JP2011189407A - レーザ溶接装置およびレーザ溶接方法 - Google Patents

レーザ溶接装置およびレーザ溶接方法 Download PDF

Info

Publication number
JP2011189407A
JP2011189407A JP2011024491A JP2011024491A JP2011189407A JP 2011189407 A JP2011189407 A JP 2011189407A JP 2011024491 A JP2011024491 A JP 2011024491A JP 2011024491 A JP2011024491 A JP 2011024491A JP 2011189407 A JP2011189407 A JP 2011189407A
Authority
JP
Japan
Prior art keywords
laser
laser beam
intensity
ultrasonic
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011024491A
Other languages
English (en)
Other versions
JP5570451B2 (ja
Inventor
Takesato Urashima
毅吏 浦島
Masahiro Mori
正裕 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011024491A priority Critical patent/JP5570451B2/ja
Publication of JP2011189407A publication Critical patent/JP2011189407A/ja
Application granted granted Critical
Publication of JP5570451B2 publication Critical patent/JP5570451B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】非破壊で溶接部の溶け込み量を定量的に計測して、溶接品質を評価することができるレーザ溶接装置を提供する。
【解決手段】レーザ溶接装置100は、(a)一定強度のレーザ光を、レーザ光の強度にピークが発生するように変調して、溶接部102に照射し、(b)ピークに応じて溶接部102に発生した超音波105を圧電素子115で検出し、(c)レーザ光の変調時間と照射位置と、超音波105の検出位置と検出時間とに基づいて、溶接部102の溶け込み量を算出し、(d)溶け込み量に基づいて、溶接の良否を判定する。
【選択図】図1

Description

本発明は、レーザ光を用いて溶接する際に溶接部の品質を評価するレーザ溶接装置に関し、特に、溶け込み深さやレーザ出力などを監視することで品質を評価するレーザ溶接装置に関する。
従来のレーザ溶接装置として、溶接部の溶融金属が発する光を用いて、溶接品質を評価する装置(以下、一例目の装置と呼称する。)がある(例えば、特許文献1参照。)。
具体的には、図14に示すように、一例目の装置では、レーザ発振器11から一定強度で連続的に出力されたレーザ光が、レーザ光伝送用光学系12を介して集光光学系13に伝送されて、集光光学系13で集光される。集光光学系13で集光されたレーザ光は、被溶接材1の溶接に供される。被溶接材1の溶接の際に、溶接部2の溶融金属が光を発する。溶接部2の溶融金属が発した光が、集光光学系13で集光されて、モニタ光伝送用光学系14を介して干渉フィルタ15に伝送される。干渉フィルタ15に伝送された光のうち、溶接部2の溶融金属が発した光や、集光光学系13から出力されるレーザ光などの特定の波長成分が、干渉フィルタ15で選択される。干渉フィルタ15で選択された光がフォトダイオード16で受光される。受光された光の強度に応じた信号がフォトダイオード16から出力される。フォトダイオード16から出力された信号が、アンプ17、A/D変換器18を介してコンピュータ19に入力されて、コンピュータ19で処理される。溶接部2の溶融金属が発した光や集光光学系13から出力されるレーザ光の強度が溶け込み量に比例するとして、コンピュータ19で溶接のモニタリングが行われている。
また、従来のレーザ溶接装置として、アコースティックエミッションセンサ(以下、AEセンサと呼称する。)を用いて、溶接品質を評価する装置(以下、二例目の装置と呼称する。)もある(例えば、特許文献2参照。)。
具体的には、図15に示すように、二例目の装置では、集光光学系23にAEセンサ24が取り付けられている。被溶接材1の溶接の際に、レーザ光の出力、レーザ光の焦点位置、シールドガスの流量、アシストガスの流量などの影響を受け、正常時と異常時とで波形が異なる信号がAEセンサ24から出力される。AEセンサ24から出力された信号が、アンプ25、A/D変換器26を介してコンピュータ27に入力されて、コンピュータ27で処理される。AEセンサ24から出力された信号の波形が正常時の波形に近づく(正常時の波形に一致する)ように、コンピュータ27で溶接条件が制御される。
特開2006−159242号公報 特開平6−155056号公報
しかしながら、一例目の装置では、直接溶け込み量を検出しているのではなく、溶接部2の温度やレーザ光の出力から得られたデータを間接的に溶け込み量に換算している。このため、被溶接材1の材質のばらつきや周囲の温度など、他の要因によって、換算結果にばらつきが生じるという課題を有している。
また、二例目の装置では、波形の一致度を評価している。このため、溶接品質として重要な溶け込み量を定量的に評価することができないという課題を有している。
そこで、本発明は、上記課題を解決し、非破壊で溶接部の溶け込み量を定量的に計測して、溶接品質を評価することができるレーザ溶接装置およびレーザ溶接方法を提供することを目的とする。
上記目的を達成するために、本発明に係わるレーザ溶接装置は、下記に示す特徴を備える。
すなわち、本発明に係わるレーザ溶接装置は、(a)レーザ光で溶接部を溶接するレーザ溶接装置であって、(b)強度にピークを有するレーザ光を前記溶接部に照射するレーザ出力手段と、(c)前記レーザ出力手段で照射されたレーザ光により前記溶接部から発生した超音波を検出する超音波検出手段と、(d)前記超音波検出手段で検出された超音波の波形に基づいて、前記溶接部の溶け込み量を算出する算出手段と、(e)前記算出手段で算出された溶け込み量に基づいて、前記溶接部の溶接品質を評価する評価手段とを備える。
また、本発明は、レーザ溶接装置の代わりに、下記に示す特徴を備えるレーザ溶接方法として実現されるとしてもよい。
すなわち、本発明に係わるレーザ溶接方法は、(a)レーザ光で溶接部を溶接するレーザ溶接方法であって、(b)強度にピークを有するレーザ光を前記溶接部に照射する第1の工程と、(c)前記第1の工程で照射されたレーザ光により前記溶接部から発生した超音波を検出する第2の工程と、(d)前記第2の工程で検出された超音波の波形に基づいて、前記溶接部の溶け込み量を算出する第3の工程と、(e)前記第3の工程で算出された溶け込み量に基づいて、前記溶接部の溶接品質を評価する第4の工程とを含む。
本発明によれば、変調後のレーザ光で発生させた超音波を超音波検出手段で検出することによって、溶接部の溶け込み量を定量的に検出することができ、非破壊で溶接品質の保証を定量的に行うことが可能である。
実施の形態1におけるレーザ溶接装置の概要を示す図 実施の形態1における変調後のレーザ光の強度(パルス波)を示す図 実施の形態1におけるレーザ溶接装置を示す図 実施の形態1におけるレーザ光の強度の時間変化と超音波の振幅の時間変化とを示す図 実施の形態1におけるレーザ溶接処理を示す図 実施の形態1における溶け込み量のデータを示す図 実施の形態1におけるレーザ溶接装置の変形例を示す図 実施の形態1における変調後のレーザ光の強度の変形例(バースト波)を示す図 実施の形態1における変調後のレーザ光の強度の変形例(チャープ波)を示す図 実施の形態2におけるレーザ溶接装置を示す図 実施の形態2における光結合素子の構造を示す図 実施の形態3における変調後のレーザ光の強度(正弦波)を示す図 実施の形態3におけるレーザ光の強度の時間変化と超音波の振幅の時間変化とを示す図 従来における一例目のレーザ溶接装置の概要を示す図 従来における二例目のレーザ溶接装置の概要を示す図
以下、本発明に係わる実施の形態について、図面を参照しながら説明する。なお、図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示している。
(実施の形態1)
以下、本発明に係わる実施の形態1について、図面を参照しながら説明する。なお、同じ構成要素には同じ符号を付して説明を省略する場合もある。
<概要>
図1に示すように、本実施の形態におけるレーザ溶接装置100では、水平方向(X方向)に延在する被溶接材101の溶接部102を溶接するにあたり、垂直方向(Z方向)から被溶接材101の上面にレーザ光が照射される。溶接部102が上部から溶融し、溶融池103が形成される。溶融池103が形成されると共に、溶融池103から溶融金属が蒸発し、蒸発時の蒸気の圧力によってキーホール104が形成される。このとき、溶融池103の底部を照射するレーザ光の強度を、図2に示すように、所定のパルス幅で一瞬増加するように変調すると、溶融池103の底部が、瞬間的に、熱膨張、もしくは、アブレーションを起こす。これに伴い、図1に示すように、所定のパルス幅と同程度のパルス幅を有する超音波105が溶融池103の底部で発生する。発生した超音波105が被溶接材101の内部を伝搬する。伝搬した超音波105の一部が、被溶接材101の上面に設置された圧電素子115で検出される。集光光学系114の位置から特定される溶接部102の位置と、圧電素子115の設置位置から特定される超音波105の検出位置と、レーザ光が変調された時間と、超音波が検出された時間とに基づいて、溶接部102の溶け込み量が特定される。特定された溶け込み量に基づいて、溶接部102の良否が判定される。
<レーザ溶接装置>
具体的には、図3に示すように、レーザ溶接装置100では、レーザ発振器111から一定強度で連続的に出力されたレーザ光が光変調素子112で変調される。光変調素子112で変調されたレーザ光が、レーザ光伝送用光学系113を介して集光光学系114に伝送されて、集光光学系114で集光される。集光光学系114で集光されたレーザ光が被溶接材101の溶接に供される。被溶接材101の溶接の際に、レーザ光の変調に応じた超音波105が溶接部102から発生する。溶接部102から発生した超音波105が圧電素子115で検出される。検出された超音波105の波形に応じた信号が圧電素子115から出力される。圧電素子115から出力された信号が、アンプ116、A/D変換器117を介してコンピュータ118に入力されて、コンピュータ118で処理される。
<レーザ発振器111>
レーザ発振器111は、コンピュータ118と接続されており、コンピュータ118から出力される指令に応じて、レーザ光の出力開始/出力停止、レーザ光の出力強度などが制御される。例えば、レーザ光の出力開始の指令を受信すると、レーザ光の出力を開始する。レーザ光の出力停止の指令を受信すると、レーザ光の出力を停止する。レーザ光の強度変更の指令を受信すると、受信した指令に設定された強度にレーザ光の出力強度を変更する。
<光変調素子112>
光変調素子112は、信号発生器119と接続されており、信号発生器119から高周波信号を受信している間、レーザ発振器111から出力されたレーザ光の強度を変調する。このとき、図2に示すように、レーザ発振器111から一定強度で出力されたレーザ光の強度に、パルス波を発生させるように変調する。
<信号発生器119>
信号発生器119は、トリガ発生器120と接続されており、トリガ発生器120からトリガ信号を受信すると、瞬間的に、高周波信号を出力する。
<トリガ発生器120>
トリガ発生器120は、コンピュータ118と接続されており、コンピュータ118からトリガ信号の出力の指令を受信すると、信号発生器119とA/D変換器117とにトリガ信号を同時に出力する。レーザ光の変調時機と超音波の検出時機とを同期させる。
<A/D変換器117>
A/D変換器117は、トリガ発生器120と接続されており、トリガ発生器120からトリガ信号を受信すると、アンプ116から出力された超音波波形の信号をアナログからデジタルに変換して出力する。
<補足>
なお、集光光学系114は、ステージコントローラ121からの指令に基づいて移動する移動ステージ122に接続されている。
なお、空気層による超音波の減衰を防ぐために、被溶接材101と圧電素子115との間を、グリースなどのカップリング材で満たすことが望ましい。また、超音波の伝搬方向が垂直方向(図1に示すZ方向)に近付く程、検出感度が高まることから、圧電素子115の位置が、溶接の影響を受けない範囲で溶接部102に近い方が望ましい。
なお、溶接部102の溶け込み量をコンピュータ118で算出するにあたり、1mm以下の分解能を得る場合には、圧電素子115で検出される超音波の波長を1mm以下にする必要がある。通常、金属中の音速は、4000m/s〜6000m/s程度である。これを踏まえると、超音波の周波数は、5MHzになる。すなわち、5MHz以上の周波数でレーザ光の強度が変調される必要がある。このため、光変調素子112については、電気光学効果を利用した電気光学素子または音響光学効果を利用した音響光学素子を使用することが望ましい。また、圧電素子115、アンプ116、A/D変換器117については、5MHz以上の超音波を検出するために、5MHz以上の周波数帯域についても検出感度を有するものを使用することが望ましい。トリガ発生器120については、0.2μ秒以下の精度で、トリガ信号を出力することができるものが望ましい。
<溶け込み量>
次に、溶接部102の溶け込み量について説明する。図4では、光変調素子112から出力されたレーザ光の強度の時間変化を示すグラフを上側に示し、圧電素子115で検出された超音波の振幅の時間変化を示すグラフを下側に示している。時間を合わせた状態で、これらのグラフが並べられている。
図4に示すように、トリガ発生器120からトリガ信号が出力されてから、レーザ光の強度のパルス波区間に対応する超音波の振幅のパルス波区間がコンピュータ118で受信されるまでに、タイムラグが存在する。このタイムラグは、主に、光変調遅延時間、超音波伝搬時間、超音波検出遅延時間からなる。ここで、光変調遅延時間とは、トリガ発生器120がトリガ信号を発生してから、信号発生器119を介して、光変調素子112に、レーザ光を変調させるまでの時間である。超音波伝搬時間とは、溶融池103の底部で発生した超音波が被溶接材101を伝搬して圧電素子115に達するまでの時間である。超音波検出遅延時間とは、圧電素子115で検出された超音波が信号に変換され、アンプ116、A/D変換器117により波形データに変換されるまでの時間である。
この3つの時間のうち、光変調遅延時間と超音波検出遅延時間とは、レーザ溶接装置100のシステムが決まれば、一定である。このため、校正により、これらの時間を特定することができる。そして、特定した光変調遅延時間と超音波検出遅延時間とをタイムラグから差し引くことで、超音波伝搬時間が特定される。
すなわち、トリガ信号の出力の指令をトリガ発生器120に出力した時間(図中のトリガ信号出力時間)と光変調遅延時間とからレーザ光の変調時間が特定される。A/D変換器117から出力された超音波波形の信号をコンピュータ118が受信した時間(図中の超音波受信時間)と超音波検出遅延時間とから超音波の検出時間が特定される。特定されたレーザ光の変調時間と超音波の検出時間とから超音波伝搬時間が特定される。
ここで、超音波が被溶接材101を伝搬する時間をTとし、超音波が被溶接材101を伝搬する速度をVとする。また、図1に示すように、キーホール104の深さをDとし、溶接位置から圧電素子115までの水平距離をL1とし、キーホール104の底部から圧電素子115までの直線距離をL2とする。この場合において、下記の式(1)に基づいて、超音波伝搬時間Tと超音波伝搬速度Vとから、直線距離L2が特定される。
Figure 2011189407
さらに、溶接部102の位置から圧電素子115の設置位置までの水平距離L1が、圧電素子115の設置位置と移動ステージ122の位置とで特定される。このことから、下記の式(2)に基づいて、水平距離L1と直線距離L2とから、キーホール104の深さDが特定される。
Figure 2011189407
ここで、キーホール104の底がほぼ溶接部102の底に相当する。すなわち、キーホール104の深さDが溶け込み量に相当する。
<レーザ溶接処理>
次に、レーザ溶接装置の動作について説明する。
図5に示すように、コンピュータ118は、下記(ステップS101)から(ステップS110)までのレーザ溶接処理を実行する。
まず、コンピュータ118は、移動ステージ122の移動開始の指令をステージコントローラ121に出力する。ステージコントローラ121を介して、移動ステージ122に取り付けられている集光光学系114の移動を開始させる(ステップS101)。集光光学系114が溶接開始位置に来たときに、レーザ光の出力開始の指令をレーザ発振器111に出力する。レーザ発振器111に、レーザ光の出力を開始させる(ステップS102)。
次に、コンピュータ118は、トリガ信号の出力の指令をトリガ発生器120に出力する。トリガ発生器120を介して、光変調素子112に、信号発生器119から出力された信号に応じて、レーザ発振器111から出力されたレーザ光の強度を変調させる(ステップS103)。トリガ発生器120を介して、A/D変換器117に、圧電素子115で検出されてアンプ116で増幅された超音波波形の信号を、アナログからデジタルに変換させて、変換させて得られた超音波波形の信号を出力させる(ステップS104)。A/D変換器117から出力された超音波波形の信号を受信する。予め設定されている溶接部102の位置と、圧電素子115の設置位置と、レーザ光の変調時間と、超音波の検出時間とから溶け込み量を算出する(ステップS105)。算出した溶け込み量と予め記憶している所望の溶け込み量とを比較して、それらの差が小さくなるレーザ光の強度を特定する。特定した強度を設定したレーザ光の強度変更の指令をレーザ発振器111に出力する。レーザ発振器111に、特定したレーザ光の強度にレーザ光の出力強度を変更させる(ステップS106)。集光光学系114が所定の溶接終端位置に到達するまで、ステップS103からステップS106までの処理を繰り返す。
次に、コンピュータ118は、集光光学系114が溶接終端位置に到達したときに(ステップS107:Yes)、レーザ光の出力停止の指令をレーザ発振器111に出力する。レーザ発振器111に、レーザ光の出力を停止させる(ステップS108)。移動ステージ122の移動停止の指令をステージコントローラ121に出力する。ステージコントローラ121を介して、移動ステージ122を所定の位置まで移動させ、移動ステージ122に取り付けられている集光光学系114の移動を停止させる(ステップS109)。
次に、コンピュータ118は、溶け込み量のデータから溶接部102の品質を評価する(ステップS110)。例えば、溶接部102の良否を判定する場合には、図6に示すように、溶け込み量のデータ(図中の黒点)に対して、閾値th1以下のデータが1個でもある場合、または、閾値th2以下のデータが所定数以上ある場合には、不良と判定する。
<まとめ>
以上、本実施の形態によれば、変調後のレーザ光で発生させた超音波を圧電素子115で検出することによって、溶け込み量を定量的に検出することができ、非破壊で溶接品質の保証を定量的にすることができる。また、溶接中に溶け込み量をモニタリングすることができるので、モニタリングした溶け込み量をもとにレーザ光強度を制御することによって、高い品質の溶接を行うこともできる。特に、非破壊で溶接品質の保証をする機能を有することから、自動車や電子部品等のレーザ溶接装置として適用することができる。
<その他>
なお、図7に示すように、圧電素子115の代わりに、光干渉計125を使用して超音波105を検出するとしてもよい。具体的には、光干渉計125から出力された光が超音波の検出位置(圧電素子115の設置位置)に照射される。超音波の検出位置に照射された光が被溶接材101の上面で反射される。このとき、超音波105によって被溶接材101の上面が振動すると、被溶接材101の上面の振動に応じて、被溶接材101の上面で反射された光が位相や周波数で変調される。変調された光が、光干渉計125に入射し、光干渉計125で信号に変換される。これによって、非接触で超音波を検出することができる。このことから、溶接部102の位置から光干渉計125の照射位置までの水平距離L1を一定にすることができる。光干渉計125を溶接部102に近づけることができる。計測精度を高くすることができる。
なお、図8に示すように、レーザ発振器111から一定強度で出力されたレーザ光が、レーザ光の強度にバースト波を発生させるように、光変調素子112で変調されるとしてもよい。これによって、レーザ光の強度に複数のピークを発生させることができ、各ピークの幅を狭くすることができる。このことから、分散によるピーク波形の変形が少なくなり、平均化によってS/N比が高くなる。これに伴い、タイムラグの算出精度を高めることができる。
なお、図9に示すように、レーザ発振器111から一定強度で出力されたレーザ光が、レーザ光の強度にチャープ波を発生させるように、光変調素子112で変調されるとしてもよい。これによって、レーザ光の強度に複数のピークを発生させることができ、複数のピークに対して自己相関処理を適用することができる。これに伴い、タイムラグの算出精度を高めることができる。
(実施の形態2)
以下、本発明に係わる実施の形態2について、図面を参照しながら説明する。なお、実施の形態1と同一の構成要素については、同一の参照符号を付して、説明を省略する。
<レーザ溶接装置>
ここでは、一例として、図10に示すように、レーザ溶接装置200では、レーザ発振器111と別に超音波発生用レーザ発振器211を備える。超音波発生用レーザ発振器211から出力されたレーザ光が光変調素子112で変調される。光変調素子112で変調されたレーザ光が、レーザ発振器111から出力されたレーザ光と光結合素子212で結合される。光結合素子212で結合された、これらのレーザ光が、レーザ光伝送用光学系113を介して集光光学系114に伝送されて、集光光学系114で集光される。
ここで、光結合素子212は、偏光ビームスプリッタである。光結合素子212については、図11に示すように、レーザ発振器111から出力されたレーザ光と超音波発生用レーザ発振器211から出力されたレーザ光との偏光方向を互いに直交させ、ほぼ100%の結合効率を得るものが望ましい。
<まとめ>
以上、本実施の形態によれば、高出力のレーザ発振器111と低出力の超音波発生用レーザ発振器211とを併用することで、効率良くエネルギーを使用することができる。
なお、超音波発生用レーザ発振器211と光変調素子112との代わりに、パルスレーザを発振するものを使用するとしてもよい。
なお、偏光ビームスプリッタの代わりに、ダイクロイックミラーを使用するとしてもよい。
(実施の形態3)
以下、本発明に係わる実施の形態3について、図面を参照しながら説明する。本実施の形態3におけるレーザ溶接装置の構成は実施の形態1におけるレーザ溶接装置100と同じである。レーザ光の強度を変調する方法、及び、溶け込み量の算出方法が、実施の形態1におけるレーザ溶接装置100と異なる。そこで、図3に示したレーザ溶接装置100を用いて、本実施の形態3におけるレーザ溶接装置に特有の作用、効果について説明する。
<実施の形態1との違いの概要>
実施の形態1におけるレーザ溶接装置100では、光変調素子112にて、パルス波、バースト波、チャープ波等にレーザ光を変調し、その変調後のレーザ光を照射した被溶接材101から発生する超音波を検出する。この場合、レーザ光が変調された時間と、超音波が検出された時間とに基づいて、溶接部102の溶け込み量が特定される。
一方、本実施の形態3におけるレーザ溶接装置では、光変調素子112にて、一定周波数かつ、位相が既知の正弦波にレーザ光を変調し、その変調後のレーザ光を照射した被溶接材101から発生する超音波を検出する。この場合、変調後のレーザ光の位相と、検出された超音波の位相とに基づいて、溶接部102の溶け込み量が特定される。
<光変調素子112>
まず、本実施の形態3における光変調素子112について説明する。光変調素子112には、信号発生器119から発生する一定周波数の正弦波が入力される。このとき、光変調素子112によって、レーザ発振器111から一定強度で出力されたレーザ光は、図12に示すように、一定強度の信号に一定周波数の正弦波が重畳した波形となるように変調される。なお、信号発生器119からは一定周波数の正弦波が出力されるため、信号発生器119に信号の出力を開始させる際にのみ、トリガ発生器120からのトリガ信号を発生させればよい。
<溶け込み量>
次に、溶接部102の溶け込み量について説明する。図1に示した溶融池103の底部(キーホール104の底部)には、一定の周期(周波数)で強度のピークを持つ正弦波に変調されたレーザ光が照射される。このため、溶融池103の底部は、照射されるレーザ光の正弦波と同じ周波数で熱膨張、収縮を繰り返す。このとき、正弦波に変調されたレーザ光の周波数と同じ周波数の超音波105が発生し、被溶接材101の内部を伝播する。この伝播した超音波105を圧電素子115にて検出する。光変調素子112から出力されたレーザ光の強度の時間変化を示すグラフを図13の上側に示し、圧電素子115で検出された超音波(検出信号)の振幅の時間変化を示すグラフを図13の下側に示す。
図13に示すように、圧電素子115で検出される超音波105の位相には、照射したレーザ光の正弦波の位相に対して位相遅れΦが生じる。この検出信号の位相遅れΦは、超音波が被溶接材101を伝搬する速度(超音波伝播速度)Vと、図1に示したキーホール104の底部から圧電素子115までの直線距離L2とに依存する。また、検出信号の位相遅れΦには、圧電素子115で検出された超音波が信号に変換されてから、アンプ116、A/D変換器117により波形データに変換されるまでのシステムの遅れαが含まれる。これらのことから、位相遅れΦと直線距離L2は、下記の式(3)で表すことができる。したがって、検出信号から位相遅れΦを求めることにより、直線距離L2を算出することができる。なお、システムの遅れαは一定であるため、校正により特定できる。また、超音波伝播速度Vは予め求めておく。
Figure 2011189407
また、キーホール104の深さDは、実施の形態1で示した式(2)から算出できる。したがって、式(2)と式(3)から、下記の式(4)を求めることができる。
Figure 2011189407
なお、L1は、図1に示した被溶接材101のレーザ照射位置(溶接位置)から圧電素子115までの水平距離であり、予め求めておく。
上記式(4)に検出信号の位相遅れΦを代入することで、キーホール104の深さD、すなわち溶接部102の溶け込み量を測定することができる。
ところで、図13の下側に示したグラフのように、圧電素子115で検出される検出信号には、圧電素子115の検出感度に依存するノイズ、被溶接材101が溶融、蒸発等する際に発生する振動によるノイズ等の多くのノイズが含まれている。ノイズを含んだ検出信号からでは、位相遅れΦを精度良く検出することはできない。そこで、検出信号に対して、信号発生器119に発生させる正弦波の周波数で、フーリエ変換を行う。
具体的には、一定の範囲の時間Δtにおける検出信号を切り出し、ハニング窓等の窓関数を適用した後、フーリエ変換することで、検出信号に含まれる、レーザ光の正弦波の周波数に相当する成分の信号を求める。これにより、検出信号からノイズを除去して、レーザ光の正弦波と同じ周波数のみを取得することができる。同時に、フーリエ変換により検出信号の正弦波の位相も求めることができる。したがって、照射したレーザ光における正弦波の位相と検出信号における正弦波の位相とを比較することにより、検出信号の位相遅れΦを求めることができる。なお、位相遅れΦは0〜2πの範囲で求まるが、時間の情報を用いて位相結合することにより、−∞〜+∞の値で求めることもできる。また、時刻が0の時点での位相遅れは、システムの遅れαとする。
求めた位相遅れΦを式(4)に代入して、キーホール104の深さDを算出することが可能である。
<まとめ>
以上、本実施の形態によれば、レーザ発振器111から一定強度で出力されたレーザ光が、一定周波数の正弦波となるように、光変調素子112で変調される。また、圧電素子115で検出された検出信号をフーリエ変換することにより、変調されたレーザ光の周波数と同じ周波数の信号のみを抽出する。これらにより、検出信号に含まれるノイズを除去し、溶融池103の底部で発生した超音波を精度良く検出することが可能となる。このため、圧電素子115のS/N比が悪い場合でも、感度良く、溶け込み量を測定することが可能となる。
また、フーリエ変換を行わずに検出信号の位相を求める場合、検出信号のピークが発生した時刻など、特定の一点の情報を用いて検出信号の位相を求めることとなる。この場合、検出信号のピークとその発生時刻とを正確に対応させて検出信号の位相を検出するのは容易ではなく、また、測定誤差を含むため、精度良く検出信号の位相を求めることは困難である。これに対して、実施の形態3のようにフーリエ変換を行う場合、一定の範囲の時間Δtにおける検出信号の情報を用いて検出信号の位相を求める。このため、検出信号のピークとその発生時刻とを正確に対応させる必要がなく、また、複数点の情報に基づいて検出信号の位相を求めるため、フーリエ変換をしない場合に比べて、検出精度を高めることが可能となる。
<その他>
なお、図7に示すように、圧電素子115の代わりに、光干渉計125を使用して超音波105を検出するとしてもよい。非接触で超音波105を検出することができるため、溶接部102の位置から光干渉計125の照射位置までの水平距離L1を一定にすることが可能となる。また、非接触であるため、溶接部102からの熱の影響を低減させることができ、光干渉計125の熱膨張等による測定誤差を小さくすることが可能となる。また、一般的に光干渉計125は、圧電素子115に比べ感度が一桁以上悪い。しかし、実施の形態3によって、光干渉計125の感度が悪い場合でも、高精度に検出信号の位相を求めることが可能となる。このため、圧電素子115よりも感度の悪い光干渉計125を用いても、高い精度で溶接部102の溶け込み量を測定することが可能となる。
また、実施の形態3におけるレーザ溶接装置を、図10に示した実施の形態2におけるレーザ溶接装置200と同じ構成にしてもよい。この場合、超音波発生用レーザ発振器211から出力されたレーザ光が、光変調素子112によって一定周波数の正弦波に変調される。
このように、高出力のレーザ発振器111と低出力の超音波発生用レーザ発振器211とを併用することで、効率良くエネルギーを使用することができる。
本発明は、レーザ光を用いて溶接する際に溶接部の品質を評価するレーザ溶接装置などとして、特に、溶け込み深さやレーザ出力などを監視することで品質を評価するレーザ溶接装置として、利用することができる。具体的には、非破壊で溶接品質の保証をする機能を有することから、自動車や電子部品等のレーザ溶接装置として利用することができる。
100 レーザ溶接装置
101 被溶接材
102 溶接部
103 溶融池
104 キーホール
105 超音波
111 レーザ発振器
112 光変調素子
113 レーザ光伝送用光学系
114 集光光学系
115 圧電素子
116 アンプ
117 A/D変換器
118 コンピュータ
119 信号発生器
120 トリガ発生器
121 ステージコントローラ
122 移動ステージ
125 光干渉計
200 レーザ溶接装置
211 超音波発生用レーザ発振器
212 光結合素子

Claims (21)

  1. レーザ光で溶接部を溶接するレーザ溶接装置であって、
    強度にピークを有するレーザ光を前記溶接部に照射するレーザ出力手段と、
    前記レーザ出力手段で照射されたレーザ光により前記溶接部から発生した超音波を検出する超音波検出手段と、
    前記超音波検出手段で検出された超音波の波形に基づいて、前記溶接部の溶け込み量を算出する算出手段と、
    前記算出手段で算出された溶け込み量に基づいて、前記溶接部の溶接品質を評価する評価手段とを備える
    ことを特徴とするレーザ溶接装置。
  2. 前記レーザ出力手段が、
    レーザ光を一定強度で連続的に出力するレーザ発振器と、
    前記レーザ発振器から出力されたレーザ光を、レーザ光の強度にピークが発生するように変調する光変調素子と、
    変調後のレーザ光を集光して前記溶接部に照射する光学系とを備える
    ことを特徴とする請求項1に記載のレーザ溶接装置。
  3. 前記レーザ出力手段が、
    第1レーザ光を一定強度で連続的に出力する第1レーザ発振器と、
    前記第1レーザ光と強度が異なる第2レーザ光を一定強度で連続的に出力する第2レーザ発振器と、
    レーザ光の強度にピークが発生するように前記第2レーザ光を変調する光変調素子と、
    前記第1レーザ光と変調後の第2レーザ光とを結合する光結合素子と、
    結合後のレーザ光を集光して前記溶接部に照射する光学系とを備える
    ことを特徴とする請求項1に記載のレーザ溶接装置。
  4. 前記光変調素子が、変調前のレーザ光の強度にパルス波を発生させたレーザ光を変調後のレーザ光として出力するものである
    ことを特徴とする請求項2又は請求項3に記載のレーザ溶接装置。
  5. 前記光変調素子が、変調前のレーザ光の強度にバースト波を発生させたレーザ光を変調後のレーザ光として出力するものである
    ことを特徴とする請求項2又は請求項3に記載のレーザ溶接装置。
  6. 前記光変調素子が、変調前のレーザ光の強度にチャープ波を発生させたレーザ光を変調後のレーザ光として出力するものである
    ことを特徴とする請求項2又は請求項3に記載のレーザ溶接装置。
  7. 前記光変調素子が、変調前のレーザ光の強度に正弦波を発生させたレーザ光を変調後のレーザ光として出力するものである
    ことを特徴とする請求項2又は請求項3に記載のレーザ溶接装置。
  8. 前記算出手段が、前記レーザ出力手段によるレーザ光の変調時間・照射位置と、前記超音波検出手段による超音波の検出位置・検出時間とに基づいて、前記溶接部の溶け込み量を算出する
    ことを特徴とする請求項2又は請求項3に記載のレーザ溶接装置。
  9. 前記算出手段が、前記超音波検出手段で検出された超音波の波形をフーリエ変換することで、前記変調後のレーザ光と同じ周波数の超音波の位相を求め、その求めた超音波の位相と、前記超音波検出手段による超音波の検出位置と、前記レーザ出力手段による前記変調後のレーザ光の位相・照射位置とに基づいて、前記溶接部の溶け込み量を算出する
    ことを特徴とする請求項7に記載のレーザ溶接装置。
  10. 前記超音波検出手段が、圧電素子である
    ことを特徴とする請求項1に記載のレーザ溶接装置。
  11. 前記超音波検出手段が、光干渉計である
    ことを特徴とする請求項1に記載のレーザ溶接装置。
  12. 前記評価手段で評価された結果に基づいて、前記レーザ出力手段のレーザ光の出力強度を制御する制御手段を備える
    ことを特徴とする請求項1に記載のレーザ溶接装置。
  13. レーザ光で溶接部を溶接するレーザ溶接方法であって、
    強度にピークを有するレーザ光を前記溶接部に照射する第1の工程と、
    前記第1の工程で照射されたレーザ光により前記溶接部から発生した超音波を検出する第2の工程と、
    前記第2の工程で検出された超音波の波形に基づいて、前記溶接部の溶け込み量を算出する第3の工程と、
    前記第3の工程で算出された溶け込み量に基づいて、前記溶接部の溶接品質を評価する第4の工程とを含む
    ことを特徴とするレーザ溶接方法。
  14. 前記第1の工程において、レーザ光を変調し、レーザ光の強度にピークを発生させる
    ことを特徴とする請求項13に記載のレーザ溶接方法。
  15. 前記第1の工程において、レーザ光の強度にパルス波が発生するようにレーザ光を変調する
    ことを特徴とする請求項14に記載のレーザ溶接方法。
  16. 前記第1の工程において、レーザ光の強度にバースト波が発生するようにレーザ光を変調する
    ことを特徴とする請求項14に記載のレーザ溶接方法。
  17. 前記第1の工程において、レーザ光の強度にチャープ波が発生するようにレーザ光を変調する
    ことを特徴とする請求項14に記載のレーザ溶接方法。
  18. 前記第1の工程において、レーザ光の強度に正弦波が発生するようにレーザ光を変調する
    ことを特徴とする請求項14に記載のレーザ溶接方法。
  19. 前記第3の工程において、レーザ光の変調時間・照射位置と、超音波の検出位置・検出時間とに基づいて、前記溶接部の溶け込み量を算出する
    ことを特徴とする請求項14に記載のレーザ溶接方法。
  20. 前記第3の工程において、前記第2の工程で検出された超音波の波形をフーリエ変換することで、前記第1の工程で変調されたレーザ光と同じ周波数の超音波の位相を求め、その求めた超音波の位相と、超音波の検出位置と、前記第1の工程で変調されたレーザ光の位相・照射位置とに基づいて、前記溶接部の溶け込み量を算出する
    ことを特徴とする請求項18に記載のレーザ溶接方法。
  21. 前記第4の工程で評価された結果に基づいて、前記レーザ光の出力強度を制御する第5の工程を含む
    ことを特徴とする請求項13に記載のレーザ溶接方法。
JP2011024491A 2010-02-16 2011-02-08 レーザ溶接装置およびレーザ溶接方法 Expired - Fee Related JP5570451B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024491A JP5570451B2 (ja) 2010-02-16 2011-02-08 レーザ溶接装置およびレーザ溶接方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010030764 2010-02-16
JP2010030764 2010-02-16
JP2011024491A JP5570451B2 (ja) 2010-02-16 2011-02-08 レーザ溶接装置およびレーザ溶接方法

Publications (2)

Publication Number Publication Date
JP2011189407A true JP2011189407A (ja) 2011-09-29
JP5570451B2 JP5570451B2 (ja) 2014-08-13

Family

ID=44794878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024491A Expired - Fee Related JP5570451B2 (ja) 2010-02-16 2011-02-08 レーザ溶接装置およびレーザ溶接方法

Country Status (1)

Country Link
JP (1) JP5570451B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236196A (ja) * 2011-05-10 2012-12-06 Panasonic Corp レーザ溶接装置及びレーザ溶接方法
KR20150079087A (ko) * 2013-12-31 2015-07-08 한국원자력연구원 연속성 레이저를 이용한 비파괴 검사용 가진장치와 이를 이용한 비파괴 검사장치 및 비파괴 검사방법
JP2017096936A (ja) * 2015-11-19 2017-06-01 ゼネラル・エレクトリック・カンパニイ 付加製造プロセスのための非接触音響検査方法
JP2018179833A (ja) * 2017-04-17 2018-11-15 株式会社東芝 超音波受信装置、欠陥検査装置、超音波受信方法、欠陥検査方法、および構造体の製造方法
CN110890509A (zh) * 2018-09-05 2020-03-17 罗伯特·博世有限公司 用于将电池薄膜堆叠的各个膜状的薄膜连接起来的方法
JP6674588B1 (ja) * 2019-02-22 2020-04-01 株式会社東芝 銅を含む部材の溶接方法、および回転電機の製造方法
US20200376594A1 (en) * 2015-06-19 2020-12-03 Ipg Photonics Corporation Laser welding head with dual movable mirrors providing beam movement and laser welding systems and methods using same
CN113237432A (zh) * 2021-04-19 2021-08-10 武汉光谷航天三江激光产业技术研究院有限公司 激光焊接熔深提取方法及设备

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243565A (ja) * 1985-08-21 1987-02-25 Nippon Kokan Kk <Nkk> 溶接欠陥のリアルタイム監視方法
JPH04191652A (ja) * 1990-11-27 1992-07-09 Nippon Steel Corp 薄膜評価装置
JPH10506059A (ja) * 1994-09-26 1998-06-16 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 誘導レーザービームのプラズマによる材料加工方法および装置
JPH11101632A (ja) * 1997-09-25 1999-04-13 Toshiba Corp 超音波計測装置
JP2000042769A (ja) * 1998-07-31 2000-02-15 Sumitomo Heavy Ind Ltd レーザ溶接状態監視装置及び監視方法
JP2002213936A (ja) * 2000-11-16 2002-07-31 Kawasaki Steel Corp 材料厚さの非接触測定方法及び装置
JP2003508771A (ja) * 1999-07-27 2003-03-04 ロッキード マーティン コーポレイション 調整可能な波長を有する超音波発生レーザ光源を使用した超音波レーザ検査システムと方法
JP2004157114A (ja) * 2002-11-05 2004-06-03 Jfe Steel Kk 材料厚さ測定方法及び装置
JP2006159242A (ja) * 2004-12-07 2006-06-22 Nippon Steel Corp レーザ溶接部の品質判定装置および方法、並びに、レーザ溶接部の品質判定プログラムを記録した媒体
WO2008007460A1 (fr) * 2006-07-11 2008-01-17 Central Research Institute Of Electric Power Industry Dispositif et procédé d'analyse par ultrasons
JP2008151763A (ja) * 2006-11-20 2008-07-03 Toyota Motor Corp 溶接部測定方法及び溶接部測定装置
JP2009168518A (ja) * 2008-01-11 2009-07-30 Hitachi Kenki Fine Tech Co Ltd 超音波映像装置
JP2010266404A (ja) * 2009-05-18 2010-11-25 Nippon Physical Acoustics Ltd 溶接状態の異常判別装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243565A (ja) * 1985-08-21 1987-02-25 Nippon Kokan Kk <Nkk> 溶接欠陥のリアルタイム監視方法
JPH04191652A (ja) * 1990-11-27 1992-07-09 Nippon Steel Corp 薄膜評価装置
JPH10506059A (ja) * 1994-09-26 1998-06-16 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 誘導レーザービームのプラズマによる材料加工方法および装置
JPH11101632A (ja) * 1997-09-25 1999-04-13 Toshiba Corp 超音波計測装置
JP2000042769A (ja) * 1998-07-31 2000-02-15 Sumitomo Heavy Ind Ltd レーザ溶接状態監視装置及び監視方法
JP2003508771A (ja) * 1999-07-27 2003-03-04 ロッキード マーティン コーポレイション 調整可能な波長を有する超音波発生レーザ光源を使用した超音波レーザ検査システムと方法
JP2002213936A (ja) * 2000-11-16 2002-07-31 Kawasaki Steel Corp 材料厚さの非接触測定方法及び装置
JP2004157114A (ja) * 2002-11-05 2004-06-03 Jfe Steel Kk 材料厚さ測定方法及び装置
JP2006159242A (ja) * 2004-12-07 2006-06-22 Nippon Steel Corp レーザ溶接部の品質判定装置および方法、並びに、レーザ溶接部の品質判定プログラムを記録した媒体
WO2008007460A1 (fr) * 2006-07-11 2008-01-17 Central Research Institute Of Electric Power Industry Dispositif et procédé d'analyse par ultrasons
JP2008151763A (ja) * 2006-11-20 2008-07-03 Toyota Motor Corp 溶接部測定方法及び溶接部測定装置
JP2009168518A (ja) * 2008-01-11 2009-07-30 Hitachi Kenki Fine Tech Co Ltd 超音波映像装置
JP2010266404A (ja) * 2009-05-18 2010-11-25 Nippon Physical Acoustics Ltd 溶接状態の異常判別装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236196A (ja) * 2011-05-10 2012-12-06 Panasonic Corp レーザ溶接装置及びレーザ溶接方法
US8735768B2 (en) 2011-05-10 2014-05-27 Panasonic Corporation Laser welding apparatus
KR20150079087A (ko) * 2013-12-31 2015-07-08 한국원자력연구원 연속성 레이저를 이용한 비파괴 검사용 가진장치와 이를 이용한 비파괴 검사장치 및 비파괴 검사방법
KR101646046B1 (ko) * 2013-12-31 2016-08-08 한국원자력연구원 연속성 레이저를 이용한 비파괴 검사용 가진장치와 이를 이용한 비파괴 검사장치 및 비파괴 검사방법
US20200376594A1 (en) * 2015-06-19 2020-12-03 Ipg Photonics Corporation Laser welding head with dual movable mirrors providing beam movement and laser welding systems and methods using same
US11964341B2 (en) * 2015-06-19 2024-04-23 Ipg Photonics Corporation Laser welding head with dual movable mirrors providing beam movement and laser welding systems and methods using same
JP2017096936A (ja) * 2015-11-19 2017-06-01 ゼネラル・エレクトリック・カンパニイ 付加製造プロセスのための非接触音響検査方法
JP2018179833A (ja) * 2017-04-17 2018-11-15 株式会社東芝 超音波受信装置、欠陥検査装置、超音波受信方法、欠陥検査方法、および構造体の製造方法
CN110890509A (zh) * 2018-09-05 2020-03-17 罗伯特·博世有限公司 用于将电池薄膜堆叠的各个膜状的薄膜连接起来的方法
JP6674588B1 (ja) * 2019-02-22 2020-04-01 株式会社東芝 銅を含む部材の溶接方法、および回転電機の製造方法
CN113237432A (zh) * 2021-04-19 2021-08-10 武汉光谷航天三江激光产业技术研究院有限公司 激光焊接熔深提取方法及设备

Also Published As

Publication number Publication date
JP5570451B2 (ja) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5570451B2 (ja) レーザ溶接装置およびレーザ溶接方法
JP2004157114A (ja) 材料厚さ測定方法及び装置
KR101912972B1 (ko) 초음파 검사 장치 및 초음파 검사 방법
JP2011257163A (ja) レーザ超音波検査方法およびレーザ超音波検査装置
JP5058109B2 (ja) レーザ超音波法による材料中の縦波と横波の音速の計測方法及び装置
JP2011033628A (ja) パターンマッチングを用いて溶接構造内の欠陥を検出するための方法及びシステム
JP5528385B2 (ja) ポアソン比の計測方法、及び計測装置
JP5856753B2 (ja) ひび割れ深さ測定装置及び測定方法
JP6682466B2 (ja) 光学検査装置
KR101053415B1 (ko) 레이저 초음파 측정장치 및 측정방법
JP5072789B2 (ja) レーザ超音波法による材料中の縦波と横波の音速の計測方法及び装置
KR100993989B1 (ko) 레이저 초음파 측정장치 및 레이저 초음파 측정방법
KR101180151B1 (ko) 프와송비의 계측 방법 및 계측 장치
KR100496826B1 (ko) 비접촉식 결정입경 측정장치 및 방법
JP2008151763A (ja) 溶接部測定方法及び溶接部測定装置
JP5424602B2 (ja) レーザ超音波検出装置及びレーザ超音波検出方法
JP2009031180A (ja) 内部温度の測定方法および測定装置
KR100994037B1 (ko) 레이저 초음파 측정장치 및 레이저 초음파 측정방법
JP4471714B2 (ja) 結晶粒径分布測定方法および装置
JP7359748B2 (ja) ボルト軸力計測装置及び方法
JP2011185706A (ja) レーザ超音波を用いた表面欠陥監視方法及び表面欠陥監視装置
JP5058196B2 (ja) 材料の相変態率の計測装置及び計測方法
JP2010223653A (ja) 構造物の内部状態を測定する測定装置及び測定方法
WO2002103347A2 (en) Grain-size measurement
JP2005062093A (ja) 対象音検出方法及びその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R151 Written notification of patent or utility model registration

Ref document number: 5570451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees