直接接地に接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図4に示すように、プラズマ密度は基板の縁端部付近で高くなっている。
(実施例1)
図5Aは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは70pFの静電容量を有するコンデンサを介して接地に接続されている。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図5Aに示すように、図4に示したプラズマ密度と比較して基板の縁端部付近のプラズマ密度が増加している。コンデンサは、プラズマをチャンバ側壁の方へ押しやる役割を果たしている。
(実施例2)
図5Bは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。チャンバ側壁は70pFの静電容量を有するコンデンサを介して接地に接続されている。シャワーヘッドは接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図5Bに示すように、図4に示したプラズマ密度と比較して基板の縁端部付近のプラズマ密度が減少している。コンデンサは、プラズマをシャワーヘッドの方へ押しやる役割を果たしている。
(実施例3)
図6Aは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは、10nHのインダクタンスを有する誘導子と、0.36nFの静電容量を有するコンデンサとを介して、接地に接続されている。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図6Aに示すように、図4に示したプラズマ密度と比較して基板の縁端部付近のプラズマ密度が減少している。コンデンサと誘導子とは一緒になって、プラズマをシャワーヘッドの方へ引き寄せる役割を果たしている。
(実施例4)
図6Bは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。チャンバ側壁は、10nHのインダクタンスを有する誘導子と、0.36nFの静電容量を有するコンデンサとを介して、接地に接続されている。シャワーヘッドは接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図6Bに示すように、図4に示したプラズマ密度と比較して基板の縁端部付近のプラズマ密度が増加している。コンデンサと誘導子とは一緒になって、プラズマをチャンバ側壁の方へ引き寄せる役割を果たしている。
(比較例2)
図7Aは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。内部領域と外部領域の両方は接地に直接接続されている。また、チャンバ側壁も接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図7Aに示すように、基板の縁端部付近のプラズマ密度は図4に示したプラズマ密度と実質的に同じである。
(実施例5)
図7Bは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。内部領域と外部領域の両方は、誘導子とコンデンサとを有するインピーダンス回路に接続されている。誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図7Bに示すように、プラズマ密度は図7Aと比較して側壁から離れて基板の中心部の方へより強く引き寄せられている。
(実施例6)
図7Cは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域は接地に直接接続されており、他方、内部領域はインピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。また、チャンバ側壁も接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図7Cに示すように、プラズマ密度は図7Aと図7Bの両方と比較して側壁から離れて基板の中心部の方へより強く引き寄せられている。
(実施例7)
図7Dは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。内部領域は接地に直接接続されており、他方、外部領域はインピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。また、チャンバ側壁も接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図7Dに示すように、プラズマ密度は図7A、図7B及び図7Cと比較して外部領域の方へより強く引き寄せられている。
(実施例8)
図8Aは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域は接地に直接接続されており、他方、内部領域はインピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。また、チャンバ側壁も接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。図8Aに示すように、プラズマ密度は側壁から離れて基板の中心部の方へより強く引き寄せられている。
(実施例9)
図8Bは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。内部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。外部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は図8Aと比較して内部領域と外部領域の間で均等に分布している。
(実施例10)
図8Cは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。内部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。外部領域では、誘導子は35nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は外部領域の方へより強く引き寄せられている。
(実施例11)
図8Dは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。内部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。外部領域では、誘導子は40nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は図8Aと比較して外部領域の方へより強く引き寄せられている。
(実施例12)
図8Eは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。内部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。外部領域では、誘導子は45nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は図8Dと比較して、より均等に分布している。
(実施例13)
図8Fは、1kWのRF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。内部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。外部領域では、誘導子は400nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴンプラズマである。プラズマ密度は内部領域の方へより強く引き寄せられている。
(実施例14)
図9Aは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。内部領域は接地に直接接続されており、他方、外部領域はインピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は外部領域の方へより強く引き寄せられている。
(実施例15)
図9Bは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。内部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。外部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は内部領域と外部領域の間で実質的に均等に分布している。
(実施例16)
図9Cは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。内部領域では、誘導子は35nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。外部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は内部領域の方へより強く引き寄せられている。
(実施例17)
図9Dは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路は、誘導子とコンデンサの両方を含んでいる。内部領域では、誘導子は40nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。外部領域では、誘導子は30nHのインダクタンスを有しており、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は内部領域の方へより強く引き寄せられている。
(実施例18)
図10Aは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路はコンデンサだけを含んでいる。内部領域では、コンデンサは0.1nFの静電容量を有している。外部領域では、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴンプラズマである。プラズマ密度は外部領域の方へより強く押しやられている。
(実施例19)
図10BはRF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路はコンデンサだけを含んでいる。内部領域では、コンデンサは0.1nFの静電容量を有している。外部領域では、コンデンサは1.0nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴンプラズマである。プラズマ密度は外部領域の方へより強く押しやられている。
(実施例20)
図10Cは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路はコンデンサだけを含んでいる。内部領域では、コンデンサは1.0nFの静電容量を有している。外部領域では、コンデンサは0.1nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴンプラズマである。プラズマ密度は内部領域の方へより強く押しやられている。
(実施例21)
図10Dは、RF電流を用いて基板にバイアスをかけている処理チャンバのプラズマ分布を示している。シャワーヘッドは内部領域と、内部領域を囲む外部領域との両方を有している。外部領域と内部領域の両方は、インピーダンス回路に接続されている。インピーダンス回路はコンデンサだけを含んでいる。内部領域では、コンデンサは1.0nFの静電容量を有している。外部領域では、コンデンサは1.0nFの静電容量を有している。チャンバ側壁は接地に直接接続されている。シャワーヘッドは基板から数センチメートル離間している。プラズマは圧力約100mTorrのアルゴン・プラズマである。プラズマ密度は内部領域の方へより強く押しやられている。
プラズマ均一性を制御するためにインピーダンス回路をあらかじめ選択してもよい。例えば、誘導子が存在しているときには、処理前にインダクタンスをあらかじめ選択してもよい。処理中に、プロセスの要求に合うようにインダクタンスを変更してもよい。インダクタンスの変更は処理中のどの時点に行ってもよい。同様に、コンデンサが存在するときには、プラズマ均一性を制御するためにコンデンサの静電容量をあらかじめ選択してもよい。例えば、処理前に静電容量をあらかじめ選択してもよい。処理中に、プロセスの要求に合うように静電容量を変更してもよい。静電容量の変更は処理中のどの時点に行ってもよい。
チャンバ側壁及びシャワーヘッド及び陰極缶(陰極缶が存在するとき)、若しくはそのいずれかに接続されたインピーダンス回路を選択的に利用することにより、使用者の要求に合うようにプラズマ均一性を制御してもよい。更に、シャワーヘッドを少なくとも2つの分離領域に分割することにより、プラズマ均一性に対する付加的レベルの制御を提供してもよい。プラズマ均一性を制御することにより、エッチングの好ましくない過不足を低減しながらエッチングプロセスを実行してもよい。
上記説明は本発明の実施形態に関するが、本発明の他の実施形態及び更なる実施形態は本発明の基本的範囲を逸脱することなく創作され得る。本発明の範囲は下記の特許請求の範囲に基づいて定められる。

Claims (15)

  1. チャンバ本体と、
    前記チャンバ本体の中に配設された基板支持部と、
    前記チャンバ本体の中に配設されており前記基板支持部に向かい合っているシャワーヘッドと、
    前記基板支持部に接続された電源と、
    コンデンサと、誘導子と、それらの組み合わせからなる群から選択された少なくとも1つの品目を含み、前記少なくとも1つの品目は、前記チャンバ本体、前記シャワーヘッド、及び前記基板支持部のうちの少なくとも2つに接続されているプラズマ処理装置。
  2. 前記少なくとも1つの品目が前記シャワーヘッドと前記チャンバ本体とに接続されている請求項1記載の装置。
  3. 前記シャワーヘッドが、第1の領域と、前記第1の領域から電気的に絶縁された第2の領域とを含み、前記少なくとも1つの品目が前記第1の領域に接続されており、前記第2の領域は、コンデンサと、誘導子と、それらの組み合わせからなる群から選択された少なくとも1つの品目に接続されている請求項2記載の装置。
  4. 前記少なくとも1つの品目が前記チャンバ本体と前記基板支持部とに接続されており、前記少なくとも1つの品目は前記シャワーヘッドに接続されたコンデンサと誘導子とを含む請求項1記載の装置。
  5. 前記チャンバ本体及び前記シャワーヘッドのうちの少なくとも1つが浮遊電位にある請求項1記載の装置。
  6. チャンバ本体と、
    前記チャンバ本体の中に配設された基板支持部と、
    前記チャンバ本体の中に配設されており前記基板支持部に向かい合っているシャワーヘッドと、
    前記シャワーヘッドに接続された電源と、
    前記チャンバ本体の中に配設された陰極缶を含み、前記陰極缶は前記基板支持部を実質的に取り囲んでおり、
    コンデンサと、誘導子と、それらの組み合わせからなる群から選択された少なくとも1つの品目を含み、前記少なくとも1つの品目は、前記チャンバ本体、前記陰極缶、前記シャワーヘッド、及び前記基板支持部のうちの少なくとも2つに接続されているプラズマ処理装置。
  7. 前記少なくとも1つの品目が前記チャンバ本体と前記陰極缶とに接続されており、前記少なくとも1つの品目はコンデンサと誘導子とを含む請求項6記載の装置。
  8. 前記少なくとも1つの品目が前記陰極缶と前記シャワーヘッドとに接続されており、前記少なくとも1つの品目はコンデンサと誘導子とを含む請求項6記載の装置。
  9. チャンバ本体と、
    前記チャンバ本体の中に配設された基板支持部と、
    前記チャンバ本体の中に配設されており前記基板支持部に向かい合っているシャワーヘッドと、
    前記基板支持部に接続された電源と、
    前記シャワーヘッドに接続された第1のコンデンサと、
    前記シャワーヘッドに接続された第1の誘導子と、
    前記チャンバ本体に接続された第2のコンデンサと、
    前記チャンバ本体に接続された第2の誘導子とを含むエッチング装置。
  10. 前記シャワーヘッドが、第1の領域と、前記第1の領域から電気的に絶縁された第2の領域とを含み、前記第1のコンデンサと前記第1の誘導子とが前記第1の領域に接続されており、第3のコンデンサと第3の誘導子とが前記第2の領域に接続されている請求項9記載の装置。
  11. 前記第1の誘導子のインダクタンスが前記第2の誘導子のインダクタンスよりも大きい請求項9記載の装置。
  12. 前記第1のコンデンサの静電容量が前記第2のコンデンサの静電容量よりも大きい請求項9記載の装置。
  13. プラズマ分布制御方法であって、
    処理チャンバの中に配設されており基板支持部上にある基板に電流を加えるステップを含み、前記処理チャンバは、チャンバ本体と、前記チャンバ本体の中に配設されており前記基板に向かい合っているシャワーヘッドとを有しており、
    前記プラズマ分布を調節するために、前記シャワーヘッド、前記チャンバ本体及び前記基板支持部のうちの少なくとも2つを、誘導子と、コンデンサと、それらの組み合わせからなる群から選択された品目に接続するステップを含むプラズマ分布制御方法。
  14. 前記シャワーヘッド及び前記チャンバ本体のうちの1つを、接地に直接接続するステップを更に含む請求項13記載の方法。
  15. エッチングプロセス中に前記プラズマ分布制御が行われ、層をエッチングしている間に前記接続ステップが行われる請求項13記載の方法。
JP2010550728A 2008-03-13 2009-02-24 外部回路を用いたプラズマ均一性の電気的制御 Withdrawn JP2011517832A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/047,492 US20090230089A1 (en) 2008-03-13 2008-03-13 Electrical control of plasma uniformity using external circuit
US12/047,492 2008-03-13
PCT/US2009/035000 WO2009114262A2 (en) 2008-03-13 2009-02-24 Electrical control of plasma uniformity using external circuit

Publications (1)

Publication Number Publication Date
JP2011517832A true JP2011517832A (ja) 2011-06-16

Family

ID=41061876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010550728A Withdrawn JP2011517832A (ja) 2008-03-13 2009-02-24 外部回路を用いたプラズマ均一性の電気的制御

Country Status (6)

Country Link
US (1) US20090230089A1 (ja)
JP (1) JP2011517832A (ja)
KR (1) KR20100130210A (ja)
CN (1) CN101971713A (ja)
TW (1) TW200948211A (ja)
WO (1) WO2009114262A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238980A (ja) * 2009-03-31 2010-10-21 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2013504203A (ja) * 2009-09-02 2013-02-04 ラム リサーチ コーポレーション プラズマ処理システム内でプラズマ閉じ込めを操作するための装置およびその方法
KR20130110104A (ko) * 2012-03-28 2013-10-08 램 리써치 코포레이션 플라즈마 균일성 튜닝을 위한 멀티-무선주파수 임피던스 제어
JP2015517180A (ja) * 2012-03-19 2015-06-18 ラム リサーチ コーポレーションLam Research Corporation プラズマ処理システムにおいてrf電流路を選択的に修正するための方法及び装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549724B (zh) * 2009-09-29 2015-01-28 株式会社东芝 基板处理装置
WO2012014278A1 (ja) * 2010-07-27 2012-02-02 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法
US20140191618A1 (en) * 2011-06-07 2014-07-10 Youtec Co., Ltd. Poling treatment method, plasma poling device, piezoelectric body and manufacturing method thereof, film forming device and etching device, and lamp annealing device
US9396908B2 (en) * 2011-11-22 2016-07-19 Lam Research Corporation Systems and methods for controlling a plasma edge region
US10586686B2 (en) 2011-11-22 2020-03-10 Law Research Corporation Peripheral RF feed and symmetric RF return for symmetric RF delivery
US9230779B2 (en) * 2012-03-19 2016-01-05 Lam Research Corporation Methods and apparatus for correcting for non-uniformity in a plasma processing system
KR20200098737A (ko) 2013-03-15 2020-08-20 어플라이드 머티어리얼스, 인코포레이티드 프로세싱 챔버에서 튜닝 전극을 사용하여 플라즈마 프로파일을 튜닝하기 위한 장치 및 방법
US10125422B2 (en) * 2013-03-27 2018-11-13 Applied Materials, Inc. High impedance RF filter for heater with impedance tuning device
US10032608B2 (en) * 2013-03-27 2018-07-24 Applied Materials, Inc. Apparatus and method for tuning electrode impedance for high frequency radio frequency and terminating low frequency radio frequency to ground
JP5814430B2 (ja) * 2014-06-16 2015-11-17 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置用電極
JP5927475B2 (ja) * 2014-09-08 2016-06-01 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
US9490116B2 (en) * 2015-01-09 2016-11-08 Applied Materials, Inc. Gate stack materials for semiconductor applications for lithographic overlay improvement
CN107295738B (zh) * 2016-04-11 2020-02-14 北京北方华创微电子装备有限公司 一种等离子体处理装置
CN111199860A (zh) * 2018-11-20 2020-05-26 江苏鲁汶仪器有限公司 一种刻蚀均匀性调节装置及方法
US20200395199A1 (en) * 2019-06-14 2020-12-17 Asm Ip Holding B.V. Substrate treatment apparatus and method of cleaning inside of chamber
CN112151343B (zh) * 2019-06-28 2023-03-24 中微半导体设备(上海)股份有限公司 一种电容耦合等离子体处理装置及其方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956494B2 (ja) * 1994-10-26 1999-10-04 住友金属工業株式会社 プラズマ処理装置
TW403959B (en) * 1996-11-27 2000-09-01 Hitachi Ltd Plasma treatment device
US20010037770A1 (en) * 2000-04-27 2001-11-08 Toru Otsubo Plasma processing apparatus and processing method
JP2000173982A (ja) * 1998-12-01 2000-06-23 Matsushita Electric Ind Co Ltd プラズマ処理装置およびプラズマ処理方法
JP4514911B2 (ja) * 2000-07-19 2010-07-28 東京エレクトロン株式会社 プラズマ処理装置
TW478026B (en) * 2000-08-25 2002-03-01 Hitachi Ltd Apparatus and method for plasma processing high-speed semiconductor circuits with increased yield
JP3977994B2 (ja) * 2001-02-20 2007-09-19 松下電器産業株式会社 プラズマ処理方法及び装置
US6583572B2 (en) * 2001-03-30 2003-06-24 Lam Research Corporation Inductive plasma processor including current sensor for plasma excitation coil
US6677711B2 (en) * 2001-06-07 2004-01-13 Lam Research Corporation Plasma processor method and apparatus
US6706138B2 (en) * 2001-08-16 2004-03-16 Applied Materials Inc. Adjustable dual frequency voltage dividing plasma reactor
US7086347B2 (en) * 2002-05-06 2006-08-08 Lam Research Corporation Apparatus and methods for minimizing arcing in a plasma processing chamber
US20050241762A1 (en) * 2004-04-30 2005-11-03 Applied Materials, Inc. Alternating asymmetrical plasma generation in a process chamber
US7375946B2 (en) * 2004-08-16 2008-05-20 Applied Materials, Inc. Method and apparatus for dechucking a substrate
US7943523B2 (en) * 2006-02-28 2011-05-17 Tokyo Electron Limited Plasma etching method and computer readable storage medium
JP2007234770A (ja) * 2006-02-28 2007-09-13 Tokyo Electron Ltd プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
US7943006B2 (en) * 2006-12-14 2011-05-17 Applied Materials, Inc. Method and apparatus for preventing arcing at ports exposed to a plasma in plasma processing chambers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238980A (ja) * 2009-03-31 2010-10-21 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2013504203A (ja) * 2009-09-02 2013-02-04 ラム リサーチ コーポレーション プラズマ処理システム内でプラズマ閉じ込めを操作するための装置およびその方法
JP2015517180A (ja) * 2012-03-19 2015-06-18 ラム リサーチ コーポレーションLam Research Corporation プラズマ処理システムにおいてrf電流路を選択的に修正するための方法及び装置
KR20130110104A (ko) * 2012-03-28 2013-10-08 램 리써치 코포레이션 플라즈마 균일성 튜닝을 위한 멀티-무선주파수 임피던스 제어
JP2013225672A (ja) * 2012-03-28 2013-10-31 Lam Research Corporation プラズマ均一性調整のためのマルチ高周波インピーダンス制御
JP2018164093A (ja) * 2012-03-28 2018-10-18 ラム リサーチ コーポレーションLam Research Corporation プラズマ均一性調整のためのマルチ高周波インピーダンス制御
KR102153141B1 (ko) * 2012-03-28 2020-09-07 램 리써치 코포레이션 플라즈마 균일성 튜닝을 위한 멀티-무선주파수 임피던스 제어

Also Published As

Publication number Publication date
US20090230089A1 (en) 2009-09-17
KR20100130210A (ko) 2010-12-10
WO2009114262A2 (en) 2009-09-17
CN101971713A (zh) 2011-02-09
TW200948211A (en) 2009-11-16
WO2009114262A3 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP2011517832A (ja) 外部回路を用いたプラズマ均一性の電気的制御
KR100886982B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
US8138445B2 (en) Plasma processing apparatus and plasma processing method
US10264662B2 (en) Plasma processing apparatus
KR100926380B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR100886273B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
US8518211B2 (en) System and method for controlling plasma with an adjustable coupling to ground circuit
KR100810773B1 (ko) 플라즈마 에칭 방법 및 컴퓨터 판독 가능한 기억 매체
KR101061673B1 (ko) 플라즈마 처리 장치와 플라즈마 처리 방법 및 기억 매체
JP4713352B2 (ja) プラズマを閉じ込めかつ流動コンダクタンスを高める方法および装置
KR100841118B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
US20170213734A9 (en) Multifrequency capacitively coupled plasma etch chamber
WO2000068985A1 (fr) Appareil de traitement au plasma
WO2014068974A1 (ja) プラズマ処理方法
TW201030180A (en) Multi-electrode PECVD source
KR102438638B1 (ko) 플라즈마 에칭 방법
KR102330944B1 (ko) 반응성 이온 에칭 장치
KR20210074917A (ko) 박막의 형성 방법 및 기판 처리 장치
KR100819020B1 (ko) 플라즈마 처리 장치

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501