JP2011210635A - 双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池 - Google Patents

双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池 Download PDF

Info

Publication number
JP2011210635A
JP2011210635A JP2010078740A JP2010078740A JP2011210635A JP 2011210635 A JP2011210635 A JP 2011210635A JP 2010078740 A JP2010078740 A JP 2010078740A JP 2010078740 A JP2010078740 A JP 2010078740A JP 2011210635 A JP2011210635 A JP 2011210635A
Authority
JP
Japan
Prior art keywords
current collector
resin
sealing material
seal
seal assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010078740A
Other languages
English (en)
Other versions
JP5533137B2 (ja
Inventor
Motoharu Obika
基治 小比賀
Kenji Hosaka
賢司 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010078740A priority Critical patent/JP5533137B2/ja
Priority to CN201180003838.0A priority patent/CN102511103B/zh
Priority to EP11762351.2A priority patent/EP2557625B1/en
Priority to KR1020127006650A priority patent/KR101269362B1/ko
Priority to PCT/JP2011/052540 priority patent/WO2011122110A1/ja
Priority to US13/395,944 priority patent/US8691431B2/en
Publication of JP2011210635A publication Critical patent/JP2011210635A/ja
Application granted granted Critical
Publication of JP5533137B2 publication Critical patent/JP5533137B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】硬化反応後の熱硬化性樹脂を含む樹脂集電体とシール材との接合を強固にしてシール性を向上させる双極型電池のシール構造の製造方法、双極型電池の製造方法、およびこれらの方法によってそれぞれ製造される双極型電池のシール構造、双極型電池を提供する。
【解決手段】双極型電池のシール構造の製造方法は、硬化反応前の熱硬化性樹脂からなる第1のシール材81と熱可塑性樹脂からなる第2のシール材82とを接合させてシールアッシー80を作製する工程と、硬化反応後の熱硬化性樹脂を含む樹脂集電体60にシールアッシーを接合させて、シールアッシーと樹脂集電体との間をシールした集電体アッシー90を作製する工程と、を含む。
【選択図】図4

Description

本発明は、双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池に関する。
近年、環境保護運動の高まりを背景として、電気自動車(EV)、ハイブリッド電気自動車(HEV)、および燃料電池車(FCV)の開発が進められている。これらのモータ駆動用電源として、繰り返し充放電可能な双極型電池が注目されている。
双極型電池の電極には、集電体の一方の面に負極を形成し、他方の面に正極を形成した双極型電極が用いられている。集電体には、正極、および負極に浸透させた電解質の漏れや揮発などを防止するためのシール部を設けている。シール部は、樹脂材料からなるホットメルトタイプのシール材を集電体に重ねて、熱をかけて接合させて形成する。
双極型電極に利用される集電体は、双極型電池の性能を向上する観点より、種々の材料の中から選択して構成する。集電体の軽量化を図るために、金属箔に代えて高分子材料を利用した集電体が提案されている(特許文献1を参照)。特許文献1は、高分子材料として、例えば、熱硬化性樹脂を選択することを開示している。シール材としてホットメルトタイプの熱可塑性樹脂を利用し、ホットプレスによって集電体に接合してシール部を形成している。
特開2006−190649号公報
熱可塑性樹脂を利用するシール方法は、加熱した高分子材料(樹脂)と集電体のシール部における高分子材料とを相溶させた後、冷却して固化させて行う。樹脂同士を接合させてシール部を形成させる場合、接合部における物質の混ざり合いやすさを示すSP値(溶解度パラメータ)がシール性に大きな影響を与える。
SP値は物質の親和性を表す物性値である。SP値が近い物質同士は混ざり合いやすく、SP値の差が大きくなる物質同士ほど混ざり合いにくい。物質同士が混ざり合いやすい方が、硬化した際の結合が強固になるため、大きな接合力を得ることができる。
一般的に、熱硬化性樹脂と熱可塑性樹脂とでは、熱硬化性樹脂同士を比べた場合と比較して、SP値の差が大きくなる。熱硬化性樹脂を含む集電体と熱可塑性樹脂を材料とするシール材とは混ざり合いにくく、接合力が低下する。
熱可塑性樹脂からなる既存のホットメルトタイプのシール材を利用する場合、熱硬化性樹脂を含む集電体との間における接合力が低下する。この接合力の低下がシール部におけるシール性の低下を招き、電解質の漏れや揮発などによる双極型電池のサイクル特性の低下を生じさせる。
本発明は、上記問題を解決するためになされたものであり、双極型電池のシール構造に関し、硬化反応後の熱硬化性樹脂を含む樹脂集電体とシール材との接合を強固にしてシール性を向上させる双極型電池のシール構造の製造方法、双極型電池の製造方法、およびこれらの方法によってそれぞれ製造される双極型電池のシール構造、双極型電池を提供することを目的とする。
本発明に係る双極型電池のシール構造の製造方法は、硬化反応前の熱硬化性樹脂からなる第1のシール材と熱可塑性樹脂からなる第2のシール材とを少なくとも積層する工程を含む。さらに、第1のシール材の硬化反応が生じる温度よりも低い温度によって第1のシール材、および第2のシール材を加熱し、第1のシール材と第2のシール材を接合させて、シールアッシーを作製する工程を含む。さらに、硬化反応後の熱硬化性樹脂を含む樹脂集電体において電極が形成された面の外周部に第1のシール材を向かい合わせて、シールアッシーを重ねる工程を含む。そして、第1のシール材の硬化反応が生じる温度によってシールアッシー、および樹脂集電体を加熱し、シールアッシーと樹脂集電体との間をシールした集電体アッシーを作製する工程を含む。
本発明によれば、シールアッシーを作製する工程において、第1のシール材と第2のシール材との接合を、第1のシール材に硬化反応が生じる温度よりも低い温度によって加熱して行う。このため、樹脂集電体にシールアッシーを接合させる工程において、第1のシール材に硬化反応を進行させて接合を行うことができる。これによって、樹脂集電体とシールアッシーとの接合を強固にして双極型電池のシール性を向上させることができる。
実施形態に係る双極型電池全体の概略断面図である。 実施形態に係る双極型電池の製造方法の全体工程図である。 図3(A)、(B)はそれぞれ、実施形態に係る各工程を説明するための概略断面図であり、図3(A)はステップS11に係る工程を説明するための図、図3(B)はステップS12に係る工程を説明するための図である。 図4(A)、(B)はそれぞれ、実施形態に係る各工程を説明するための概略断面図であり、図4(A)はステップS13に係る工程を説明するための図、図4(B)はステップS14に係る工程を説明するための図である。 図5(A)、(B)はそれぞれ、実施形態に係る各工程を説明するための概略断面図であり、図5(A)はステップS15に係る工程を説明するための図、図5(B)はステップS16、ステップS17に係る工程を説明するための図である。 比較例のシール構造を説明するための概略断面図である。 図7(A)〜(C)はそれぞれ、変形例に係る双極型電池を説明するための概略断面図である。
まず、好ましい実施形態であるリチウムイオン二次電池の全体構造について説明する。双極型電池は、特に説明したものを除き、一般的なリチウムイオン二次電池についての公知の形態で作製することができ、説明した形態のみに特に限定されるものではない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
図1を参照して、双極型電池10は、充放電反応が進行する略矩形の発電要素20を外装材であるラミネートシート55の内部に封止して形成している。
発電要素20は、積層体40を複数積層して構成している。積層体40は、樹脂集電体60の第1の面61(一方の面に相当する)に正極65(電極に相当する)を形成し、第2の面62(他方の面に相当する)に負極67(電極に相当する)を形成した双極型電極50、および正極65、負極67に浸透させる電解質を含む電解質層を備える。電解質層は、基材としてのセパレータ70の面方向中央部に電解質を保持させて形成している。
隣接する正極65、電解質層、負極67は、一つの単電池層30を構成する。したがって、双極型電池10は、単電池層30が複数積層した構成を備える。発電要素20における正極側の最外層に位置する樹脂集電体60aには正極65のみを形成している。一方、発電要素20における負極側の最外層に位置する樹脂集電体60bには負極67のみを形成している。最外層に位置する樹脂集電体60aの第1、第2の面61、62にそれぞれ正極65を形成することも可能である。同様に、最外層に位置する樹脂集電体60bの第1、第2の面61、62にそれぞれ負極67を形成することも可能である。
発電要素20の最外層に位置する樹脂集電体60a、60bには、高導電性部材からなる集電板57を接続している。図中省略するが、集電板57の一部を外装材であるラミネートシート55の外部へ引き出して配置している。発電要素20から外部へ電流を引き出すための電極タブとして利用することを可能にするためである。
電解質層からの電解質の漏れや揮発などを防止することを目的としてシール部88を形成している。シール部88は、電解質の漏れや揮発などを防止して、双極型電池10にサイクル特性の低下が生じることを防止する。隣接する樹脂集電体60間に液絡が生じることを防止する機能や、電池外部から内部へ水等が浸入することを防止する機能も発揮する。
ここで、図5(A)、(B)には、製造過程における双極型電池10の一部を拡大した断面図を示す。双極型電池10は、熱硬化性樹脂を含む樹脂集電体60と、熱硬化性樹脂からなる第1のシール材81と熱可塑性樹脂からなる第2のシール材82とを接合して形成されたシールアッシー80と、を有している。樹脂集電体60にシールアッシー80の第1のシール材81を接合することによって、シールアッシー80と樹脂集電体60との間をシールしている。樹脂集電体60において正極65が形成された第1の面61、および負極67が形成された第2の面62のそれぞれに、第1のシール材81を介してシールアッシー80をそれぞれ接合させている。そして、双極型電池10は、樹脂集電体60に電解質が浸透するポーラス状のセパレータ70を重ねた積層体40と、複数の積層体40を第2のシール材82同士を向かい合わせて積層させた発電要素20と、を有している。第2のシール材82同士を融着して、シールアッシー80間をシールしている。
樹脂集電体60に接合させた各シールアッシー80は、シール部88を形成するためのシール構造85を構成する。シール部88は、樹脂集電体60に接合した隣接する二つのシールアッシー80間を第2のシール材82によってシールして形成している。
次に、双極型電池の各構成要素について説明する。
[樹脂集電体]
樹脂集電体60は導電性を有する樹脂層を含む。好適には、樹脂集電体60は、導電性を有する樹脂層からなる。樹脂層は、導電性を有し、必須に熱硬化性樹脂を含み、集電体の役割を果たす。熱硬化性樹脂としては、例えば、ポリイミド系熱硬化性樹脂を用いることが好ましいが、これに限定されるものではなく、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂等の熱硬化性樹脂を使用することも可能である。例えば、上記熱硬化性樹脂材料を所定比で混合したものを硬化させて成形し、樹脂層として用いることが可能である。樹脂集電体60の具体的な構成について説明する。
樹脂層が導電性を有するには、具体的な形態として、1)樹脂を構成する高分子材料が導電性高分子である形態、2)樹脂層が樹脂および導電性フィラー(導電材)を含む形態が挙げられる。
上記1)の形態における導電性高分子は、導電性を有し、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料から選択される。これらの導電性高分子は、共役したポリエン系がエネルギー帯を形成して伝導性を示すと考えられている。代表的な例としては電解コンデンサなどで実用化が進んでいるポリエン系導電性高分子を用いることができる。具体的には、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、ポリオキサジアゾール、またはこれらの混合物などが好ましい。電子伝導性および電池内で安定に使用できるという観点から、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレンがより好ましい。
上記2)の形態に用いられる導電性フィラー(導電材)は、導電性を有する材料から選択される。好ましくは、導電性を有する樹脂層内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料を用いるのが望ましい。
具体的には、アルミニウム材、ステンレス(SUS)材、カーボン材、銀材、金材、銅材、チタン材などが挙げられるが、これらに限定されるわけではない。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金材が用いられてもよい。好ましくは銀材、金材、アルミニウム材、ステンレス材、カーボン材、より好ましくはカーボン材である。また、これらの導電性フィラー(導電材)は、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記導電材)をめっき等でコーティングしたものでもよい。
前記カーボン材としては、例えば、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、ハードカーボン、およびフラーレンからなる群より選択される少なくとも1種が挙げられる。これらのカーボン材は電位窓が非常に広く、正極電位および負極電位の双方に対して幅広い範囲で安定であり、さらに導電性に優れている。また、カーボン材は非常に軽量なため、質量の増加が最小限になる。さらに、カーボン材は、電極の導電助剤として用いられることが多いため、これらの導電助剤と接触しても、同材料であるがゆえに接触抵抗が非常に低くなる。なお、カーボン材を導電性粒子として用いる場合には、カーボンの表面に疎水性処理を施すことにより電解質のなじみ性を下げ、集電体の空孔に電解質が染み込みにくい状況を作ることも可能である。
導電性フィラー(導電材)の形状は、特に制限はなく、粒子状、粉末状、繊維状、板状、塊状、布状、またはメッシュ状などの公知の形状を適宜選択することができる。例えば、樹脂に対して広範囲に亘って導電性を付与したい場合は、粒子状の導電材料を使用することが好ましい。一方、樹脂において特定方向への導電性をより向上させたい場合は、繊維状等の形状に一定の方向性を有するような導電材料を使用することが好ましい。
また、樹脂層が導電性フィラーを含む形態の場合、樹脂層を形成する樹脂は、上記導電性フィラーに加えて、当該導電性フィラーを結着させる導電性のない高分子材料を含んでいてもよい。樹脂層の構成材料として導電性のない高分子材料を用いることによって、導電性フィラーの結着性を高め、電池の信頼性を高めることができる。高分子材料は、印加される正極電位および負極電位に耐えうる材料から選択される。
導電性のない高分子材料の例としては、好ましくは、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)または、これらの混合物が挙げられる。これらの材料は電位窓が非常に広く正極電位、負極電位のいずれに対しても安定である。また軽量であるため、電池の高出力密度化が可能となる。これらの中でも、好ましくはポリイミドである。
導電性フィラーの含有量も特に制限はない。特に、樹脂が導電性高分子材料を含み、十分な導電性が確保できる場合は、導電性フィラーを必ずしも添加する必要はない。しかしながら、樹脂が非導電性高分子材料のみからなる場合は、導電性を付与するために導電性フィラーの添加が必須となる。この際の導電性フィラーの含有量は、非導電性高分子材料の全質量に対して、好ましくは5〜35wt%であり、より好ましくは5〜25wt%であり、さらに好ましくは5〜15wt%である。かような量の導電性フィラーを樹脂に添加することにより、樹脂の質量増加を抑制しつつ、非導電性高分子材料にも十分な導電性を付与することができる。
上記樹脂層には、導電性フィラーおよび樹脂の他、他の添加剤を含んでいてもよいが、好ましくは、導電性フィラーおよび樹脂からなる。
樹脂層は、従来公知の手法により製造できる。例えば、スプレー法またはコーティング法を用いることにより製造可能である。具体的には、高分子材料を含むスラリーを調製し、これを塗布し硬化させる手法が挙げられる。スラリーの調製に用いられる高分子材料の具体的な形態については上述した通りであるため、ここでは説明を省略する。前記スラリーに含まれる他の成分としては、導電性フィラーが挙げられる。導電性フィラーの具体例についても上述の通りであるために、ここでは説明を省略する。あるいは、高分子材料および導電性フィラー、その他の添加剤を従来公知の混合方法にて混合し、得られた混合物をフィルム状に成形することで得られる。また、例えば、特開2006−190649号公報に記載の方法のように、インクジェット方式により樹脂層を作製してもよい。また、市販の導電性を有する樹脂フィルムを使用してもよい。市販品の例としては、例えば、宇部興産株式会社製のユーピレックス(登録商標)−S 50S、株式会社カネカ製のアピカル(登録商標)、東レ・デュポン株式会社製のカプトン(登録商標)などの導電性を有する熱硬化性ポリイミドフィルムが挙げられる。
例えば、樹脂層が熱硬化性ポリイミドである樹脂集電体を製造する場合は、樹脂層の前駆体としてポリアミック酸を用い、次のような方法で製造することもできる。すなわち、ポリアミック酸と導電材料とを混合した溶液を、平滑な支持体上に塗布し加熱乾燥してフィルム状にした後、さらに熱処理により前駆体を重合させ集電体とする方法である。
ポリアミック酸のフィルムを作製する際の加熱手段は特に制限されず、従来公知のものを使用することができ、例えば、熱風乾燥機、熱窒素乾燥機、遠赤外線乾燥機、高周波誘導加熱装置などが挙げられる。また、加熱時間も特に制限されないが、好ましくは5〜180分、より好ましくは10〜120分である。さらに、加熱温度も特に制限されないが、好ましくは70〜150℃、より好ましくは80〜120℃である。
得られたポリアミック酸のフィルムをポリイミドフィルムとする場合の熱処理は、2段階で行うことが好ましい。好ましくは1段目の熱処理を100〜250℃で1〜10分間行い、2段目の熱処理を400〜600℃で0.1〜15分間行う。また、1段目の熱処理終了後から2段目の熱処理開始までの昇温条件は、1〜15℃/秒が好ましい。一般には、上記ポリアミック酸のフィルムを作製する際の乾燥温度よりも高温で熱処理することにより、イミド化反応が進行して、ポリイミドフィルムを得ることができる。
樹脂集電体60の厚さは、特に限定されるものではないが、電池の出力密度を高める上では、薄いほど好ましい。双極型電池10においては、正極65および負極67の間に存在する樹脂集電体60は、積層方向に水平な方向の電気抵抗が高くてもよいため、樹脂集電体60の厚さを薄くすることが可能である。具体的には、樹脂集電体60の厚さは、0.1〜150μmであることが好ましく、10〜100μmであることがより好ましい。なお、該樹脂集電体60は単層構造でもよいし、2層以上の多層構造であってもよい。
[正極]
正極65の正極活物質は、例えば、LiMnなどのリチウム−マンガン複合酸化物、LiNiOなどのリチウム−ニッケル複合酸化物、LiCoOなどのリチウム−コバルト複合酸化物などである。しかし、これらに特に限定されない。なお、容量および出力特性の観点から、リチウム−遷移金属複合酸化物を適用することが好ましい。
[負極]
負極67の負極活物質は、例えば、ハードカーボン(難黒鉛化炭素材料)である。しかし、これに特に限定されず、黒鉛系炭素材料や、リチウム−遷移金属複合酸化物を利用することも可能である。特に、カーボンおよびリチウム−遷移金属複合酸化物からなる負極活物質は、容量および出力特性の観点から好ましい。
[電解質層]
電解質層の一部であるセパレータ70の素材は、例えば、電解質を浸透し得る通気性を有するポーラス状のポリエチレン樹脂(PE)である。しかし、これに特に限定されず、ポリプロピレン樹脂(PP)、その他にもポリオレフィン樹脂、PP/PE/PPの3層構造をした積層物、ポリアミド、ポリイミド、アラミド、不織布を利用することも可能である。不織布は、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステルなどである。セパレータ70の微細孔の径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
電解質のホストポリマーは、例えば、HFP(ヘキサフルオロプロピレン)コポリマーを10%含むPVDF−HFP(ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体)である。しかし、これに特に限定されず、その他のリチウムイオン伝導性を持たない高分子や、イオン伝導性を有する高分子(固体高分子電解質)を適用することも可能である。その他のリチウムイオン伝導性を持たない高分子は、例えば、ポリアクリロニトリル、ポリメチルメタクリレートである。イオン伝導性を有する高分子は、例えば、ポリエチレンオキシドやポリプロピレンオキシドである。
ホストポリマーによって保持する電解液は、例えば、プロピレンカーボネート(PC)およびエチレンカーボネート(EC)からなる有機溶媒、支持塩としてのリチウム塩(LiPF)を含んでいる。有機溶媒は、ポリプロピレンカーボネートおよびエチレンカーボネートに特に限定されず、その他の環状カーボネート類、ジメチルカーボネート等の鎖状カーボネート類、テトラヒドロフラン等のエーテル類を適用することが可能である。リチウム塩は、LiPFに特に限定されず、その他の無機酸陰イオン塩、LiCFSO等の有機酸陰イオン塩を適用することが可能である。
[外装材]
外装材としては、例えば、ラミネートシート55が用いられ得る。ラミネートシート55は、ポリプロピレン樹脂(PP)、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されたものを用いることができる。なお、場合によっては、従来公知の金属缶ケースを外装材として用いることができる。
[集電板]
高導電性部材からなる集電板57には、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス、これらの合金を用いることができる。
[シール部]
シール部88は、第1のシール材81と第2のシール材82からなる2層構造のシールアッシー80を利用して形成している。
第1のシール材81には、熱硬化性樹脂を利用している。例えば、ポリイミド、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂等の熱硬化性樹脂、およびこれらを混合したものを適宜選択することができる。
第2のシール材82には、公知のホットメルトタイプの熱可塑性樹脂を利用している。例えば、ポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)などのポリエステル樹脂等を利用することが可能である。耐蝕性、耐薬品性、作り易さ(製膜性)、経済性などの観点から、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートが、第2のシール材82として好ましい。なお、第2のシール材82は1種のみを用いてもよいし、2種以上組み合わせて用いてもよい。
シールアッシー80は、第1のシール材81と第2のシール材82を接合して作製している(図3をも参照)。
樹脂集電体60へのシール材の接合に先立って、第1のシール材81と第2のシール材82を仮接合させたシールアッシー80を作製している。シールアッシー80の作製に際し、熱による硬化反応が生じる前の熱硬化性樹脂を第1のシール材81として準備している。
第1のシール材81と第2のシール材82の接合は、ホットプレス機100aによって加熱して両者を軟化させて行う。使用するホップレス機100aは特に限定されるものではなく、樹脂材料の熱融着等に用いられる公知のものを適宜採用することができる。後述するホットプレス機100b、100cについても同様である。
軟化した第1のシール材81と軟化した第2のシール材82は物理的に密着する。密着させた状態で熱可塑性樹脂からなる第2のシール材82を冷却して固化させる。第2のシール材82が固化して、第1のシール材81と第2のシール材82が接合する。
加熱条件は、第1のシール材81の硬化反応が数%程度進行する温度、および時間に設定している。第1のシール材81の硬化反応が過度に進行することを防ぐためである。後に行われる樹脂集電体60に第1のシール材81を接合する工程において、第1のシール材81の硬化反応を十分に進行させて接合を行うことを可能にしている(図4(B)をも参照)。
シールアッシー80を作製する工程における第1のシール材81の硬化反応の進行の程度は、樹脂集電体60に第1のシール材81を接合する工程において硬化反応を利用した接合を行うことが可能になる範囲内に収められていればよく、特に限定されるものではない。
シールアッシー80の厚みは、5〜200μmであることが好ましく、10〜150μmであることがより好ましいが、これに限定されるものではない。
シール部88の形成に先立って、シールアッシー80を樹脂集電体60に接合させて集電体アッシー90を作製している(図4をも参照)。
集電体アッシー90の作製は、樹脂集電体60に第1のシール材81を向かい合わせてシールアッシー80を重ねた後、第1のシール材81の硬化反応を進行させて行う。前述したシールアッシー80を作製する工程において加熱条件を調整し、第1のシール材81の硬化反応が過度に進行することを防止している。このため、第1のシール材81の硬化反応を十分に進行させて接合を行うことが可能になっている。
樹脂集電体60において正極65を形成した第1の面61の外周部63、および負極67を形成した第2の面62の外周部63にシールアッシー80を重ねた状態とし、シールアッシー80、および樹脂集電体60をホットプレス機100bによって加熱して接合している。加熱条件は、第1のシール材81の硬化反応が十分に進行する温度、および時間に設定している。
樹脂集電体60には、構成材料として硬化反応後の熱硬化性樹脂が含まれている。熱硬化性樹脂は、熱による分子間の架橋反応で硬化して不溶不融となるため、再加熱しても軟化しない。このため、樹脂集電体60と第1のシール材81を軟化させて互いに物理的に密着させた状態で接合を行うことが難しい。そこで、熱硬化性樹脂同士のSP値の差が小さいことに着目して、熱硬化性樹脂からなる第1のシール材81の硬化反応を進行させて行う接合方法を採用している。
樹脂同士の接合によってシール部を形成させる場合、接合部における物質の混ざり合いやすさを示すSP値がシール部のシール性に大きな影響を与える。SP値は物質の親和性を表す物性値である。SP値が近い物質同士は混ざり合いやすく、SP値の差が大きくなる物質同士ほど混ざり合いにくくなる。一般的に、熱硬化性樹脂同士はSP値の差が小さいため混ざり合いやすく、強固に接合を行うことが可能になっている。これに対して、熱硬化性樹脂と熱可塑性樹脂とではSP値の差が大きくなるため混ざり合いにくく、接合力が低下する。これによって、シール部におけるシール性の低下を招くことになる。
樹脂集電体60に重ねた硬化する前の第1のシール材81は、硬化反応が進行する過程において軟化する。高分子材料である第1のシール材81を軟化させて、高分子材料である樹脂集電体60と相溶させる。熱硬化性樹脂からなる第1のシール材81と樹脂集電体60に含まれる熱硬化性樹脂とではSP値の差が小さいため、第1のシール材81が樹脂集電体60に混ざりやすくなっている。混ざり合った状態で加熱する温度を上げて、第1のシール材81の硬化反応を進行させる。第1のシール材81の硬化反応が十分に進行することによって、樹脂集電体60と第1のシール材81とが強固に接合されることになる。このように、第1のシール材81を樹脂集電体60に接合させて、シールアッシー80と樹脂集電体60との間をシールした集電体アッシー90を作製している。
シールアッシー80は、樹脂集電体60の正極65を形成した第1の面61、および負極67を形成した第2の面62に接合している(図4をも参照)。
樹脂集電体60の第1の面61、および第2の面62の両面に一度の加熱作業によってシールアッシー80を接合させている。樹脂集電体60の第1の面61、および第2の面62に別々にシールアッシー80を接合させる作業を行う場合に比べて、双極型電池10の製造工程数を減らすことができる。さらに、セパレータ70とともに樹脂集電体60を積層して積層体40を形成する際、シールアッシー80と樹脂集電体60が一体化した集電体アッシー90として取り扱うことが可能になる。双極型電池の作製に際し、シール材と集電体を別途に準備して積層する場合に比べて、作業を簡略化して行うことが可能になっている。
シール部88は、電解質層の基材となるセパレータ70と集電体アッシー90を積層して形成した積層体40を複数積層させた後、第2のシール材82同士を融着してシールすることによって形成している(図5をも参照)。
積層体40は、シールアッシー80の第2のシール材82同士が向かい合うように積層している。電解質にゲル状電解質、液電解質を利用する場合には、第2のシール材82によってセパレータ70の外周部を挟み込ませるように積層を行う。セパレータ70の外周部を挟み込ませることによって、電解質の漏れ、および樹脂集電体60間の液絡を好適に防止することが可能になるためである。電解質に固体高分子電解質を利用する場合には、第2のシール材82によってセパレータ70の外周部を挟み込ませて積層を行う必要はなく、セパレータ70の外周部を挟み込まない形態によって積層させることが可能である。
第2のシール材82を向かい合わせた状態でホットプレス機100cによって加熱し、第2のシール材82を溶かして融着している。融着した第2のシール材82が冷却して固化し、隣接するシールアッシー80間をシールする。このようにして、シール部88を形成させる。シール部88を形成する際の加熱条件は、熱可塑性樹脂である第2のシール材82の融点よりも高い温度とし、融着が可能な加熱時間に設定している。第2のシール材82を融着して形成したシール部88は、正極65および負極67に浸透させる電解質の漏れや揮発、外部からの水の浸入などを好適に防止する。
第1のシール材81と第2のシール材82とを積層した2層構造のシールアッシー80を利用してシール部88を形成している。シールアッシー80を2層構造とすることによって、熱硬化性樹脂からなる第1のシール材81(第1の層)によってシールアッシー80と樹脂集電体60との接合力を高めるとともに、熱可塑性樹脂からなる第2のシール材82(第2の層)によるガス抜き機能をシール部88に備えさせることが可能になっている。第2のシール材82を熱可塑性樹脂によって形成しているため、一度融着させた第2のシール材82同士の接合を切断して、さらに再接合させることができる。双極型電池10の製造過程、および充放電時に双極型電池10の内部にガスが発生した際、第2のシール材82を切断してガスを抜くことができ、ガスの滞留に伴う性能劣化を防ぐことができる。
双極型電池10の充放電時に、樹脂集電体60に膨張、収縮が生じる場合がある。熱可塑性樹脂からなる第2のシール材82は、熱硬化性樹脂からなる第1のシール材81に比べて伸長し易い。樹脂集電体60が膨張、収縮する際、第2のシール材82が柔軟に変形することによって、第1のシール材81と樹脂集電体60との接合界面で生じる応力を緩和させる。樹脂集電体60から第1のシール材81が剥離することを好適に防止することができ、シール部88におけるシール性を長期にわたって維持することが可能になっている。
次に、実施形態に係る双極型電池の製造方法について説明する。
図2を参照して、双極型電池10の製造方法は、第1のシール材81と第2のシール材82を積層する工程(S11)と、第1のシール材81と第2のシール材82を接合してシールアッシー80を作製する工程(S12)と、樹脂集電体60にシールアッシー80を重ねる工程(S13)と、樹脂集電体60にシールアッシー80を接合させて集電体アッシー90を作製する工程(S14)と、集電体アッシー90とセパレータ70を積層して積層体40を形成する工程(S15)と、積層体40を積層する工程(S16)と、第2のシール材82同士を融着させる工程(S17)と、を含む。
図3(A)を参照して、硬化反応前の熱硬化性樹脂からなる第1のシール材81と、熱可塑性樹脂からなる第2のシール材82を積層する(S11)。
図3(B)を参照して、第1のシール材81と第2のシール材82を積層した状態でホットプレス機100aによって加熱する(S12)。
加熱を行う温度は、第1のシール材81の硬化反応が数%程度進行する温度にする。これによって、第1のシール材81の硬化反応が過度に進行することを防ぐ。集電体アッシー90を作製する工程(S14)において、第1のシール材81の硬化反応を十分に進行させて接合を行うことを可能にしている。
加熱によって第1のシール材81と第2のシール材82が軟化し、両者が物理的に密着する。密着した状態で第2のシール材82を冷却して固化させる。第1のシール材81と第2のシール材82とを接合させて、シールアッシー80を完成させる。
図4(A)を参照して、樹脂集電体60にシールアッシー80を重ねる(S13)。
シールアッシー80は、正極65を取り囲むように樹脂集電体60の第1の面61の外周部分63に重ねる。シールアッシー80の第1のシール材81は樹脂集電体60の第1の面61に向かい合わせる。同様にして、負極67を取り囲むように樹脂集電体60の第2の面62の外周部分63にもシールアッシー80を重ねる。シールアッシー80の第1のシール材81を樹脂集電体60の第2の面62に向かい合わせる。
第1のシール材81と第2のシール材82を接合したシールアッシー80を準備しているため、樹脂集電体60にシール材を重ねる作業を簡略化して行うことが可能になっている。作業時におけるシールアッシー80の取り扱いが容易なため、シール位置を定めながら精度よく積層させることができる。これによって、樹脂集電体60とシールアッシー80との間のシール性の向上を図ることができる。
図4(B)を参照して、樹脂集電体60にシールアッシー80を接合させて集電体アッシー90を作製する(S14)。
樹脂集電体60にシールアッシー80を重ねた状態でホットプレス機100bによって加熱する。高分子材料である第1のシール材81を軟化させて、高分子材料である樹脂集電体60と相溶させる。加熱する温度を徐々に上げて行き、第1のシール材81の硬化反応を進行させる。硬化反応が十分に進行して第1のシール材81が樹脂集電体60に接合する。シールアッシー80と樹脂集電体60との間をシールした集電体アッシー90を完成させる。集電体アッシー90に接合したシールアッシー80はそれぞれシール部88を形成するためのシール構造85を構成する。
樹脂集電体60において正極65が形成された第1の面61、および負極67が形成された第2の面62のそれぞれにシールアッシー80を重ねた状態で加熱して接合を行っている。樹脂集電体60の第1の面61、および第2の面62の両面に同時にシールアッシー80を接合させることができ、樹脂集電体60の第1の面61、および第2の面62に別々にシールアッシー80を接合させる作業を行う場合に比べて、双極型電池10の製造工程数を減らすことができ、製造効率を向上させることができる。
ここで図6には、硬化反応後の熱硬化性樹脂を含む樹脂集電体260にホットメルトタイプの熱可塑性樹脂からなるシール材280を接合させた比較例に係るシール構造を示す。
樹脂集電体260には、製作段階において硬化させた硬化反応後の熱硬化性樹脂が含まれている。樹脂集電体260が加熱しても軟化しないため、シール材280と樹脂集電体260とを物理的に密着させた状態で接合を行うことが難しい。さらに、樹脂集電体260に含まれる熱硬化性樹脂と、熱可塑性樹脂からなるシール材280とではSP値の差が大きいため、軟化したシール材280が樹脂集電体260に混ざりにくい。したがって、ホットメルトタイプの熱可塑性樹脂からなるシール材280を利用した比較例に係るシール構造にあっては、シール材280と樹脂集電体260との接合力が著しく低下する。これによって、シール部のシール性が低下するため、電解質の漏れや揮発等による双極型電池のサイクル特性の低下を招くことになる。
これに対して、本実施形態にあっては、硬化反応前の熱硬化性樹脂からなる第1のシール材81と熱可塑性樹脂からなる第2のシール材82とを接合して作製したシールアッシー80を、第1のシール材81の硬化反応を進行させて硬化反応後の熱硬化性樹脂を含む樹脂集電体60に接合している。
第1のシール材81に硬化反応前の熱硬化性樹脂を利用し、第2のシール材82に熱可塑性樹脂を利用している。このため、シールアッシー80を作製する工程において、第1のシール材81、および第2のシール材82を軟化させて物理的に両者を密着させた状態で接合を行うことができる。さらに、シールアッシー80を作製する工程において、第1のシール材81と第2のシール材82との接合を、第1のシール材81に過度な硬化反応が進行する温度よりも低い温度によって加熱して行っている。このため、集電体アッシー90を作製する工程において、第1のシール材81の硬化反応を十分に進行させて樹脂集電体60に第1のシール材81を接合させることができる。そして、熱硬化性樹脂を含む樹脂集電体60と第1のシール材81とではSP値の差が小さいため、第1のシール材81の硬化反応が進行する過程において、高分子材料である第1のシール材81を軟化させて、高分子材料である樹脂集電体60に相溶させて接合を行うことができる。これによって、樹脂集電体60とシールアッシー80との接合を強固にすることができる。
図5(A)を参照して、集電体アッシー90にセパレータ70を積層して積層体40を形成する(S15)。
積層体40を形成する際、シールアッシー80と樹脂集電体60とが一体化した集電体アッシー90として取り扱うことが可能になっている。シール材と集電体を別途に準備して積層する場合に比べて、作業を簡略化して行うことができる。
図5(B)を参照して、シールアッシー80の第2のシール材82同士を向かい合わせて積層体40を複数積層させる(S16)。
複数積層した積層体40は、双極型電池10の発電要素20を構成する。
次に、シールアッシー80、および樹脂集電体60を第2のシール材82の融点よりも高い温度によって加熱して、第2のシール材82同士を融着させる(S17)。
電解質を注入するための注入口を形成するように一部を除いて融着して袋状に封止する。封止した状態で液電解質を注入し、正極65および負極67に浸透させる。融着させるための加熱は、ホットプレス機100cによって行う。
電解質を注入した後、第2のシール材82の残りの部分を融着させる。第2のシール材82を融着させて、隣接するシールアッシー80間をシールする。このようにして、シール部88を完成させる。シール部88は、電解質の漏れや揮発、外部からの水の浸入を好適に防止するシール機能を発揮する。
以上の工程を行うことによって、硬化反応後の熱硬化性樹脂を含む樹脂集電体60とシールアッシー80との接合を強固にすることができ、シール部88におけるシール性を向上させた双極型電池10を提供することが可能になる。
上述したように本実施形態にあっては、硬化反応前の熱硬化性樹脂からなる第1のシール材81と熱可塑性樹脂からなる第2のシール材82とを接合して作製したシールアッシー80を、硬化反応後の熱硬化性樹脂を含む樹脂集電体60に接合させて集電体アッシー90を作製している。シールアッシー80を作製する工程において、第1のシール材81と第2のシール材82との接合を、第1のシール材81に硬化反応が生じる温度よりも低い温度によって加熱して行う。このため、樹脂集電体60にシールアッシー80を接合させる工程において、第1のシール材81の硬化反応を十分に進行させて接合を行うことができる。これによって、樹脂集電体60とシールアッシー80との接合を強固にして双極型電池10のシール性を向上させることができ、双極型電池10のサイクル特性の低下を抑制することができる。
樹脂集電体60の第1の面61および、第2の面62にシールアッシー80を接合した集電体アッシー90を作製している。樹脂集電体60の第1の面61、および第2の面62の両面に同時にシールアッシー80を接合させている。このため、樹脂集電体60の第1の面61、および第2の面62に別々にシールアッシー80を接合させる作業を行う場合に比べて、双極型電池10の製造工程数を減らすことができ、製造効率を向上させることができる。積層体40を形成する際、シールアッシー80と樹脂集電体60とが一体化した集電体アッシー90として取り扱うことができる。シール材と集電体を別途に準備して積層する場合に比べて、作業を簡略化して行うことができる。
硬化反応後の熱硬化性樹脂を含む樹脂集電体60とシールアッシー80との接合を強固にすることができ、シール部88におけるシール性を向上させた双極型電池10を提供することが可能になる。
上述した実施形態は、適宜変更することが可能である。シールアッシー80の形状や、シールアッシー80を接合する位置は、実施形態において説明したものに限定されるものではなく、第1のシール材の硬化反応を進行させて樹脂集電体との接合を行うことが可能な範囲内において、適宜変更することが可能である。
また、下記の変形例に示すように、シールアッシー80は、第1のシール材81と第2のシール材82が積層されてなる2層を少なくとも有していればよく、さらに複数のシール材を積層させた3層以上の多層構造に形成することも可能である。
(変形例)
図7には、前述した実施形態の変形例を示す。本変形例にあっては、シールアッシー80を、熱硬化性樹脂からなる第1のシール材81(第1の層)、熱可塑性樹脂からなる第2のシール材82(第2の層)、および熱硬化性樹脂からなる第3のシール材83(第3の層)の3層構造に形成している。このような点において、第1のシール材81と第2のシール材82を積層した2層構造のシールアッシー80を利用する前述の実施形態と相違する。前述した実施形態と同一の部材および同一の工程については、その説明を一部省略する。
図7(A)を参照して、シールアッシー80は、第1のシール材81、第2のシール材82、第3のシール材83を積層した状態で加熱して形成している。
加熱条件は、第1のシール材81、および第3のシール材83の硬化反応が数%程度進行する温度、および時間に設定している。
積層した状態で加熱することによって、第1のシール材81、第2のシール材82、および第3のシール材83が軟化して、隣接する層同士が密着する。密着した状態で第2のシール材82を冷却して固化させている。第1のシール材81と第3のシール材83が第2のシール材82を介して接合した状態になる。
図7(B)を参照して、樹脂集電体60の第1の面61に3層構造のシールアッシー80を接合させて集電体アッシー90を作製する。シールアッシー80によってシールアッシー80と樹脂集電体60との間をシールさせる。
図7(C)を参照して、集電体アッシー90にセパレータ70を重ねて積層体40を形成する。積層体40を複数積層させて電池要素20を形成する。
積層した後、ホットプレス機によって加熱を行う。加熱条件は、第1のシール材81、および第3のシール材83の硬化反応を十分に進行させることが可能な温度、および時間に設定する。
シールアッシー80の第1のシール材81と樹脂集電体60とを接合させてシールを行う。同様にして、シールアッシー80の第3のシール材83と隣接する他の樹脂集電体60とを接合させてシールを行う。電解質の漏れや揮発、外部からの水の浸入等を防止するシール部88を形成させる。
熱可塑性樹脂からなる第2のシール材82は、樹脂集電体60に接合した熱硬化性樹脂からなる第1のシール材81に比べて伸長し易い。上述した実施形態と同様に、樹脂集電体60が膨張、収縮する際、第2のシール材82が柔軟に変形することによって、樹脂集電体60から第1のシール材81が剥離することを好適に防止することが可能になっている。
樹脂集電体60に3層構造のシールアッシー80を接合させているため、熱硬化性樹脂からなる第1のシール材81(第1の層)によって一の樹脂集電体60との接合を行いつつ、熱硬化性樹脂からなる第3のシール材83(第3の層)によって一の樹脂集電体60に隣接する他の樹脂集電体60との接合を行うことが可能になる。2層構造のシールアッシーを樹脂集電体60の第1の面61および第2の面62の両面にそれぞれ接合させる実施形態と比較して、作業性を向上させることができる。
熱硬化性樹脂からなる第1のシール材81および熱硬化性樹脂からなる第3のシール材83を熱硬化性樹脂を含む樹脂集電体60に接合させるため、シールアッシー80と樹脂集電体60との接合力を向上させることができる。これによって、樹脂集電体60間のシール性をより向上させることができ、サイクル特性の低下を好適に抑制することができる。
(実施例)
以下、第1のシール材と第2のシール材からなる2層構造のシールアッシーを用いた双極型電池に関する実施例を説明する。実施例に係る双極型電池は、以下のように製造した。
<樹脂集電体の作製>
ポリイミドなどの熱硬化性樹脂材料を基材とした。基材にアセチレンブラックなどの導電助剤を混ぜた。その後、押し出し成型法によって薄膜化して、矩形形状に作製した。
<正極の作製>
以下の材料を所定の比で混合して正極材料を作製した。
正極活物質として、LiMn204(85wt%)を用いた。導電助剤として、アセチレンブラック(5wt%)を用いた。バインダーとして、PVDF(10wt%)を用いた。スラリー粘度調整溶媒として、NMPを用い、これにより塗布のための粘度調整を実施した。樹脂集電体60の片面に上記のスラリーを塗布し、乾燥させて正極65を作製した。
<負極の作製>
以下の材料を所定の比で混合して負極材料を作製した。
正極活物質として、ハードカーボン(85wt%)を用いた。導電助剤として、アセチレンブラック(5wt%)を用いた。バインダーとして、PVDF(10wt%)を用いた。スラリー粘度調整溶媒として、NMPを用い、これにより塗布のための粘度調整を実施した。樹脂集電体60の片面に上記のスラリーを塗布し、乾燥させて樹脂集電体60の第1の面61に正極65、第2の面62に負極67を塗布した双極型電極50を完成させた。
<電解質材料の作製>
電解液としてポリカーボネートとエチレンカーボネートを1:1で混合し、リチウム塩には1MLiPF6(90wt%)を用いて電解質材料を作製した。
<シールアッシーの作製>
第1のシール材81には硬化反応前の熱硬化性樹脂であるエポキシ樹脂を用いた。第2のシール材82にはポリエチレンとポリプロピレンを混合した熱可塑性樹脂を用いた。第1のシール材81と第2のシール材82を積層して、加熱することによって2層構造のシールアッシー80を作製した。温度条件を80℃とし、圧力条件を0.2MPaとし、10秒間加熱した。
<集電体アッシーの作製>
正極65、および負極67を形成した樹脂集電体60にシールアッシー80を接合させて、集電体アッシー90を作製した。樹脂集電体60の四辺の外周に沿ってシールアッシー80を重ねた状態で加熱し、第1のシール材81を硬化させて接合した。温度条件を140℃とし、圧力条件を1.0MPaとし、15分間加熱した。
<シール部の形成>
集電体アッシー60とセパレータ70を交互に複数積層して発電要素20を形成した。樹脂集電体60に重ねたシールアッシー80のうち、三辺に熱プレスを実施した。熱プレスによってシールアッシー80の第2のシール材82同士を融着させて袋状にシールした。シールをしてない一辺から電解質材料を注入した。
その後、残りの一辺を熱プレスによって融着させてシールしてシール部88を形成した。第2のシール材82の融着は、温度条件を200℃とし、圧力条件を0.2MPaとし、1分間実施した。
<双極型電池の作製>
シール部88を形成した発電要素にA1版の大きさを備えた強電集電板57を接続させた。強電集電板57が備える引き出し部を、発電要素20の投影面外部へ引き出して配置した。強電集電板57は、発電要素20を挟み込むように最外層に位置する樹脂集電体60a、60bのそれぞれに接続させた。
発電要素20、および強電集電板57をアルミラミネート55によって覆わせて真空密閉し、発電要素20全体を大気圧によって押圧した。強電集電板57−発電要素20間の接触が加圧によって高められた双極型電池10を完成させた。
次に、製造した双極型電池の評価試験について説明する。
<双極型電池の評価試験>
上記の手順によって製造した双極型電池10について、以下の方法により性能評価を行った。
25℃の雰囲気下、定電流方式(CC、電流:0.5C)で4.2Vまで充電し、10分間休止させた後、定電流方式(CC、電流0.5C)で2.5Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクルとして、50サイクルの充放電試験を行った。
比較例として、熱可塑性樹脂からなる従来のホットメルトタイプのシール材を利用したシール構造を備える双極型電池を準備した。シール材、およびシール構造以外は、本実施例に係る工程と同様の手順によって作製した。比較例について上記の充放電試験を実施し、本実施例の試験結果と比較検討した。
本実施例に係る双極型電池10にあっては、50サイクル後に90%以上の容量維持率を示した。一方、比較例にあっては、充放電試験の初期にシール材の剥離による電解液の漏れが発生し、放電維持率が著しく低下した。本実施例に係る双極型電池10は、従来のシール構造を備える双極型電池と比較して、シール部88のシール性が向上するため、サイクル特性が向上するという結果が示された。
10 双極型電池、
20 発電要素、
30 単電池層、
40 積層体、
50 双極型電極、
60 樹脂集電体、
60a、60b 最外層に位置する樹脂集電体、
61 第1の面(一方の面)、
62 第2の面(他方の面)、
63 外周部、
65 正極(電極)、
67 負極(電極)、
70 セパレータ、
80 シールアッシー
81 第1のシール材、
82 第2のシール材、
83 第3のシール材、
85 シール構造、
88 シール部、
90 集電体アッシー。

Claims (6)

  1. 硬化反応前の熱硬化性樹脂からなる第1のシール材と熱可塑性樹脂からなる第2のシール材とを少なくとも積層する工程と、
    前記第1のシール材の硬化反応が生じる温度よりも低い温度によって前記第1のシール材、および前記第2のシール材を加熱し、前記第1のシール材と前記第2のシール材を接合させて、シールアッシーを作製する工程と、
    硬化反応後の熱硬化性樹脂を含む樹脂集電体において電極が形成された面の外周部に前記第1のシール材を向かい合わせて、前記シールアッシーを重ねる工程と、
    前記第1のシール材の硬化反応が生じる温度によって前記シールアッシー、および前記樹脂集電体を加熱し、前記シールアッシーの前記第1のシール材を前記樹脂集電体に接合させて、前記シールアッシーと前記樹脂集電体との間をシールした集電体アッシーを作製する工程と、を含む双極型電池のシール構造の製造方法。
  2. 前記シールアッシーを重ねる工程において、前記樹脂集電体において正極が形成された一方の面の外周部、および負極が形成された他方の面の外周部のそれぞれに、前記シールアッシーを重ね、
    前記集電体アッシーを作製する工程において、前記樹脂集電体の前記一方の面、および前記他方の面のそれぞれに、前記シールアッシーの前記第1のシール材を接合させる、請求項1に記載の双極型電池のシール構造の製造方法。
  3. 請求項2に記載された方法によって作製された集電体アッシーに、電解質が浸透するポーラス状のセパレータを重ねて、積層体を形成する工程と、
    複数の前記積層体を、前記第2のシール材同士を向かい合わせて積層する工程と、
    前記第2のシール材の融点よりも高い温度によって前記シールアッシー、および前記樹脂集電体を加熱し、前記第2のシール材同士を融着させる工程と、を含む双極型電池の製造方法。
  4. 熱硬化性樹脂を含む樹脂集電体と、
    熱硬化性樹脂からなる第1のシール材と熱可塑性樹脂からなる第2のシール材とを接合して形成されたシールアッシーと、を有し、
    前記樹脂集電体に前記シールアッシーの前記第1のシール材が接合され、前記シールアッシーと前記樹脂集電体との間がシールされた、双極型電池のシール構造。
  5. 前記樹脂集電体において正極が形成された一方の面、および負極が形成された他方の面のそれぞれに、前記第1のシール材を介して前記シールアッシーがそれぞれ接合された、請求項4に記載の双極型電池のシール構造。
  6. 請求項5に記載されたシール構造を有する双極型電池であって、
    前記樹脂集電体に電解質が浸透するポーラス状のセパレータを重ねた積層体と、
    複数の前記積層体を、前記第2のシール材同士を向かい合わせて積層させた発電要素と、を有し、
    前記第2のシール材同士が融着してシールされた、双極型電池。
JP2010078740A 2010-03-30 2010-03-30 双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池 Active JP5533137B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010078740A JP5533137B2 (ja) 2010-03-30 2010-03-30 双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池
CN201180003838.0A CN102511103B (zh) 2010-03-30 2011-02-07 双极型电池的密封构造的制造方法、双极型电池的制造方法、双极型电池的密封构造以及双极型电池
EP11762351.2A EP2557625B1 (en) 2010-03-30 2011-02-07 Process for production of seal structure for bipolar battery, process for production of bipolar battery, seal structure for bipolar battery, and bipolar battery
KR1020127006650A KR101269362B1 (ko) 2010-03-30 2011-02-07 쌍극형 전지의 시일 구조의 제조 방법, 쌍극형 전지의 제조 방법, 쌍극형 전지의 시일 구조 및 쌍극형 전지
PCT/JP2011/052540 WO2011122110A1 (ja) 2010-03-30 2011-02-07 双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池
US13/395,944 US8691431B2 (en) 2010-03-30 2011-02-07 Method of producing sealing structure of bipolar battery, method of manufacturing bipolar battery, sealing structure of bipolar battery, and bipolar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078740A JP5533137B2 (ja) 2010-03-30 2010-03-30 双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池

Publications (2)

Publication Number Publication Date
JP2011210635A true JP2011210635A (ja) 2011-10-20
JP5533137B2 JP5533137B2 (ja) 2014-06-25

Family

ID=44711855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078740A Active JP5533137B2 (ja) 2010-03-30 2010-03-30 双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池

Country Status (6)

Country Link
US (1) US8691431B2 (ja)
EP (1) EP2557625B1 (ja)
JP (1) JP5533137B2 (ja)
KR (1) KR101269362B1 (ja)
CN (1) CN102511103B (ja)
WO (1) WO2011122110A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080853A1 (ja) * 2012-11-22 2014-05-30 株式会社カネカ 双極型リチウムイオン二次電池用集電体および双極型リチウムイオン二次電池
CN105390629A (zh) * 2015-10-28 2016-03-09 广东烛光新能源科技有限公司 一种电化学电池及其制备方法
JP2017016826A (ja) * 2015-06-30 2017-01-19 日産自動車株式会社 二次電池
JP2019079677A (ja) * 2017-10-24 2019-05-23 株式会社豊田自動織機 蓄電モジュール
JP2019145408A (ja) * 2018-02-22 2019-08-29 株式会社豊田自動織機 蓄電装置の製造方法
WO2019198453A1 (ja) * 2018-04-09 2019-10-17 日産自動車株式会社 電池の製造方法
JP2019207840A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 全固体電池
WO2022181460A1 (ja) * 2021-02-25 2022-09-01 三菱瓦斯化学株式会社 樹脂組成物並びにそれを用いた塗膜及び電解液

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993710B1 (fr) * 2012-07-17 2014-08-15 Commissariat Energie Atomique Batterie li-ion bipolaire a etancheite amelioree et procede de realisation associe
FR3006116B1 (fr) * 2013-05-21 2015-06-26 Commissariat Energie Atomique Batterie li-on bipolaire a etancheite amelioree et procede de realisation associe.
US10553854B2 (en) * 2013-09-26 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
US9752001B2 (en) * 2013-12-02 2017-09-05 Dexerials Corporation Ion conductive film, polymer element, electronic device, camera module, and imaging device
CN106165164B (zh) * 2014-04-18 2019-01-22 宇部兴产株式会社 电极的制造方法
JP6659254B2 (ja) * 2015-06-30 2020-03-04 日産自動車株式会社 二次電池およびその製造方法
CN107946597A (zh) * 2017-10-22 2018-04-20 北京卫蓝新能源科技有限公司 一种高分子膜集流体及锂离子电池
DE102018201693A1 (de) * 2018-02-05 2019-08-08 Thyssenkrupp Ag Bipolarbatteriezellen-Stapel und Verfahren zu seiner Herstellung
HUE065808T2 (hu) 2018-05-30 2024-06-28 Bosch Gmbh Robert Akkumulátor, beleértve a bipoláris elemeket, amelyek szélszigetelõ eszközzel van tartókeretben
JP6956895B2 (ja) * 2018-09-25 2021-11-02 株式会社豊田自動織機 蓄電モジュール及びその製造方法
DE102020004787A1 (de) 2020-07-16 2022-01-20 Michael Roscher Bipolarbatterie mit Dichtungssystem
CN115911396A (zh) * 2021-09-30 2023-04-04 比亚迪股份有限公司 集流体、电极片以及集流体的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158343A (ja) * 2002-11-07 2004-06-03 Nissan Motor Co Ltd バイポーラ電池
JP2004319156A (ja) * 2003-04-14 2004-11-11 Nissan Motor Co Ltd バイポーラ電池
JP2007122881A (ja) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd バイポーラ電池、組電池及びそれらの電池を搭載した車両
JP2008097940A (ja) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd 双極型二次電池
JP2010067581A (ja) * 2008-09-12 2010-03-25 Nissan Motor Co Ltd 電極およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098150B2 (ja) 2004-12-07 2012-12-12 日産自動車株式会社 バイポーラ電池およびその製造方法
JP4635589B2 (ja) * 2004-12-08 2011-02-23 日産自動車株式会社 バイポーラ電池、組電池、複合電池およびこれらを搭載した車両
EP1841001B1 (en) * 2004-12-10 2018-09-05 Nissan Motor Co., Ltd. Bipolar battery
EP2116360A1 (en) * 2008-05-09 2009-11-11 Quatee AS Method for combination of a thermoset composite and a thermoplastic for edge sealing of distinct forms
JP2010078740A (ja) 2008-09-25 2010-04-08 Fujitaka Kogyo:Kk 廃棄紙再生用の処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158343A (ja) * 2002-11-07 2004-06-03 Nissan Motor Co Ltd バイポーラ電池
JP2004319156A (ja) * 2003-04-14 2004-11-11 Nissan Motor Co Ltd バイポーラ電池
JP2007122881A (ja) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd バイポーラ電池、組電池及びそれらの電池を搭載した車両
JP2008097940A (ja) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd 双極型二次電池
JP2010067581A (ja) * 2008-09-12 2010-03-25 Nissan Motor Co Ltd 電極およびその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014080853A1 (ja) * 2012-11-22 2017-01-05 株式会社カネカ 双極型リチウムイオン二次電池用集電体および双極型リチウムイオン二次電池
WO2014080853A1 (ja) * 2012-11-22 2014-05-30 株式会社カネカ 双極型リチウムイオン二次電池用集電体および双極型リチウムイオン二次電池
JP2017016826A (ja) * 2015-06-30 2017-01-19 日産自動車株式会社 二次電池
CN105390629A (zh) * 2015-10-28 2016-03-09 广东烛光新能源科技有限公司 一种电化学电池及其制备方法
JP2019079677A (ja) * 2017-10-24 2019-05-23 株式会社豊田自動織機 蓄電モジュール
JP7024492B2 (ja) 2018-02-22 2022-02-24 株式会社豊田自動織機 蓄電装置の製造方法
JP2019145408A (ja) * 2018-02-22 2019-08-29 株式会社豊田自動織機 蓄電装置の製造方法
WO2019198453A1 (ja) * 2018-04-09 2019-10-17 日産自動車株式会社 電池の製造方法
EP3780214A4 (en) * 2018-04-09 2021-05-05 Nissan Motor Co., Ltd. MANUFACTURING PROCESS FOR A BATTERY
JP2019186002A (ja) * 2018-04-09 2019-10-24 日産自動車株式会社 電池の製造方法
JP7209475B2 (ja) 2018-04-09 2023-01-20 日産自動車株式会社 電池の製造方法
US11658343B2 (en) 2018-04-09 2023-05-23 Nissan Motor Co., Ltd. Battery manufacturing method
JP2019207840A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 全固体電池
JP7085127B2 (ja) 2018-05-30 2022-06-16 トヨタ自動車株式会社 全固体電池
WO2022181460A1 (ja) * 2021-02-25 2022-09-01 三菱瓦斯化学株式会社 樹脂組成物並びにそれを用いた塗膜及び電解液

Also Published As

Publication number Publication date
EP2557625A1 (en) 2013-02-13
EP2557625B1 (en) 2017-06-21
CN102511103A (zh) 2012-06-20
KR20120041804A (ko) 2012-05-02
KR101269362B1 (ko) 2013-05-29
CN102511103B (zh) 2014-10-15
WO2011122110A1 (ja) 2011-10-06
US20120171567A1 (en) 2012-07-05
US8691431B2 (en) 2014-04-08
JP5533137B2 (ja) 2014-06-25
EP2557625A4 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5533137B2 (ja) 双極型電池のシール構造の製造方法、双極型電池の製造方法、双極型電池のシール構造、および双極型電池
JP5333576B2 (ja) 双極型二次電池及びその製造方法
JP5365619B2 (ja) バイポーラ電池
JP5200367B2 (ja) 双極型電池用電極
KR101419572B1 (ko) 바이폴라 전극쌍/분리막 어셈블리, 이를 포함하는 바이폴라 전지, 및 이들의 제조방법
JP5381078B2 (ja) 電極およびその製造方法
JP5585622B2 (ja) バイポーラ電池の製造方法
KR20160134761A (ko) 시트 적층형 리튬 이온 2차 전지 및 시트 적층형 리튬 이온 2차 전지의 제조 방법
JP2004158343A (ja) バイポーラ電池
JP2007122977A (ja) 電池モジュール、および組電池
JP2010073421A (ja) 双極型電極およびその製造方法
CN111095605B (zh) 锂离子电池用隔离件
JP2007213930A (ja) バイポーラ電池、組電池およびこれらを搭載した車両
JP2005190713A (ja) バイポーラ電池およびその製造方法。
JP6726004B2 (ja) リチウムイオン二次電池
JP2007095653A (ja) バイポーラ電池、およびバイポーラ電池の製造方法
JP4042613B2 (ja) バイポーラ電池
JP2011048967A (ja) 積層型二次電池および製造方法
JP2010244943A (ja) 双極型二次電池
JP5463997B2 (ja) 電池要素体並びに電池部品製造装置及び電池部品製造方法
JP2013157334A (ja) 非水電解質二次電池
JP2012253000A (ja) 電極
JP2012256616A (ja) バイポーラ電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5533137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414