JP2011255406A - 鉛フリー型コンポジット組成物 - Google Patents

鉛フリー型コンポジット組成物 Download PDF

Info

Publication number
JP2011255406A
JP2011255406A JP2010132855A JP2010132855A JP2011255406A JP 2011255406 A JP2011255406 A JP 2011255406A JP 2010132855 A JP2010132855 A JP 2010132855A JP 2010132855 A JP2010132855 A JP 2010132855A JP 2011255406 A JP2011255406 A JP 2011255406A
Authority
JP
Japan
Prior art keywords
alloy
lead
melting point
composite composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010132855A
Other languages
English (en)
Inventor
Yoshinao Kato
義尚 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiko Co Ltd
Original Assignee
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiko Co Ltd filed Critical Meiko Co Ltd
Priority to JP2010132855A priority Critical patent/JP2011255406A/ja
Priority to PCT/JP2011/063124 priority patent/WO2011155521A1/ja
Publication of JP2011255406A publication Critical patent/JP2011255406A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

【課題】金属とポリマとからなり、Sn−Pb系の共晶はんだに比べて融点が低い鉛フリー型コンポジット組成物を提供する。
【解決手段】本発明の鉛フリー型コンポジット組成物1は、ポリノルマルブチルアクリレート2中にSn-In-Bi合金の微粒子3を均一に分散させたもので、Sn-In-Bi合金は57.50重量%のBi、25.20重量%のIn及び17.30重量%のSnを含む。
【選択図】図1

Description

本発明は、鉛以外の金属とポリマとのコンポジット組成物に関し、より詳しくは、Sn−Pb系の共晶はんだよりも融点の低い鉛フリー型コンポジット組成物に関する。
プリント配線基板への電子部品の接合には、従来、Sn−Pb系の共晶はんだ、いわゆる含鉛はんだが一般的に用いられていたが、電子部品が実装されたプリント配線基板を含む電気・電子機器を廃棄処理した際、前記接合に使用されたはんだに含まれる鉛は自然環境に対して悪影響を与える問題があった。このため、鉛を含まない鉛フリーはんだの開発が望まれていた。
このような鉛フリーはんだとしては、例えば、特許文献1に示すようなSn−Ag−Cu系の鉛フリーはんだが開発され、多く使われるようになってきた。
特開2001−321982号公報
ところで、Sn−Ag−Cu系はんだは、Sn−Pb系の共晶はんだに比べて融点が高いので、接合時の加熱温度をSn−Pb系の共晶はんだを使用するときよりも高く設定する必要がある。このように接合温度が高くなると、熱の影響で電子部品が劣化する危険性がある。
また、電気・電子機器の製造設備においても、共晶はんだ対応型の従来のはんだ付け装置よりも高温加熱が可能である高温対応型のはんだ付け装置が必要になるが、このような高温対応型のはんだ付け装置は、高い耐熱性を要求するために装置自体のコストが高く、更に、加熱のためのエネルギもまた従来のはんだ付け装置よりも多く必要となり、そのランニングコストも嵩むといった問題がある。
以上のような不具合を避けるためには、接合温度をなるべく低くすることが好ましく、そのためには、低融点の新規な接合材の開発が必要である。ここで、従来のはんだ付け装置の使用を前提とすれば、新規な接合材の融点は、Sn−Pb系の共晶はんだの融点程度であってもよいが、地球環境負荷の低減や省エネルギの観点からは、より低い融点の新規な接合材の開発が望まれる。
本発明は、上記の事情に基づいてなされたもので、その目的とするところは、鉛以外の金属とポリマとからなり、Sn−Pb系の共晶はんだに比べて融点が低い鉛フリー型コンポジット組成物を提供することにある。
上記目的を達成するために、本発明の鉛フリー型コンポジット組成物は、アクリレート系ポリマに一様に分散されたSn-In系合金の微粒子を含むことを特徴とする(請求項1)。
この構成によれば、Sn−Pb系の共晶はんだに比べて融点が低い接合材を得ることができる。
好ましくは、前記微粒子は、粒径が10〜100nmである構成とする(請求項2)。
具体的には、前記Sn-In系合金は、Sn-In-Bi合金であり、前記アクリレート系ポリマは、ポリノルマルブチルアクリレートである構成とする(請求項3)。
より具体的には、前記Sn-In-Bi合金は、57.50重量%のBi、25.20重量%のIn及び17.30重量%のSnからなる構成とする(請求項4)。
本発明に係るコンポジット組成物は、従来使用されていたSn−Pb系の共晶はんだの融点よりも更に低い融点を有しているので、新規な接合材料として採用することができる。
本発明のコンポジット組成物を接合材として使用した場合、接合温度を従来よりも十分低く設定できるので、電子部品の熱劣化は十分に抑えられ、電気・電子機器の品質の向上に寄与する。また、製造設備を高温対応型に変更する必要がなく、製造設備のコストを低く抑えることができるので、全体として電気・電子機器の製造コスト削減にも寄与する。また、加熱温度は低くてすむので、使用エネルギの削減を図ることができ、省エネルギ及び地球環境負荷の低減を実現することができる。しかも、鉛を含んでいないので、自然環境へ悪影響を与えない。
実施の形態に係るコンポジット組成物の構成を拡大して示した概略構成図である。 示差走査型熱量測定の結果を示すグラフである。 X線回折測定の結果を示すグラフである。
以下、本発明の実施の形態を詳しく説明する。
本発明者らは、アクリレート系ポリマ中に低融点合金の微粒子を分散させることにより、低融点合金の融点を更に低下させることができるとの知見を得、この知見に基づき本発明はなされたものである。
図1に示したように、本発明に係る鉛フリー型コンポジット組成物1は、アクリレート系ポリマ2中に鉛フリーのSn−In系の低融点合金(以下、Sn−In系合金という)の微細粒子3を均一に分散させた形態をとる。
一般に低融点合金とは、Snの融点(230℃)程度より低い融点を持つ合金を指し、主に、多元系共晶組成の合金である。
本発明に用いるSn−In系合金としては、例えば、Sn−Inの2元系共晶合金、Sn-In-Biの3元系共晶合金などが挙げられる。具体的には、2元系共晶合金として52重量%のSn、48重量%のInからなる共晶組成のSn−In合金、あるいは、3元系共晶合金として57.50重量%のBi、25.20重量%のIn及び17.30重量%のSnからなる共晶組成のSn-In-Bi合金が使用可能である。ここで、Sn−In合金の融点は119℃であり、Bi-In-Sn合金の融点は80℃である。
一方、アクリレート系ポリマは、主鎖にアクリル酸エステルを持つ高分子であり、金属との結合性に優れている。
本発明に適したアクリレート系ポリマとしては、ポリメチルアクリレート(以下、PMAという)、ポリエチルアクリレート(以下、PEAという)、ポリノルマルブチルアクリレート(以下、PnBAという)等が挙げられる。ここで、PMAは、その重量平均分子量及びガラス転移温度がそれぞれ、3.10×10、−27℃である。PEAは、その重量平均分子量及びガラス転移温度がそれぞれ、9.50×10、−39℃である。そして、PnBAは、その重量平均分子量及びガラス転移温度がそれぞれ、9.90×10、−49℃である。
次に、本発明の鉛フリー型コンポジット組成物を製造する方法につき以下に説明する。
まず、Sn−In系合金及びアクリレート系ポリマを重量比で5:5となるように調量し、これらを加熱装置付きの容器に収容する。そして、Sn−In系合金とアクリレート系ポリマとを加熱してそれぞれ溶融状態とする。ここで、加熱温度は、Sn−In系合金の融点よりも20℃高い温度とすることが好ましい。この温度に保持して激しく攪拌することにより、上記したアクリレート系ポリマとSn−In系合金のコンポジットを得ることができる。
ここで、容器内にて溶融状態にあるアクリレート系ポリマ及びSn−In系合金を激しく攪拌するとき、ホモジナイザを用いて攪拌することが好ましい。これにより、溶融したSn−In系合金は微細化されてアクリレート系ポリマ中に均一に分散する。このとき、Sn−In系合金はナノメートルレベルの滴径に微細化されるのが好ましい。このようにSn−In系合金がナノメートルレベルの滴径を有していれば、Sn−In系合金はアクリレート系ポリマ中にては均質な分散状態を保つことができる。このようにして得られたSn−In系合金及びアクリレート系ポリマの攪拌混合物は、この後、冷却工程を経て本発明の鉛フリー型コンポジット組成物になる。
ここで、溶融状態にあるSn−In系合金は温度が低下するに従い、同じく溶融状態にあるアクリレート系ポリマ中にてその結晶化が進行するが、Sn−In系合金とアクリレート系ポリマとの界面では、その相互作用により結晶化が抑制されて合金内部より結晶化速度がより遅くなって金属の結晶成長がし難くなり、粒径が数10nm程度の微細粒子が形成される。この結果、アクリレート系ポリマ中には、数10nm程度の粒径を有する微細粒子が凝集して形成された、粒径が100nm程度のSn−In系合金の微粒子が形成される。ここで、一般的に数10nm程度まで微細化された金属粒子は、バルク状態の金属よりも低い融点を示すことが知られていることから、Sn−In系合金の微細粒子が本発明の鉛フリー型コンポジット組成物の低融点化に大きく寄与しているものと考えられる。
(実施例1)
57.50重量%のBi、25.20重量%のIn及び17.30重量%のSnからなる共晶組成のSn-In-Bi合金10gとPnBA10gとを加熱装置付きの容器に収容し、これらを100℃に加熱して溶融させた。得られた溶融物を温度100℃に保持したまま、ホモジナイザにより回転速度3000rpmの条件下で5分間攪拌し、溶融したPnBA中に微細なSn-In-Bi合金を均一に分散させた。その後、室温まで冷却し、鉛フリー型コンポジット組成物(以下、実施例コンポジットという)を得た。
実施例コンポジットに対し、示差走査型熱量測定(以下、DSC測定という)を行った。具体的には、DSC測定では、示差走査熱量計にセットされた実施例コンポジットに対し、温度範囲−50〜200℃にて昇温速度20℃/min、降温速度10℃/minで加熱冷却を行い、その際の実施例コンポジットの熱量を測定した。この結果を図2中、実施例コンポジットの昇温時DSC曲線をa、降温時DSC曲線をbで示した。
また、実施例コンポジットに対し、X線回折測定(以下、XRD測定という)を行った。具体的には、XRD測定では、X線回折装置を用い、以下の条件下にて測定が行われた。
X線源:CuKα線(λ=1.54Å)、管電圧:40kV、管電流:40mA、測定速度:2θ=2度/min、測定範囲:2θ=15〜40度である。
測定結果であるXRDプロファイルを図3に示す。ここで、室温(約25℃)まで冷却した実施例コンポジットのXRDプロファイルをg、−20℃まで冷却した実施例コンポジットのXRDプロファイルをhで示した。図3において、縦軸は、回折X線の強度であり、1秒間に検出器が取り込んだ回折X線数(cps)を示し、横軸は、回折角度(度)を示している。
(比較例1)
PnBAの代わりにポリメタクリル酸メチル(以下、PMMAという)を用い、そして、加熱温度180℃で加熱して溶融させたことを除き、実施例コンポジットと同様にしてコンポジット組成物(以下、比較例コンポジットという)を作製した。なお、PMMAの重量平均分子量は、12.0×10、そのガラス転移温度が−49℃である。
比較例コンポジットに対して実施例コンポジットと同様にDSC測定を行い、その結果、即ち、比較例コンポジットの昇温時DSC曲線c、降温時DSC曲線dを図2に併せて示す。
(参考例)
Sn-In-Bi合金単独の試料につきDSC測定とXRD測定を行い、その結果を図2、3中に、昇温時DSC曲線e、降温時DSC曲線f、XRDプロファイルiとして併せて示した。
図2、3からは以下のことが明らかである。
まず、図2に示すように、Sn-In-Bi合金単独の昇温時DSC曲線eからはその融解ピークが80℃付近に現れており、降温時DSC曲線fからはその結晶化ピークが70℃付近に現れていることがわかる。このことから、Sn-In-Bi合金単独の融点すなわち融解の起こり始める温度は80℃であることがわかる。
次に、比較例コンポジットの昇温時DSC曲線cからは融解ピークが80℃付近に現れていることがわかる。このことから、比較例コンポジットは、融点が80℃であることがわかり、Sn-In-Bi合金と同じ融点を有するものといえる。
これに対し、実施例コンポジットの昇温時DSC曲線aからは融解ピークが80℃に加えて70℃にも現れていることがわかる。このことから、実施例コンポジットの融解は70℃から起こり始めるため、融点は、70℃となり、Sn-In-Bi合金の融点よりも10℃ほど低いことがわかる。このことは、PnBAがSn-In-Bi合金の微粒子に対して何らかの作用を及ぼして融点の低い相を形成しているためであると考えられる。
一方、図3に示すように、Sn-In-Bi合金のXRDプロファイルiからは、明確な回折ピークを確認することができる。
これに対し、室温まで冷却した実施例コンポジットのXRDプロファイルgからは、Sn-In-Bi合金で見られた明確な回折ピークが消失し、金属の結晶化が進んでいないことが確認できる。一方、−20℃まで冷却した実施例コンポジットのXRDプロファイルhからは幅が広いながらも回折ピークが見られ、その結晶化が進んでいると考えられる。しかし、Sn-In-Bi合金の回折パターンで見られた回折ピークとは回折角度が異なることから、実施例コンポジットは、Sn-In-Bi合金とは異なった結晶構造を有し、この結晶構造が実施例コンポジットの低融点化に寄与していると考えられる。
1 鉛フリー型コンポジット組成物
2 アクリレート系ポリマ
3 Sn-In系合金

Claims (4)

  1. アクリレート系ポリマに一様に分散されたSn-In系合金の微粒子を含むことを特徴とする鉛フリー型コンポジット組成物。
  2. 前記微粒子は、粒径が10〜100nmであることを特徴とする請求項1に記載の鉛フリー型コンポジット組成物。
  3. 前記Sn-In系合金は、Sn-In-Bi合金であり、
    前記アクリレート系ポリマは、ポリノルマルブチルアクリレートである
    ことを特徴とする請求項1又は2に記載の鉛フリー型コンポジット組成物。
  4. 前記Sn-In-Bi合金は、
    57.50重量%のBi、25.20重量%のIn及び17.30重量%のSnからなる
    ことを特徴とする請求項3に記載の鉛フリー型コンポジット組成物。
JP2010132855A 2010-06-10 2010-06-10 鉛フリー型コンポジット組成物 Pending JP2011255406A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010132855A JP2011255406A (ja) 2010-06-10 2010-06-10 鉛フリー型コンポジット組成物
PCT/JP2011/063124 WO2011155521A1 (ja) 2010-06-10 2011-06-08 鉛フリー型コンポジット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132855A JP2011255406A (ja) 2010-06-10 2010-06-10 鉛フリー型コンポジット組成物

Publications (1)

Publication Number Publication Date
JP2011255406A true JP2011255406A (ja) 2011-12-22

Family

ID=45098125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132855A Pending JP2011255406A (ja) 2010-06-10 2010-06-10 鉛フリー型コンポジット組成物

Country Status (2)

Country Link
JP (1) JP2011255406A (ja)
WO (1) WO2011155521A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150085665A (ko) 2014-01-16 2015-07-24 한화테크윈 주식회사 영상 처리 장치 및 방법
CN108971793A (zh) * 2018-08-24 2018-12-11 云南科威液态金属谷研发有限公司 一种低温无铅焊料
CN110306079A (zh) * 2019-07-18 2019-10-08 云南科威液态金属谷研发有限公司 一种低熔点液态金属及其制备方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020062200A1 (zh) * 2018-09-30 2020-04-02 苏州优诺电子材料科技有限公司 一种高强度低温无铅焊料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769688B2 (ja) * 2003-02-05 2006-04-26 独立行政法人科学技術振興機構 端子間の接続方法及び半導体装置の実装方法
JP4363340B2 (ja) * 2004-03-12 2009-11-11 住友電気工業株式会社 導電性銀ペースト及びそれを用いた電磁波シールド部材
JP5090349B2 (ja) * 2006-08-04 2012-12-05 パナソニック株式会社 接合材料、接合部及び回路基板
JP2009278054A (ja) * 2008-05-19 2009-11-26 Sumitomo Bakelite Co Ltd 端子間の接続方法、導電性粒子の凝集方法及びそれを用いた半導体装置の製造方法
JP2010033911A (ja) * 2008-07-29 2010-02-12 Hiroshima Industrial Promotion Organization 導電性粒子及び導電材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150085665A (ko) 2014-01-16 2015-07-24 한화테크윈 주식회사 영상 처리 장치 및 방법
CN108971793A (zh) * 2018-08-24 2018-12-11 云南科威液态金属谷研发有限公司 一种低温无铅焊料
CN110306079A (zh) * 2019-07-18 2019-10-08 云南科威液态金属谷研发有限公司 一种低熔点液态金属及其制备方法与应用

Also Published As

Publication number Publication date
WO2011155521A1 (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
JP6842500B2 (ja) 無鉛ソルダーペースト及びその製造方法
Zhang et al. Development of Sn–Zn lead-free solders bearing alloying elements
US9844837B2 (en) Lead-free solder alloy
JP2016106033A (ja) はんだ継手
JP5486281B2 (ja) はんだペースト
JP2006255784A (ja) 無鉛ハンダ合金
JP2012081521A (ja) Sn、AgおよびCuからなるはんだ物質
JP2005319470A (ja) 鉛フリーはんだ材料、電子回路基板およびそれらの製造方法
JP6804126B1 (ja) 鉛フリーはんだ合金及びはんだ接合部
BR112013021668B1 (pt) Liga de solda para um dispositivo eletrônico, junta de solda e dispositivo de energia
JP2014193473A (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
WO2011155521A1 (ja) 鉛フリー型コンポジット
WO2009084155A1 (ja) 接合材料、電子部品および接合構造体
JP5973992B2 (ja) はんだ合金
JP5253794B2 (ja) 鉛フリー接合用材料およびその製造方法
Sharma et al. Microstructure, mechanical properties, and drop reliability of CeO2 reinforced Sn–9Zn composite for low temperature soldering
CN114340836A (zh) 焊料合金及包含所述合金的焊膏
JP6601600B1 (ja) ソルダペースト
JP2015105391A (ja) 鉛フリーはんだ合金粉の製造方法
JP2016026884A (ja) 中低温用のBi−Sn−Al系はんだ合金及びはんだペースト
KR20240013669A (ko) 땜납 합금, 땜납 볼, 땜납 페이스트 및 솔더 조인트
JP4703411B2 (ja) はんだ材料
Xiao et al. Significantly enhanced ductility of Sn–57Bi–1Ag alloy induced by microstructure modulation from in addition
Aspandiar et al. Low temperature lead‐free alloys and solder pastes
JP5646230B2 (ja) 鉛フリー接合材料およびその製造方法