JP2011502350A - 静電気放電保護回路 - Google Patents

静電気放電保護回路 Download PDF

Info

Publication number
JP2011502350A
JP2011502350A JP2010530980A JP2010530980A JP2011502350A JP 2011502350 A JP2011502350 A JP 2011502350A JP 2010530980 A JP2010530980 A JP 2010530980A JP 2010530980 A JP2010530980 A JP 2010530980A JP 2011502350 A JP2011502350 A JP 2011502350A
Authority
JP
Japan
Prior art keywords
voltage
source node
voltage source
circuit
esd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010530980A
Other languages
English (en)
Other versions
JP5562246B2 (ja
JP2011502350A5 (ja
Inventor
ブハッタチャーヤ,ディパンカー
コザンダラマン,マケッシュワー
シー. クリッツ,ジョン
エル. モリス,バーナード
スムーハ,エフダ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agere Systems LLC
Original Assignee
Agere Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agere Systems LLC filed Critical Agere Systems LLC
Publication of JP2011502350A publication Critical patent/JP2011502350A/ja
Publication of JP2011502350A5 publication Critical patent/JP2011502350A5/ja
Application granted granted Critical
Publication of JP5562246B2 publication Critical patent/JP5562246B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

ESD保護回路は、回路の第1電圧源ノードと第2電圧源ノードとの間に接続される第1電圧クランプと、回路の第2電圧源ノードと電圧リターンとの間に接続される第2電圧クランプとを含む。第1電圧源ノードは、回路の指定されたゲート酸化物信頼性電位より大きい第1電圧を受け取るようになっている。第2電圧源ノードは、第1電圧より小さい第2電圧を受け取るように動作する。第1電圧クランプは、第1電圧源ノードと第2電圧源ノードとの間のESDイベント中に、第1電圧源ノード上の第1電圧を第1の値にクランプするように動作し、第2電圧クランプは、第2電圧源ノードと電圧リターンとの間のESDイベント中に、第2電圧源ノード上の第2電圧を第2の値にクランプするように動作する。

Description

本発明は、一般に、電子回路に関し、より詳細には、静電気放電(ESD)保護回路に関する。
集積回路(IC)デバイスを、デバイスを通る静電気放電および/または他の過渡パルス(たとえば、ロード・ダンプ)によって引き起こされる損傷から保護するための、ESD保護回路要素の使用はよく知られている。任意の大電圧および/または大電流過渡パルスを含む可能性があるESDイベントは、必ずしもデバイスの即座の(すなわち、致命的な)故障を引き起こすわけではないかもしれないが、デバイスの一部分だけに損傷を与える場合があり、かつ/または動作寿命を著しく短縮する可能性、デバイスの信頼性に悪い影響を与える可能性がある潜在欠陥を引き起こす場合がある。
たとえば、電子フューズ(electronic fuse)(eFuse)プログラミングなどの、いくつかの用途は、適した電源ソースからICへの比較的高いエネルギー(たとえば、電圧および/または電流)信号の印加を含む。eFuseプログラミングの場合、ICの指定されたゲート酸化物信頼性について許容される電圧より大きな電圧が、通常、ICの1つまたは複数のピン(たとえば、eFuseプログラミング・ピン)に印加される。ICピンに印加される電圧は、プログラムされる選択されたeFuseを通して経路指定され、それにより、eFuseの抵抗が変化するようになる。このプログラミング電圧は、比較的短い期間の間、ICピンに印加されるだけであり、その後、ピンは、eFuse内にプログラムされた状態を確認するために、後続の読取り動作においてグラウンドに結合される。
ICピンは、通常、ICピンに結合する回路要素が、ESDイベントの結果として損傷を受けることを保護する標準的なESDクランピング回路を含む。標準的なESDクランピング回路の使用は、非常に短い期間(たとえば、1秒未満)の間、プログラミング電圧がICに印加されるとき、多くのeFuseプログラミング用途において受け入れられる場合があるが、任意の整合性を持った状態でこの短いプログラミング時間要件に従うことが難しいことが多い。たとえば、パッケージング後のeFuseプログラミング動作において必要とされる場合があるように、eFuseプログラミング信号などの高エネルギー信号が、パッケージングされたICデバイスのピンに印加されるとき、ICピンに結合する回路要素は、しばしばESD保護回路におけるゲート酸化物の低下の結果として、損傷を受ける可能性があり、望ましくない。
相応して、従来のESD保護回路によって示される問題の1つまたは複数を受けない、高電圧環境における使用に適する改良型ESD保護回路についての必要性が存在する。
本発明の例証的な実施形態は、限定はしないが、ICのゲート酸化物の信頼性が普通なら許容するであろう信号より大きいeFuseプログラミング信号などの印加電圧を受け取るようになっているICで使用するのに適した強化されたESD保護回路を提供することによって、先に述べた必要性に対処する。これを達成するために、本発明の実施形態は、印加電圧を受け取るようになっているICピンに適用される複数の電圧クランプ段を利用する。
本発明の実施形態によれば、ESD保護回路は、回路の第1電圧源ノードと第2電圧源ノードとの間に接続される第1電圧クランプと、回路の第2電圧源ノードと電圧リターンとの間に接続される第2電圧クランプとを含む。第1電圧源ノードは、回路の指定されたゲート酸化物信頼性電位より大きい第1電圧を受け取るようになっている。第2電圧源ノードは、第1電圧より小さい第2電圧を受け取るように動作する。第1電圧クランプは、第1電圧源ノードと第2電圧源ノードとの間のESDイベント中に、第1電圧源ノード上の第1電圧を第1の値にクランプするように動作し、第2電圧クランプは、第2電圧源ノードと電圧リターンとの間のESDイベント中に、第2電圧源ノード上の第2電圧を第2の値にクランプするように動作する。1つまたは複数のESD保護回路が、集積回路デバイス内に含まれる可能性がある。
本発明の別の実施形態によれば、回路の第1電圧源ノードと電圧リターンとの間および/または回路の第2電圧源ノードと電圧リターンとの間のESDイベントから回路を保護する方法が提供される。第1電圧源ノードは、回路の指定されたゲート酸化物信頼性電位より大きい第1電圧を受け取るようになっており、第2電圧源ノードは、第1電圧より小さい第2電圧を受け取るように動作する。この方法は、ESDイベント中に、第1電圧源ノード上の第1電圧を第1の値にクランプするステップと、ESDイベント中に、第2電圧源ノード上の第2電圧を第2の値にクランプするステップとを含む。
本発明のこれらのまた他の特徴、目的および利点は、添付図面に関連して読まれる、本発明の例証的な実施形態の以下の詳細な説明から明らかになるであろう。
本発明の技法を組込むように修正されてもよい例証的なESD保護回路を示す略図である。 本発明の実施形態に従って形成される、例示的なESD保護回路を示す略図である。 本発明の態様による、回路の対応する電力ピンに印加される電位がゼロから立ち上がるときの、図2に示すESD保護回路の例示的なシミュレーションを示すグラフィック図である。 本発明の態様による、回路の対応する電力ピンに印加される電位がゼロから立ち上がるときの、図2に示すESD保護回路の例示的なシミュレーションを示すグラフィック図である。 本発明の態様による、2.5キロボルト(kV)人体モデル(HBM)ESDストレスが回路の電力ピンに印加されるときの、図2に示すESD保護回路の例示的なシミュレーションを示すグラフィック図である。
本発明は、ICなどの回路を、ESDイベントから生じる損傷から保護するときに使用するのに適した例証的なESD保護回路の文脈で本明細書において述べられるであろう。しかし、本発明は、これらの、または、任意の他の特定のESD保護回路機構に限定されないことが理解されるべきである。むしろ、本発明は、より一般的には、高エネルギー信号、たとえば、指定された最大ゲート酸化物電圧より大きな電圧を発生する信号が、ICのゲート酸化物の信頼性を低下させることなく、ICの電力ピンに印加されることを依然として可能にしながら、ESDイベントから回路を保護する技法に適用可能である。これを達成するために、本発明は、その例証的な実施形態が以下でさらに詳細に述べられることになる多段電圧クランピング機構を利用する。
本明細書で使用される「電力ピン(power pin)」という用語は、たとえば、ICパッド、ボンドワイヤ、ICパッケージ・ピンなどを通して回路に外部から好ましくはアクセス可能であるESD保護回路の電力ノードを指す。ESD保護回路の電力ノードは、ESD保護回路を備えるICデバイスに関連する対応するパッケージ・ピンに直接に接合されてもよく、または、直接に接合されなくてもよいことが理解される。
通常動作中(たとえば、ESDイベントが存在しないとき)、ESD保護回路は、それほど直流(DC)電力を消費せず、したがって、電力に敏感な用途で使用するのに適する。本発明の実施態様は、相補型金属酸化物半導体(CMOS)作製プロセスを使用して形成される場合がある、pチャネル金属酸化物半導体(PMOS)およびnチャネル金属酸化物半導体(NMOS)トランジスタ・デバイスを特に参照して本明細書で述べられるが、本発明は、こうしたトランジスタ・デバイスおよび/またはこうした作製プロセスに限定されないこと、および、当業者によって理解されるように、たとえば、バイポーラ接合トランジスタ(BJT)などのような他の適したデバイスおよび/または他の適した作製プロセス(たとえば、バイポーラ、BiCMOSなど)が、同様に使用されてもよいことが理解される。さらに、本発明の好ましい実施形態は、通常、シリコン・ウェハで作製されるが、本発明の実施形態は、あるいは、限定はしないが、ガリウム砒素(GaAs)、インジウム・リン(InP)などを含む他の材料を含むウェハで作製される可能性がある。
原理的に、ESD保護回路は、ESDイベント中だけアクティブであり、かなり大きな(たとえば、数アンペア程度の)ESD電流を分流すると共に、保護される回路に関連する1つまたは複数の入力/出力パッドの電圧を、保護される回路が非可逆的損傷を受けることを防止するのに十分に低いレベルにクランプするための電流放出経路を形成する。ESDイベントから保護される回路は、ディスクリート・デバイス(たとえば、ディスクリート電力トランジスタ)、または、一緒に結合されて大型回路を形成してもよい複数のデバイスの場合と同様に、単一コンポーネントを備えてもよいことが理解される。ESDイベントは、本来静電気的であるイベントだけでなく、数ナノ秒(ns)未満の立ち上がり時間および/または立ち下がり時間を通常有する大きな(たとえば、数千ボルト程度の)電圧のおよび/または大きな(たとえば、数アンペア程度の)電流の過渡パルスを含むものと規定されてもよい。
図1は、本発明の技法を組込むように修正されてもよい例証的なESD保護回路100を示す略図である。ESDイベント中に、IC内の回路要素を損傷から保護するのに使用されてもよいESD保護回路100は、電圧クランプとして主に機能する、(たとえば、数千マイクロメートル(μm)程度のチャネル幅を有する)比較的大きなNMOSトランジスタ・デバイス、MESDとして好ましくは実施されるESD保護構造102を含む。ダイオード、D0は、また、ESD保護回路100内に含まれてもよく、ダイオードD0のカソードは、電圧源ノード、VDD18に接続され、D0のアノードは、基板バイアス用電圧ソース、VSSであってよい回路の電圧リターンに接続される。ダイオードD0は、追加的な電圧クランピング・デバイスとして機能する。NMOSデバイスMESDは、VDD18に接続されるドレイン(D)、VSSに接続されるソース(S)およびノードN2においてESDトリガー回路104の出力で発生する制御信号を受け取るゲート(G)を含む。電圧源ノードVDD18は、第1電力ピン103に接続されてもよく、第1電力ピン103には、IC内の回路要素に電力供給するために電圧(たとえば、1.8ボルト)が供給されてもよく、また、電圧リターンは、接地されて(たとえば、ゼロボルトであって)もよい第2電力ピン105に接続されてもよい。
金属酸化物半導体(MOS)デバイスは、本来対称であり、したがって双方向であるため、MOSデバイスにおけるソースとドレイン名称の割当ては、本質的に任意であることが理解される。したがって、所与のMOSデバイスのソースおよびドレインは、それぞれ、一般に第1ソース/ドレインおよび第2ソース/ドレインと呼ばれてもよく、「ソース/ドレイン(source/drain)」は本文脈では、デバイスのソースまたはドレインを意味する。
NMOSデバイスMESDは、好ましくは、ESDイベントによって発生する大きなESD電流を分流すると共に、電圧源ノードVDD18の電圧を、ICがESDイベントによって損傷を受けることを防止するのに十分に低いレベルにクランプするための電流放出経路を提供するのに適切な大きさに作られる。トリガー回路104によって発生する制御信号は、NMOSデバイスMESDが、回路の通常動作中に(たとえば、ESDイベントが存在しないときに)停止したままになり、その他の場合に、NMOSデバイスMESDを介して2つの電力ピン103と105との間に、望ましくないことには電気経路が形成されることになることを保証すべきである。
トリガー回路104は、タイミング回路を含み、タイミング回路は、電圧源ノードVDD18にわたって、コンデンサC1と直列接続される抵抗器R1を備える抵抗器−コンデンサ(RC)回路として実施されてもよい。より詳細には、抵抗器R1の第1端子はVDD18に接続され、R1の第2端子はノードN1においてコンデンサC1の第1端子に接続され、C1の第2端子はVSSに接続される。タイミング回路は、好ましくは、ピン103と105との間のESD遷移を検出するように動作する。ESDイベントが起こると、ESD保護回路100がアクティブのままである時間量が、主にタイミング回路によって制御される。RCタイミング回路の時定数t(t=R1×C1)は、当業者によって知られることになるように、R1用の抵抗値およびC1用の静電容量値の適切な選択によって設定される。RCタイミング回路の時定数は、好ましくは、約0.1マイクロ秒(μs)〜約100μsの範囲になるように選択される。約1μs程度の時定数は、約150nsのRC継続時間(たとえば、1.5キロ(K)オームおよび100ピコファラド(pF))を有するが、しかし、一般に数ミリ秒(ms)程度の、代表的な電圧源立ち上がり期間の継続時間(たとえば、power−up)より実質的に小さい、HBM ESDイベントの継続時間を実質的に超えて、ESD保護回路100がアクティブのままであることを可能にすることになる点で好ましい。例証的な実施形態では、たとえば、抵抗器R1は約550Kオームになるように選択され、コンデンサC1は約1.4pFになるように選択され、約0.77μsの時定数をもたらすが、本発明は、任意特定の時定数値に限定されもせず、タイミング・コンポーネントR1およびC1について任意特定の値に限定もされない。
ノードN1においてタイミング回路によって生成される電圧は、好ましくは、一連のインバータによってバッファリングされて、出力ノードN2において制御信号を発生する。具体的には、トリガー回路104は、第1NMOSトランジスタ・デバイスM0および第1PMOSトランジスタ・デバイスM3を備える第1インバータと、第2NMOSトランジスタ・デバイスM1および第2PMOSトランジスタ・デバイスM4を備える第2インバータと、第3NMOSトランジスタ・デバイスM2および第3PMOSトランジスタ・デバイスM5を備える第3インバータとを含む。NMOSデバイスM0、M1およびM2のソースは、電圧リターンVSSに接続され、PMOSデバイスM3、M4およびM5のソースは、電圧源ノードVDD18に接続される。デバイスM0およびM3のゲートは、ノードN1で一緒に接続され、第1インバータの入力を形成し、M0およびM3のドレインは、一緒に接続され、ノードN1Aにおいて第1インバータの出力を形成する。デバイスM1およびM4のゲートは、ノードN1Aで一緒に接続され、第2インバータの入力を形成し、M1およびM4のドレインは、一緒に接続され、ノードN1Bにおいて第2インバータの出力を形成する。デバイスM2およびM5のゲートは、ノードN1Bで一緒に接続され、第3インバータの入力を形成し、M2およびM5のドレインは、一緒に接続され、ノードN2において第3インバータの出力を形成する。
ESD保護回路100の1つの欠点は、パッケージング後のeFuseプログラミング用途において必要とされる場合があるように、eFuseプログラミング信号などの高エネルギー信号が、ICデバイスのピン103に印加されるとき、ICピンに結合する回路要素は、しばしばIC内のゲート酸化物の低下の結果として、損傷を受ける可能性があることである。たとえば、2.5ボルトeFuseプログラミング信号が、指定された期間より長い(たとえば、約1秒より長い)時間の間、1.8ボルトゲート酸化物プロセスを使用して作製されたICのピン103に印加されるとき、ICのゲート酸化物は損傷を受け、それにより、好ましくないことには、ICの信頼性に影響を与える可能性がある。
図2は、本発明の実施形態による、高エネルギー信号が印加された状態で使用するのに適した例示的なESD保護回路200の少なくとも一部分を示す略図である。普通ならICのゲート酸化物の信頼性が許容するであろう電圧より高い電圧が印加された状態で、ESD保護回路200が使用されることを可能にするために、ESD保護回路は、複数段クランピング機構を利用する。具体的には、ESD保護回路200は、第1ESD保護構造204に結合される第1トリガー回路202を備える第1電圧クランプおよび第2ESD保護構造208に結合される第2トリガー回路206を備える第2電圧クランプを含む。第1電圧クランプ内の1つまたは複数のPMOSおよびNMOSトランジスタは、好ましくは、高い(たとえば、約2.5ボルト)電圧源によって動作するのに適した高電圧デバイスである。第2電圧クランプ内の1つまたは複数のPMOSおよびNMOSトランジスタは、好ましくは、低い(たとえば、約1.0ボルト)コア電圧源によって動作するのに適した低電圧デバイスである。
最新の混合信号集積回路プロセスは、通常、同じチップ上で作製される2つ以上のバージョンのトランジスタ、すなわち、「高電圧(high voltage)」および「低電圧(low voltage)」トランジスタ・デバイスを提供する。通常、非常に薄い(たとえば、約15〜約25オングストロームの)ゲート酸化物を有し、非常に短い(たとえば、約0.06μm〜約0.12μmの)ゲート長を有し、一般に約0.35ボルトの公称閾電圧を有する低電圧デバイスは、低いコア電源電圧(たとえば、約1.0ボルト)で動作することを意図される。低電圧デバイスと比較して、通常、著しく厚いゲート酸化物および長いゲート長を有し、一般に、たとえば約0.75ボルトなどの、低電圧デバイスより実質的に高い公称閾電圧を有する高電圧デバイスは、高い電源電圧(たとえば、約2.5ボルト)で動作することを意図される。高電圧および低電圧のトランジスタ・バージョンは、一般に、NMOSとPMOSの両方のデバイスタイプで提供される。低電圧トランジスタの利点は、低電圧トランジスタが、低いコア電源電圧と共に使用されるとき、良好な性能を提供し、高電圧トランジスタに比較して面積がかなり小さいことである。しかし、低いコア電源電圧(たとえば、2.5ボルト)より実質的に高い電圧が、低電圧トランジスタの端子のうちの任意の端子にわたって印加されるとき、信頼性問題またはさらにデバイス故障が起こる可能性がある。
図2から明らかなように、第1電圧クランプは、第1電圧源ノードVDD25Qと第2電圧源ノードVDD10との間に接続され、第2電圧クランプは、第2電圧源ノードVDD10と、基板バイアス源ノードVSSであってよい回路の電圧リターン・ノードとの間に接続される。第1電圧源ノードVDD25Qは、高電圧eFuseプログラミング信号(たとえば、2.5ボルト)または代替の電圧ソースが選択的に印加されてもよい第1電力ピン201に接続されてもよい。同様に、第2電圧源ノードVDD10は、回路の低いコア電圧源(たとえば、1.0ボルト)に接続されてもよい第2電力ピン203に接続されてもよい。ESD保護回路200の電圧リターン・ノードVSSは、グラウンド(たとえば、ゼロボルト)に結合されてもよい第3電力ピン205に接続されてもよい。本発明は、それぞれの電力ピン201、203および205に印加される任意特定の電圧レベルに限定されないことが理解される。
第1ESD保護構造204は、図1に示すESD保護回路100内のESD保護構造102と同様に、好ましくは、相対的に大きなNMOSトランジスタ・デバイスMesd1を含み、(たとえば、数千マイクロメートル程度のチャネル幅を有する)NMOSトランジスタ・デバイスMesd1は、第1電圧源ノードVDD25Qに接続されるドレインと、第2電圧源ノードVDD10に接続されるソースと、ノードN2Tにおいて、第1ESDトリガー回路202の出力で発生する第1制御信号を受け取るゲートとを有する。同様に、第2ESD保護構造208は、好ましくは、相対的に大きなNMOSトランジスタ・デバイスMesd2を含み、NMOSトランジスタ・デバイスMesd2は、第2電圧源ノードVDD10に接続されるドレインと、電圧リターン・ノードVSSに接続されるソースと、ノードN2において、第2ESDトリガー回路206の出力で発生する第2制御信号を受け取るゲートとを有する。例証的な実施形態では、デバイスMesd1およびMesd2はそれぞれ、約3000μmのチャネル幅(W)および約0.2μmのチャネル長(L)を有するが、本発明は、デバイスMesd1およびMesd2について任意特定のサイズに限定されない。さらに、Mesd1およびMesd2は、互いに対して同じサイズである必要はない。
第1トリガー回路202は、好ましくは、複数のインバータを備え、インバータはそれぞれ、PMOSトランジスタおよびNMOSトランジスタを含む。特に、第1インバータは、各トランジスタが、ソース、ドレインおよびゲートを有するPMOSトランジスタM3およびNMOSトランジスタM0を備える。M3のソースは、第1電圧源ノードVDD25Qに接続され、M3およびM0のドレインは、一緒に接続されて、ノードN1ATにおいて第1インバータの出力を形成し、M3およびM0のゲートは、一緒に接続されて、ノードN1Tにおいて第1インバータの入力を形成し、M0のソースは、第2電圧源ノードVDD10に接続される。同様に、第2インバータは、PMOSトランジスタM4およびNMOSトランジスタM1を備える。M4のソースは、VDD25Qに接続され、M4およびM1のドレインは、一緒に接続されて、ノードN1BTにおいて第2インバータの出力を形成し、M4およびM1のゲートは、ノードN1ATにおいて第1インバータの出力に接続され、M1のソースは、VDD10に接続される。
第1トリガー回路202内の第1インバータの入力は、当業者によって理解されることになるように、好ましくは、ESDイベントが起こった後に第1トリガー回路がアクティブのままになる時間量を制御するための、RC回路または代替のタイミング回路要素に結合される。RC回路は、第1電圧源ノードVDD25Qと第2電圧源ノードVDD10との間で、コンデンサC1または代替の容量素子(たとえば、MOSデバイス)と直列に接続される抵抗器R1または代替の抵抗素子(たとえば、MOSデバイス)を含み、R1およびC1の接合部は、ノードN1Tにおいて第1インバータの入力に接続される。本発明の好ましい実施形態では、RC回路の時定数t1(t1=R1×C1)は、約0.1μs〜約100μsの範囲になるように選択されるが、本発明は、任意特定の時定数に限定されない。単に例として、抵抗器R1は約550Kオームになるように選択され、コンデンサC1は約1.4pFになるように選択され、約0.77μsの時定数をもたらしてもよい。この時定数は、約150nsのRC継続時間(たとえば、1.5Kオームおよび100pF)を有するが、しかし、一般に数ミリ秒程度の、代表的な電圧源立ち上がり期間の継続時間(たとえば、power−up)より実質的に小さい、HBM ESDイベントの継続時間を実質的に超えて、ESD保護回路200がアクティブのままであることを可能にすることになる点で好ましい。
第1トリガー回路202は、さらに、ノードN1BTにおいて第2インバータの出力に結合する入力を有し、かつ、トランジスタMesd1を制御するための第1制御信号を発生するためにノードN2Tにおいて出力を有する出力段210を含む。具体的には、出力段210は、好ましくは、各トランジスタが、ドレイン、ソースおよびゲートを含むNMOSトランジスタM2およびPMOSトランジスタM5を備える、フルCMOSインバータとして構成される。M5のソースは、第1電圧源ノードVDD25Qに接続され、M2およびM5のドレインは、出力ノードN2Tにおいて一緒に接続されて、M2およびM5のゲートは、ノードN1BTにおいて第2インバータの出力に接続され、M2のソースは、第2電圧源ノードVDD10に接続される。代替の回路要素が、出力段210について同様に考えられる。
第2トリガー回路206は、第1トリガー回路202と同様に、好ましくは、複数のインバータを備える。第1インバータは、各トランジスタが、ソース、ドレインおよびゲートを有するPMOSトランジスタM9およびNMOSトランジスタM6を含む。M6のソースは、電圧リターンVSSに接続され、M6およびM9のドレインは、一緒に接続されて、ノードN1Aにおいて第1インバータの出力を形成し、M6およびM9のゲートは、一緒に接続されて、ノードN1において第1インバータの入力を形成し、M9のソースは、第2電圧源ノードVDD10に接続される。第2インバータは、PMOSトランジスタM10およびNMOSトランジスタM7を備える。M7のソースは、VSSに接続され、M7およびM10のドレインは、一緒に接続されて、ノードN1Bにおいて第2インバータの出力を形成し、M7およびM10のゲートは、ノードN1Aにおいて第1インバータの出力に接続され、M10のソースは、VDD10に接続される。
第2トリガー回路206内の第1インバータの入力は、好ましくは、RC回路または代替のタイミング回路要素に結合され、RC回路または代替のタイミング回路要素は、第1トリガー回路202内のRC回路と同様に、ESDイベントが起こった後に第2トリガー回路がアクティブのままになる時間量を制御するように動作する。RC回路は、第2電圧源ノードVDD10と電圧リターンVSSとの間で、コンデンサC2または代替の容量素子と直列に接続される抵抗器R2または代替の抵抗素子を含み、R2およびC2の接合部は、ノードN1において第1インバータの入力に接続される。本発明の好ましい実施形態では、RC回路の時定数t2(t2=R2×C2)は、約0.1μs〜約100μsの範囲になるように選択されるが、本発明は、任意特定の時定数に限定されない。単に例として、抵抗器R2は約550Kオームになるように選択され、コンデンサC2は約1.4pFになるように選択され、約0.77μsの時定数をもたらしてもよい。
第2トリガー回路206は、さらに、第2インバータの出力に結合する入力をノードN1Bに有し、かつ、トランジスタMesd2に提示される第2制御信号を発生するための出力をノードN2に有する出力段212を含む。具体的には、出力段212は、出力段210と同様に、好ましくは、各トランジスタが、ドレイン、ソースおよびゲートを含むNMOSトランジスタM8およびPMOSトランジスタM11を備える、フルCMOSインバータとして構成される。M8のソースは、VSSに接続され、M8およびM11のドレインは、ノードN2において一緒に接続され、M8およびM11のゲートは、ノードN1Bにおいて第2インバータの出力に接続され、M11のソースは、VDD10に接続される。代替の回路要素が、出力段212について同様に考えられる。
第1および第2トリガー回路202および206は、それぞれ、3つのインバータを含むものとして示されるが、トリガー回路は、図示される特定の数のインバータに限定されないことが理解される。むしろ、第1トリガー回路および/または第2トリガー回路において、より多くの(たとえば、5つの)インバータまたはより少ない(たとえば、1つの)インバータが使用されてもよい。さらに、第1および第2トリガー回路202および206は、第1および第2制御信号を発生するために、対応するタイミング回路によって発生される各タイミング信号をバッファリングするための代替の回路要素を備えてもよい。所与のトリガー回路で使用されるインバータの数は、トリガー回路内での伝播遅延を最適化するように選択されてもよい。本手法の目的は、大型トランジスタMesd1、Mesd2(それぞれが、大型トランジスタに関連するかなりのゲート静電容量を有する)を、最小サイズのインバータで駆動することである。当業者によって理解されることになるように、方策は、トリガー回路内のそれぞれの連続するインバータのサイズを、直前のインバータのほぼ2.7倍だけ増加させることであるが、代替の最適化方式が、本発明によって同様に考えられる。各インバータを通る伝播遅延は、理想的には一定、約2.7%tにほぼ等しいことになる。ここで、tは、別の最小サイズのインバータの等価負荷による最小サイズのインバータの遅延である。
ESD保護回路200は、さらに、それぞれ、第1および第2ダイオードD0およびD1を含んでもよい。ダイオードD0は、第1電圧源ノードVDD25Qと電圧リターン・ノードVSSとの間に接続される。より詳細には、ダイオードD0のカソードはVDD25Qに接続され、D0のアノードはVSSに接続される。同様に、ダイオードD1は、第2電圧源ノードVDD10とVSSとの間に接続される。より詳細には、ダイオードD1のカソードはVDD10に接続され、D1のアノードはVSSに接続される。ダイオードD0およびD1は、対応する電圧源ノードVDD25Q、VDD10に電位をクランプすることによって、電力ピン201、203の所与の一方が、電力ピン205に関して負にストレス印加されるときのESD保護を提供する。
ダイオードD0およびD1は、好ましくは、特に、高抵抗p基板が使用されるとき、ディスクリート接合(たとえば、N+からPウェル)ダイオードを備えるが、ダイオードD0およびD1の1つまたは両方は、特に、低抵抗p+基板が使用されるとき、寄生ダイオードとしても実施される可能性がある。ダイオードD0およびD1は、ゲートを持たないため、普通ならICのゲート酸化物信頼性が許容することになる電位より高い電位を有する印加信号から生じるゲート酸化物損傷を受けない。その結果、ダイオードD0は、VDD25QとVSSとの間で、高電圧源にわたって直接に接続されることができる。
たとえば、eFuseプログラミング動作モード中に使用されるときに、高エネルギー・プログラミング信号(たとえば、2.5ボルト)は、ESD保護回路200の第1電力ピン201に印加される。選択されたeFuseのプログラミングが終了した後に、高エネルギー信号は、好ましくは除去され、eFuseが正しくプログラムされたことを確認するために、ピン201は、読取り動作モード中に接地される(たとえば、ゼロボルトが印加される)。VDD25Qが接地されるとき、第1インバータ内のデバイスM0およびM3は、オフすることになり、したがって、ノードN1ATの電位は不定になる場合がある。
(たとえば、ノイズまたは何らかの他の結合の結果として)電圧源ノードVDD10とVDD25Qとの間に、漏れ電流経路が生じることになる可能性を回避するために、たとえば、NMOSトランジスタM12として実施されてもよい抵抗素子が、好ましくは、ノードN1ATと電圧源ノードVDD25Qとの間に接続される。具体的には、M12のソースは、VDD25Qに接続され、M12のドレインは、ノードN1ATに接続され、M12のゲートは、電圧源ノードVDD10に接続される。こうして、第1電圧源ノードVDD25Qが接地される(たとえば、ゼロボルトである)ときで、かつ、第2電圧源ノードVDD10が、NMOS閾電圧(たとえば、約0.75ボルト以上)に少なくとも等しい電位であると仮定すると、デバイスM12はオンし、それにより、ノードN1ATを、VDD25Qの電位、すなわち、グラウンドに引き込む(pull)ことになる。プログラミング・モード中、VDD25Qが約2.5ボルトの電位にあるとき、デバイスM12は、オフすることになる。電圧源ノードVDD25Qが接地されるとき(たとえば、プログラミング読取り動作モード中)に、ノードN1ATの電位を規定するために、代替の回路要素が使用されてもよいことが本明細書の教示から当業者に明らかになるであろう。たとえば、高抵抗値(たとえば、約500Kオーム)を有する抵抗器(図示せず)が、ノードN1ATと電圧源ノードVDD25Qとの間に接続されてもよい。
同様に、VDD25Qが接地されるとき、出力段210内のデバイスM2およびM5はオフすることになり、したがって、ノードN2Tの電位が不定になる場合がある。デバイスMesd1がオンし、したがって、電圧源ノードVDD10とVDD25Qとの間に、漏れ電流経路を生成する可能性を回避するために、NMOSトランジスタM13として実施されてもよい抵抗素子が、好ましくは、ノードN2Tと電圧源ノードVDD25Qとの間に接続される。具体的には、M13のソースは、VDD25Qに接続され、M13のドレインは、ノードN2Tに接続され、M13のゲートは、電圧源ノードVDD10に接続される。第1電圧源ノードVDD25Qが接地される(たとえば、ゼロボルトである)ときで、かつ、第2電圧源ノードVDD10が、NMOS閾電圧に少なくとも等しい電位であると仮定すると、デバイスM13はオンし、それにより、ノードN2Tを、VDD25Qの電位、すなわち、グラウンドに引き込むことになる。プログラミング・モード中、VDD25Qが約2.5ボルトの電位にあるとき、デバイスM13は、オフすることになる。電圧源ノードVDD25Qが接地されるときに、ノードN2Tの電位を規定するために、代替の回路要素が使用されてもよい。たとえば、高抵抗値(たとえば、約500Kオーム)を有する抵抗器(図示せず)が、ノードN2Tと電圧源ノードVDD25Qとの間に接続されてもよい。
図3A、3Bおよび4を参照すると、ESD保護回路200の動作が、ここでさらに詳細に述べられるであろう。一般性を失うことなく、たとえば、ESDイベントが存在せず、かつ、約2.5ボルトのプログラミング信号が第1電圧源ノードVDD25Qに印加されるときなどの、通常プログラミング動作中、抵抗器R1およびR2は、それぞれ、ノードN1TおよびN1を、対応する電圧源ノードVDD25QおよびVDD10に引き込み、それにより、NMOSトランジスタM0およびM6をオンし、PMOSトランジスタM3およびM9をオフする。トランジスタM0およびM6がオンされることによって、ノードN1ATおよびN1Aが論理ロー状態になる。第1電圧クランプでは、NMOSデバイスは全て、第2電圧源ノードVDD10を基準とし、したがって、ノードN1ATは、グラウンド電位ではなく、第2電圧源と同じ電位(たとえば、約1.0ボルト)になることになる。それでも、この電位(たとえば、約1.0ボルト)は、第1電圧クランプに関して論理ローレベルを指示するであろう。ノードN1ATおよびN1Aが論理ローになることによって、PMOSトランジスタM4およびM10がオンし、NMOSトランジスタM1およびM7がオフする。トランジスタM4およびM10がオンされることによって、各ノードN1BTおよびN1Bが強制的に論理ハイ状態(たとえば、それぞれ、ノードVDD25QおよびVDD10の電位)になる。ノードN1BTおよびN1Bが論理ハイになることによって、NMOSトランジスタM2およびM8がオンし、PMOSトランジスタM5およびM11がオフする。トランジスタM2およびM8がオンされることによって、ノードN2TおよびN2が強制的に論理ロー状態になり、それにより、大型NMOSトランジスタMesd1およびMesd2をオフする。
図3Aおよび3Bは、対応する電力ピン201および203に印加される電位が、それぞれ、ゼロから電位2.75ボルトおよび1.1ボルト(それぞれの公称電圧(たとえば、2.5ボルトおよび1.0ボルト)を約10%超えた値である)まで立ち上がるときの、図2に示すESD保護回路200の例示的なシミュレーションを示すグラフィック図である。シミュレーションは、2つの電圧源について異なる電圧源立ち上がりレートをとるが、本発明の技法は、本質的に任意の立ち上がりレートの組合せについて同様に適用可能である。グラフ302は、2.5ボルトプログラミング電源を表すノードVDD25Qの電圧を示し、グラフ304は、1.0ボルトコア電源を表すノードVDD10の電圧を示し、グラフ306は、2.5ボルトプログラミング電源の電流消費を示し、グラフ308は、1.0ボルトコア電源の電流消費を示す。
例示的なシミュレーションにおいて示すように、両方の電圧源が(たとえば、時刻0において)オフであるとき、2.5ボルトおよび1.0ボルト電源の電流消費は約ゼロアンペアである。ノードVDD25Qの電位が立ち上がり、約0.5msにて、約2.75ボルトの最大電圧に達するため、1.0ボルト電源の電流消費は、約−20マイクロアンペア(μA)に減少し、2.5ボルト電源の電流消費は、ほぼ同じ量だけ増加して、約20μAになる。電圧源の電流消費は、ノードVDD10の電圧が立ち上がり始めるまで、本質的にそれぞれのレベルのままである。ノードVDD25Qの電位は、約13msにて立ち下がり始めるまで、約2.75ボルトのままである。
約5.0msにて、ノードVDD10の電位が立ち上がり始める。ノードVDD10の電位が、MOS閾電圧(たとえば、低電圧デバイスについて約0.35ボルト)を超えると、1.0ボルト電源の電流消費は約80μAに上昇する。1.0ボルト電源の電流消費は、実質的に直線的に約380μAまで上昇し続け、その時点で、ノードVDD10の電位は、約6.0msにて、1.1ボルトに完全に立ち上がる。2.5ボルト電源の電流消費は、ノードVDD10の電位が1.1ボルト一杯まで立ち上がると、ほぼゼロに降下する。約13msにて、ノードVDD25Qの電位は、立ち下がり始め、約14msにてゼロボルトに達する。この時点で、2.5ボルト電源の電流消費は、約−10μAに降下し、1.0ボルト電源の電流消費は、ほぼ同じ量だけ増加して、約390μAになる。電圧および電流レベルは、シミュレーションの継続期間中、これらの値のままである。
ESDイベント中、ESD保護回路200の電力ピン201、203の一方または両方は、互いに対して、または、ピン205に対してストレス印加されてもよい。単に例として、電力ピン201、203はグラウンド電位(たとえば、ゼロ電圧)であると仮定する。ピン201がピン203に関してストレス印加されると、第1トリガー回路202は、トランジスタMesd1を起動するためにノードN2Tに第1制御信号を供給することになる。具体的には、第1電圧源ノードVDD25Q上の電位が、第2電圧源ノードVDD10を超えてストレス印加されると(たとえば、2.5kV HBM)、コンデンサC1は、少なくとも最初は、ノードN1TをVDD10の電位(たとえば、約1.0ボルト)に保持することになる。ノードVDD25Qが、ノードVDD10を超えてほぼ閾電圧に上昇すると、トランジスタM3がオンすることになる。トランジスタM3がオンされることによって、ノードN1ATが強制的に論理ハイ状態になり、それにより、トランジスタM1をオンし、かつ、トランジスタM4をオフする。トランジスタM1がオンされることによって、ノードN1BTが強制的にローになり、それにより、トランジスタM5をオンし、かつ、トランジスタM2をオフする。トランジスタM5がオンされることによって、ノードN2T、そのため、トランジスタMesd1のゲートがハイに引き込まれ、それにより、Mesd1をオンにし、かつ、VDD25Q上の電圧を所望の値にクランプする。
同様に、電力ピン203、そのため、ノードVDD10がグラウンド電位であると仮定すると、VDD10が電力ピン205に関してストレス印加されると、第2トリガー回路206は、トランジスタMesd2を起動するためにノードN2に第2制御信号を供給することになる。具体的には、第2電圧源ノードVDD10上の電位が、電圧リターン・ノードVSSを超えてストレス印加されると(たとえば、2.5kV HBM)、コンデンサC2は、少なくとも最初は、ノードN1をグラウンド電位に保持することになる。VDD10が、グラウンドを超えてほぼ閾電圧に上昇すると、トランジスタM9がオンすることになる。トランジスタM9がオンされることによって、ノードN1Aが強制的に論理ハイ状態になり、それにより、トランジスタM7をオンし、かつ、トランジスタM10をオフする。トランジスタM7がオンされることによって、ノードN1Bが強制的にローになり、それにより、トランジスタM11をオンし、かつ、トランジスタM8をオフする。トランジスタM11がオンされることによって、ノードN2、そのため、トランジスタMesd2のゲートがハイに引き込まれ、それにより、Mesd2をオンにし、かつ、VDD10上の電圧をクランプする。
電圧源ノードVDD25Qおよび/またはVDD10が、電圧リターン・ノードVSSに関して負にストレス印加されると、ダイオードD0および/またはD1は、それぞれ、各電圧を所望の電位にクランプするのに役立つことになる。相応して、ダイオードD0およびD1は、当業者によって理解されるように、予想されるESD電流を処理するのに適切な大きさに作られる。
図4は、2.5kV HBM ESDストレスが電力ピン201に印加されるときの、図2に示すESD保護回路200の例示的なシミュレーションを示すグラフィック図である。グラフ402は第1電圧源ノードVDD25Qの電圧を表し、グラフ404は第2電圧源ノードVDD10の電圧を表す。図から明らかなように、ESD保護回路200は、首尾よく、VDD25Qの電圧を約2.98ボルトの最大値にクランプし、かつ、VDD10の電圧を約1.06ボルトの最大値にクランプする。
本発明のESD保護回路の少なくとも一部分はICで実施されてもよい。ICを形成するとき、半導体ウェハの表面上に繰返しパターンで、同じダイが通常作製される。各ダイは、本明細書に述べるデバイスを含み、また、他の構造および/または回路を含んでもよい。個々のダイは、ウェハから切断されるか、または、ダイシングされ、その後、ICとしてパッケージングされる。当業者は、ウェハをダイシングし、ダイをパッケージングして、ICを作る方法をわかっているであろう。こうして製造されたICは、本発明の一部と考えられる。
本発明の例証的な実施形態が、添付図面を参照して本明細書で述べられたが、本発明は、これらの厳密な実施形態に限定されないこと、および、添付の特許請求の範囲から逸脱することなく、当業者によって、種々の他の変更および修正が実施形態において行われてもよいことが理解される。

Claims (20)

  1. 静電気放電(ESD)保護回路であって、
    回路の第1電圧源ノードと第2電圧源ノードとの間に接続される第1電圧クランプであり、前記第1電圧源ノードは、回路の指定されたゲート酸化物信頼性電位より大きい第1電圧を受け取るようになっており、前記第2電圧源ノードは、前記第1電圧より小さい第2電圧を受け取るように動作する、第1電圧クランプと、
    回路の前記第2電圧源ノードと電圧リターンとの間に接続される第2電圧クランプとを備え、
    前記第1電圧クランプは、ESDイベント中に、前記第1電圧源ノード上の前記第1電圧を第1の値にクランプするように動作し、前記第2電圧クランプは、前記ESDイベント中に、前記第2電圧源ノード上の前記第2電圧を第2の値にクランプするように動作するESD保護回路。
  2. 前記第1電圧クランプは、
    前記第1電圧源ノードと前記第2電圧源ノードとの間で前記ESDイベントを検出し、かつ、前記ESDイベントを指示する第1制御信号を発生するように動作するトリガー回路と、
    前記トリガー回路に接続されるESD保護構造であり、前記第1制御信号に応答して前記第1電圧源ノードと前記第2電圧源ノードとの間に電流放出経路を形成するように動作する、ESD保護構造とを備える請求項1に記載のESD保護回路。
  3. 前記トリガー回路は、前記第1電圧源ノードと前記第2電圧源ノードとの間でESD遷移を検出し、かつ、前記ESD遷移を検出した後に、ESD保護回路がアクティブのままである時間量を制御するように動作するタイミング回路を備える請求項2に記載のESD保護回路。
  4. 前記タイミング回路は、前記第1電圧源ノードと前記第2電圧源ノードとの間で直列に一緒に接続された、抵抗素子および容量素子を含む抵抗器−コンデンサ(RC)回路を備え、前記ESD遷移を検出した後に、ESD保護回路がアクティブのままである前記時間量は、前記抵抗素子および前記容量素子の値の関数である請求項3に記載のESD保護回路。
  5. 前記トリガー回路は、
    前記タイミング回路に接続される入力を有する少なくとも第1インバータと、
    前記第1インバータの出力に接続される入力および前記第1制御信号を発生する出力を有する出力段とをさらに備える請求項3に記載のESD保護回路。
  6. 前記出力段はインバータを備え、前記出力段のインバータのサイズと前記第1インバータのサイズの比は、前記第1トリガー回路において伝播遅延を低減するように選択される請求項5に記載のESD保護回路。
  7. 前記トリガー回路は、前記第1インバータの出力と、前記第1電圧源ノードおよび前記電圧リターンの一方との間に接続される抵抗素子をさらに備え、前記抵抗素子は、前記第1電圧源ノードの電位がゼロであるときに、前記出力段の入力の電位を指定された電圧に設定するように動作する請求項5に記載のESD保護回路。
  8. 前記トリガー回路は、前記第1電圧源ノードに接続される第1ソース/ドレイン、前記第1インバータの出力に接続される第2ソース/ドレインおよび前記第2電圧源ノードに接続されるゲートを有するNMOSトランジスタ・デバイスをさらに備える請求項5に記載のESD保護回路。
  9. 前記ESD保護構造は、前記第1電圧源ノードに接続される第1ソース/ドレイン、前記第2電圧源ノードに接続される第2ソース/ドレインおよび前記第1制御信号を受け取るゲートを有するNMOSトランジスタ・デバイスを備える請求項2に記載のESD保護回路。
  10. 回路の前記第1電圧源ノードに接続されるカソードおよび前記電圧リターンに接続されるアノードを有する第1ダイオードと、
    回路の前記第2電圧源ノードに接続されるカソードおよび前記電圧リターンに接続されるアノードを有する第2ダイオードとをさらに備える請求項1に記載のESD保護回路。
  11. 前記第1電圧クランプは、少なくとも1つの金属酸化物半導体(MOS)トランジスタ・デバイスであって、金属酸化物半導体(MOS)トランジスタ・デバイスに関連する第1閾電圧を有する少なくとも1つの金属酸化物半導体(MOS)トランジスタ・デバイスを備え、前記第2電圧クランプは、少なくとも1つのMOSトランジスタ・デバイスであって、MOSトランジスタ・デバイスに関連する第2閾電圧を有する少なくとも1つのMOSトランジスタ・デバイスを備え、前記第1閾電圧は前記第2閾電圧より大きい請求項1に記載のESD保護回路。
  12. 前記第2電圧クランプは、
    前記第2電圧源ノードと前記電圧リターンとの間で前記ESDイベントを検出し、かつ、前記ESDイベントに応答して第2制御信号を発生するように動作するトリガー回路と、
    前記トリガー回路に接続されるESD保護構造であって、前記第2制御信号に応答して前記第2電圧源ノードと前記電圧リターンとの間に電流放出経路を形成するように動作する、ESD保護構造とを備える請求項1に記載のESD保護回路。
  13. 前記トリガー回路は、前記第2電圧源ノードと前記電圧リターンとの間でESD遷移を検出し、かつ、前記ESD遷移を検出した後に、ESD保護回路がアクティブのままである時間量を制御するように動作するタイミング回路を備える請求項12に記載のESD保護回路。
  14. 前記トリガー回路は、
    前記タイミング回路に接続される入力を有する少なくとも第1インバータと、
    前記第1インバータの出力に接続される入力および前記第2制御信号を発生する出力を有する出力段とをさらに備える請求項12に記載のESD保護回路。
  15. 前記トリガー回路は、前記第1インバータの出力と、前記第1電圧源ノードおよび前記電圧リターンの一方との間に接続される抵抗素子をさらに備え、前記抵抗素子は、前記第1電圧源ノードの電位がゼロであるときに、前記出力段の入力の電位を指定された電圧に設定するように動作する請求項14に記載のESD保護回路。
  16. 前記ESD保護構造は、前記第2電圧源ノードに接続される第1ソース/ドレイン、前記電圧リターンに接続される第2ソース/ドレインおよび前記第2制御信号を受け取るゲートを有するNMOSトランジスタ・デバイスを備える請求項12に記載のESD保護回路。
  17. 回路の第1電圧源ノードと電圧リターンとの間および前記回路の第2電圧源ノードと前記電圧リターンとの間の少なくとも一方における静電気放電(ESD)イベントから前記回路を保護する方法において、前記第1電圧源ノードは、前記回路の指定されたゲート酸化物信頼性電位より大きい第1電圧を受け取るようになっており、前記第2電圧源ノードは、前記第1電圧より小さい第2電圧を受け取るように動作する、方法であって、
    前記ESDイベント中に、前記第1電圧源ノード上の前記第1電圧を第1の値にクランプするステップと、
    前記ESDイベント中に、前記第2電圧源ノード上の前記第2電圧を第2の値にクランプするステップとを含む方法。
  18. 前記第1電圧源ノードと前記第2電圧源ノードとの間で前記ESDイベントを検出するステップと、
    前記第1電圧源ノードと前記第2電圧源ノードとの間の前記ESDイベントを指示する制御信号を発生するステップと、
    前記制御信号に応答して前記第1電圧源ノードと前記第2電圧源ノードとの間に電流放出経路を形成するステップとをさらに含む請求項17に記載の方法。
  19. 前記第2電圧源ノードと前記電圧リターンとの間で前記ESDイベントを検出するステップと、
    前記第2電圧源ノードと前記電圧リターンとの間の前記ESDイベントを指示する制御信号を発生するステップと、
    前記制御信号に応答して前記第2電圧源ノードと前記電圧リターンとの間に電流放出経路を形成するステップとをさらに含む請求項17に記載の方法。
  20. 少なくとも1つの静電気放電(ESD)保護回路を含む集積回路であって、前記少なくとも1つのESD保護回路は、
    回路の第1電圧源ノードと第2電圧源ノードとの間に接続される第1電圧クランプであり、前記第1電圧源ノードは、回路の指定されたゲート酸化物信頼性電位より大きい第1電圧を受け取るようになっており、前記第2電圧源ノードは、前記第1電圧より小さい第2電圧を受け取るように動作する、第1電圧クランプと、
    回路の前記第2電圧源ノードと電圧リターンとの間に接続される第2電圧クランプとを備え、
    前記第1電圧クランプは、ESDイベント中に、前記第1電圧源ノード上の前記第1電圧を第1の値にクランプするように動作し、前記第2電圧クランプは、前記ESDイベント中に、前記第2電圧源ノード上の前記第2電圧を第2の値にクランプするように動作する集積回路。
JP2010530980A 2007-10-30 2007-10-30 静電気放電保護回路 Active JP5562246B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2007/082934 WO2009058128A1 (en) 2007-10-30 2007-10-30 Electrostatic discharge protection circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013156466A Division JP5710706B2 (ja) 2013-07-29 2013-07-29 静電気放電保護回路

Publications (3)

Publication Number Publication Date
JP2011502350A true JP2011502350A (ja) 2011-01-20
JP2011502350A5 JP2011502350A5 (ja) 2011-12-01
JP5562246B2 JP5562246B2 (ja) 2014-07-30

Family

ID=40223741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010530980A Active JP5562246B2 (ja) 2007-10-30 2007-10-30 静電気放電保護回路

Country Status (5)

Country Link
US (1) US8089739B2 (ja)
EP (1) EP2135282A1 (ja)
JP (1) JP5562246B2 (ja)
KR (1) KR101389234B1 (ja)
WO (1) WO2009058128A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116187A1 (en) * 2014-01-31 2015-08-06 Hewlett-Packard Development Company, L.P. Return path capacitor for connected devices
JP2017163016A (ja) * 2016-03-10 2017-09-14 富士電機株式会社 半導体装置及び半導体装置の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2307225A4 (en) * 2008-07-23 2017-11-22 Continental Automotive GmbH Protection against load dump on multiple automobile interfaces
EP2246885A1 (fr) * 2009-04-27 2010-11-03 STmicroelectronics SA Structure de protection d'un circuit intégré contre des décharges électrostatiques
JP2012253266A (ja) * 2011-06-06 2012-12-20 Sony Corp 半導体集積回路
KR101885334B1 (ko) 2012-01-18 2018-08-07 삼성전자 주식회사 정전기 방전 보호 회로
US9172244B1 (en) * 2012-03-08 2015-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Self biased electro-static discharge clamp (ESD) for power rail
US8643988B1 (en) * 2012-09-25 2014-02-04 Hong Kong Applied Science & Technology Research Institute Company Ltd. ESD power clamp using a low-voltage transistor to clamp a high-voltage supply in a mixed-voltage chip
KR101990093B1 (ko) 2013-04-29 2019-06-19 에스케이하이닉스 주식회사 반도체 집적 회로 장치
TWI499926B (zh) * 2014-09-09 2015-09-11 Nuvoton Technology Corp 靜電放電保護元件的模擬等效電路及其模擬方法
JP2016111186A (ja) * 2014-12-05 2016-06-20 ソニー株式会社 半導体集積回路
US10886729B2 (en) * 2017-06-01 2021-01-05 Richwave Technology Corp. Electrostatic discharge protection device for high supply voltage operations
US20200075547A1 (en) 2018-08-31 2020-03-05 Qorvo Us, Inc. Double-sided integrated circuit module having an exposed semiconductor die
US11201467B2 (en) * 2019-08-22 2021-12-14 Qorvo Us, Inc. Reduced flyback ESD surge protection
CN114172137B (zh) * 2020-11-03 2024-06-28 台湾积体电路制造股份有限公司 用于静电放电保护的电路和方法
US11848554B2 (en) * 2021-04-21 2023-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Electrostatic discharge circuit and method of operating same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946177A (en) * 1998-08-17 1999-08-31 Motorola, Inc. Circuit for electrostatic discharge protection
WO2007007237A2 (en) * 2005-07-08 2007-01-18 Nxp B.V. Integrated circuit with electro-static discharge protection
JP2007511901A (ja) * 2003-10-21 2007-05-10 オーストリアマイクロシステムズ アクチエンゲゼルシャフト アクティブ保護回路装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524096A (en) * 1995-06-29 1996-06-04 Micron Quantum Devices, Inc. Circuit for generating a delayed standby signal in response to an external standby command
US6118640A (en) * 1999-02-17 2000-09-12 Pericom Semiconductor Corp. Actively-driven thin-oxide MOS transistor shunt for ESD protection of multiple independent supply busses in a mixed-signal chip
US6455902B1 (en) * 2000-12-06 2002-09-24 International Business Machines Corporation BiCMOS ESD circuit with subcollector/trench-isolated body mosfet for mixed signal analog/digital RF applications
TW511271B (en) * 2001-10-19 2002-11-21 Winbond Electronics Corp Electrostatic discharge protection circuit with high electrostatic discharge tolerance capability
US7221551B2 (en) 2004-06-11 2007-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Cascaded gate-driven ESD clamp
US7529070B2 (en) * 2005-03-11 2009-05-05 Agere Systems Inc. Power pin to power pin electro-static discharge (ESD) clamp
US7593202B2 (en) * 2005-11-01 2009-09-22 Freescale Semiconductor, Inc. Electrostatic discharge (ESD) protection circuit for multiple power domain integrated circuit
WO2007082934A1 (en) 2006-01-20 2007-07-26 Nokia Siemens Networks Gmbh & Co. Kg Method for dynamically adapting the drx cycle length in a radio communications system
US7518845B2 (en) * 2006-06-07 2009-04-14 International Business Machines Corporation RC-triggered power clamp suppressing negative mode electrostatic discharge stress

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946177A (en) * 1998-08-17 1999-08-31 Motorola, Inc. Circuit for electrostatic discharge protection
JP2007511901A (ja) * 2003-10-21 2007-05-10 オーストリアマイクロシステムズ アクチエンゲゼルシャフト アクティブ保護回路装置
WO2007007237A2 (en) * 2005-07-08 2007-01-18 Nxp B.V. Integrated circuit with electro-static discharge protection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116187A1 (en) * 2014-01-31 2015-08-06 Hewlett-Packard Development Company, L.P. Return path capacitor for connected devices
JP2017163016A (ja) * 2016-03-10 2017-09-14 富士電機株式会社 半導体装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
EP2135282A1 (en) 2009-12-23
JP5562246B2 (ja) 2014-07-30
US8089739B2 (en) 2012-01-03
WO2009058128A1 (en) 2009-05-07
KR20100084606A (ko) 2010-07-27
US20100232078A1 (en) 2010-09-16
KR101389234B1 (ko) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5562246B2 (ja) 静電気放電保護回路
JP5188017B2 (ja) 半導体装置の静電気放電保護
JP4727584B2 (ja) 静電気放電に対する保護回路及びその動作方法
JP4829880B2 (ja) 静電放電保護回路
US6965503B2 (en) Electro-static discharge protection circuit
US20090040671A1 (en) Power clamp for on-chip ESD protection
CN106257670B (zh) 静电放电电源轨箝位电路
US20090154035A1 (en) ESD Protection Circuit
KR100390155B1 (ko) Esd 보호회로
JP3999718B2 (ja) プログラマブル・ヒューズ装置
JP3266527B2 (ja) 出力ドライバ回路及び半導体装置
US6529035B2 (en) Arrangement for improving the ESD protection in a CMOS buffer
JP2022022198A (ja) デバイス及びその動作方法
US20070177317A1 (en) ESD protection circuit
JP5710706B2 (ja) 静電気放電保護回路
JP2707954B2 (ja) コード設定回路
JP4102277B2 (ja) 半導体集積回路装置
KR20230029658A (ko) 향상된 esd(electrostatic discharge) 강건성을 위한 회로 기법들
JP6480051B2 (ja) 半導体装置
JP4404589B2 (ja) ヒューズ回路
US20220052683A1 (en) Robust power-on-reset circuit with body effect technique
KR20070070966A (ko) 정전기 방전 보호 회로

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120828

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5562246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250