JP5188017B2 - 半導体装置の静電気放電保護 - Google Patents

半導体装置の静電気放電保護 Download PDF

Info

Publication number
JP5188017B2
JP5188017B2 JP2005313643A JP2005313643A JP5188017B2 JP 5188017 B2 JP5188017 B2 JP 5188017B2 JP 2005313643 A JP2005313643 A JP 2005313643A JP 2005313643 A JP2005313643 A JP 2005313643A JP 5188017 B2 JP5188017 B2 JP 5188017B2
Authority
JP
Japan
Prior art keywords
voltage supply
voltage
supply node
circuit
esd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005313643A
Other languages
English (en)
Other versions
JP2006128696A (ja
Inventor
バッタチャーヤ ディパンカー
シー.クリッツ ジョン
エル.モリス バーナード
スムーハ エフダ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agere Systems LLC
Original Assignee
Agere Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agere Systems LLC filed Critical Agere Systems LLC
Publication of JP2006128696A publication Critical patent/JP2006128696A/ja
Application granted granted Critical
Publication of JP5188017B2 publication Critical patent/JP5188017B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

本発明は、全体として静電気放電(ESD)保護に関し、さらに詳細には金属−酸化物−半導体(MOS)装置のESD保護に関する。
装置にかかる静電気および/または他の過渡パルス(例えば負荷ダンプ)による損傷から集積回路(IC)を保護するために、ESD保護回路を使用することは良く知られている。任意の大きな電圧および/または電流の過渡パルスを含むことのできるESD現象は、必ずしも直ちに(すなわち破局的な)装置の破損を招かず、装置の僅かに一部だけが損傷し、かつ/または潜在的な欠陥をもたらし、これは、動作寿命を大きく短縮させ、または装置の信頼性に悪い影響を与えることがある。
特にIC装置中の2個またはそれ以上の絶縁された電源ピンの間の回路をESDから保護するための様々な方法が提案された。図1Aおよび図1Bは、2個の絶縁された電源ピンPWR1とPWR2間のESD保護を提供する2種類の従来の保護手法の例を示している。これらの手法のいずれも所定の1つの電源ピンと接地ピンGNDの間にESD放電路を提供するように設計される。図1Aを参照すれば、ESD保護回路100は、電源ピンPWR1およびPWR2と接地の間にそれぞれ接続されたESDクランプ102と104、およびダイオード106と108に依存する。ESDクランプ102、104は、一般に大きな金属−酸化物−半導体(MOS)トランジスタ装置(示されていない)を含む。しかし、この手法の1つの問題は、電源ピンPWR1またはPWR2と接地の間の電路の電圧降下があまりにも大きく、対応するESDクランプ102、104中のMOSトランジスタ装置の絶縁破壊が起き、ESD保護回路100が本質的に動作不能になることである。
図1Bに示したESD保護回路150は、回路150が電源ピンPWR1およびPWR2と接地の間にそれぞれ接続されたESDクランプ102と104、およびダイオード106と108を含む点で、図1Aに示した回路100と類似している。さらに、回路150は、電源ピンPWR1およびPWR2と接地の間に接続された2個のダイオード110と112を背面−背面の形態で含む。詳細には、第1ダイオード110のアノードはPWR1に接続され、ダイオード110のカソードはPWR2に接続されるが、ダイオード112のアノードはPWR2に接続され、ダイオード112のカソードはPWR1に接続される。しかし、このESD保護手法は、電源ピンPWR1およびPWR2にそれぞれ印加された供給電圧が実質上互いに一致することが必要であり、したがって、互いに対して同じ大きさでなければならない。2つの電圧が互いに約0.7ボルト以上異なれば、より低い電位電源は、順バイアスダイオード(例えばダイオード110またはダイオード112)を経由してより高い電位の電源からエネルギー供給を受けるであろう。さらに、MOS装置に付随している寄生バイポーラNPN急速回復(snapback)型トランジスタにクランピングを依存することにはいくらかの制限された利点があるが、回復電圧は典型的にあまりにも高く、および/または制御不可能であり、したがって望ましくない。
したがって、特にIC装置に付随する2個またはそれ以上の絶縁された電源ピン間で、従来のESD保護回路で見られた1つまたは複数の問題を蒙ることのない、ESDからICを保護するための改善されたESD保護回路の存在が必要である。
本発明は、保護すべき回路に付随する2個またはそれ以上の電圧供給ピン間に起きるESD現象から、回路を保護する技術を提供する。
本発明の一態様によれば、保護すべき回路に付随する第1電圧供給ノードと第2電圧供給ノードの間に起きるESD現象から回路を保護するためのESD保護回路は、ゲート端子と、第1のソース/ドレイン端子と、第2のソース/ドレイン端子とを有するMOS装置を含む。第1のソース/ドレイン端子は第1の電圧供給ノードに接続され、第2のソース/ドレイン端子は第2の電圧供給ノードに接続される。ESD保護回路は、MOS装置のゲート端子に結合されたトリガ回路をさらに含む。トリガ回路は、ESD現象の間にMOS装置を活性化するために、MOS装置のゲート端子で制御信号を発生するように構成される。少なくともトリガ回路の一部は浮動ウェルの中に形成され、第1電圧が第1電圧供給ノードに供給されるときの第1電圧、または第2電圧が第2電圧供給ノードに供給されるときの第2電圧のいずれか高い方の電圧と実質上等しい電圧にバイアスされる。
本発明のこれらのおよび他の特徴と利点は、付随する図面と共に読み取るべき、その例示的な実施形態の詳細な以下の説明によって明らかになるであろう。
本発明は、本明細書において、特に保護すべき回路に付随する所定の対の電源ピン間のESD現象に起因する損傷からICなどの回路を保護するのに適した、例示的ESD保護回路の内容で説明する。しかし、本発明は、この保護回路または任意の特定のESD保護回路構成に制限されないことを理解すべきである。むしろ本発明は、2個の電源ピンに供給されるそれぞれの電圧レベルにかかわらず、さらに全体的に任意の対の電源ピン間に適用し得るESD保護回路に使用可能である。本明細書において使用される用語「電源ピン」は、例えば、ICパッド、ボンドワイア、IC実装ピン等などによって好ましくは回路に外部からアクセス可能な、ESD保護回路の電源ノードを指す。ESD保護回路の電源ノードは、ESD保護回路を含むIC装置に付随する、対応する実装ピンに直接外部接合することができ、またはしなくてもよいことを理解すべきである。
通常の動作中(例えばESD現象がないとき)に、ESD保護回路は何ら大きな直流(DC)電流を消費せず、したがって電力に敏感な用途における使用に適している。さらに、本発明の実施は、相補型金属酸化物半導体(CMOS)製造プロセスを用いて形成できるので、本明細書において、特にP型MOS(PMOS)およびN型MOS(NMOS)トランジスタ装置を参照して説明されるが、当業者であれば理解するであろうように、本発明はそれらの装置および/またはプロセスに制限されず、他の適切なトランジスタ装置(例えばバイポーラ結合トランジスタ(BJT)等)および/または製造プロセス(例えばバイポーラ、BiCMOS等)を同様に用いることができることを認識すべきである。
原理的に、ESD保護回路はESD現象の時にのみ活性であり、顕著に大きなESD電流(例えば数アンペア程度)を分路させるための電流放電路を形成し、ならびに、保護される回路に付随する1個または複数の入力/出力パッドの電圧を、保護される回路が非可逆的な損傷を受けるのを防止するのに十分低いレベルへクランプする。ESD現象から保護される回路は、独立装置の場合のような(例えば独立の電源MOSトランジスタ)単一装置、または互いに結合されてより大きな回路を形成することのできる複数の装置を含むことができることを理解すべきである。ESD現象は、単なる自然の静電気現象ばかりではなく、典型的に数ナノ秒(n秒)の立ち上がり時間および/または立下り時間を有する高電圧(例えば数千ボルト程度)および/または大電流(例えば数アンペア程度)の過渡パルスを含むものと定義することができる。
例えば図1Aおよび図1Bに示したように、回路に付随する2個の電源ピン間に起きるESD現象から回路を保護するための単一電圧クランプを用いる従来のESD保護回路は、典型的に所定の1個の電源ピンと接地の間に存在する高電圧を取り扱うことは不可能である。さらに、いくつかの従来のESD保護回路は、例えば、保護される装置または回路の大信号の動作中に誤ったトリガを行う傾向、大きな漏れ電流、高くかつ/または制御不能な急速回復電圧、半導体の大面積の消費など、他の望ましくない特性を示す。本発明は、従来のESD保護手法に伴う1つまたは複数の問題を有利に克服するESD保護回路を提供する。
図2は本発明の技術を実施することのできる例示的ESD保護回路200を示す。回路200は、電圧クランプとして機能する比較的大きなNMOSトランジスタ装置202(例えば数千マイクロメートル(μm)程度)を含む。NMOS装置202は、第1電圧供給ピンPWR1に接続されたソース端子(S)と、第2電圧供給ピンPWR2に接続されたドレイン端子(D)と、ノードN1でトリガ回路204に接続されたゲート端子(G)とを含む。電圧供給ピンPWR1およびPWR2は互いに電気的に絶縁されている。トリガ回路204は、PWR1とPWR2のピン間に起きるESD現象の間、NMOS装置202を活性化するためにノードN1で制御電圧を発生することが好ましい。さらに、トリガ回路204で発生された制御電圧は、保護すべき回路の通常の動作中、NMOS装置202を確実に不活性に保たなければならない。さもなければ、2個の絶縁された電圧供給ピンPWR1とPWR2の間に、NMOS装置202を経由して望ましくない電路が形成されるであろう。
トリガ回路204は、一対のインバータ206および212を含むことが好ましく、インバータ206および212の各々は、それぞれNMOS装置208および210を含む対応する出力段を駆動する。詳細には、NMOS装置208は、電圧供給ピンPWR2に接続されたドレイン端子と、ノードN1に接続されたソース端子と、インバータ206の出力に接続されたゲート端子とを含む。NMOS装置210は、第1電圧供給ピンPWR1に接続されたドレイン端子と、ノードN1に接続されたソース端子と、インバータ212の出力に接続されたゲート端子とを含む。各NMOS装置208、210には接地(GND)への電路がそれぞれ抵抗R3およびR4を経由して設けられる。抵抗R3およびR4は、対応するNMOSトランジスタ208および210の受動負荷として働く。
ESD現象が起きると、ESD保護回路200を活性に保つ時間は主としてインバータ206および212の各々の入力に結合した抵抗−キャパシタ(RC)回路によって制御される。電圧供給ピンPWR1については、抵抗R2およびキャパシタC2がPWR1とGNDの間に直列に接続され、R2とC2の結合部はインバータ212の入力に接続される。同様に、電圧供給ピンPWR2については、抵抗R1およびキャパシタC1がPWR2とGNDの間に直列に接続され、R1とC1の結合部はインバータ206の入力に接続される。
図2に示したESD保護回路200は、従来のESD保護回路の呈したいくつかの問題を克服することができるが、回路200の1つの欠点は、トリガ回路204の出力段がNMOSロジック(例えばNMOSトランジスタ208、210を含む)のみを用いるので、ESD現象中にトリガ回路によって発生する大きなNMOS装置202を駆動するための最大制御電圧は、PWR1またはPWR2が他方に対して電圧ストレスを受けているかに応じてVPWR1−VtまたはVPWR2−Vtのいずれかになることである(VPWR1およびVPWR2はそれぞれPWR1およびPWR2の電圧であり、VtはNMOS装置208または210のスレッショルド電圧である)。したがって、NMOS装置202のサイズは、電源ピンPWR1およびPWR2を望ましい電圧に十分クランプするためにかなり増加しなければならず、したがって、ICのかなりの面積を追加消費することになる。この問題を克服する1つの方法は、回路200の場合のように、対応する負荷抵抗に接続されたNMOS装置だけを使用するのではなく、大きなNMOSトランジスタ202をCMOS出力段全体で駆動することである。
図3は、本発明の一実施形態によって形成された例示的ESD保護回路300を示す。例示的ESD保護回路300は望ましいESD電流を取り扱うのに十分なサイズの大きなNMOSトランジスタMesdを含む。例えば、Mesdは標準的な130nm製造工程で約数千μmの幅、および約160ナノメートル(nm)の長さを有するサイズにすることができるが、本発明は特定の装置サイズおよび/または種類に制限されない。同様に、PMOSトランジスタを用いることができるが、一般にPMOS装置の利得はNMOS装置に比べて小さく、したがってNMOS装置が好ましい。本質的に電圧クランプとして働くトランジスタMesdは、第1電圧供給ピンPWR1に接続されたドレイン端子と、第2電圧供給ピンPWR2に接続されたソース端子と、ノードN3でトリガ回路302に結合したゲート端子とを含むことが好ましい。MOS装置は本質的に対称的であり、したがって双方向性なので、ソースとドレインの命名の割当は本質的に自由であることを理解すべきである。したがって、本明細書において、ソース端子およびドレイン端子はそれぞれ第1および第2ソース/ドレインと呼ぶことができ、この意味で「ソース/ドレイン」はソース端子またはドレイン端子を指す。
図2に示したトリガ回路204と同じように、トリガ回路302はESD現象中にトランジスタMesdの活性化を制御する電圧を発生し、それによって、PWR1またはPWR2の電圧を望ましいレベルまでクランプするように動作可能であることが好ましい。さらに、トリガ回路302はMesdが通常の動作時(例えばESD現象が存在しないとき)に確実に停止されるように動作可能であることが好ましい。例示的なトリガ回路302の重要な一態様は、トランジスタMesdが、図2のESD保護回路200の場合のように、受動負荷に結合したNMOSトランジスタだけでなく、PMOSおよびNMOS装置の両方を含むCMOS出力段全体で駆動されることである。したがって、トリガ回路302は、ESD現象中、より大きな出力駆動電圧をノードN3に提供し、それによって、所定の電流取り扱い要件に対して、トランジスタMesdのサイズを図2のトランジスタ202に比べて有利に縮小することが可能である。しかし、トリガ回路302の出力段のPMOS装置に付随する寄生ダイオードがESD現象中に偶然起動して、トランジスタMesdのゲート電圧をクランプすることを防止するために、以下で詳細に述べるように、PMOS装置は浮動ウェル中に形成される。浮動ウェルは、PWR1またはPWR2のいずれか高い1つの電圧と実質上等しい電圧にバイアスされることが好ましい。
図から明らかなように、トリガ回路302は接地(GND)または代替の基準ソースに関して対称的になるように構成されることが好ましく、それによって、電圧供給ピンPWR1およびPWR2のESD電圧ストレスの両方の極性(例えば正および負)で放電が可能になる。したがって、トリガ回路302は、電圧供給ピンPWR1と接地の間に結合した少なくとも第1の部分310と、電圧供給ピンPWR2と接地の間に結合した少なくとも第2の部分312とを含むものと説明され、第2部分は本質的に第1部分に等しい。
トリガ回路302の第1部分310は複数のインバータを含み、各インバータはPMOSトランジスタとNMOSトランジスタを含むことが好ましい。詳細には、第1インバータはPMOSトランジスタM1AおよびNMOSトランジスタM0Aを含み、各トランジスタはソース端子、ドレイン端子、およびゲート端子を有する。M1Aのソース端子はPWR1に接続され、M1AおよびM0Aのドレイン端子は互いに接続されてノードN1Aに第1インバータの出力を形成し、M1AおよびM0Aのゲート端子は互いに接続されてノードN0Aに第1インバータの入力を形成し、M0Aのソース端子は接地に接続される。同様に、第2インバータはPMOSトランジスタM3AおよびNMOSトランジスタM2Aを含む。M3Aのソース端子はPWR1に接続され、M2AおよびM3Aのドレイン端子は互いに接続されてノードN2Aに第2インバータの出力を形成し、M2AおよびM3Aのゲート端子はノードN1Aに第1インバータの出力を形成し、M2Aのソース端子は接地に接続される。
第1インバータの入力は、当業者であれば理解するであろうように、ESD現象が起きた後にトリガ回路302を活性に保つ時間を制御するために、RC回路または代替のタイミング回路に結合されることが好ましい。RC回路は電圧供給ピンPWR1と接地の間にキャパシタC1と直列に接続した抵抗R1を含み、R1とC1の接合部は第1のインバータの入力にノードN0Aで接続される。本発明の好ましい実施形態において、RC回路の時定数τ(τ=R×C)は、約1マイクロ秒(μs)〜約100μsの範囲であるが、本発明は特定の時定数に制限されない。約2μsの時定数は、ESD回路を、RC持続時間約150ns(例えば1.5キロ(K)オームおよび100ピコファラッド(pF))の人体モデル(Human Body Model)ESD現象の時間を実質上超えて活性に保ち、さらに一般に数ミリ秒(ms)の典型的な電圧供給の立ち上がり時間(例えば電源上昇)よりも実質上短いという点で好ましい。抵抗およびキャパシタンスの値R1およびC1は、望ましい時定数(例えば2μs)を提供するように、例えば抵抗値が約400kオーム、キャパシタンス値約5pFなどをそれぞれ選択することができる。
トリガ回路302の第1部分310は、ノードN2Aで第2インバータの出力に結合した入力と、トランジスタMesd制御用制御電圧を発生するためのノードN3の出力を有する出力段304をさらに含む。詳細には、出力段304は、NMOSトランジスタM4AおよびPMOSトランジスタM5Aを含むCMOSインバータ全体として構成され、各トランジスタはドレイン端子と、ソース端子と、ゲート端子とを含むことが好ましい。M5Aのソース端子はPWR1に接続され、M4AとM5Aのドレイン端子はノードN3で互いに接続され、M4AとM5Aのゲート端子はノードN2Aで第2インバータの出力に接続され、M4Aのソース端子は接地に接続される。前に説明したように、PMOSトランジスタM5Aは、M5Aに付随する寄生ダイオードがESD現象中に順バイアスされ、Mesdのゲート電圧をクランプすることを防止するために、浮動N−ウェル中に形成される。したがって、トランジスタM5Aは、浮動ウェルを電圧供給ピンPWR1またはPWR2の電圧のいずれか高い方の電圧と実質上等しい電位にバイアスするために、バイアス発生器308に接続されたバルク(本体)端子(B)を含む四端子装置として示される。
同様に、トリガ回路302の第2部分312は複数のインバータを含むことが好ましい。第1のインバータはPMOSトランジスタM0BおよびNMOSトランジスタM1Bを含み、各トランジスタはソース端子、ドレイン端子、ゲート端子を有する。M0Bのソース端子はPWR2に接続され、M0BとM1Bのドレイン端子は互いに接続されて第1インバータの出力をノードN1Bに形成し、M0BとM1Bのゲート端子は互いに接続されて第1インバータの入力をノードN0Bに形成し、M1Bのソース端子は接地に接続される。第2インバータはPMOSトランジスタM2BとNMOSトランジスタM3Bを含む。M2Bのソース端子はPWR2に接続され、M2BとM3Bのドレイン端子は互いに接続されて第2インバータの出力をノードN2Bに形成し、M2BとM3Bのゲート端子はノードN1Bで第1インバータの出力に接続され、M3Bのソース端子は接地に接続される。
トリガ回路302の第2部分312は、ノードN2Bで第2インバータの出力に結合した入力と、トランジスタMesdに提供される制御電圧を発生するための出力をノードN3に有する出力段306をさらに含む。詳細には、出力段304と同様に出力段306は、NMOSトランジスタM5BおよびPMOSトランジスタM4Bを含むCMOSインバータ全体として構成され、各トランジスタはドレイン端子と、ソース端子と、ゲート端子とを含むことが好ましい。M4Bのソース端子はPWR2に接続され、M4BとM5Aのドレイン端子はノードN3で互いに接続され、M4BとM5Bのゲート端子はノードN2Bで第2インバータの出力に接続され、M5Bのソース端子は接地に接続される。上で説明した出力段304と同じように、PMOSトランジスタM4Bは、M4Bに付随する寄生ダイオードが順バイアスされ、Mesdのゲート電圧がESD現象中に望ましくないクランプが起きることを防止するために、浮動N−ウェル中に形成される。したがって、トランジスタM4Bは、浮動ウェルを電圧供給ピンPWR1またはPWR2の電圧のいずれか高い方の電圧と実質上等しい電位にバイアスするために、バイアス発生器308に接続されたバルク(本体)端子(B)を含む四端子装置として示される。
トリガ回路302の第1部分および第2部分310、312は3個のインバータを含むように示しているが、トリガ回路は示したトリガの特定の数に限定されないことを認識すべきである。むしろ、使用されるインバータはトリガ回路302による遅延を最適化するように選択することができる。この手法の目的は、そこに付随する顕著に大きなゲート・キャパシタンスを有する大きなトランジスタMesdを、最小サイズのインバータで駆動することである。当業者であれば理解するであろうように、考え方は、トリガ回路中の各後続インバータのサイズを前のインバータの約2.7倍に増加することである。各インバータによる伝播遅延は約2.7τで一定であることが理想的であり、ここで、τは他の最小サイズのインバータの等しい負荷での最小サイズのインバータの遅延である。
トリガ回路302の第1部分および第2部分310、312の各々は、対応する電圧供給ピンPWR1、PWR2と接地の間に接続されたダイオードD1、およびD2をそれぞれ含むことが好ましい。詳細には、ダイオードD1およびD2のアノードは接地に接続され、D1のカソードはPWR1に接続され、D2のカソードはPWR2に接続される。電圧供給ピンPWR1、PWR2の所定の1個が、対応する供給ピンで電圧をクランプすることによって接地に対して電圧歪みを受けるとき、ダイオードはESDの保護を提供する。当業者であれば理解するであろうように、電圧供給ピンがクランプされる電圧は、少なくとも部分的にダイオードの逆絶縁破壊電圧に基づくことができる。ダイオードD1およびD2は独立の接合部(例えばP−ウェルへのN+)ダイオードを含むことが好ましい。
PMOSトランジスタM5AとM4Bが形成される浮動ウェルをバイアスするためのバイアス発生器308は、1対のPMOSトランジスタ314と316を含むことが好ましい。トランジスタ314と316はPMOSトランジスタM5AおよびM4Bと同じ浮動Nウェル中に形成されることが好ましい。トランジスタ314のソース端子は、直列抵抗R3を経由して電圧供給ピンPWR1に接続される。同様に、トランジスタ316のソース端子は直列抵抗R4を経由して電圧供給ピンPWR2に接続される。抵抗R3およびR4は低抵抗(例えば約100オーム)であり、対応するトランジスタ314および316を通る放電電流を制限するための電流制限抵抗として少なくとも部分的に機能することが好ましい。トランジスタ314のゲート端子はトランジスタ316のソース端子に接続され、トランジスタ316のゲート端子はトランジスタ314のソース端子に交差結合の構成で接続される。トランジスタ314および316のドレイン端子はノードN4で互いに接続されてバイアス発生器308の出力を形成する。トランジスタ314および316のバルク端子は、トランジスタM5AおよびM4Bのバルク端子のようにノードN4に接続される。トランジスタ314および316の各々は、例えば、幅約10μm、長さ約160nm(標準的な130nmプロセスで)などの小さなサイズであることが好ましいが、本発明はトランジスタ314および316のサイズについていかなる制限も受けない。バイアス発生器308はESD保護回路300中に含まれる必要はなく、外部的に供給できることを認識すべきである。
ここで図4および図5を参照して、ESD保護回路300の動作をさらに詳細に説明する。一般論から外れない、例えばESD現象のない通常の動作中に、抵抗R1およびR2は、それぞれノードN0AおよびN0Bを対応する電圧供給PWR1およびPWR2へ引っ張り、それによってNMOSトランジスタM0AおよびM1Bを起動し、PMOSトランジスタM1AおよびM0Bを停止する。起動しているトランジスタM0AおよびM1BはそれぞれのノードN1AおよびN1Bを低いロジック状態(例えば接地)にする。低いロジック状態のノードN1AおよびN1BはPMOSトランジスタM3AおよびM2Bを起動し、NMOSトランジスタM2AおよびM3Bを停止する。起動しているトランジスタM3AおよびM2BはそれぞれのノードN2AおよびN2Bを高いロジック状態(例えばそれぞれPWR1およびPWR2)にする。高いロジック状態のノードN2AおよびN2BはNMOSトランジスタM4AおよびM5Bを起動し、PMOSトランジスタM5AおよびM4Bを停止する。起動しているトランジスタM4AおよびM5BはノードN3を低いロジック状態にし、それによって大きなNMOSトランジスタMesdを停止する。トランジスタMesdのゲート端子へ提供する制御電圧を発生することのできるトリガ回路302には本質的に2個の分離した部分310および312があるので、PWR1およびPWR2に印加される電圧のいずれかを停止することができ、Mesdは停止状態に保たれることを理解すべきである。さらに、電圧供給ピンPWR1およびPWR2のそれぞれの電圧は同じである必要はない。実際に、回路の通常動作中に、電圧供給ピンの1個(例えばPWR1)は、約3.3ボルトとすることのできる入力/出力(IO)電源に結合することが好ましく、他の電圧供給ピン(例えばPWR2)は約1.2ボルトのコア回路電源に結合することが好ましい。
図4は図3に示したESD保護回路300を、対応する電圧供給ピンPWR1およびPWR2に印加した電位をゼロから立ち上げたときの例示的シミュレーションを示すグラフである。シミュレーションは2つの電圧供給PWR1とPWR2について異なる電源立ち上がり速度を仮定しているが、本発明の技術は本質的に任意の立ち上がり速度の組み合わせに同じように適用可能である。グラフ402は3.3ボルトIO電源であると仮定したPWR1での電圧を表し、グラフ404は1.2ボルトコア電源であると仮定したPWR2での電圧を表し、グラフ406はESD保護回路における電流損失を表す。
例示的シミュレーションに示したように、両方の電源が停止(例えば時間0で)のとき、ESD回路300中の電流は本質的にゼロであり、PWR1での電圧がトリガ回路302の第1部分310におけるトランジスタの閾値電圧レベル(例えば約0.35ボルト)を超えて上昇するまでゼロに留まる。PWR1が閾値電圧レベルに達した後、回路300は起動し電流の引き出しを開始する。通常の動作下で回路300によって消費される、この場合約3.3マイクロアンペア(μA)である最大の正の電流は概略時間t1(例えば約0.5ms)のときであり、この点でPWR1は3.3ボルトまで完全に立ち上がりPWR2はゼロ・ボルトである。
時間t2(例えば約2ms)で、PWR2のボルトは立ち上がり始める。PWR2の電圧が立ち上がり、PWR2がトリガ回路302の第2部分312中のトランジスタの閾値電圧レベル(例えば0.35ボルト)を超えて上昇すると、回路300中の電流はその静止動作値約0.2μAまで降下する。PWR2は概略時間約t3(例えば約6ms)でそのコア電圧レベル約1.2ボルトまで完全に立ち上がり、シミュレーションの間そこに留まる。約時間t4(例えば約8ms)で、PWR1の電圧は再び降下を開始する。PWR1の電圧がトリガ回路302の第1部分310中のトランジスタの閾値電圧レベル以下に降下すると、回路中の電流は最大負電流まで降下し、PWR1がゼロでありPWR2が1.2ボルトであるとき、約−1.25μAである。
ESD現象の間、電圧供給ピンPWR1、PWR2の1個に他に対して電圧歪みをかけることができる。同様に、電圧供給ピンPWR1、PWR2の1個または両方は接地GNDに対して電圧歪みをかけることができる。例示のみとして、電圧供給ピンPWR1、PWR2が接地電位(例えばゼロ・ボルト)であると仮定する。PWR1がPWR2に対して電圧歪みを受けると、トリガ回路302の第1部分310はノードN3にトランジスタMesdを活性化するための制御電圧を提供する。詳細には、電圧供給ピンPWR1上の電位が接地を超えて電圧歪みを受ける(例えば、2キロボルト(kV)人体モデル(HBM))とき、キャパシタC1は少なくとも最初はノードN0Aを接地に保つ。PWR1が接地を超えて概略閾値電圧に上昇すると、トランジスタM1Aは起動するであろう。起動しているトランジスタM1AはノードN1Aを高いロジック状態にし、それによってトランジスタM2Aを起動し、トランジスタM3Aを停止する。起動しているトランジスタM2AはノードN2Aを低くし、それによってトランジスタM5Aを起動し、トランジスタM4Aを停止する。起動しているトランジスタM5AはノードN3を引っ張り、したがってトランジスタMesdのゲート端子を高くし、それによってMesdを起動し、PWR1の電圧を望ましい値までクランプする。前述のように、PMOSトランジスタM5Aはより高い電位(この場合PWR1)にバイアスされた浮動ウェル中に形成されるので、NウェルとP基板間の寄生ダイオードは順バイアスされず、したがってMesdのゲート端子の電圧をクランプしない。
同様に、PWR2がPWR1に対して電圧歪みを受けるとき、電圧供給ピンPWR2が接地電位にあると仮定すれば、トリガ回路302の第2部分312はノードN3にトランジスタMesdを活性化するための制御電圧を提供するであろう。詳細には、電圧供給ピンPWR2の電位が接地を超えて電圧歪みを受けるとき(例えば2kV HBM)、キャパシタC2は少なくとも最初にノードN0Bを接地電位に保つであろう。PWR2が接地を超えて概略閾値電圧まで上昇すると、トランジスタM0Bは起動する。起動しているトランジスタM0BはノードN1Bを高いロジック状態にし、それによってトランジスタM3Bを起動し、トランジスタM2Bを停止する。起動しているトランジスタM3BはノードN2Bを低くし、それによってトランジスタM4Bを起動し、トランジスタM5Bを停止する。起動しているトランジスタM4BはノードN3を引っ張り、したがってトランジスタMesdのゲート端子を高くし、それによってMesdを起動しPWR1の電圧をクランプする。再び、PMOSトランジスタM5Aはより高い電位(この場合PWR2)にバイアスされた浮動ウェル中に形成されるので、NウェルとP基板間の寄生ダイオードは順バイアスされず、したがってMesdのゲート端子の電圧の望ましくないクランプが起きない。
PWR1および/またはPWR2が他方に対してではなく接地GNDに対して電圧歪みを受けるとき、ダイオードD1および/またはD2はそれぞれ望ましい電位にそれぞれの電圧をクランプするであろう。したがって、当業者であれば理解するであろうように、ダイオードD1およびD2は予想されるESD電流を取り扱うのに十分なサイズにすべきである。
図5は、電圧供給ピンPWR1に2kV HBM ESDの電圧歪みを加えたときの、図3に示したESD保護回路300の例示的シミュレーションを示すグラフである。グラフ502はPWR1での電圧を表し、グラフ504はPWR1に流入する電流を表す。図から明らかなように、ESD保護回路300は回路への電流を最大約1.3アンペアに制限しながら、PWR1の電圧を最大約2.4ボルトまで首尾よくクランプする。例示的ESD保護回路中のトリガ回路302は設計上対称的であるので、ESD電圧歪みが電圧供給ピンPWR2に加えられるとき、類似の結果が得られるであろう。
本発明のESD保護回路の少なくとも一部は集積回路中で実施することができる。集積回路の形成において、典型的には、複数の同一のダイが半導体ウェーハの表面に繰り返しパターンで作られる。各ダイは本明細書に述べた装置を含み、他の構造または回路を含むことができる。ウェーハから個々のダイが切断またはダイシングされ、次いで集積回路として実装される。当業者であれば、集積回路を製造するためにどのようにしてウェーハをダイシングし、ダイを実装するかを熟知しているであろう。そのようにして製造された集積回路は本発明の一部であると考えられる。
本明細書において、本発明の例示的実施形態を付属の図面を参照しながら説明したが、本発明はこれらの正確な実施形態に制限されず、当業者であれば、付属の請求項の範囲から逸脱することなく、様々な他の変更および修正が可能であることを理解するはずである。
ESD現象から回路を保護するための従来のESD保護回路を示す概要図である。 ESD現象から回路を保護するための従来のESD保護回路を示す概要図である。 本発明の技術を組み込むために修正を加えることのできる、ESD現象から回路を保護するための例示的ESD保護回路を示す概要図である。 本発明によって形成された例示的ESD保護回路を示す概要図である。 本発明による図3に示したESD保護回路の通常動作中の例示的電気特性を示すグラフである。 本発明による図3に示したESD保護回路のESD現象中の例示的電気特性を示すグラフである。

Claims (9)

  1. 回路に付随する、第1電圧供給ノードと第2電圧供給ノードの間に起きるESD現象から回路を保護するための静電気放電(ESD)保護回路であって、第1および第2電圧供給ノードは互いに電気的に絶縁され、ESD保護回路が、
    ゲート端子と、第1ソース/ドレイン端子と、第2ソース/ドレイン端子とを含む金属酸化物半導体(MOS)装置において、第1ソース/ドレイン端子が第1電圧供給ノードに接続され、第2ソース/ドレイン端子が第2電圧供給ノードに接続されるMOS装置と、
    前記MOS装置のゲート端子に結合したトリガ回路であり、前記トリガ回路が、ESD現象の少なくとも一部中に前記MOS装置を活性化するため、前記MOS装置のゲート端子に制御信号を発生するように構成され、前記トリガ回路の出力段内の少なくとも一つのMOS装置が浮動ウェル中に形成され、前記第1電圧供給ノードに印加される第1電圧と前記第2電圧供給ノードに印加される第2電圧のうちの高い方の電圧と実質的に等しい電圧に前記浮動ウェルがバイアスされるトリガ回路と、
    前記第1電圧供給ノードに接続された第1入力と、前記第2電圧供給ノードに接続された第2入力と、トリガ回路と動作可能に結合された出力とを含むバイアス発生器を備え、
    前記バイアス発生器が前記浮動ウェルをバイアスするための電圧を発生するように動作可能であることを特徴とするESD保護回路。
  2. 前記トリガ回路の出力段が制御信号を発生することを特徴とする請求項1に記載のESD保護回路。
  3. 前記バイアス発生器が、第1のPMOSトランジスタおよび第2のPMOSトランジスタを含み、前記第1及び第2PMOSトランジスタの各々が、ソース端子と、ドレイン端子と、ゲート端子と、バルク端子とを有し、前記第1PMOSトランジスタのソース端子が第1電圧供給ノードに接続され、前記第2PMOSトランジスタのソース端子が第2電圧供給ノードに接続され、前記第1PMOSトランジスタのゲート端子が第2PMOSトランジスタのソース端子に接続され、前記第2PMOSトランジスタのゲート端子が第1PMOSトランジスタのソース端子に接続され、前記第1及び第2PMOSトランジスタのバルクおよびドレイン端子が前記浮動ウェルをバイアスするための電圧を発生するために互いに接続されることを特徴とする請求項1に記載のESD保護回路。
  4. 前記第1及び第2PMOSトランジスタが前記浮動ウェル中に形成されることを特徴とする請求項3に記載のESD保護回路。
  5. 前記トリガ回路が、
    第1のタイミング回路に結合された入力を有し、出力を有する少なくとも第1のインバータと、
    少なくとも第1インバータの出力に結合された入力を有し、制御電圧を発生するための出力を有する、前記浮動ウェル中に形成されたPMOSトランジスタを含む第1出力段と、
    第2タイミング回路に結合された入力を有し、出力を有する少なくとも第2インバータと、
    少なくとも第2インバータの出力に結合された入力を有し、制御電圧を発生するための出力を有する、前記浮動ウェル中に形成されたPMOSトランジスタを含む第2出力段とを含み、
    前記少なくとも第1インバータおよび第1出力段が前記第1電圧供給ノードと基準ソース間に結合され、少なくとも第2インバータおよび第2出力段が前記第2電圧供給ノードと基準ソース間に結合されることを特徴とする請求項1に記載のESD保護回路。
  6. 前記トリガ回路が、
    前記第1電圧供給ノードと基準ソースとの間に結合された第1の部分と、
    前記第2電圧供給ノード前記基準ソースとの間に結合された第2の部分とを備え、
    前記第1及び第2の部分は、前記共通基準ソースに関して対称的に構成され、それによって、第1及び第2電圧供給ノードに電圧歪みを与えている正極性および負極性のESDの少なくとも一方を放電可能であることを特徴とする請求項1に記載のESD保護回路。
  7. 前記トリガ回路が、
    前記第1電圧供給ノードと基準ソース間に結合された第1部分と、前記第2電圧供給ノードと基準ソースとの間に結合された第2部分とを含み、前記第1および第2部分の少なくとも所定の1個が、
    入力と出力とを有する少なくとも第1インバータと、
    前記第1インバータの出力に結合された入力を有し、制御電圧を発生するための出力を有する、浮動ウェル中に形成されたPMOSトランジスタを含む出力段と、
    ESD現象発生の後、ESD保護回路が活性である時間量を選択的に制御するための第1インバータの入力に結合されたタイミング回路とを含むことを特徴とする請求項1に記載のESD保護回路。
  8. 前記トリガ回路が、
    前記第1電圧供給ノードに接続されたカソードと、基準ソースに接続されたアノードとを有する第1ダイオードと、
    前記第2電圧供給ノードに接続されたカソードと基準ソースに接続されたアノードとを有する第2ダイオードとをさらに含むことを特徴とする請求項1に記載のESD保護回路。
  9. 回路に付随する、第1電圧供給ノードと第2電圧供給ノードとの間に起きるESD現象から回路を保護するための少なくとも1つの静電気放電(ESD)保護回路を含む集積回路であって、第1および第2電圧供給ノードは互いに電気的に絶縁され、少なくとも1個の前記ESD保護回路が、
    ゲート端子と、第1ソース/ドレイン端子と、第2ソース/ドレイン端子とを含む金属酸化物半導体(MOS)装置において、第1ソース/ドレイン端子が第1電圧供給ノードに接続され、第2ソース/ドレイン端子が第2電圧供給ノードに接続されるMOS装置と、
    前記MOS装置のゲート端子に結合したトリガ回路であり、前記トリガ回路は、ESD現象の少なくとも一部中に前記MOS装置を活性化するため、前記MOS装置のゲート端子に制御信号を発生するように構成され、前記トリガ回路の出力段内の少なくとも一つのMOS装置が浮動ウェル中に形成され、前記第1電圧が第1電圧供給ノードに印加されるときの第1電圧、および前記第2電圧が第2電圧供給ノードに印加されるときの第2電圧のうちの高い方の電圧と実質的に等しい電圧に前記浮動ウェルがバイアスされるトリガ回路と、
    前記第1電圧供給ノードに接続された第1入力と、前記第2電圧供給ノードに接続された第2入力と、トリガ回路と動作可能に結合された出力とを含むバイアス発生器を備え、
    前記バイアス発生器が前記浮動ウェルをバイアスするための電圧を発生するように動作可能であることを特徴とする集積回路。
JP2005313643A 2004-10-29 2005-10-28 半導体装置の静電気放電保護 Expired - Fee Related JP5188017B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/977881 2004-10-29
US10/977,881 US7495873B2 (en) 2004-10-29 2004-10-29 Electrostatic discharge protection in a semiconductor device

Publications (2)

Publication Number Publication Date
JP2006128696A JP2006128696A (ja) 2006-05-18
JP5188017B2 true JP5188017B2 (ja) 2013-04-24

Family

ID=36261532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313643A Expired - Fee Related JP5188017B2 (ja) 2004-10-29 2005-10-28 半導体装置の静電気放電保護

Country Status (3)

Country Link
US (1) US7495873B2 (ja)
JP (1) JP5188017B2 (ja)
KR (1) KR101148347B1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064175B2 (en) 2005-09-15 2011-11-22 Rambus Inc. Power supply shunt
EP2194578A1 (en) * 2008-12-04 2010-06-09 Imec Bidirectional ESD power clamp
US8724270B2 (en) * 2009-09-01 2014-05-13 S. P. M. Company Circuit for detecting static electricity
US8400743B2 (en) * 2010-06-30 2013-03-19 Advanced Micro Devices, Inc. Electrostatic discharge circuit
US8427799B2 (en) * 2011-02-04 2013-04-23 Intersil Americas Inc. ESD clamp for multi-bonded pins
DE102011075626A1 (de) * 2011-05-11 2012-11-15 Zf Friedrichshafen Ag Vorrichtung zur Spannungsversorgung und Verfahren zum Abschalten einer Spannungsversorgung
KR101926607B1 (ko) 2012-09-28 2018-12-07 삼성전자 주식회사 클램핑 회로, 이를 포함하는 반도체 장치 및 반도체 장치의 클램핑 방법
TWI501498B (zh) * 2013-10-04 2015-09-21 Silicon Motion Inc 靜電放電保護電路及其靜電保護方法
US9705315B2 (en) * 2015-04-14 2017-07-11 Elite Semiconductor Memory Technology Inc. Protection circuit for preventing an over-current from an output stage
CN107346769B (zh) 2016-05-04 2020-03-10 扬智科技股份有限公司 静电放电保护装置
CN106611762B (zh) * 2017-01-11 2019-06-18 京东方科技集团股份有限公司 静电保护电路、方法和显示装置
US10170460B2 (en) 2017-02-28 2019-01-01 International Business Machines Corporation Voltage balanced stacked clamp
US10931103B2 (en) * 2017-09-28 2021-02-23 Taiwan Semiconductor Manufacturing Co., Ltd. Single-gate-oxide power inverter and electrostatic discharge protection circuit
US11196250B2 (en) * 2017-10-20 2021-12-07 Texas Instruments Incorporated Bidirectional precision surge clamp with near-zero dynamic resistance and ultra-low leakage current
US11031779B2 (en) * 2019-06-14 2021-06-08 Ememory Technology Inc. Memory system with a random bit block

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656493A (en) * 1982-05-10 1987-04-07 General Electric Company Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
EP0435047A3 (en) * 1989-12-19 1992-07-15 National Semiconductor Corporation Electrostatic discharge protection for integrated circuits
US5594381A (en) * 1994-04-29 1997-01-14 Maxim Integrated Products Reverse current prevention method and apparatus and reverse current guarded low dropout circuits
US5610791A (en) * 1994-09-26 1997-03-11 International Business Machines Corporation Power sequence independent electrostatic discharge protection circuits
US5559659A (en) * 1995-03-23 1996-09-24 Lucent Technologies Inc. Enhanced RC coupled electrostatic discharge protection
US5767733A (en) * 1996-09-20 1998-06-16 Integrated Device Technology, Inc. Biasing circuit for reducing body effect in a bi-directional field effect transistor
US5969541A (en) * 1997-05-19 1999-10-19 Stmicroelectronics, Inc. Current inhibiting I/O buffer having a 5 volt tolerant input and method of inhibiting current
US5929667A (en) * 1997-06-10 1999-07-27 International Business Machines Corporation Method and apparatus for protecting circuits subjected to high voltage
US6404270B1 (en) * 2000-11-28 2002-06-11 Cypress Semiconductor Corp. Switched well technique for biasing cross-coupled switches or drivers
US6947267B2 (en) * 2001-01-03 2005-09-20 Macronix International Co., Ltd. RC controlled ESD circuits for mixed-voltage interface
JP2002231886A (ja) * 2001-01-31 2002-08-16 Matsushita Electric Ind Co Ltd Esd保護回路および半導体集積回路装置
JP2002270774A (ja) * 2001-03-12 2002-09-20 Hitachi Ltd 半導体装置
US6757147B1 (en) * 2002-05-03 2004-06-29 Pericom Semiconductor Corp. Pin-to-pin ESD-protection structure having cross-pin activation
US6927957B1 (en) * 2002-07-18 2005-08-09 Newport Fab, Llc Electrostatic discharge clamp
JP2004087765A (ja) * 2002-08-27 2004-03-18 Fujitsu Ltd 静電気放電保護回路
US6965263B2 (en) * 2002-10-10 2005-11-15 Micron Technology, Inc. Bulk node biasing method and apparatus
US7187530B2 (en) * 2002-12-27 2007-03-06 T-Ram Semiconductor, Inc. Electrostatic discharge protection circuit
US7023260B2 (en) * 2003-06-30 2006-04-04 Matrix Semiconductor, Inc. Charge pump circuit incorporating corresponding parallel charge pump stages and method therefor
TWI266406B (en) * 2003-10-14 2006-11-11 Realtek Semiconductor Corp Electrostatic discharge protection circuit for a voltage source
JP2006019629A (ja) * 2004-07-05 2006-01-19 Ricoh Co Ltd 電源保護回路及びそれを備えた半導体装置

Also Published As

Publication number Publication date
US7495873B2 (en) 2009-02-24
JP2006128696A (ja) 2006-05-18
US20060092589A1 (en) 2006-05-04
KR20060049381A (ko) 2006-05-18
KR101148347B1 (ko) 2012-05-25

Similar Documents

Publication Publication Date Title
JP5188017B2 (ja) 半導体装置の静電気放電保護
US8089739B2 (en) Electrostatic discharge protection circuit
TWI423393B (zh) 半導體積體電路
US7274546B2 (en) Apparatus and method for improved triggering and leakage current control of ESD clamping devices
JP6503395B2 (ja) 静電放電回路
US7196890B2 (en) Electrostatic discharge protection power rail clamp with feedback-enhanced triggering and conditioning circuitry
US20030076636A1 (en) On-chip ESD protection circuit with a substrate-triggered SCR device
US6965503B2 (en) Electro-static discharge protection circuit
US5852541A (en) Early trigger of ESD protection device by an oscillation circuit
US7889469B2 (en) Electrostatic discharge protection circuit for protecting semiconductor device
JP2004228138A (ja) 静電気放電保護回路装置
JPH02140979A (ja) 改良型esd低抵抗入力構成体
US5982601A (en) Direct transient-triggered SCR for ESD protection
US6304127B1 (en) Negative-voltage-trigger SCR with a stack-gate ESD transient switch
US20060268477A1 (en) Apparatus for ESD protection
US6529035B2 (en) Arrangement for improving the ESD protection in a CMOS buffer
Ker et al. ESD protection design with on-chip ESD bus and high-voltage-tolerant ESD clamp circuit for mixed-voltage I/O buffers
US6043967A (en) Early trigger of ESD protection device by a voltage pump circuit
JPH1050932A (ja) 半導体装置
JP4102277B2 (ja) 半導体集積回路装置
US8154834B2 (en) Protection circuit with overdrive technique
JP7089463B2 (ja) 半導体装置及び半導体装置システム
JP5710706B2 (ja) 静電気放電保護回路
KR100937652B1 (ko) 반도체 장치의 정전기방전 보호회로
KR100701703B1 (ko) 정전기 방전 보호 회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120405

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121031

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350