WO2020062200A1 - 一种高强度低温无铅焊料及其制备方法 - Google Patents

一种高强度低温无铅焊料及其制备方法 Download PDF

Info

Publication number
WO2020062200A1
WO2020062200A1 PCT/CN2018/108931 CN2018108931W WO2020062200A1 WO 2020062200 A1 WO2020062200 A1 WO 2020062200A1 CN 2018108931 W CN2018108931 W CN 2018108931W WO 2020062200 A1 WO2020062200 A1 WO 2020062200A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
free solder
temperature lead
lead
strength
Prior art date
Application number
PCT/CN2018/108931
Other languages
English (en)
French (fr)
Inventor
陈钦
罗登俊
徐衡
陈旭
Original Assignee
苏州优诺电子材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州优诺电子材料科技有限公司 filed Critical 苏州优诺电子材料科技有限公司
Priority to PCT/CN2018/108931 priority Critical patent/WO2020062200A1/zh
Publication of WO2020062200A1 publication Critical patent/WO2020062200A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Definitions

  • the invention relates to the field of soldering, and particularly to a high-strength low-temperature lead-free solder.
  • the commonly used low-melting lead-free solders are based on Sn-In alloys with some alloying elements added.
  • the low-temperature solder has a relatively large melting range, and it is prone to dendrite segregation and coarsening of the structure during solidification, plus stress imbalance. Will cause the solder joint to peel off.
  • the object of the present invention is to provide a high-strength low-temperature lead-free solder, which has a low melting point, excellent mechanical properties, and good solderability.
  • Another object of the present invention is to provide a method for preparing the high-strength low-temperature lead-free solder.
  • the present invention adopts the following technical solutions:
  • the Sn-In series alloy powder in terms of mass percentage, includes the following components:
  • the balance is Sn and inevitable impurities.
  • a particle size of the nano titanium nitride is 20-50 nm.
  • the particle size of the zirconium borate is 80-100 nm.
  • a particle size of the Sn-In-based alloy fine powder is 1-5 ⁇ m.
  • the flux includes the following components in parts by weight: 10-20 parts of glutaric acid, 0.5-1.5 parts of triethylamine, 1-2 parts of span80, and 0.1-0.5 parts of salicylic acid, 20-30 parts of deionized water.
  • a method for preparing high-strength low-temperature lead-free solder includes the following steps:
  • step (1) the power of the ultrasonic treatment is 500W.
  • step (1) the ultrasonic treatment time is 1-3h.
  • the invention adopts nano titanium nitride and zirconium borate to modify the Sn-In series alloy powder, which can effectively improve the wettability of the alloy powder and the welded interface, and it can effectively refine the alloy particles, thereby effectively improving the solder Mechanical behavior.
  • the solder prepared by the invention has good electrical conductivity and thermal conductivity, and can effectively alleviate the problem of thermal fatigue and aging of the solder joint during use.
  • the Sn-In series alloy powder in terms of mass percentage, includes the following components:
  • the balance is Sn and unavoidable impurities
  • the flux includes the following components in parts by weight: 10 parts of glutaric acid, 0.5 parts of triethylamine, 1 part of span80, 0.1 parts of salicylic acid, and 20 parts of deionized water;
  • Its preparation method includes the following steps:
  • a flux, nano titanium nitride, and zirconium borate are mixed, and ultrasonically treated at a power of 500 W for 1 hour to obtain a dispersion liquid;
  • the Sn-In series alloy powder in terms of mass percentage, includes the following components:
  • the balance is Sn and unavoidable impurities
  • the flux includes the following components by weight: 20 parts of glutaric acid, 1.5 parts of triethylamine, 2 parts of span80, 0.5 parts of salicylic acid, and 30 parts of deionized water;
  • Its preparation method includes the following steps:
  • a flux, nano titanium nitride, and zirconium borate are mixed, and ultrasonically treated at 1000 W for 3 hours to obtain a dispersion liquid;
  • the Sn-In series alloy powder in terms of mass percentage, includes the following components:
  • the balance is Sn and unavoidable impurities
  • the flux includes the following components by weight: 12 parts of glutaric acid, 0.7 parts of triethylamine, 1.2 parts of span80, 0.2 parts of salicylic acid, and 22 parts of deionized water;
  • Its preparation method includes the following steps:
  • a flux, nano titanium nitride, and zirconium borate are mixed and ultrasonically treated at 600 W for 1.5 h to obtain a dispersion;
  • the Sn-In series alloy powder in terms of mass percentage, includes the following components:
  • the balance is Sn and unavoidable impurities
  • the flux includes the following components in parts by weight: 14 parts of glutaric acid, 0.9 parts of triethylamine, 1.4 parts of span80, 0.3 parts of salicylic acid, and 24 parts of deionized water;
  • Its preparation method includes the following steps:
  • a flux, nano titanium nitride, and zirconium borate are mixed and ultrasonically treated at a power of 700 W for 2 hours to obtain a dispersion liquid;
  • the Sn-In series alloy powder in terms of mass percentage, includes the following components:
  • the balance is Sn and unavoidable impurities
  • the flux includes the following components in parts by weight: 18 parts of glutaric acid, 1.3 parts of triethylamine, 1.8 parts of span80, 0.4 parts of salicylic acid, and 28 parts of deionized water;
  • Its preparation method includes the following steps:
  • a flux, nano titanium nitride, and zirconium borate are mixed and subjected to ultrasonic treatment at a power of 800 W for 2.5 hours to obtain a dispersion liquid;
  • the tensile strength of the solder prepared by the present invention is 91.5 MPa or more, the shear strength is 41.5 MPa, and the thermal conductivity of the solder joint is 150-160 W / (m ⁇ k).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

一种高强度低温无铅焊料,以重量份计,包括以下组分:纳米氮化钛0.1-0.4份,硼酸锆0.05-0.1份,Sn-In系合金微粉50-80份,助焊剂1-3份,其中Sn-In系合金微粉,以质量百分比计,包括以下组分:In 30.5-59.5%,Cu 0.1-0.5%,Ag 0.03-0.05%,Cr 0.001-0.002%,Co 0-0.001%,La 0.001-0.002%,Y 0.0005-0.001%,Zn 0.001-0.003%,Ti 0.001-0.003%,余量为Sn和不可避免的杂质。该无铅焊料不含铅元素,符合环保要求,且机械性能好,可焊性优异。还涉及一种高强度低温无铅焊料的制备方法。

Description

一种高强度低温无铅焊料及其制备方法 技术领域:
本发明涉及钎焊领域,具体的涉及一种高强度低温无铅焊料。
背景技术:
铅及其化合物是有毒物质,损害人类健康,污染环境。随着人类环保意识的增强,世界各国已相继出台一系列法令和法规来防治电子产品所带来的生态问题,限制铅在电子产品中的使用。在无铅绿色制造这一大趋势下,许多国家的科研机构和企业已开始加大投入来研发无铅焊料,并积极推广其应用。
目前常用的低熔点无铅焊料是以Sn-In合金为基体,在其中添加一些合金元素,该低温焊料溶程比较大,在凝固过程中易出现枝晶偏析、组织粗大化,加之应力不平衡,会导致焊点剥离。
发明内容:
本发明的目的是提供一种高强度低温无铅焊料,该焊料熔点低,具有优异的机械性能,可焊性好。
本发明的另一个目的是提供该高强度低温无铅焊料的制备方法。
为实现上述目的,本发明采用以下技术方案:
一种高强度低温无铅焊料,以重量份计,包括以下组分:
纳米氮化钛0.1-0.4份,
硼酸锆0.05-0.1份,
Sn-In系合金微粉50-80份,
助焊剂1-3份。
作为上述技术方案的优选,Sn-In系合金微粉,以质量百分比计,包括以下组分:
Figure PCTCN2018108931-appb-000001
余量为Sn和不可避免的杂质。
作为上述技术方案的优选,所述纳米氮化钛的粒径大小为20-50nm。
作为上述技术方案的优选,所述硼酸锆的粒径大小为80-100nm。
作为上述技术方案的优选,所述Sn-In系合金微粉的粒径大小为1-5μm。
作为上述技术方案的优选,所述助焊剂以重量份计包括以下组分:戊二酸10-20份,三乙胺0.5-1.5份,span80 1-2份,水杨酸0.1-0.5份,去离子水20-30份。
一种高强度低温无铅焊料的制备方法,包括以下步骤:
(1)将助焊剂、纳米氮化钛、硼酸锆混合,在500-1000W的功率下超声处理,制得分散液;
(2)将Sn-In系合金微粉加入到上述分散液中,研磨均匀,制得无铅焊料。
作为上述技术方案的优选,步骤(1)中,所述超声处理的功率为500W。
作为上述技术方案的优选,步骤(1)中,所述超声处理的时间为1-3h。
本发明具有以下有益效果:
本发明采用纳米氮化钛和硼酸锆对Sn-In系合金微粉进行改性,其可以有效改善合金微粉与被焊界面的润湿性,且其可以有效细化合金颗粒,从而有效改善焊料的机械性能。
本发明制得的焊料导电、导热性好,可有效缓解焊点在使用过程中发热疲劳时效的问题。
具体实施方式:
为了更好的理解本发明,下面通过实施例对本发明进一步说明,实施例只用于解释本发明,不会对本发明构成任何的限定。
实施例1
一种高强度低温无铅焊料,以重量份计,包括以下组分:
纳米氮化钛0.1份,
硼酸锆0.05份,
Sn-In系合金微粉50份,
助焊剂1份,
其中Sn-In系合金微粉,以质量百分比计,包括以下组分:
Figure PCTCN2018108931-appb-000002
Figure PCTCN2018108931-appb-000003
余量为Sn和不可避免的杂质;
其中助焊剂以重量份计包括以下组分:戊二酸10份,三乙胺0.5份,span80 1份,水杨酸0.1份,去离子水20份;
其制备方法包括以下步骤:
(1)将助焊剂、纳米氮化钛、硼酸锆混合,在500W的功率下超声处理1h,制得分散液;
(2)将Sn-In系合金微粉加入到上述分散液中,研磨均匀,制得无铅焊料。
实施例2
一种高强度低温无铅焊料,以重量份计,包括以下组分:
纳米氮化钛0.4份,
硼酸锆0.1份,
Sn-In系合金微粉80份,
助焊剂3份,
其中Sn-In系合金微粉,以质量百分比计,包括以下组分:
Figure PCTCN2018108931-appb-000004
Figure PCTCN2018108931-appb-000005
余量为Sn和不可避免的杂质;
其中助焊剂以重量份计包括以下组分:戊二酸20份,三乙胺1.5份,span80 2份,水杨酸0.5份,去离子水30份;
其制备方法包括以下步骤:
(1)将助焊剂、纳米氮化钛、硼酸锆混合,在1000W的功率下超声处理3h,制得分散液;
(2)将Sn-In系合金微粉加入到上述分散液中,研磨均匀,制得无铅焊料。
实施例3
一种高强度低温无铅焊料,以重量份计,包括以下组分:
纳米氮化钛0.2份,
硼酸锆0.06份,
Sn-In系合金微粉55份,
助焊剂1.5份,
其中Sn-In系合金微粉,以质量百分比计,包括以下组分:
Figure PCTCN2018108931-appb-000006
Figure PCTCN2018108931-appb-000007
余量为Sn和不可避免的杂质;
其中助焊剂以重量份计包括以下组分:戊二酸12份,三乙胺0.7份,span80 1.2份,水杨酸0.2份,去离子水22份;
其制备方法包括以下步骤:
(1)将助焊剂、纳米氮化钛、硼酸锆混合,在600W的功率下超声处理1.5h,制得分散液;
(2)将Sn-In系合金微粉加入到上述分散液中,研磨均匀,制得无铅焊料。
实施例4
一种高强度低温无铅焊料,以重量份计,包括以下组分:
纳米氮化钛0.3份,
硼酸锆0.07份,
Sn-In系合金微粉60份,
助焊剂2份,
其中Sn-In系合金微粉,以质量百分比计,包括以下组分:
Figure PCTCN2018108931-appb-000008
Figure PCTCN2018108931-appb-000009
余量为Sn和不可避免的杂质;
其中助焊剂以重量份计包括以下组分:戊二酸14份,三乙胺0.9份,span80 1.4份,水杨酸0.3份,去离子水24份;
其制备方法包括以下步骤:
(1)将助焊剂、纳米氮化钛、硼酸锆混合,在700W的功率下超声处理2h,制得分散液;
(2)将Sn-In系合金微粉加入到上述分散液中,研磨均匀,制得无铅焊料。
实施例5
一种高强度低温无铅焊料,以重量份计,包括以下组分:
纳米氮化钛0.35份,
硼酸锆0.08份,
Sn-In系合金微粉70份,
助焊剂2.5份,
其中Sn-In系合金微粉,以质量百分比计,包括以下组分:
Figure PCTCN2018108931-appb-000010
Figure PCTCN2018108931-appb-000011
余量为Sn和不可避免的杂质;
其中助焊剂以重量份计包括以下组分:戊二酸18份,三乙胺1.3份,span80 1.8份,水杨酸0.4份,去离子水28份;
其制备方法包括以下步骤:
(1)将助焊剂、纳米氮化钛、硼酸锆混合,在800W的功率下超声处理2.5h,制得分散液;
(2)将Sn-In系合金微粉加入到上述分散液中,研磨均匀,制得无铅焊料。
本发明制得的焊料的抗拉强度为91.5MPa以上,剪切强度为41.5MPa,,焊点热导率为150-160W/(m·k)。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种高强度低温无铅焊料,其特征在于,以重量份计,包括以下组分:
    纳米氮化钛 0.1-0.4份,
    硼酸锆 0.05-0.1份,
    Sn-In系合金微粉 50-80份,
    助焊剂 1-3份。
  2. 如权利要求1所述的一种高强度低温无铅焊料,其特征在于,Sn-In系合金微粉,以质量百分比计,包括以下组分:
    Figure PCTCN2018108931-appb-100001
    余量为Sn和不可避免的杂质。
  3. 如权利要求1所述的一种高强度低温无铅焊料,其特征在于,所述纳米氮化钛的粒径大小为20-50nm。
  4. 如权利要求1所述的一种高强度低温无铅焊料,其特征在于,所述 硼酸锆的粒径大小为80-100nm。
  5. 如权利要求1所述的一种高强度低温无铅焊料,其特征在于,所述Sn-In系合金微粉的粒径大小为1-5μm。
  6. 如权利要求1所述的一种高强度低温无铅焊料,其特征在于,所述助焊剂以重量份计包括以下组分:戊二酸10-20份,三乙胺0.5-1.5份,span801-2份,水杨酸0.1-0.5份,去离子水20-30份。
  7. 如权利要求1至6任一所述的一种高强度低温无铅焊料的制备方法,其特征在于,包括以下步骤:
    (1)将助焊剂、纳米氮化钛、硼酸锆混合,在500-1000W的功率下超声处理,制得分散液;
    (2)将Sn-In系合金微粉加入到上述分散液中,研磨均匀,制得无铅焊料。
  8. 如权利要求7的一种高强度低温无铅焊料的制备方法,其特征在于,步骤(1)中,所述超声处理的功率为500W。
  9. 如权利要求7的一种高强度低温无铅焊料的制备方法,其特征在于,步骤(1)中,所述超声处理的时间为1-3h。
PCT/CN2018/108931 2018-09-30 2018-09-30 一种高强度低温无铅焊料及其制备方法 WO2020062200A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108931 WO2020062200A1 (zh) 2018-09-30 2018-09-30 一种高强度低温无铅焊料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108931 WO2020062200A1 (zh) 2018-09-30 2018-09-30 一种高强度低温无铅焊料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020062200A1 true WO2020062200A1 (zh) 2020-04-02

Family

ID=69952673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108931 WO2020062200A1 (zh) 2018-09-30 2018-09-30 一种高强度低温无铅焊料及其制备方法

Country Status (1)

Country Link
WO (1) WO2020062200A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110813A1 (en) * 2009-11-09 2011-05-12 National Tsing Hua University Tin-indium based lead-free solders with zinc addition
WO2011155521A1 (ja) * 2010-06-10 2011-12-15 株式会社メイコー 鉛フリー型コンポジット
CN104842089A (zh) * 2015-06-02 2015-08-19 哈尔滨工业大学 一种电子封装用高强度无铅复合钎料及其制备方法
CN105750758A (zh) * 2016-04-29 2016-07-13 广东中实金属有限公司 一种高可靠性的低温无铅焊料及其制备方法
CN106363315A (zh) * 2016-10-26 2017-02-01 亿铖达焊锡制造(昆山)有限公司 一种镀锡碳纳米材料增强复合焊料合金及其焊膏
CN107009044A (zh) * 2017-05-11 2017-08-04 东南大学 一种无铅焊料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110813A1 (en) * 2009-11-09 2011-05-12 National Tsing Hua University Tin-indium based lead-free solders with zinc addition
WO2011155521A1 (ja) * 2010-06-10 2011-12-15 株式会社メイコー 鉛フリー型コンポジット
CN104842089A (zh) * 2015-06-02 2015-08-19 哈尔滨工业大学 一种电子封装用高强度无铅复合钎料及其制备方法
CN105750758A (zh) * 2016-04-29 2016-07-13 广东中实金属有限公司 一种高可靠性的低温无铅焊料及其制备方法
CN106363315A (zh) * 2016-10-26 2017-02-01 亿铖达焊锡制造(昆山)有限公司 一种镀锡碳纳米材料增强复合焊料合金及其焊膏
CN107009044A (zh) * 2017-05-11 2017-08-04 东南大学 一种无铅焊料及其制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Development of Sn–Zn lead-free solders bearing alloying elements
CN100462183C (zh) 无铅抗氧化含稀土SnZn合金焊料及其制备方法
CN103639614B (zh) 一种具备尺寸效应的混合型无铅焊料膏的制备方法
JP2009506203A (ja) 半田合金
TWI677581B (zh) 焊錫合金、焊錫膏、焊錫球、含焊劑芯焊錫及焊錫接頭
WO2013132953A1 (ja) 接合方法、電子装置の製造方法、および電子部品
TW201431636A (zh) 無鉛焊料合金
CN101992362A (zh) 一种适宜制粉的具有抗氧化能力的无铅焊料合金
Efzan et al. A review of solder evolution in electronic application
Xu et al. Evolution of the microstructure of Sn58Bi solder paste with Sn-3.0 Ag-0.5 Cu addition during isothermal aging
CN101279405A (zh) 纳米结构增强的锡银铜基无铅复合钎料及其制备方法
CN110125571A (zh) 一种高强度低温无铅焊料及其焊锡膏
WO2010087241A1 (ja) 無鉛はんだ合金及び該はんだ合金を含む耐疲労性はんだ接合材並びに該接合材を使用した接合体
CN108927609B (zh) 一种复合无铅锡膏的制备方法
CN106695161A (zh) 一种锡铋合金的无铅焊料及其制备方法
CN104827200B (zh) 一种高强铝合金激光焊接用Al‑Si‑Sc系焊丝
WO2020062200A1 (zh) 一种高强度低温无铅焊料及其制备方法
CN101224526A (zh) Ni颗粒增强锡银基无铅复合钎料及其制备方法
CN109175770B (zh) 一种高强度低温无铅焊料及其制备方法
TW200821391A (en) Electronic connecting materials for the Sn-Zn system lead-free solder alloys
TW200817126A (en) Electronic connecting materials for the Sn-Zn-Ag system lead-free solder alloys
CN101920406B (zh) Sn-Ag-Zn-Cr共晶无铅焊料
CN100593448C (zh) 一种无铅软钎焊料
CN109128570A (zh) 一种抗氧化合金焊料及其制备方法
Islam Processing and characterization of zinc-silver based high temperature solder alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935255

Country of ref document: EP

Kind code of ref document: A1